Chapter 45

Submodular function
minimization

This chapter describes a strongly polynomial-time algorithm to find the
minimum value of a submodular function. It suffices that the submodular
function is given by a value giving oracle.

One application of submodular function minimization is optimizing over
the intersection of two polymatroids. This will be discussed in Chapter 47.

45.1. Submodular function minimization

It was shown by Grotschel, Lovdsz, and Schrijver [1981] that the minimum
value of a rational-valued submodular set function f on S can be found in
polynomial time, if f is given by a value giving oracle and an upper bound
B is given on the numerators and denominators of the values of f. The
running time is bounded by a polynomial in |S| and log B. This algorithm
is based on the ellipsoid method: we can assume that f(f) = 0 (by resetting
fU) = f(U) - f(0) for all U C S); then with the greedy algorithm, we can
optimize over E Py in polynomial time (Corollary 44.3b), hence the separation
problem for E Py is solvable in polynomial time, hence also the separation
problem for

(45.1) P:=EP;n{z |z <0},

and therefore also the optimization problem for P. Now the maximum value
of z(S) over P is equal to the minimum value of f (by (44.8), (44.9), and
(44.34)).

Having a polynomial-time method to find the minimum value of a sub-
modular function, we can turn it into a polynomial-time method to find a
subset T of S minimizing f(7T'): For each s € S, we can determine if the
minimum value of f over all subsets of S is equal to the minimum value of f
over subsets of S\ {s}. If so, we reset S := S\ {s}. Doing this for all elements
of S, we are left with a set T minimizing f over all subsets of (the original)
S.

Grotschel, Lovasz, and Schrijver [1988] showed that this algorithm can be
turned into a strongly polynomial-time method. Cunningham [1985b] gave a

Section 45.3. A subroutine 787

combinatorial, pseudo-polynomial-time algorithm for minimizing a submodu-
lar function f (polynomial in the size of the underlying set and the maximum
absolute value of f (assuming f to be integer)). Inspired by Cunningham’s
method, combinatorial strongly polynomial-time algorithms were found by
Iwata, Fleischer, and Fujishige [2000,2001] and Schrijver [2000a]. We will de-
scribe the latter algorithm.

45.2. Orders and base vectors

Let f be a submodular set function on a set S. In finding the minimum value
of f, we can assume f(0) = 0, as resetting f(U) := f(U)— f(0) for allU C S
does not change the problem. So throughout we assume that f(@)) = 0.
Moreover, we assume that f is given by a wvalue giving oracle, that is, an
oracle that returns f(U) for any given subset U of S. We also assume that the
numbers returned by the oracle are rational (or belong to any ordered field in
which we can perform the elementary arithmetic operations algorithmically).
Recall that the base polytope By of f is defined as the set of base vectors

of f:

(45.2) By :={z €R% | z(U) < f(U) for all U C S, z(S) = f(S5)}.
Consider any total order < on S.3% For any v € S, denote

(45.3) v i={ues|u=<v}

Define a vector b= in R® by:

(45.4) b™(v) == fv< U{v}) — f(v<)

for v € S. Theorem 44.3 implies that b~ belongs to Bjy.
Note that b=(U) = f(U) for each lower ideal U of < (where a lower ideal
of < is a subset U of S such that if v € U and u < v, then v € U).

45.3. A subroutine

In this section we describe a subroutine that is important in the algorithm. It
replaces a total order < by other total orders, thereby reducing some interval
(s,t]<, where

(45.5) (s, t]<:={v|s=<v =t}

for s,t € S.
Let < be a total order on S. For any s,u € S with s < u, let <*" be
the total order on S obtained from < by resetting v < u to u < v for each

35 As usual, we use < for strict inequality and < for nonstrict inequality. We refer to the
order by the strict inequality sign <.

788 Chapter 45. Submodular function minimization

v satisfying s < v < w. Thus in the ordering, we move u to the position just
before s. Hence (s,t]<s.w = (s,t]< \ {u} if u € (s,t]<.
We show that there is a strongly polynomial-time subroutine that

(45.6) for any s,t € S with s < ¢, finds a § > 0 and describes b~ +
§(x' — x*) as a convex combination of the b="" for u € (s, 1] <.

To describe the subroutine, we can assume that b= = 0, by replacing (tem-
porarily) f(U) by f(U) —b~(U) for each U C S.
We investigate the signs of the vector b="". We show that for each v € S:

(45.7) b= (v)<0if s 2 v <u,
b'<sv"u (v) >0if v =u,
b="" (v) = 0 otherwise.

s,u

To prove this, observe that if T'C U C S, then for any v € S\ U we have by
the submodularity of f:

(45.8) fUULv}) = f(U) < (T U{v}) = F(T).
To see (45.7), if s < v < u, then by (45.8),
(45.9) b3 (v) = flozew U{v}) = flozen) < floxU{o}) = flvs)

=b(v) =0,
since vysw = v5 U {u} D vs.
Similarly,
(45.10) bi:(H; = fluew U{u}) = fluzon) > flus U{u}) = f(ux)

since U s, = S5 C U<.

Finally, if v < s or u < v, then v4s.u = v, and hence b="" (v) = b=(v) =
0. This shows (45.7).

By (45.7), the matrix M = (b=""(v))., with rows indexed by u € (s,]<
and columns indexed by v € S, in the order given by <, has the following,
partially triangular, shape, where 4+ means that the entry is > 0, and — that
the entry is < 0:

S t
0 0O — 4+ 0 0O 0 O 0
- - +
0 O
+ 0
t|0 o - - - - + 0 0

Section 45.4. Minimizing a submodular function 789

As each row of M represents a vector b=~ to obtain (45.6) we must
describe 6(x* — x*) as a convex combination of the rows of M, for some
6 >0.

We call the + entries in the matrix the ‘diagonal’ elements. Now for each
row of M, the sum of its entries is 0, as b= (S) = f(S) = b=(S) = 0. Hence,
if a ‘diagonal’ element b="" (u) is equal to 0 for some u € (s,#]<, then the
corresponding row of M is all-zero. So in this case we can take § = 0 in (45.6).

If b=""(u) > 0 for each u € (s,t]< (that is, if each ‘diagonal’ element is
strictly positive), then x! —x® can be described as a nonnegative combination
of the rows of M (by the sign pattern of M and since the entries in each row
of M add up to 0). Hence 6(x! — x*) is a convex combination of the rows of
M for some ¢ > 0, yielding again (45.6).

45.4. Minimizing a submodular function

We now describe the algorithm to find the minimum value of a submodular
set function f on S. We assume f(f) =0 and S ={1,...,n}.
We iteratively update a vector x € By, given as a convex combination

(45.11) T = Ab= 4 ARDTE,

where the <; are total orders of S, and where the \; are positive and sum to
1. Initially, we choose an arbitrary total order < and set z := b~ (so k =1
and <1=<).

We describe the iteration. Consider the directed graph D = (S, A), with

(45.12) A={(u,v) |Fi=1,...;k:u=<; v}
Define
(45.13) P:={veS|zw) >0}and N:={veS|z(v) <0}

Case 1: D has no path from P to IN. Then let U be the set of vertices
of D that can reach N by a directed path. So N C U and U N P = (; that is,
U contains all negative components of x and no positive components. Hence
(W) > x(U) for each W C S. As no arcs of D enter U, U is a lower ideal
of <;, and hence b= (U) = f(U), for each i = 1,...,k. Therefore, for each
WCSs:

k
(4514) f(U) = 2b™(U) = 2(U) < (W) < f(W).

So U minimizes f.

Case 2: D has a path from P to N. Let d(v) denote the distance in D
from P to v (= minimum number of arcs in a directed path from P to v).
Set d(v) := oo if v is not reachable from P. Choose s,t € S as follows.

790 Chapter 45. Submodular function minimization

Let ¢ be the element in N reachable from P with d(t) maximum, such
that ¢ is largest. Let s be the element with (s,t) € A, d(s) =d(t) — 1, and s
largest. Let o be the maximum of |(s,t]<,| over i = 1,..., k. Reorder indices
such that |(s,t]<,| = «.

By (45.6), we can find 6 > 0 and describe

(45.15) b= +8(x" — x°)

as a convex combination of the b=1" for u € (s,t]~,. Then with (45.11) we
obtain

(45.16) y:=z+ Mo} — x°)

as a convex combination of b=i (i =2,...,k) and b=1" (u € (s,t]<,).

Let 2’ be the point on the line segment Zy closest to y satisfying 2’ (t) < 0.
(So z'(t) = 0 or ' = y.) We can describe x’ as a convex combination of b~
(i=1,...,k) and b=7" (u € (s,t]<,). Moreover, if 2/(t) < 0, then we can do
without b=1.

We reduce the number of terms in the convex decomposition of z’ to at
most |S| by linear algebra: any affine dependence of the vectors in the de-
composition yields a reduction of the number of terms in the decomposition,
as in the standard proof of Carathéodory’s theorem (subtract an appropriate
multiple of the linear expression giving the affine dependence, from the linear
expression giving the convex combination, such that all coefficients remain
nonnegative, and at least one becomes 0). As all b~ belong to a hyperplane,
this reduces the number of terms to at most |S].

Then reset x := 2’ and iterate. This finishes the description of the algo-
rithm.

45.5. Running time of the algorithm
We show that the number of iterations is at most |S|®. Consider any iteration.
Let

(45.17) B := number of i € {1,...,k} with |(s, t]<,

Let o/, d', A", P', N', t', s’, ¢, ' be the objects z, d, A, P, N, t, s, o, 3 in
the next iteration (if any). Then

(45.18) for all v € S, d'(v) > d(v),

= Q.

and
(45.19) if d’'(v) = d(v) for all v € S, then (d'(¢'),t,s',a’, ') is lexico-
graphically less than (d(t),t, s, a,).

Since each of d(t),t, s, a, 0 is at most |S], and since (if d(v) is unchanged for
all v) there are at most |S| pairs (d(t),t), (45.19) implies that in at most |S|*

Section 45.5. Running time of the algorithm 791

iterations d(v) increases for at least one v. Any fixed v can have at most |S]|
such increases, and hence the number of iterations is at most |S|°.
In order to prove (45.18) and (45.19), notice that

(45.20) for each arc (v,w) € A"\ A we have s <; w <1 v <1 1.

Indeed, as (v, w) € A we have w <1 v. As (v,w) € A’, we have v <" w for
some u € (s,t]<,. Hence the definition of <] gives v = u and s <1 w <1 u.
This shows (45.20).

If (45.18) does not hold, then A’ \ A contains an arc (v,w) with d(w)
d(v) + 2 (using that P’ C P). By (45.20), s <1 w <1 v =3 t, and so d(w)
d(s) +1=4d(t) <d(v) + 1, a contradiction. This shows (45.18).

To prove (45.19), assume that d'(v) = d(v) for all v € S. As 2/(¥') < 0,
we have z(t') < 0 or ¢ = s. So by our criterion for choosing ¢ (maximizing
(d(t),t) lexicographically), and since d(s) < d(t), we know that d(t') < d(t),
and that if d(t') = d(t), then ¢ <.

Next assume that moreover d(¢') = d(t) and ¢’ = ¢. As (s/,t) € A’, and
as (by (45.20)) A’ \ A contains no arc entering ¢, we have (s',t) € A, and so
s’ < s, by the maximality of s.

Finally assume that moreover s’ = s. As (s,] <o is a proper subset of
(s,t]<, for each u € (s,t]<,, we know that o/ < a. Moreover, if o’ = «, then
B < 3, since <1 does not occur anymore among the linear orders making the
convex combination, as ’(t) < 0. This proves (45.19).

We therefore have proved:

2
<

Theorem 45.1. Given a submodular function f by a value giving oracle, a
set U minimizing f(U) can be found in strongly polynomial time.

Proof. See above. |

This algorithm performs the elementary arithmetic operations on func-
tion values, including multiplication and division (in order to solve certain
systems of linear equations). One would wish to have a ‘fully combinato-
rial” algorithm, in which the function values are only compared, added, and
subtracted. The existence of such an algorithm was shown by Iwata [2002a,
2002¢], by extending the algorithm of Iwata, Fleischer, and Fujishige [2000,
2001].

Notes. In the algorithm, we have chosen ¢ and s largest possible, in some fixed
order of S. To obtain the above running time bound it only suffices to choose ¢
and s in a consistent way. That is, if the set of choices for t is the same as in the
previous iteration, then we should choose the same ¢ — and similarly for s. This
roots in the idea of ‘consistent breadth-first search’ of Schonsleben [1980].

The observation that the number of iterations in the algorithm of Section 45.4
is O(|S|°) instead of O(|S|") is due to L.K. Fleischer. Vygen [2002] showed that the
number of iterations can in fact be bounded by O(]S|%).

792 Chapter 45. Submodular function minimization

The algorithm described above has been speeded up by Fleischer and Iwata
[2000,2002], by incorporating a push-relabel type of iteration based on approxi-
mate distances instead of precise distances (like Goldberg’s method for maximum
flow, given in Section 10.7). Iwata [2002b] combined the approaches of Iwata, Fleis-
cher, and Fujishige [2000,2001] and Schrijver [2000a] to obtain a faster algorithm.
A descent method for submodular function minimization based on an oracle for
membership of the base polytope was given by Fujishige and Iwata [2002].

Surveys and background on submodular function minimization are given by
Fleischer [2000b] and McCormick [2001].

45.6. Minimizing a symmetric submodular function

A set function f on S is called symmetric if f(U) = f(S\U) for each U C S.
The minimum of a symmetric submodular function f is attained by), since
for each U C S one has

(45.21) 2f(U) = f(U) + f(S\U) = f(0) + £(5) = 2f (D).

By extending a method of Nagamochi and Ibaraki [1992b] for finding the
minimum nonempty cut in an undirected graph, Queyranne [1995,1998] gave
an easy combinatorial algorithm to find a nonempty proper subset U of S
minimizing f(U), where f is given by a value giving oracle. We may assume

that f(0) = f(S) = 0, by resetting f(U) := f(U) — f(0) for all U C S.

Call an ordering s1,..., S, of the elements of S a legal order of S for f,
if, for each i = 1,...,n,
(45.22) f({sn- s} — (e}
is minimized over x € S\ {s1,...,8;-1} by = s;. One easily finds a legal

order, by O(|S|?) oracle calls (for the value of f).
Now the algorithm is (where a set U splits a set X if both X N U and
X \ U are nonempty):

(45.23) Find a legal order (si,...,s,) of S for f.
Determine (recursively) a nonempty proper subset 7' of S not
splitting {s,—_1, $n }, minimizing (7). (This can be done by iden-
tifying s,—1 and s,,.)
Then the minimum value of f(U) over nonempty proper subsets

U of S is equal to min{f(T), f({sn})}-
The correctness of the algorithm follows from, for n > 2:
(45.24) fU) > f({sn}) for each U C S splitting {s,—1,5,}.

This can be proved as follows. Define t5 := s;. For i = 1,...,n — 1, define
t; := s;, where j is the smallest index such that j > ¢ and such that U
splits {s;,s;}. For i = 0,...,n, let U; := {s1,...,s;}. Note that for each
t=1,...,n—1 one has

Section 45.7. Minimizing a submodular function over the odd sets 793

(45.25) f(UisaU{t:}) = f({t:}) = f(Ui1 U{tioa}) — f({tima}),
since if t;_, = t; this is trivial, and if ¢;_1 # ¢;, then ¢;_; = s;, in which case
(45.25) follows from the legality of the order.

Moreover, for each i =1,...,n— 1 (setting U := S\ U):
(45.26) f(Ul U U) — f(Ui,1 @] U) + f(UZ UU) - f(Ui,1 UU)

< fU; U{ti}) — f(Uim1 U{ti}).

In proving this, we may assume (by symmetry of U and U) that s; € U.
Then U; UU = U;_1 UU and t; € U. So f(Ul U {ti}) + f(Ui_l U U) >
FUi—1 U{t;}) + f(U; UU), by submodularity. This gives (45.26).

Then we have:

(45.27) f(sn) —2f(U) o o
= fUpn1UU)+ f(Up—1UU) — f(UyLUU) — f(UyUU)

= Y UW.00) — [V V) + SGUT) ~ [(U 1 UT)
< S (WO T) - FU U {1)

n—1

< (fUU{ts}) = f(Uis U{tia}) + f({tioa}) — F({t))

=1

= f(Un-1U{tn1}) = f({tn—1}) = f({t}) + f({to}) = —f(sn)
(where the first inequality follows from (45.26), and the second inequality
from (45.25)). This shows (45.24).

Notes. Fujishige [1998] gave an alternative correctness proof. Nagamochi and
Ibaraki [1998] extended the algorithm to minimizing submodular functions f satis-
fying

(45.28) F()+fU) = F(T\U)+ fU\T)

for all T,U C S. Rizzi [2000b] gave an extension.

45.7. Minimizing a submodular function over the odd
sets

From the strong polynomial-time solvability of submodular function mini-
mization, one can derive that also a set of odd cardinality minimizing f (over
the odd sets) is solvable in strongly polynomial time (Grotschel, Lovész, and
Schrijver [1981,1984a,1988] (the second paper corrects a wrong argument
given in the first paper)).

Theorem 45.2. Given a submodular set function f on S (by a value giving
oracle) and a nonempty subset T of S, one can find in strongly polynomial
time a set W C S minimizing f(W) over W with |[W NT| odd.

794 Chapter 45. Submodular function minimization

Proof. The case T odd can be reduced to the case T" even as follows. Find
for each t € T a subset Wy of S — ¢ with W, N (T — ¢t) odd, and minimizing
f(Wy). Moreover, find a subset U of S minimizing f(U) over U O T. Then
a set that attains the minimum among f(U) and the f(W;), is an output as
required.

So we can assume that 7' is even. We describe a recursive algorithm. Say
that a set U splits T if both TN U and T \ U are nonempty. First find a
set U minimizing f(U) over all subsets U of S splitting 7. This can be done
by finding for all s,¢ € T a set U, ; minimizing f(Us,) over all subsets of
S containing s and not containing ¢ (this amounts to submodular function
minimization), and taking for U a set that minimizes f(Us;) over all such
s, t.

If UNT is odd, we output W := U. If U NT is even, then recursively
we find a set X minimizing f(X) over all X with X N (T'NU) odd, and not
splitting 7"\ U. This can be done by shrinking 7'\ U to one element. Also,
recursively we can find a set Y minimizing f(Y") over all Y with Y N (T'\ U)
odd, and not splitting T'N U. Output an X or Y attaining the minimum of
F(X) and f(V).

This gives a strongly polynomial-time algorithm as the total number of
recursive calls is at most |T'| —2 (since 2+ (|TNU|—2)+(|T\U|-2) = |T|-2).

To see the correctness, let W minimize f(W) over those W with |W NT|
odd. Suppose that f(W) < f(X) and f(W) < f(Y). As f(W) < f(X), W
splits T\ U, and hence W UU splits T. Similarly, f(W) < f(Y) implies that
W NU splits T.

Since WNT is odd and UNT is even, either (WNU)NT or WUU)NT
is odd.

If WnNU)NT is odd, then f(WNU) > f(W) (as W minimizes f(W)
over W with WNT odd) and f(WUU) > f(U) (as W UU splits T and
as U minimizes f(U) over U splitting T'). Hence, by the submodularity of f,
fWwnU) = f(W). Since (WNU)N(TNU)=(WnNU)NT is odd and since
WNU does not split T\U, we have f(W) = f(WNU) > f(X), contradicting
our assumption.

If (WuUU)NT is odd, a symmetric argument gives a contradiction. ||

This generalizes the strong polynomial-time solvability of finding a mini-
mum-capacity odd cut in a graph, proved by Padberg and Rao [1982] (Corol-
lary 25.6a). For a further generalization, see Section 49.11a.

