
Chapter 44

Submodular functions and

polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970b] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all subsets T, U of S. Similarly, f is called supermodular if −f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f

is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.
A set function f on S is called nondecreasing if f(T ) ≤ f(U) whenever

T ⊆ U ⊆ S, and nonincreasing if f(T ) ≥ f(U) whenever T ⊆ U ⊆ S.
As usual, denote for each function w : S → R and for each subset U of S,

(44.2) w(U) :=
∑

s∈U

w(s).

So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(∅) = 0 may
be obtained in this way. (More generally, each modular set function f on S

satisfies f(U) = w(U) + γ (for U ⊆ S), for some unique function w : S → R

and some unique real number γ.)
In a sense, submodularity is the discrete analogue of convexity. If we

define, for any f : P(S) → R and any x ∈ S, a function δfx : P(S) → R

by: δfx(T ) := f(T ∪ {x}) − f(T ), then f is submodular if and only if δfx is
nonincreasing for each x ∈ S.

In other words:



Section 44.1. Submodular functions and polymatroids 767

Theorem 44.1. A set function f on S is submodular if and only if

(44.3) f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪ {s, t})

for each U ⊆ S and distinct s, t ∈ S \ U .

Proof. Necessity being trivial, we show sufficiency. We prove (44.1) by in-
duction on |T△U |, the case |T△U | ≤ 2 being trivial (if T ⊆ U or U ⊆ T )
or being implied by (44.3). If |T△U | ≥ 3, we may assume by symmetry that
|T \ U | ≥ 2. Choose t ∈ T \ U . Then, by induction,

(44.4) f(T ∪U)−f(T ) ≤ f((T \{t})∪U)−f(T \{t}) ≤ f(U)−f(T ∩U),

(as |T△((T \ {t}) ∪ U)| < |T△U | and |(T \ {t})△U | < |T△U |). This shows
(44.1).

Define two polyhedra associated with a set function f on S:

(44.5) Pf := {x ∈ RS | x ≥ 0, x(U) ≤ f(U) for each U ⊆ S},

EPf := {x ∈ RS | x(U) ≤ f(U) for each U ⊆ S}.

Note that Pf is nonempty if and only if f ≥ 0, and that EPf is nonempty if
and only if f(∅) ≥ 0.

If f is a submodular function, then Pf is called the polymatroid associated
with f , and EPf the extended polymatroid associated with f . A polyhedron
is called an (extended) polymatroid if it is the (extended) polymatroid as-
sociated with some submodular function. A polymatroid is bounded (since
0 ≤ xs ≤ f({s}) for each s ∈ S), and hence is a polytope.

The following observation presents a basic technique in proofs for sub-
modular functions, which we often use without further reference:

Theorem 44.2. Let f be a submodular set function on S and let x ∈ EPf .
Then the collection of sets U ⊆ S satisfying x(U) = f(U) is closed under
taking unions and intersections.

Proof. Suppose x(T ) = f(T ) and x(U) = f(U). Then

(44.6) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U) ≥ x(T ∩ U) + x(T ∪ U)
= x(T ) + x(U) = f(T ) + f(U),

implying that equality holds throughout. So x(T ∩ U) = f(T ∩ U) and x(T ∪
U) = f(T ∪ U).

A vector x in EPf (or in Pf ) is called a base vector of EPf (or of Pf ) if
x(S) = f(S). A base vector of f is a base vector of EPf . The set of all base
vectors of f is called the base polytope of EPf or of f . It is a face of EPf ,
and denoted by Bf . So

(44.7) Bf = {x ∈ RS | x(U) ≤ f(U) for all U ⊆ S, x(S) = f(S)}.
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(It is a polytope, since xs = x(S) − x(S \ {s}) ≥ f(S) − f(S \ {s}) for each
s ∈ S.)

Let f be a submodular set function on S and let a ∈ RS . Define the set
function f |a on S by

(44.8) (f |a)(U) := min
T⊆U

(f(T ) + a(U \ T ))

for U ⊆ S. It is easy to check that f |a again is submodular and that

(44.9) EPf |a = {x ∈ EPf | x ≤ a} and Pf |a = {x ∈ Pf | x ≤ a}.

It follows that if P is an (extended) polymatroid, then also the set P ∩{x |
x ≤ a} is an (extended) polymatroid, for any vector a. In fact, as Lovász
[1983c] observed, if f(∅) = 0, then f |a is the unique largest submodular
function f ′ satisfying f ′(∅) = 0, f ′ ≤ f , and f ′(U) ≤ a(U) for each U ⊆ V .

44.1a. Examples

Matroids. Let M = (S, I) be a matroid. Then the rank function r of M is sub-
modular and nondecreasing. In Theorem 39.8 we saw that a set function r on S

is the rank function of a matroid if and only if r is nonnegative, integer, nonde-
creasing and submodular with r(U) ≤ |U | for all U ⊆ S. (This last condition may
be replaced by: r(∅) = 0 and r({s}) ≤ 1 for each s in S.) Then the polymatroid
Pr associated with r is equal to the independent set polytope of M (by Corollary
40.2b).

A generalization is obtained by partitioning S into sets S1, . . . , Sk, and defining

(44.10) f(J) := r(
⋃

i∈J

Si)

for J ⊆ {1, . . . , k}. It is not difficult to show that each integer nondecreasing sub-
modular function f with f(∅) = 0 can be constructed in this way (see Section
44.6b).

As another generalization, if w : S → R+, define f(U) to be the maximum
of w(I) over I ∈ I with I ⊆ U . Then f is submodular. (To see this, write w =
λ1χ

T1 + · · · + λnχTn , with ∅ �= T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊆ S. Then by (40.3), f(U) =
∑n

i=1 λir(U ∩ Ti), implying that f is submodular.)
For more on the relation between submodular functions and matroids, see Sec-

tions 44.6a and 44.6b.

Matroid intersection. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2 respectively. Then the function f given by

(44.11) f(U) := r1(U) + r2(S \ U)

for U ⊆ S, is submodular. By the matroid intersection theorem (Theorem 41.1),
the minimum value of f is equal to the maximum size of a common independent
set.

Set unions. Let T1, . . . , Tn be subsets of a finite set T and let S = {1, . . . , n}.
Define
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(44.12) f(U) :=
∣

∣

⋃

i∈U

Ti

∣

∣

for U ⊆ S. Then f is nondecreasing and submodular. More generally, for w : T →
R+, the function f defined by

(44.13) f(U) := w(
⋃

i∈U

Ti)

for U ⊆ S, is nondecreasing and submodular.
More generally, for any nondecreasing submodular set function g on T , the

function f defined by

(44.14) f(U) := g(
⋃

i∈U

Ti)

for U ⊆ S, again is nondecreasing and submodular.
Let G = (V, E) be the bipartite graph corresponding to T1, . . . , Tn. That is, G

has colour classes S and T , and s ∈ S and t ∈ T are adjacent if and only if t ∈ Ts.
Then we have: x ∈ Pf if and only if there exist z ∈ Pg and y : E → Z+ such that

(44.15) y(δ(v)) = x(v) for all v ∈ S,
y(δ(v)) = z(v) for all v ∈ T .

So y may be considered as an ‘assignment’ of a ‘supply’ z to a ‘demand’ x. If g and
x are integer we can take also y and z integer.

Directed graph cut functions. Let D = (V, A) be a directed graph and let
c : A → R+ be a ‘capacity’ function on A. Define

(44.16) f(U) := c(δout(U))

for U ⊆ V (where δout(U) denotes the set of arcs leaving U). Then f is submodular
(but in general not nondecreasing). A function f arising in this way is called a cut

function.

Hypergraph cut functions. Let (V, E) be a hypergraph. For U ⊆ V , let f(U)
be the number of edges E ∈ E split by U (that is, with both E ∩ U and E \ U

nonempty). Then f is submodular.

Directed hypergraph cut functions. Let V be a finite set and let (E1, F1), . . . ,
(Em, Fm) be pairs of subsets of V . For U ⊆ V , let f(U) be the number of indices
i with U ∩ Ei �= ∅ and Fi �⊆ U . Then f is submodular. (In proving this, we can
assume m = 1, since any sum of submodular functions is submodular again.)

More generally, we can choose c1, . . . , cm ∈ R+ and define

(44.17) f(U) =
∑

(ci | U ∩ Ei �= ∅, Fi �⊆ U)

for U ⊆ V . Again, f is submodular. This generalizes the previous two examples
(where Ei = Fi for each i or |Ei| = |Fi| = 1 for each i).

Maximal element. Let V be a finite set and let h : V → R. For nonempty U ⊆ V ,
define

(44.18) f(U) := max{h(u) | u ∈ U},
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and define f(∅) to be the minimum of h(v) over v ∈ V . Then f is submodular.

Subtree diameter. Let G = (V, E) be a forest (a graph without circuits), and for
each X ⊆ E define

(44.19) f(X) :=
∑

K

diameter(K),

where K ranges over the components of the graph (V, X). Here diameter(K) is the
length of a longest path in K. Then f is submodular (Tamir [1993]); that is:

(44.20) f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for X, Y ⊆ E.
To see this, denote, for any X ⊆ E, the set of vertices covered by X by V X.

We first show (44.20) for X, Y ⊆ E with (V X, X) and (V Y, Y ) connected and
V X ∩ V Y �= ∅. Note that in this case X ∩ Y and X ∪ Y give connected subgraphs
again.

The proof of (44.20) is based on the fact that for all s, t, u, v ∈ V one has:

(44.21) dist(s, u) + dist(t, v) ≥ dist(s, t) + dist(u, v)
or dist(t, u) + dist(s, v) ≥ dist(s, t) + dist(u, v),

where dist denotes the distance in G.
To prove (44.20), let P and Q be longest paths in X ∩Y and X ∪Y respectively.

If EQ is contained in X or in Y , then (44.20) follows, since P is contained in X

and in Y . So we can assume that EQ is contained neither in X nor in Y . Let Q

have ends u, v, with u ∈ V X and v ∈ V Y . Let P have ends s, t. So s, t, u ∈ V X

and s, t, v ∈ V Y . Hence (44.21) implies (44.20).
We now derive (44.20) for all X, Y ⊆ E. Let X and Y be the collections of edge

sets of the components of (V, X) and of (V, Y ) respectively. Let F be the family
made by the union of X and Y, taking the sets in X ∩ Y twice. Then

(44.22) f(X) + f(Y ) ≥
∑

Z∈F

f(Z).

We now modify F iteratively as follows. If Z, Z′ ∈ F , Z �⊆ Z′ �⊆ Z, and V Z∩V Z′ �=
∅, we replace Z, Z′ by Z ∩ Z′ and Z ∪ Z′. By (44.20), (44.22) is maintained. By
Theorem 2.1, these iterations stop. We delete the empty sets in the final F .

Then the inclusionwise maximal sets in F have union equal to X ∪ Y and form
the nonempty edge sets of the components of (V, X∪Y ). Similarly, the inclusionwise
minimal sets in F form the nonempty edge sets of the components of (V, X ∩ Y ).
So

(44.23)
∑

Z∈F

f(Z) = f(X ∩ Y ) + f(X ∪ Y ),

and we have (44.20).

Further examples. Choquet [1951,1955] showed that the classical Newtonian ca-
pacity in R

3 is submodular. Examples of submodular functions based on probabil-
ity are given by Fujishige [1978b] and Han [1979], and other examples by Lovász
[1983c].
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44.2. Optimization over polymatroids by the greedy

method

Edmonds [1970b] showed that one can optimize a linear function wTx over
an (extended) polymatroid by an extension of the greedy algorithm. The
submodular set function f on S is given by a value giving oracle, that is, by
an oracle that returns f(U) for any U ⊆ S.

Let f be a submodular set function on S, and suppose that we want to
maximize wTx over EPf , for some w : S → R. We can assume that EPf �= ∅,
that is f(∅) ≥ 0, and hence that f(∅) = 0 (since decreasing f(∅) maintains
submodularity). We can also assume that w ≥ 0, since if some component of
w is negative, the maximum value is unbounded.

Now order the elements in S as s1, . . . , sn such that w(s1) ≥ · · · ≥ w(sn).
Define

(44.24) Ui := {s1, . . . , si} for i = 0, . . . , n,

and define x ∈ RS by

(44.25) x(si) := f(Ui) − f(Ui−1) for i = 1, . . . , n.

Then x maximizes wTx over EPf , as will be shown in the following theorem.
To prove it, consider the following linear programming duality equation:

(44.26) max{wTx | x ∈ EPf}

= min{
∑

T⊆S

y(T )f(T )|y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT = w}.

Define:

(44.27) y(Ui) := w(si) − w(si+1) (i = 1, . . . , n − 1),
y(S) := w(sn),
y(T ) := 0 (T �= Ui for each i).

Theorem 44.3. Let f be a submodular set function on S with f(∅) = 0 and
let w : S → R+. Then x and y given by (44.25) and (44.27) are optimum
solutions of (44.26).

Proof. We first show that x belongs to EPf ; that is, x(T ) ≤ f(T ) for each
T ⊆ S. This is shown by induction on |T |, the case T = ∅ being trivial. Let
T �= ∅ and let k be the largest index with sk ∈ T . Then by induction,

(44.28) x(T \ {sk}) ≤ f(T \ {sk}).

Hence

(44.29) x(T ) ≤ f(T \{sk})+x(sk) = f(T \{sk})+f(Uk)−f(Uk−1) ≤ f(T )

(the last inequality follows from the submodularity of f). So x ∈ EPf .
Also, y is feasible for (44.26). Trivially, y ≥ 0. Moreover, for any i we have

by (44.27):
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(44.30)
∑

T∋si

y(T ) =
∑

j≥i

y(Uj) = w(si).

So y is a feasible solution of (44.26).
Optimality of x and y follows from:

(44.31) wTx =
∑

s∈S

w(s)xs =

n∑

i=1

w(si)(f(Ui) − f(Ui−1))

=

n−1∑

i=1

f(Ui)(w(si) − w(si+1)) + f(S)w(sn) =
∑

T⊆S

y(T )f(T ).

The third equality follows from a straightforward reordering of the terms,
using that f(∅) = 0.

Note that if f is integer, then x is integer, and that if w is integer, then y

is integer. Moreover, if f is nondecreasing, then x is nonnegative. Hence, in
that case, x and y are optimum solutions of

(44.32) max{wTx | x ∈ Pf}

= min{
∑

T⊆S

y(T )f(T ) | y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT ≥ w}.

Therefore:

Corollary 44.3a. Let f be a nondecreasing submodular set function on S

with f(∅) = 0 and let w : S → R+. Then x and y given by (44.25) and (44.27)
are optimum solutions for (44.32).

Proof. Directly from Theorem 44.3, using the fact that x ≥ 0 if f is nonde-
creasing.

As for complexity we have:

Corollary 44.3b. Given a submodular set function f on a set S (by a value
giving oracle) and a function w ∈ QS, we can find an x ∈ EPf maximizing
wTx in strongly polynomial time. If f is moreover nondecreasing, then x ∈ Pf

(and hence x maximizes wTx over Pf ).

Proof. By the extension of the greedy method given above.

The greedy algorithm can be interpreted geometrically as follows. Let w

be some linear objective function on S, with w(s1) ≥ . . . ≥ w(sn). Travel via
the vertices of Pf along the edges of Pf , by starting at the origin, as follows:
first go from the origin as far as possible (in Pf ) in the positive s1-direction,
say to vertex x1; next go from x1 as far as possible in the positive s2-direction,
say to x2, and so on. After n steps one reaches a vertex xn maximizing wTx
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over Pf . In fact, the effectiveness of this algorithm characterizes polymatroids
(Dunstan and Welsh [1973]).

44.3. Total dual integrality

Theorem 44.3 implies the box-total dual integrality of the following system:

(44.33) x(U) ≤ f(U) for U ⊆ S.

Corollary 44.3c. If f is submodular, then (44.33) is box-totally dual inte-
gral.

Proof. Consider the dual of maximizing wTx over (44.33), for some w ∈ ZS
+.

By Theorem 44.3, it has an optimum solution y : P(S) → R+ with the
sets U ⊆ S having y(U) > 0 forming a chain. So these constraints give a
totally unimodular submatrix of the constraint matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (44.33) is box-TDI.

This gives the integrality of polyhedra:

Corollary 44.3d. For any integer submodular set function f , the polymatroid
Pf and the extended polymatroid EPf are integer.

Proof. Directly from Corollary 44.3c. (In fact, integer optimum solutions are
explicitly given by Theorem 44.3 and Corollary 44.3a.)

44.4. f is determined by EPf

Theorem 44.3 implies that for any extended polymatroid P there is a unique
submodular function f satisfying f(∅) = 0 and EPf = P , since:

Corollary 44.3e. Let f be a submodular set function on S with f(∅) = 0.
Then

(44.34) f(U) = max{x(U) | x ∈ EPf}

for each U ⊆ S.

Proof. Directly from Theorem 44.3 by taking w := χU .

So there is a one-to-one correspondence between nonempty extended poly-
matroids and submodular set functions f with f(∅) = 0. The correspondence
relates integer extended polymatroids with integer submodular functions.

There is a similar correspondence between nonempty polymatroids and
nondecreasing submodular set functions f with f(∅) = 0. For any (not nec-
essarily nondecreasing) nonnegative submodular set function f , define f̄ by:
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(44.35) f̄(∅) = 0,
f̄(U) = min

T⊇U
f(T ) for nonempty U ⊆ S.

It is easy to see that f̄ is nondecreasing and submodular and that Pf̄ =

Pf (Dunstan [1973]). In fact, f̄ is the unique nondecreasing submodular set
function associated with Pf , with f̄(∅) = 0, as (Kelley [1959]):

Corollary 44.3f. If f is a nondecreasing submodular function with f(∅) = 0,
then

(44.36) f(U) = max{x(U) | x ∈ Pf}

for each U ⊆ S.

Proof. This follows from Corollary 44.3a by taking w := χT .

This one-to-one correspondence between polymatroids and nondecreasing
submodular set functions f with f(∅) = 0 relates integer polymatroids to
integer such functions:

Corollary 44.3g. For each integer polymatroid P there exists a unique in-
teger nondecreasing submodular function f with f(∅) = 0 and P = Pf .

Proof. By Corollary 44.3d and (44.36).

By (44.36) we have for any nonnegative submodular set function f that
f̄(U) = max{x(U) | x ∈ Pf}. Since we can optimize over EPf in polynomial
time (with the greedy algorithm described above), with the ellipsoid method
we can optimize over Pf = EPf ∩ RS

+ in polynomial time. Hence we can
calculate f̄(U) in polynomial time. Alternatively, calculating f̄(U) amounts
to minimizing the submodular function f ′(T ) := f(T ∪ U).

In fact f̄ is the largest among all nondecreasing submodular set functions
g on S with g(∅) = 0 and g ≤ f , as can be checked straightforwardly.

44.5. Supermodular functions and contrapolymatroids

Similar results hold for supermodular functions and the associated con-
trapolymatroids. Associate the following polyhedra with a set function g on
S:

(44.37) Qg := {x ∈ RS | x ≥ 0, x(U) ≥ g(U) for each U ⊆ S},
EQg := {x ∈ RS | x(U) ≥ g(U) for each U ⊆ S}.

If g is supermodular, then Qg and EQg are called the contrapolymatroid
and the extended contrapolymatroid associated with g, respectively. A vector
x ∈ EQg (or Qg) is called a base vector of EQg (or Qg) if x(S) = g(S). A
base vector of g is a base vector of EQg.
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Since EQg = −EP−g, we can reduce most problems on (extended) con-
trapolymatroids to (extended) polymatroids. Again we can minimize a linear
function wTx over EQg with the greedy algorithm, as described in Section
44.2. (In fact, we can apply the same formulas (44.25) and (44.27) for g in-
stead of f .) If g is nondecreasing, it yields a nonnegative optimum solution,
and hence a vector x minimizing wTx over Qg.

Similarly, the system

(44.38) x(U) ≥ g(U) for U ⊆ S

is box-TDI, as follows directly from the box-total dual integrality of

(44.39) x(U) ≤ −g(U) for U ⊆ S.

Let EPf be the extended polymatroid associated with the submodular
function f with f(∅) = 0. Let Bf be the face of base vectors of EPf , i.e.,

(44.40) Bf = {x ∈ EPf | x(S) = f(S)}.

A vector y ∈ RS is called spanning if there exists an x in Bf with x ≤ y. Let
Q be the set of spanning vectors.

A vector y belongs to Q if and only if (f |y)(S) = f(S), that is (by (44.8)
and (44.9)) if and only if

(44.41) y(U) ≥ f(S) − f(S \ U)

for each U ⊆ S. So Q is equal to the contrapolymatroid EQg associated with
the submodular function g defined by g(U) := f(S) − f(S \ U) for U ⊆ S.
Then Bf is equal to the face of minimal elements of EQg.

There is a one-to-one correspondence between submodular set functions
f on S with f(∅) = 0 and supermodular set functions g on S with g(∅) = 0,
given by the relations

(44.42) g(U) = f(S) − f(S \ U) and f(U) = g(S) − g(S \ U)

for U ⊆ S.
Then the pair (−g,−Q) is related to the pair (f, P ) by a relation similar

to the duality relation of matroids (cf. Section 44.6f).

44.6. Further results and notes

44.6a. Submodular functions and matroids

Let P be the polymatroid associated with the nondecreasing integer submodular
set function f on S, with f(∅) = 0. Then the collection

(44.43) I := {I ⊆ S | χ
I ∈ P}

forms the collection of independent sets of a matroid M = (S, I) (this result was
announced by Edmonds and Rota [1966] and proved by Pym and Perfect [1970]).
By Corollary 40.2b, the subpolymatroid (cf. Section 44.6c)
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(44.44) P |1 = {x ∈ P | x ≤ 1}

is the convex hull of the incidence vectors of the independent sets of M . By (44.8),
the rank function r of M satisfies

(44.45) r(U) = min
T⊆U

(|U \ T | + f(T ))

for U ⊆ S.
As an example, if f is the submodular function given in the set union example in

Section 44.1a, we obtain the transversal matroid on {1, . . . , n} with I ⊆ {1, . . . , n}
independent if and only if the family (Ti | i ∈ I) has a transversal (Edmonds
[1970b]).

44.6b. Reducing integer polymatroids to matroids

In fact, each integer polymatroid can be derived from a matroid as follows (Helgason
[1974]). Let f be a nondecreasing submodular set function on S with f(∅) = 0.
Choose for each s in S, a set Xs of size f({s}), such that the sets Xs (s ∈ S) are
disjoint. Let X :=

⋃

s∈S Xs, and define a set function r on X by

(44.46) r(U) := min
T⊆S

(|U \
⋃

s∈T

Xs| + f(T ))

for U ⊆ X. One easily checks that r is the rank function of a matroid M (by
checking the axioms (39.38)), and that for each subset T of S

(44.47) f(T ) = r(
⋃

s∈T

Xs).

Therefore, f arises from the rank function of M , as in the Matroids example in
Section 44.1a. The polymatroid Pf associated with f is just the convex hull of all
vectors x for which there exists an independent set I in M with xs = |I ∩ Xs| for
all s in S.

Given a nondecreasing submodular set function f on S with f(∅) = 0, Lovász
[1980a] called a subset U ⊆ S a matching if

(44.48) f(U) =
∑

s∈U

f({s}).

If f({s}) = 1 for each s in S, f is the rank function of a matroid, and U is a
matching if and only if U is independent in this matroid. If f({s}) = 2 for each
s in S, the elements of S correspond to certain flats of rank 2 in a matroid. Now
determining the maximum size of a matching is just the matroid matching problem
(cf. Chapter 43).

44.6c. The structure of polymatroids

Vertices of polymatroids (Edmonds [1970b], Shapley [1965,1971]). Let f be a
submodular set function on a set S = {s1, . . . , sn} with f(∅) = 0. Let Pf be the
polymatroid associated with f . It follows immediately from the greedy algorithm, as
in the proof of Corollary 44.3a, that the vertices of Pf are given by (for i = 1, . . . , n):
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(44.49) x(sπ(i)) =

{

f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)}) if i ≤ k,
0 if i > k,

where π ranges over all permutations of {1, . . . , n} and where k ranges over 0, . . . , n.
Similarly, for any submodular set function f on S with f(∅) = 0, the vertices

of the extended polymatroid EPf are given by

(44.50) x(sπ(i)) = f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)})

for i = 1, . . . , n, where π ranges over all permutations of {1, . . . , n}.
Topkis [1984] characterized adjacency of the vertices of a polymatroid, while

Bixby, Cunningham, and Topkis [1985] and Topkis [1992] gave further results on
vertices of and paths on a polymatroid and on related partial orders of S.

Facets of polymatroids. Let f be a nondecreasing submodular set function on S

with f(∅) = 0. One easily checks that Pf is full-dimensional if and only if f({s}) > 0
for all s in S. If Pf is full-dimensional there is a unique minimal collection of linear
inequalities defining Pf (clearly, up to scalar multiplication). They correspond to
the facets of Pf . Edmonds [1970b] found that this collection is given by the following
theorem. A subset U ⊆ S is called an f-flat if f(U ∪ {s}) > f(U) for all s ∈ S \ U ,
and U is called f-inseparable if there is no partition of U into nonempty sets U1

and U2 with f(U) = f(U1) + f(U2). Then:

Theorem 44.4. Let f be a nondecreasing submodular set function on S with f(∅) =
0 and f({s}) > 0 for each s ∈ S. The following is a minimal system determining

the polymatroid Pf :

(44.51) xs ≥ 0 (s ∈ S),
x(U) ≤ f(U) (U is a nonempty f -inseparable f -flat).

Proof. It is easy to see that (44.51) determines Pf , as any other inequality x(U) ≤
f(U) follows from (44.51). The irredundancy of collection (44.51) can be seen as
follows.

Clearly, each inequality xs ≥ 0 determines a facet. Next consider a nonempty
f -inseparable f -flat U . Suppose that the face determined by U is not a facet. Then
it is contained in another face, say determined by T . Let x be a vertex of Pf with
x(U \ T ) = f(U \ T ), x(U) = f(U), and x(S \ U) = 0. Such a vertex exists by the
greedy algorithm (cf. (44.49)).

Since x is on the face determined by U , it is also on the face determined by T .
So x(T ) = f(T ). Hence f(T ) = x(T ) = x(T ∩ U) = f(U) − f(U \ T ). So we have
equality throughout in:

(44.52) f(U \ T ) + f(T ) ≥ f(U \ T ) + f(T ∩ U) ≥ f(U).

This implies that U \ T = ∅ or T ∩ U = ∅ (as U is f -inseparable), and that
f(T ) = f(T ∩ U). If U \ T = ∅, then U ⊂ T , and hence (as U is an f -flat)
f(T ) > f(U) ≥ f(T ∩U), a contradiction. If T ∩U = ∅, then f(T ) = f(T ∩U) = 0,
implying that T = ∅, again a contradiction.

It follows that the face {x ∈ Pf | x(S) = f(S)} of maximal vectors in Pf is a
facet if and only if f(U) + f(S \ U) > f(S) for each proper nonempty subset U of
S. More generally, its codimension is equal to the number of inclusionwise minimal
nonempty sets U with f(U) + f(S \ U) = f(S) (cf. Fujishige [1984a]).
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Faces of polymatroids (Giles [1975]). We now extend the characterizations of
vertices and facets of polymatroids given above to arbitrary faces. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S

with f(∅) = 0. Suppose that P is full-dimensional. If ∅ �= S1 ⊂ · · · ⊂ Sk ⊆ T ⊆ S,
then

(44.53) F = {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}

is a face of P of dimension at most |T | − k. (Indeed, F is nonempty by the char-
acterization (44.49) of vertices, while dim(F ) ≤ |T | − k, as the incidence vectors of
S1, . . . , Sk are linearly independent.)

In fact, each face has a representation (44.53). Indeed, let F be a face of P .
Define T = {s ∈ S | xs > 0 for some x in F}, and let S1 ⊂ · · · ⊂ Sk be any
maximal chain of nonempty subsets of T with the property that

(44.54) F ⊆ {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}.

Then we have equality in (44.54), and dim(F ) = |T | − k. (Here a maximal chain is
a chain which is contained in no larger chain satisfying (44.54) — since the empty
chain satisfies (44.54), there exist maximal chains.)

In order to prove this assertion, suppose that F has dimension d. As the right-
hand side of (44.54) is a face of P of dimension at most |T | − k, it suffices to show
that d = |T | − k. Therefore, suppose d < |T | − k. Then there exists a subset U of S

such that x(U) = f(U) for all x in F , and such that the incidence vector of U ∩ T

is linearly independent of the incidence vectors of S1, . . . , Sk. That is, U ∩ T is not
the union of some of the sets Si \ Si−1 (i = 1, . . . , k). Since x(U ∩ T ) = x(U) =
f(U) ≥ f(U ∩ T ) for all x in F , we may assume that U ⊆ T . Since the collection of
subsets U of S with x(U) = f(U) is closed under taking unions and intersections,
we may assume moreover that U is comparable with each of the sets in the chain
S1 ⊂ · · · ⊂ Sk. Hence U could be added to the chain to obtain a larger chain,
contradicting our assumption. So d = |T | − k.

Note that a chain S1 ⊂ · · · ⊂ Sk of nonempty subsets of T is a maximal chain
satisfying (44.54) if and only if there is equality in (44.54) and (setting S0 := ∅):

(44.55) f(Sk ∪ {s}) > f(Sk) for all s in T \ Sk, and each of the sets Si \ Si−1

is fi-inseparable, where fi is the submodular set function on Si \ Si−1

given by fi(U) := f(U ∪ Si−1) − f(Si−1) for U ⊆ Si \ Si−1.

This may be derived straightforwardly from the existence, by (44.49), of appropriate
vertices of F .

It is not difficult to show that if F has a representation (44.53), then F is the
direct sum of F1, . . . , Fk and Q, where Fi is the face of maximal vectors in the
polymatroid associated with fi (i = 1, . . . , k), and Q is the polymatroid associated
with the submodular set function g on T \ Sk given by g(U) := f(U ∪ Sk) − f(Sk)
for U ⊆ T \ Sk. Since dim(Fi) ≤ |Si \ Si−1| − 1 and dim(Q) ≤ |T \ Sk|, this yields
that dim(F ) = |T | − k if and only if dim(Fi) = |Si \ Si−1| − 1 (i = 1, . . . , k) and
dim(Q) = |T \Sk|. From this, characterization (44.55) can be derived again. It also
yields that if F , represented by (44.53), has dimension |T | − k, then the unordered
partition {S1, S2 \ S1, . . . , Sk \ Sk−1, T \ Sk} is the same for all maximal chains
S1 ⊂ · · · ⊂ Sk.

For a characterization of the faces of a polymatroid, see Fujishige [1984a].
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44.6d. Characterization of polymatroids

Let P be the polymatroid associated with the nondecreasing submodular set func-
tion f on S with f(∅) = 0. The following three observations are easily derived
from the representation (44.49) of vertices of P . (a) If x0 is a vertex of P , there
exists a vertex x1 of P such that x1 ≥ x0 and x1 has the form (44.49) with k = n.
(b) A vertex x1 of P can be represented as (44.49) with k = n if and only if
x1(S) = f(S). (c) The convex hull of the vertices x1 of P with x1(S) = f(S) is
the face {x ∈ P | x(S) = f(S)} of P . It follows directly from (a), (b) and (c) that
x ∈ P is a maximal element of P (with respect to ≤) if and only if x(S) = f(S).
So for each vector y in P there is a vector x in P with y ≤ x and x(S) = f(S).

Applying this to the subpolymatroids P |a = P ∩ {x | x ≤ a} (cf. Section 44.1),
one finds the following property of polymatroids:

(44.56) for each a ∈ R
S
+ there exists a number r(a) such that each maximal

vector x of P ∩ {x | x ≤ a} satisfies x(S) = r(a).

Here maximal is maximal in the partial order ≤ on vectors. The number r(a) is
called the rank of a, and any x with the properties mentioned in (44.56) is called a
base of a.

Edmonds [1970b] (cf. Dunstan [1973], Woodall [1974b]) noticed the following
(we follow the proof of Welsh [1976]):

Theorem 44.5. Let P ⊆ R
S
+. Then P is a polymatroid if and only if P is compact,

and satisfies (44.56) and

(44.57) if 0 ≤ y ≤ x ∈ P , then y ∈ P .

Proof. Necessity was observed above. To see sufficiency, let f be the set function
on S defined by

(44.58) f(U) := max{x(U) | x ∈ P}

for U ⊆ S. Then f is nonnegative and nondecreasing. Moreover, f is submodular.
To see this, consider T, U ⊆ S. Let x be a maximal vector in P satisfying xs = 0
if s �∈ T ∪ U , and let y be a maximal vector in P satisfying y(s) = 0 if s �∈ T ∩ U

and x ≤ y. Note that (44.56) and (44.58) imply that x(T ∩ U) = f(T ∩ U) and
y(T ∪ U) = f(T ∪ U). Hence

(44.59) f(T )+f(U) ≥ y(T )+y(U) = y(T ∩U)+y(T ∪U) ≥ x(T ∩U)+y(T ∪U)
= f(T ∩ U) + f(T ∪ U),

that is, f is submodular.
We finally show that P is equal to the polymatroid Pf associated to f . Clearly,

P ⊆ Pf , since if x ∈ P then x(U) ≤ f(U) for each U ⊆ S, by definition (44.58) of
f .

To see that Pf = P , suppose v ∈ Pf \P . Let u be a base of v (that is, a maximal
vector u ∈ P satisfying u ≤ v). Choose u such that the set

(44.60) U := {s ∈ S | us < vs}

is as large as possible. Since v �∈ P , we have u �= v, and hence U �= ∅. As v ∈ Pf ,
we know
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(44.61) u(U) < v(U) ≤ f(U).

Define

(44.62) w := 1
2
(u + v).

So u ≤ w ≤ v. Hence u is a base of w, and each base of w is a base of v.
For any z ∈ R

S , define z′ as the projection of z on the subspace L := {x ∈ R
S |

xs = 0 if s ∈ S \ U}. That is:

(44.63) z′(s) := z(s) if s ∈ U , and z′(s) := 0 if s ∈ S \ U .

By definition of f , there is an x ∈ P with x(U) = f(U). We may assume that x ∈ L.
Choose y ∈ L with x ≤ y and u′ ≤ y. Then

(44.64) x(S) = x(U) = f(U) > u(U) = u′(U) = u′(S).

So r(y) > u′(S). Hence, by (44.56), there exists a base z of y with u′ ≤ z and
z(S) > u′(S). So u′

s < zs for at least one s ∈ U . This implies, since u′
s < w′

s for
each s ∈ S, that there is an a ∈ P with u′ ≤ a ≤ w′ and a �= u′, hence a(U) > u′(U).

Since a ≤ w′ ≤ w, there is a base b of w with a ≤ b. Then b(S) = u(S) (since
also u is a base of w) and b(U) ≥ a(U) > u′(U) = u(U). Hence bs < us = vs for
some s ∈ S \ U . Moreover, bs ≤ ws < vs for each s ∈ U . So U is properly contained
in {s ∈ S | bs < vs}, contradicting the maximality of U .

(For an alternative characterization, see Welsh [1976].)
By (44.8) and (44.9) the rank of a is given by

(44.65) r(a) = min
U⊆S

(a(S \ U) + f(U))

(from this one may derive a ‘submodular law’ for r: r(a∧ b)+r(a∨ b) ≤ r(a)+r(b),
where ∧ and ∨ are the meet and join in the lattice (RS , ≤) (Edmonds [1970b])).

Since if P has integer vertices and a is integer, the intersection P |a = {x ∈ P |
x ≤ a} is integer again, we know that for integer polymatroids (44.56) also holds if
we restrict a and x to integer vectors. So if a is integer, then there exists an integer
vector x ≤ a in P with x(S) = r(a).

Theorem 44.5 yields an analogous characterization of extended polymatroids.
Let f be a submodular set function on S with f(∅) = 0. Choose c ∈ R

S
+ such that

(44.66) g(U) := f(U) + c(U)

is nonnegative for all U ⊆ S. Clearly, g again is submodular, and g(∅) = 0. Then the
extended polymatroid EPf associated with f and the polymatroid Pg associated
with g are related by:

(44.67) Pg = {x | x ≥ 0, x − c ∈ EPf} = (c + EPf ) ∩ R
S
+.

Since Pg is a polymatroid, by (44.56) we know that EPf satisfies:

(44.68) for each a in R
S there exists a number r(a) such that each maximal

vector x in EPf ∩ {x ∈ R
S | x ≤ a} satisfies x(S) = r(a).

One easily derives from Theorem 44.5 that (44.68) together with

(44.69) if y ≤ x ∈ EPf , then y ∈ EPf ,

characterizes the class of all extended polymatroids among the closed subsets of
R

S .
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44.6e. Operations on submodular functions and polymatroids

The class of submodular set functions on a given set is closed under certain oper-
ations. Obviously, the sum of two submodular functions is submodular again. In
particular, adding a constant t to all values of a submodular function maintains
submodularity. Also the multiplication of a submodular function by a nonnega-
tive scalar maintains submodularity. Moreover, if f is a nondecreasing submod-
ular set function on S, and q is a real number, then the function f ′ given by
f ′(U) := min{q, f(U)} for U ⊆ S, is submodular again. (Monotonicity cannot be
deleted, as is shown by taking S := {a, b}, f(∅) = f(S) = 1, f({a}) = 0, f({b}) = 2,
and q = 1.)

It follows that the class of all submodular set functions on S forms a convex
cone C in R

P(S). This cone is polyhedral as the constraints (44.1) form a finite set
of linear inequalities defining C. Edmonds [1970b] raised the problem of determin-
ing the extreme rays of the cone of all nonnegative nondecreasing submodular set
functions f on S with f(∅) = 0. It is not difficult to show that the rank function
r of a matroid M determines an extreme ray of this cone if and only if r is not
the sum of the rank functions of two other matroids, i.e., if and only if M is the
sum of a connected matroid and a number of loops. But these do not represent
all extreme rays: if S = {1, . . . , 5} and w(1) = 2, w(s) = 1 for s ∈ S \ {1}, let
f(U) := min{3, w(U)} for U ⊆ S; then f is on an extreme ray, but cannot be
decomposed as the sum of rank functions of matroids (L. Lovász’s example; cf. also
Murty and Simon [1978] and Nguyen [1978]).

Lovász [1983c] observed that if f1 and f2 are submodular and f1 − f2 is nonde-
creasing, then min{f1, f2} is submodular.

Let f be a nonnegative submodular set function on S. Clearly, for any λ ≥ 0
we have Pλf = λPf (where λPf = {λx | x ∈ Pf}). If q ≥ 0, and f ′ is given by
f ′(U) = min{q, f(U)} for U ⊆ S, then f ′ is submodular and

(44.70) Pf ′ = {x ∈ Pf | x(S) ≤ q},

as can be checked easily. So the class of polymatroids is closed under intersections
with affine halfspaces of the form {x ∈ R

S | x(S) ≤ q}, for q ≥ 0.
Let f1 and f2 be nondecreasing submodular set functions on S, with f1(∅) =

f2(∅) = 0, and associated polymatroids P1 and P2 respectively. Let P be the poly-
matroid associated with f := f1 + f2. Then (McDiarmid [1975c]):

Theorem 44.6. Pf1+f2
= Pf1

+ Pf2
.

Proof. It is easy to see that Pf1+f2
⊇ Pf1

+Pf2
. To prove the reverse inclusion, let

x be a vertex of Pf1+f2
. Then x has the form (44.49). Hence, by taking the same

permutation π and the same k, x = x1 + x2 for certain vertices x1 of Pf1
and x2 of

Pf2
. Since Pf1

+ Pf2
is convex it follows that Pf1+f2

= Pf1
+ Pf2

.

In fact, if f1 and f2 are integer, each integer vector in Pf1
+ Pf2

is the sum of
integer vectors in Pf1

and Pf2
— see Corollary 46.2c. Similarly, if f1 and f2 are

integer, each integer vector in EPf1
+ EPf2

is the sum of integer vectors in EPf1

and EPf2
.

Faigle [1984a] derived from Theorem 44.6 that, for any submodular function f ,
if x, y ∈ Pf and x = x1 + x2 with x1, x2 ∈ Pf , then there exist y1, y2 ∈ Pf with
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y = y1+y2 and x1+y1, x2+y2 ∈ Pf . (Proof: y ∈ Pf ⊆ P2f−x = Pf−x1
+Pf−x2

.) An
integer version of this can be derived from Corollary 46.2c and generalizes (42.13).

If M1 = (S, I1) and M2 = (S, I2) are matroids, with rank functions r1 and
r2 and corresponding independent set polytopes P1 and P2, respectively, then by
Section 44.6c above, P1 + P2 is the convex hull of sums of incidence vectors of
independent sets in M1 and M2. Hence the 0,1 vectors in P1 + P2 are just the
incidence vectors of the sets I1 ∪ I2, for I1 ∈ I1 and I2 ∈ I2. Therefore, the
polyhedron

(44.71) (P1 + P2)|1 = {x ∈ P1 + P2 | x ≤ 1}

is the convex hull of the independent sets of M1∨M2. By Theorem 44.6 and (44.45),
it follows that the rank function r of M1 ∨ M2 satisfies

(44.72) r(U) = min
T⊆U

(|U \ T | + r1(T ) + r2(T ))

for U ⊆ S. Thus we have derived the matroid union theorem (Corollary 42.1a).

44.6f. Duals of polymatroids

McDiarmid [1975c] described the following duality of polymatroids. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S with
f(∅) = 0 and let a be a vector in R

S with a ≥ x for all x in P (i.e., a(s) ≥ f({s})
for all s in S). Define

(44.73) f
∗(U) := a(U) + f(S \ U) − f(S)

for U ⊆ S. One easily checks that f∗ again is nondecreasing and submodular, and
that f∗(∅) = 0. We call f∗ the dual of f (with respect to a). Then f∗∗ = f taking
the second dual with respect to the same a, as follows immediately from (44.73).

Let P ∗ be the polymatroid associated with f∗, and call P ∗ the dual polymatroid
of P (with respect to a). Now the maximal vertices of P and P ∗ are given by (44.49)
by choosing k = n. It follows that x is a maximal vertex of P if and only if a − x

is a maximal vertex of P ∗. Since the maximal vectors of a polymatroid form just
the convex hull of the maximal vertices, we may replace in the previous sentence
the word ‘vertex’ by ‘vector’. So the set of maximal vectors of P ∗ arises from the
set of maximal vectors of P by reflection in the point 1

2
a.

Clearly, duals of matroids correspond in the obvious way to duals of the related
polymatroids (with respect to the vector 1).

44.6g. Induction of polymatroids

Let G = (V, E) be a bipartite graph, with colour classes S and T . Let f be a
nondecreasing submodular set function on S with f(∅) = 0, and define

(44.74) g(U) := f(N(U))

for U ⊆ T (cf. Section 44.1a). (As usual, N(U) denotes the set of vertices not in U

adjacent to at least one vertex in U .)
The function g again is nondecreasing and submodular. Similarly to Rado’s

theorem (Corollary 41.1c), one may prove that a vector x belongs to Pg if and only
if there exist y ∈ R

E
+ and z ∈ Pf such that
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(44.75) y(δ(t)) = xt (t ∈ T ),
y(δ(s)) = zs (s ∈ S).

Moreover, if f and g are integer, we can take y and z to be integer. This procedure
gives an ‘induction’ of polymatroids through bipartite graphs, and yields ‘Rado’s
theorem for polymatroids’ (cf. McDiarmid [1975c]).

In case f is the rank function of a matroid on S, a 0,1 vector x belongs to Pg if
and only if there exists a matching in G whose end vertices in S form an independent
set of the matroid, and the end vertices in T have x as incidence vector. So these
0,1 vectors determine a matroid on T , with rank function r given by

(44.76) r(U) = min
W⊆U

(|U \ W | + f(N(W )))

for U ⊆ T (cf. (44.45) and (44.74)).
Another extension is the following. Let D = (V, A) be a directed graph and

let V be partitioned into classes S and T . Let furthermore a ‘capacity’ function
c : A → R+ be given. Define the set function g on T by

(44.77) g(U) := c(δout(U))

for U ⊆ T , where δout(U) denotes the set of arcs leaving U . Then g is nonnegative
and submodular, and it may be derived straightforwardly from the max-flow min-
cut theorem (Theorem 10.3) that a vector x in R

T
+ belongs to Pg if and only if

there exist T − S paths Q1, . . . , Qk and nonnegative numbers λ1, . . . , λk (for some
k), such that

(44.78)

k
∑

i=1

λiχ
AQi ≤ c and

k
∑

i=1

λiχ
b(Qi) = x,

where b(Qi) is the beginning vertex of Qi. If the c and x are integer, we can take
also the λi integer.

Here the function g in general is not nondecreasing, but the value

(44.79) ḡ(U) = min{g(W ) | U ⊆ W ⊆ T}

of the associated nondecreasing submodular function (cf. (44.35)) is equal to the
minimum capacity of a cut separating U and S, which is equal to the maximum
amount of flow from U to S, subject to the capacity function c (by the max-flow
min-cut theorem).

In an analogous way, one can construct polymatroids by taking vertex-capacities
instead of arc-capacities. Moreover, the notion of induction of polymatroids through
bipartite graphs can be extended in a natural way to the induction of polymatroids
through directed graphs (cf. McDiarmid [1975c], Schrijver [1978]).

44.6h. Lovász’s generalization of Kőnig’s matching theorem

Lovász [1970a] gave the following generalization of Kőnig’s matching theorem (The-
orem 16.2).

For a graph G = (V, E), U ⊆ V , and F ⊆ E, let NF (U) denote the set of
vertices not in U that are adjacent in (V, F ) to at least one vertex in U . Kőnig’s
matching theorem follows by taking g(X) := |X| in the following theorem.
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Theorem 44.7. Let G = (V, E) be a simple bipartite graph, with colour classes S

and T . Let g be a supermodular set function on S, such that g({v}) ≥ 0 for each

v ∈ S and such that

(44.80) g(U ∪ {v}) ≤ g(U) + g({v}) for nonempty U ⊆ S and v ∈ S \ U .

Then E has a subset F with degF (v) = g({v}) for each v ∈ V and |NF (U)| ≥ g(U)
for each nonempty U ⊆ S if and only if |NE(U)| ≥ g(U) for each nonempty U ⊆ S.

Proof. Necessity being trivial, we show sufficiency. Choose F ⊆ E such that

(44.81) |NF (U)| ≥ g(U)

for each nonempty U ⊆ S, with |F | as small as possible. We show that F is as
required.

Suppose to the contrary that degF (v) > g({v}) for some v ∈ S. By the min-
imality of F , for each edge e = vw ∈ F , there is a subset Ue of S with v ∈ Ue,
|NF (Ue)| = g(Ue), and w �∈ NF (Ue \ {v}). Since the function |NF (U)| is submod-
ular, the intersection U of the Ue over e ∈ δ(v) satisfies |NF (U)| = g(U) (using
(44.81)). Then no neighbour w of v is adjacent to U . Hence NF (v) and NF (U \{v})
are disjoint. Moreover, U �= {v}, since NF (U) = g(U) and NF ({v}) > g(v). This
gives the contradiction

(44.82) g(U) ≤ g(U \ {v}) + g({v}) < |NF (U \ {v})| + |NF (v)| = |NF (U)|.

For a derivation of this theorem with the Edmonds-Giles method, see Frank
and Tardos [1989].

44.6i. Further notes

Edmonds [1970b] and D.A. Higgs (as mentioned in Edmonds [1970b]) observed that
if f is a set function on a set S, we can define recursively a submodular function f̄

as follows:

(44.83) f̄(T ) := min{f(T ), min(f̄(S1) + f̄(S2) − f̄(S1 ∩ S2))},

where the second minimum ranges over all pairs S1, S2 of proper subsets of T with
S1 ∪ S2 = T .

Lovász [1983c] gave the following characterization of submodularity in terms of
convexity. Let f be a set function on S and define for each c ∈ R

S
+

(44.84) f̂(c) :=

k
∑

i=1

λif(Ui),

where ∅ �= U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊆ S and λ1, . . . , λk > 0 are such that
c =

∑k

i=1 λiχ
Ui . Then f is submodular if and only if f̂ is convex. Similarly, f

is supermodular if and only if f̂ is concave. Related is the ‘subdifferential’ of a
submodular function, investigated by Fujishige [1984d].

Korte and Lovász [1985c] and Nakamura [1988a] studied polyhedral structures
where the greedy algorithm applies. Federgruen and Groenevelt [1986] extended the
greedy method for polymatroids to ‘weakly concave’ objective functions (instead
of linear functions). (Related work was reported by Bhattacharya, Georgiadis, and
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Tsoucas [1992].) Nakamura [1993] extended polymatroids and submodular functions
to ∆-polymatroids and ∆-submodular functions.

Gröflin and Liebling [1981] studied the following example of ‘transversal poly-
matroids’. Let G = (V, E) be an undirected graph, and define the submodular set
function f on E by f(F ) :=

∣

∣

⋃

F
∣

∣ for F ⊆ E. Then the vertices of the associ-

ated polymatroid are all {0, 1, 2} vectors x in R
E with the property that the set

F := {e ∈ E | xe ≥ 1} forms a forest each component of which contains at most
one edge e with xe = 2. If x is a maximal vertex, then each component contains
exactly one edge e with xe = 2.

Narayanan [1991] studied, for a given submodular function f on S, the lattice of
all partitions P of S into nonempty sets such that there exists a λ ∈ R for which P
attains min

∑

U∈P
(f(U)−λ) (taken over all partitions P). Fujishige [1980b] studied

minimum values of submodular functions.
For results on the (NP-hard) problems of maximizing a submodular function and

of submodular set cover, see Fisher, Nemhauser, and Wolsey [1978], Nemhauser and
Wolsey [1978,1981], Nemhauser, Wolsey, and Fisher [1978], Wolsey [1982a,1982b],
Conforti and Cornuéjols [1984], and Fujito [1999].

Cunningham [1983], Fujishige [1983], and Nakamura [1988c] presented decom-
position theories for submodular functions. Benczúr and Frank [1999] considered
covering symmetric supermodular functions by graphs.

For surveys and books on polymatroids and submodular functions, see McDi-
armid [1975c], Welsh [1976], Lovász [1983c], Lawler [1985], Nemhauser and Wolsey
[1988], Fujishige [1991], Narayanan [1997], and Murota [2002]. For a survey on ap-
plications of submodular functions, see Frank [1993a].

Historically, submodular functions arose in lattice theory (Bergmann [1929],
Birkhoff [1933]), while submodularity of the rank function of a matroid was shown
by Bergmann [1929] and Whitney [1935]. Choquet [1951,1955] and Kelley [1959]
studied submodular functions in relation to the Newton capacity and to measures
in Boolean algebras. The relevance of submodularity for optimization was revealed
by Edmonds [1970b].

Several alternative names have been proposed for submodular functions, like
sub-valuation (Choquet [1955]), β-function (Edmonds [1970b]), and ground set rank
function (McDiarmid [1975c]). The set of integer vectors in an integer polymatroid
was called a hypermatroid by Helgason [1974] and Lovász [1977c]. A generaliza-
tion of polymatroids (called supermatroids) was studied by Dunstan, Ingleton, and
Welsh [1972].


