Chapter 44

Submodular functions and
polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970Db] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set .S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) fM)+fU) =z ((TnU)+ f(TUD)

for all subsets T, U of S. Similarly, f is called supermodularif — f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f
is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.
A set function f on S is called nondecreasing if f(T) < f(U) whenever
T CU C S, and nonincreasing if f(T) > f(U) whenever T CU C S.
As usual, denote for each function w : S — R and for each subset U of S,

(44.2) w(U) =Y w(s).

seU
So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(0)) = 0 may
be obtained in this way. (More generally, each modular set function f on S
satisfies f(U) = w(U) 4+~ (for U C S), for some unique function w : S — R
and some unique real number +.)

In a sense, submodularity is the discrete analogue of convexity. If we
define, for any f : P(S) — R and any = € S, a function §f, : P(S) — R
by: 6 fo(T) := f(TU{x}) — f(T), then f is submodular if and only if § f, is
nonincreasing for each x € S.

In other words:
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Theorem 44.1. A set function f on S is submodular if and only if

(44.3) FOU{sh) + f(UU{t}) = fU) + f(UU{s,t})
for each U C S and distinct s,t € S\ U.

Proof. Necessity being trivial, we show sufficiency. We prove (44.1) by in-
duction on |TAU], the case [TAU| < 2 being trivial (if T C U or U C T)
or being implied by (44.3). If |TAU| > 3, we may assume by symmetry that
|7\ U| > 2. Choose t € T'\ U. Then, by induction,

(44.4) FToU) = (1) < F(T\{EHUU) = f(T\{t}) < f(U) - F(TND),

(as |[TAWT\ {t}) UU)| < |TAU| and [(T\ {t})AU| < |TAU|). This shows
(44.1).

Define two polyhedra associated with a set function f on S:

(44.5) Pr:={z €R%|z>0,2(U) < f(U) for each U C S},
EP;:={zx € R% | z(U) < f(U) for each U C S}.

Note that Py is nonempty if and only if f > 0, and that £ Pf is nonempty if
and only if f(0) > 0.

If f is a submodular function, then Py is called the polymatroid associated
with f, and EP; the extended polymatroid associated with f. A polyhedron
is called an (extended) polymatroid if it is the (extended) polymatroid as-
sociated with some submodular function. A polymatroid is bounded (since
0 <z, < f({s}) for each s € S), and hence is a polytope.

The following observation presents a basic technique in proofs for sub-
modular functions, which we often use without further reference:

Theorem 44.2. Let [ be a submodular set function on S and let x € EPy.
Then the collection of sets U C S satisfying x(U) = f(U) is closed under
taking unions and intersections.

Proof. Suppose z(T') = f(T) and z(U) = f(U). Then
(44.6) M+ fO)>f(TNU)+ f(TUU)>x(TNU)+z(TUU)
—o(T) +2(U) = £(T) + (U),

implying that equality holds throughout. So z(T'NU) = f(T'NU) and z(T'U
U)=f(TUU). |

A vector z in EPy (or in Py) is called a base vector of EPy (or of Py) if
z(S) = f(5). A base vector of f is a base vector of EP;. The set of all base
vectors of f is called the base polytope of EP; or of f. It is a face of EPy,
and denoted by By. So

(44.7) By ={z eR¥ | z(U) < f(U) for all U C S, z(5) = f(5)}.
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(It is a polytope, since x5 = x(S) — z(S \ {s}) > f(S) — f(S\ {s}) for each
sesS.)

Let f be a submodular set function on S and let a € R. Define the set
function f|a on S by

(44.8) (fla)(U) = min(f(T) + a(U\T))

for U C S. Tt is easy to check that f|a again is submodular and that
(44.9) EPj, ={x € EP; |z < a} and Py, = {x € Py |z < a}.

It follows that if P is an (extended) polymatroid, then also the set PN{z |
x < a} is an (extended) polymatroid, for any vector a. In fact, as Lovész
[1983c] observed, if f(@) = 0, then f|a is the unique largest submodular
function f’ satisfying f/(0) =0, f' < f, and f'(U) < a(U) for each U C V.

44.1a. Examples

Matroids. Let M = (S,Z) be a matroid. Then the rank function r of M is sub-
modular and nondecreasing. In Theorem 39.8 we saw that a set function r on S
is the rank function of a matroid if and only if r is nonnegative, integer, nonde-
creasing and submodular with r(U) < |U| for all U C S. (This last condition may
be replaced by: 7(0) = 0 and r({s}) < 1 for each s in S.) Then the polymatroid
P, associated with r is equal to the independent set polytope of M (by Corollary
40.2b).

A generalization is obtained by partitioning S into sets Si, ..., Sk, and defining

(44.10) HOE(GED!

ieJ
for J C {1,...,k}. It is not difficult to show that each integer nondecreasing sub-
modular function f with f(#) = 0 can be constructed in this way (see Section
44.6b).

As another generalization, if w : S — Ry, define f(U) to be the maximum
of w(I) over I € Z with I C U. Then f is submodular. (To see this, write w =
X XX, with 0 £ T CTe € --- C T, € S. Then by (40.3), f(U) =
>or Air(UNT;), implying that f is submodular.)

For more on the relation between submodular functions and matroids, see Sec-
tions 44.6a and 44.6b.

Matroid intersection. Let M7 = (S,Z;) and M» = (S, Z2) be matroids, with rank
functions r1 and r2 respectively. Then the function f given by

(44.11)  f(U) == (U) +7r2(S\ V)

for U C S, is submodular. By the matroid intersection theorem (Theorem 41.1),
the minimum value of f is equal to the maximum size of a common independent
set.

Set unions. Let Ti,...,T, be subsets of a finite set T" and let S = {1,...,n}.
Define
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(44.12) fo) =]

ieU
for U C S. Then f is nondecreasing and submodular. More generally, for w : T —
R4, the function f defined by

(44.13) fU) =w(J T
ieU
for U C S, is nondecreasing and submodular.

More generally, for any nondecreasing submodular set function g on 7', the
function f defined by

(4119 FO) =g T
ieU
for U C S, again is nondecreasing and submodular.
Let G = (V, E) be the bipartite graph corresponding to T1,...,T,. That is, G
has colour classes S and T, and s € S and t € T are adjacent if and only if ¢t € T.
Then we have: x € Py if and only if there exist z € P, and y : E — Z4 such that

(44.15) y(6(v)) = z(v) forallves,
y(6(v)) = z(v) forallveT.

So y may be considered as an ‘assignment’ of a ‘supply’ z to a ‘demand’ x. If g and
x are integer we can take also y and z integer.

Directed graph cut functions. Let D = (V, A) be a directed graph and let
c: A— Ry be a ‘capacity’ function on A. Define

(44.16) F(U) == c(6°"(U))

for U C V (where §°"*(U) denotes the set of arcs leaving U). Then f is submodular
(but in general not nondecreasing). A function f arising in this way is called a cut
function.

Hypergraph cut functions. Let (V&) be a hypergraph. For U C V, let f(U)
be the number of edges E € &£ split by U (that is, with both ENU and E\ U
nonempty). Then f is submodular.

Directed hypergraph cut functions. Let V be a finite set and let (E1, F1), ...,

(Em, Fm) be pairs of subsets of V. For U C V, let f(U) be the number of indices

i with UNE; # 0 and F; € U. Then f is submodular. (In proving this, we can

assume m = 1, since any sum of submodular functions is submodular again.)
More generally, we can choose ci,...,cn € Ry and define

(44.17) fU)=> (c:|UNE; #0,F, ¢ U)

for U C V. Again, f is submodular. This generalizes the previous two examples
(where E; = F; for each i or |E;| = |F;| =1 for each i).

Maximal element. Let V be a finite set and let h : V' — R. For nonempty U C V,
define

(44.18) FU) := max{h(u) | u € U},
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and define f((}) to be the minimum of h(v) over v € V. Then f is submodular.

Subtree diameter. Let G = (V, E) be a forest (a graph without circuits), and for
each X C F define

(44.19) F(X) = diameter(K),

where K ranges over the components of the graph (V, X). Here diameter(K) is the
length of a longest path in K. Then f is submodular (Tamir [1993]); that is:

(44.20)  FOX)+F(Y) 2 F(XNY) + f(XUY)

for X, Y CE.

To see this, denote, for any X C E, the set of vertices covered by X by VX.
We first show (44.20) for X,Y C E with (VX,X) and (VY,Y) connected and
VX NVY # (. Note that in this case X NY and X UY give connected subgraphs
again.

The proof of (44.20) is based on the fact that for all s,¢,u,v € V one has:

(44.21) dist (s, u) + dist(¢,v) > dist(s, t) + dist(u, v)
or dist(t, u) + dist(s,v) > dist(s, t) + dist(u,v),

where dist denotes the distance in G.

To prove (44.20), let P and @ be longest paths in X NY and X UY respectively.
If EQ is contained in X or in Y, then (44.20) follows, since P is contained in X
and in Y. So we can assume that EQ is contained neither in X nor in Y. Let @
have ends u,v, with u € VX and v € VY. Let P have ends s,t. So s,t,u € VX
and s,t,v € VY. Hence (44.21) implies (44.20).

We now derive (44.20) for all X, Y C E. Let X and Y be the collections of edge
sets of the components of (V, X) and of (V,Y) respectively. Let F be the family
made by the union of X and ), taking the sets in X N Y twice. Then

(44.22) JX)+ 1) = > f(2).
ZeF
We now modify F iteratively as follows. If Z,Z2' € F, Z € Z' € Z,and VZNV Z' #
), we replace Z,Z’ by ZNZ' and Z U Z'. By (44.20), (44.22) is maintained. By
Theorem 2.1, these iterations stop. We delete the empty sets in the final F.
Then the inclusionwise maximal sets in F have union equal to X UY and form
the nonempty edge sets of the components of (V, XUY"). Similarly, the inclusionwise

minimal sets in F form the nonempty edge sets of the components of (V, X NY).
So

(44.23) Y f(2)=f(XNY)+ f(XUY),

ZeF

and we have (44.20).

Further examples. Choquet [1951,1955] showed that the classical Newtonian ca-
pacity in R? is submodular. Examples of submodular functions based on probabil-
ity are given by Fujishige [1978b] and Han [1979], and other examples by Lovész
[1983c].
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44.2. Optimization over polymatroids by the greedy
method

Edmonds [1970b] showed that one can optimize a linear function w'z over
an (extended) polymatroid by an extension of the greedy algorithm. The
submodular set function f on S is given by a wvalue giving oracle, that is, by
an oracle that returns f(U) for any U C S.

Let f be a submodular set function on .5, and suppose that we want to
maximize w'z over EPy, for some w : S — R. We can assume that EPy # (),
that is f(@) > 0, and hence that f(@) = 0 (since decreasing f(#)) maintains
submodularity). We can also assume that w > 0, since if some component of
w is negative, the maximum value is unbounded.

Now order the elements in S as s1,. .., s, such that w(s1) > -+ > w(s,).
Define

(44.24) Ui:={s1,...,8;t fori=0,...,n,
and define 2 € R by
(44.25) x(s;) := f(U;) — f(Ui—q) for i =1,...,n.
Then z maximizes w' over E Py, as will be shown in the following theorem.
To prove it, consider the following linear programming duality equation:
(44.26)  max{w'z |z € EP;}
=min{ Y y(M)F(T)ly e RT3 y(@)T = w}.

TCS TeP(S)
Define:
(44.27) y(U;) i=w(s;) —w(si+1) (=1,...,n—1),
y(S) = w(sn),
y(T) :=0 (T # U; for each 7).

Theorem 44.3. Let f be a submodular set function on S with f(B) =0 and
let w:S — Ry. Then x and y given by (44.25) and (44.27) are optimum
solutions of (44.26).

Proof. We first show that x belongs to EPy; that is, z(T) < f(T') for each
T C S. This is shown by induction on |T'|, the case T' = () being trivial. Let
T # () and let k be the largest index with s; € T'. Then by induction,
(44.28) (T \ {s}) < f(T\ {sk})

Hence

(44.29) z(T) < f(T\{sr})+x(sk) = fF(T\{sx})+f(Ur)—f(Uk-1) < f(T)

(the last inequality follows from the submodularity of f). So x € EPs.
Also, y is feasible for (44.26). Trivially, y > 0. Moreover, for any ¢ we have
by (44.27):



772 Chapter 44. Submodular functions and polymatroids

(4430) D> w(T) = y(U)) = w(si).

T5s; i>i

So y is a feasible solution of (44.26).
Optimality of x and y follows from:

n

(44.31)  wlw =Y w(s)z, =Y w(s)(f({U) = f(Ui-1))

ses =1
n—1
=Y FU)(w(s:) —wlsitn)) + f(S)w(sn) = Y y(T)f(T).
=1 TCS

The third equality follows from a straightforward reordering of the terms,
using that f(0)) = 0. |

Note that if f is integer, then x is integer, and that if w is integer, then y
is integer. Moreover, if f is nondecreasing, then x is nonnegative. Hence, in
that case, x and y are optimum solutions of

(44.32) max{w'z |z € P}
= min{ Y y(M)AT) [y e RT, S7 y(T)x" > w}.
TCS TeP(S)

Therefore:

Corollary 44.3a. Let f be a nondecreasing submodular set function on S
with f(0) =0 and letw : S — Ry. Then x and y given by (44.25) and (44.27)
are optimum solutions for (44.32).

Proof. Directly from Theorem 44.3, using the fact that x > 0 if f is nonde-
creasing. |

As for complexity we have:

Corollary 44.3b. Given a submodular set function f on a set S (by a value
giving oracle) and a function w € Q°, we can find an x € EP; maximizing
w'x in strongly polynomial time. If f is moreover nondecreasing, then x € Py

(and hence x mazimizes w'x over Py ).

Proof. By the extension of the greedy method given above. |

The greedy algorithm can be interpreted geometrically as follows. Let w
be some linear objective function on S, with w(sy) > ... > w(s,). Travel via
the vertices of Py along the edges of Py, by starting at the origin, as follows:
first go from the origin as far as possible (in Pf) in the positive s;-direction,
say to vertex x1; next go from x; as far as possible in the positive so-direction,
say to xg, and so on. After n steps one reaches a vertex z,, maximizing w'z



Section 44.4. f is determined by E Py 773

over Py. In fact, the effectiveness of this algorithm characterizes polymatroids
(Dunstan and Welsh [1973]).

44.3. Total dual integrality

Theorem 44.3 implies the box-total dual integrality of the following system:
(44.33) z(U) < f(U) for U C S.

Corollary 44.3c. If f is submodular, then (44.33) is boz-totally dual inte-
gral.

Proof. Consider the dual of maximizing w'z over (44.33), for some w € Zﬂ’;.
By Theorem 44.3, it has an optimum solution y : P(S) — R, with the
sets U C S having y(U) > 0 forming a chain. So these constraints give a
totally unimodular submatrix of the constraint matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (44.33) is box-TDI. |

This gives the integrality of polyhedra:

Corollary 44.3d. For any integer submodular set function f, the polymatroid
Py and the extended polymatroid EPy are integer.

Proof. Directly from Corollary 44.3c. (In fact, integer optimum solutions are
explicitly given by Theorem 44.3 and Corollary 44.3a.) |

44.4. f is determined by E Py

Theorem 44.3 implies that for any extended polymatroid P there is a unique
submodular function f satisfying f(0) = 0 and EP; = P, since:

Corollary 44.3e. Let f be a submodular set function on S with f(0) = 0.
Then

(44.34) f(U) =max{z(U) | x € EPy}
for each U C S.

Proof. Directly from Theorem 44.3 by taking w := xY. |

So there is a one-to-one correspondence between nonempty extended poly-
matroids and submodular set functions f with f(@) = 0. The correspondence
relates integer extended polymatroids with integer submodular functions.

There is a similar correspondence between nonempty polymatroids and
nondecreasing submodular set functions f with f() = 0. For any (not nec-
essarily nondecreasing) nonnegative submodular set function f, define f by:
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(U) = min f(T) for nonempty U C S.

It is easy to see that f is nondecreasing and submodular and that Py =

Py (Dunstan [1973]). In fact, f is the unique nondecreasing submodular set
function associated with Py, with f() = 0, as (Kelley [1959]):

Corollary 44.3f. If f is a nondecreasing submodular function with f(0) =0,
then

(44.36) f(U) =max{z(U) |z € P}
for each U C S.

Proof. This follows from Corollary 44.3a by taking w := x7. |

This one-to-one correspondence between polymatroids and nondecreasing
submodular set functions f with f(}) = 0 relates integer polymatroids to
integer such functions:

Corollary 44.3g. For each integer polymatroid P there exists a unique in-
teger nondecreasing submodular function f with f(0) =0 and P = P;.

Proof. By Corollary 44.3d and (44.36). |

By (44.36) we have for any nonnegative submodular set function f that
f(U) = max{z(U) | x € P;}. Since we can optimize over EP; in polynomial
time (with the greedy algorithm described above), with the ellipsoid method
we can optimize over Py = EPy N Rﬁ in polynomial time. Hence we can
calculate f(U) in polynomial time. Alternatively, calculating f(U) amounts
to minimizing the submodular function f'(T) := f(TUU).

In fact f is the largest among all nondecreasing submodular set functions
g on S with g(f) =0 and g < f, as can be checked straightforwardly.

44.5. Supermodular functions and contrapolymatroids

Similar results hold for supermodular functions and the associated con-
trapolymatroids. Associate the following polyhedra with a set function g on

S

(44.37) Qg :={r eR% |2 >0,2(U) > g(U) for each U C S},

EQ, :={z € RS | z(U) > g(U) for each U C S}.
If g is supermodular, then @, and EQ, are called the contrapolymatroid
and the extended contrapolymatroid associated with g, respectively. A vector

z € EQ4 (or Q) is called a base vector of EQg (or Q) if z(S) = g(5). A
base vector of g is a base vector of FQ),.
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Since EQy = —EP_,, we can reduce most problems on (extended) con-
trapolymatroids to (extended) polymatroids. Again we can minimize a linear
function w'z over EQ, with the greedy algorithm, as described in Section
44.2. (In fact, we can apply the same formulas (44.25) and (44.27) for g in-
stead of f.) If g is nondecreasing, it yields a nonnegative optimum solution,
and hence a vector z minimizing w'z over Qg

Similarly, the system

(44.38) z(U)>gU) for U C S
is box-TDI, as follows directly from the box-total dual integrality of
(44.39) z(U) < —g(U) for U C S.

Let EP; be the extended polymatroid associated with the submodular
function f with f(0) = 0. Let By be the face of base vectors of EPy, i.e.,

(44.40) By ={z € EP; | 2(S) = f(S)}.

A vector y € RY is called spanning if there exists an = in B ¢ with z <y. Let
Q@ be the set of spanning vectors.

A vector y belongs to @ if and only if (f|y)(S) = f(S), that is (by (44.8)
and (44.9)) if and only if

(44.41)  y(U) = f(5) = f(S\U)

for each U C S. So @ is equal to the contrapolymatroid EQ, associated with
the submodular function g defined by ¢(U) := f(S) — f(S\U) for U C S.
Then By is equal to the face of minimal elements of EQ,.

There is a one-to-one correspondence between submodular set functions
f on S with f(@) = 0 and supermodular set functions g on S with g(f) = 0,
given by the relations

(44.42)  g(U) = f(5) = f(S\U) and f(U) = g(5) — g(S\U)

for U CS.
Then the pair (—g, —@Q) is related to the pair (f, P) by a relation similar
to the duality relation of matroids (cf. Section 44.6f).

44.6. Further results and notes

44.6a. Submodular functions and matroids

Let P be the polymatroid associated with the nondecreasing integer submodular
set function f on S, with f(@) = 0. Then the collection

(44.43) T:={ICS|x" epP}

forms the collection of independent sets of a matroid M = (S,Z) (this result was
announced by Edmonds and Rota [1966] and proved by Pym and Perfect [1970]).
By Corollary 40.2b, the subpolymatroid (cf. Section 44.6¢)
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(44.44) Pll={zecP|z<1}

is the convex hull of the incidence vectors of the independent sets of M. By (44.8),
the rank function r of M satisfies

(44.45) r(U) = min(JU\T| + £(T))

for U C S.
As an example, if f is the submodular function given in the set union example in
Section 44.1a, we obtain the transversal matroid on {1,...,n} with I C {1,...,n}

independent if and only if the family (7; | ¢ € I) has a transversal (Edmonds
[1970D)).

44.6b. Reducing integer polymatroids to matroids

In fact, each integer polymatroid can be derived from a matroid as follows (Helgason
[1974]). Let f be a nondecreasing submodular set function on S with f(#) = 0.
Choose for each s in S, a set X, of size f({s}), such that the sets X, (s € S) are
disjoint. Let X := US€S X, and define a set function r on X by

(14.46) () = in(U\ | Xl + £(T)

seT
for U C X. One easily checks that r is the rank function of a matroid M (by
checking the axioms (39.38)), and that for each subset T of S

(44.47) F() =r(|J Xo).

seT
Therefore, f arises from the rank function of M, as in the Matroids example in
Section 44.1a. The polymatroid Py associated with f is just the convex hull of all
vectors « for which there exists an independent set I in M with zs = |I N X| for
all sin S.

Given a nondecreasing submodular set function f on S with f() = 0, Lovész
[1980a] called a subset U C S a matching if

(44.48) FO) =" f{sh.

seU
If f({s}) =1 for each s in S, f is the rank function of a matroid, and U is a
matching if and only if U is independent in this matroid. If f({s}) = 2 for each
s in S, the elements of S correspond to certain flats of rank 2 in a matroid. Now
determining the maximum size of a matching is just the matroid matching problem
(cf. Chapter 43).

44.6¢c. The structure of polymatroids

Vertices of polymatroids (Edmonds [1970b], Shapley [1965,1971]). Let f be a
submodular set function on a set S = {s1,...,s,} with f(@) = 0. Let Py be the
polymatroid associated with f. It follows immediately from the greedy algorithm, as
in the proof of Corollary 44.3a, that the vertices of Py are given by (fori =1,...,n):
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S ey 82 ) = F{8r)y - Seeny ) i i <k,
where 7 ranges over all permutations of {1,...,n} and where k ranges over 0, . .., n.
Similarly, for any submodular set function f on S with f(@) = 0, the vertices
of the extended polymatroid E Py are given by

(44.50) z(sx(i)) = F({8r)s s 820 }) — F({Sr()s -+ o3 82-1) })

for i =1,...,n, where 7 ranges over all permutations of {1,...,n}.

Topkis [1984] characterized adjacency of the vertices of a polymatroid, while
Bixby, Cunningham, and Topkis [1985] and Topkis [1992] gave further results on
vertices of and paths on a polymatroid and on related partial orders of S.

Facets of polymatroids. Let f be a nondecreasing submodular set function on S
with f(@) = 0. One easily checks that Py is full-dimensional if and only if f({s}) > 0
for all s in S. If Py is full-dimensional there is a unique minimal collection of linear
inequalities defining Py (clearly, up to scalar multiplication). They correspond to
the facets of Py. Edmonds [1970b] found that this collection is given by the following
theorem. A subset U C S is called an f-flat if f(UU{s}) > f(U) for all s € S\ U,
and U is called f-inseparable if there is no partition of U into nonempty sets U
and Uz with f(U) = f(U1) + f(Uz). Then:

Theorem 44.4. Let f be a nondecreasing submodular set function on S with f(0) =
0 and f({s}) > 0 for each s € S. The following is a minimal system determining
the polymatroid Py :

(44.51) 2o >0 (s€S9),
z(U) < f(U) (U is a nonempty f-inseparable f-flat).

Proof. It is easy to see that (44.51) determines Py, as any other inequality z(U) <
f(U) follows from (44.51). The irredundancy of collection (44.51) can be seen as
follows.

Clearly, each inequality xs > 0 determines a facet. Next consider a nonempty
f-inseparable f-flat U. Suppose that the face determined by U is not a facet. Then
it is contained in another face, say determined by T'. Let = be a vertex of Py with
x(U\T)=f(U\T), z(U)= f(U), and (S \ U) = 0. Such a vertex exists by the
greedy algorithm (cf. (44.49)).

Since x is on the face determined by U, it is also on the face determined by T
So z(T') = f(T). Hence f(T) = x(T) =x(T'NU) = f(U) — f(U\T). So we have
equality throughout in:

(44.52) FOUNT)+ F(T) 2 fUNT) + (T NU) = f(U).
This implies that U\ T = @ or TNU = 0 (as U is f-inseparable), and that
f(T) = fF(TNU). TU\NT = 0, then U C T, and hence (as U is an f-flat)

f(T) > f(U) > f(T'NU), a contradiction. If TNU = @, then f(T) = f(TNU) =0,
implying that T' = (), again a contradiction. |

It follows that the face {x € Py | z(S) = f(S)} of maximal vectors in Py is a
facet if and only if f(U) 4+ f(S\U) > f(S) for each proper nonempty subset U of
S. More generally, its codimension is equal to the number of inclusionwise minimal

nonempty sets U with f(U) + f(S\U) = f(S) (cf. Fujishige [1984a]).
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Faces of polymatroids (Giles [1975]). We now extend the characterizations of
vertices and facets of polymatroids given above to arbitrary faces. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S
with f(@) = 0. Suppose that P is full-dimensional. If § £ S; C --- C S, CT C S,
then

(4453)  F={zeP|z(S)=f(S1),...,2(Sk) = F(Sk),z(S\ T) = 0}

is a face of P of dimension at most |T'| — k. (Indeed, F is nonempty by the char-
acterization (44.49) of vertices, while dim(F') < |T'| — k, as the incidence vectors of
S1,...,Sk are linearly independent.)

In fact, each face has a representation (44.53). Indeed, let F be a face of P.
Define T = {s € S | zs > 0 for some z in F}, and let S; C --- C Si be any
maximal chain of nonempty subsets of T" with the property that

(44.54) FC{xeP|z(S)=f(S1),....,2(Sk) = f(Sk),z(S\T) = 0}.

Then we have equality in (44.54), and dim(F') = |T| — k. (Here a maximal chain is
a chain which is contained in no larger chain satisfying (44.54) — since the empty
chain satisfies (44.54), there exist maximal chains.)

In order to prove this assertion, suppose that F' has dimension d. As the right-
hand side of (44.54) is a face of P of dimension at most |T'| — k, it suffices to show
that d = |T'| — k. Therefore, suppose d < |T'| — k. Then there exists a subset U of S
such that (U) = f(U) for all z in F, and such that the incidence vector of U N T
is linearly independent of the incidence vectors of Si,...,Sk. That is, U NT is not
the union of some of the sets S; \ S;—1 (1 = 1,...,k). Since z(UNT) = z(U) =
f(U) > f(UNT) for all z in F, we may assume that U C T Since the collection of
subsets U of S with z(U) = f(U) is closed under taking unions and intersections,
we may assume moreover that U is comparable with each of the sets in the chain
S1 C -+ C Sk. Hence U could be added to the chain to obtain a larger chain,
contradicting our assumption. So d = |T| — k.

Note that a chain S1 C --- C S of nonempty subsets of T is a maximal chain
satisfying (44.54) if and only if there is equality in (44.54) and (setting So := 0):

(44.55) f(SkU{s}) > f(Sk) for all s in T\ Sk, and each of the sets S; \ Si—1
is fi-inseparable, where f; is the submodular set function on S; \ Si—1
given by fl(U) = f(U U Si71) — f(Slfl) for U C S; \ Si_1.

This may be derived straightforwardly from the existence, by (44.49), of appropriate
vertices of F.

It is not difficult to show that if F" has a representation (44.53), then F' is the
direct sum of Fi,...,Fx and @Q, where F; is the face of maximal vectors in the
polymatroid associated with f; (i = 1,...,k), and @ is the polymatroid associated
with the submodular set function g on T\ Sk given by g(U) := f(U U Sk) — f(Sk)
for U C T\ Sk. Since dim(F;) < |S; \ Si—1| — 1 and dim(Q) < |T"\ Sk|, this yields
that dim(F) = |T'| — k if and only if dim(F;) = |S; \ Si—1| —1 (¢ = 1,...,k) and
dim(Q) = |T'\ Sk|. From this, characterization (44.55) can be derived again. It also
yields that if F, represented by (44.53), has dimension |T'| — k, then the unordered
partition {S1,S2 \ S1,...,5% \ Sk—1,T \ Sk} is the same for all maximal chains
S1C--- C Sk.

For a characterization of the faces of a polymatroid, see Fujishige [1984a].
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44.6d. Characterization of polymatroids

Let P be the polymatroid associated with the nondecreasing submodular set func-
tion f on S with f(@) = 0. The following three observations are easily derived
from the representation (44.49) of vertices of P. (a) If o is a vertex of P, there
exists a vertex x1 of P such that 1 > o and x1 has the form (44.49) with k = n.
(b) A vertex x1 of P can be represented as (44.49) with k¥ = n if and only if
z1(S) = f(S). (c) The convex hull of the vertices z1 of P with z1(S) = f(S5) is
the face {x € P | 2(S) = f(S)} of P. It follows directly from (a), (b) and (c) that
x € P is a maximal element of P (with respect to <) if and only if 2(S) = f(5).
So for each vector y in P there is a vector z in P with y < = and z(S) = f(5).

Applying this to the subpolymatroids Pla = PN{z | x < a} (cf. Section 44.1),
one finds the following property of polymatroids:

(44.56) for each a € RS there exists a number r(a) such that each maximal
vector z of PN {z | z < a} satisfies z(5) = r(a).

Here mazimal is maximal in the partial order < on vectors. The number r(a) is
called the rank of a, and any x with the properties mentioned in (44.56) is called a
base of a.

Edmonds [1970b] (cf. Dunstan [1973], Woodall [1974b]) noticed the following
(we follow the proof of Welsh [1976]):

Theorem 44.5. Let P C Rf_. Then P is a polymatroid if and only if P is compact,
and satisfies (44.56) and

(44.57) f0<y<zeP,thenyecP.

Proof. Necessity was observed above. To see sufficiency, let f be the set function
on S defined by

(44.58) fU) := max{z(U) | x € P}

for U C S. Then f is nonnegative and nondecreasing. Moreover, f is submodular.
To see this, consider T, U C S. Let x be a maximal vector in P satisfying z; = 0
if s ¢ TUU, and let y be a maximal vector in P satisfying y(s) =0if s ¢ TNU
and = < y. Note that (44.56) and (44.58) imply that (T NU) = f(T'NU) and
y(T UU) = f(T'UU). Hence

(4459)  F(I)+F(U) 2 y(T)+y(U) = y(TNU)+y(TUV) > 2(TNU)+y(TUV)
— {(TAU)+ (T UD),

that is, f is submodular.

We finally show that P is equal to the polymatroid P associated to f. Clearly,
P C Py, since if © € P then 2(U) < f(U) for each U C S, by definition (44.58) of
f

To see that Py = P, suppose v € Py \ P. Let u be a base of v (that is, a maximal
vector u € P satisfying u < v). Choose u such that the set

(44.60) U:={seS|us <wvs}

is as large as possible. Since v € P, we have u # v, and hence U # 0. As v € Py,
we know
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(44.61) w(U) < o(U) < f(U).
Define
(44.62) w:=1(u+v).

So u < w < v. Hence u is a base of w, and each base of w is a base of v.
For any z € R, define 2z’ as the projection of z on the subspace L := {z € RS |
zs =0if s € S\ U}. That is:

(44.63) 2'(s) = 2(s) if s€ U, and 2'(s) :=0if s € S\ U.

By definition of f, there is an € P with z(U) = f(U). We may assume that z € L.
Choose y € L with z < y and v’ < y. Then

(44.64)  2(S) = 2(U) = f(U) > w(U) = ' (U) = u/(S).

So r(y) > u/(S). Hence, by (44.56), there exists a base z of y with v’ < z and
2(8) > u'(S). So u, < zs for at least one s € U. This implies, since uj, < w, for
each s € S, that thereisana € P with v’ < a < w’ and a # v/, hence a(U) > u/(U).

Since a < w’ < w, there is a base b of w with a < b. Then b(S) = u(S) (since
also u is a base of w) and b(U) > a(U) > v (U) = u(U). Hence bs < us = v, for
some s € S\ U. Moreover, bs < ws < vs for each s € U. So U is properly contained
in {s € 5 |bs < vs}, contradicting the maximality of U. |

(For an alternative characterization, see Welsh [1976].)
By (44.8) and (44.9) the rank of a is given by

(44.65) r(a) = min(a(S\ U) + f(U))

(from this one may derive a ‘submodular law’ for r: r(a Ab) +7r(aVb) < r(a)+r(b),
where A and V are the meet and join in the lattice (R®, <) (Edmonds [1970b])).

Since if P has integer vertices and « is integer, the intersection Pla = {x € P |
x < a} is integer again, we know that for integer polymatroids (44.56) also holds if
we restrict a and x to integer vectors. So if a is integer, then there exists an integer
vector < a in P with z(S) = r(a).

Theorem 44.5 yields an analogous characterization of extended polymatroids.
Let f be a submodular set function on S with f(#) = 0. Choose ¢ € R such that

(44.66) g(U) := f(U) +¢(U)

is nonnegative for all U C S. Clearly, g again is submodular, and g(#) = 0. Then the
extended polymatroid EPy associated with f and the polymatroid P, associated
with g are related by:

(44.67) P,={x|z>0,2—cec EP;} = (c+ EP;)NRY.
Since P, is a polymatroid, by (44.56) we know that E Py satisfies:

(44.68) for each a in RY there exists a number 7(a) such that each maximal
vector x in EP; N {z € R® | z < a} satisfies z(S) = r(a).

One easily derives from Theorem 44.5 that (44.68) together with
(44.69) ify <z e EPj, theny € EPy,

characterizes the class of all extended polymatroids among the closed subsets of
RS.
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44.6e. Operations on submodular functions and polymatroids

The class of submodular set functions on a given set is closed under certain oper-
ations. Obviously, the sum of two submodular functions is submodular again. In
particular, adding a constant ¢ to all values of a submodular function maintains
submodularity. Also the multiplication of a submodular function by a nonnega-
tive scalar maintains submodularity. Moreover, if f is a nondecreasing submod-
ular set function on S, and ¢ is a real number, then the function f’ given by
f/(U) := min{q, f(U)} for U C S, is submodular again. (Monotonicity cannot be
deleted, as is shown by taking S := {a, b}, f(0) = f(S) =1, f({a}) =0, f({b}) = 2,
and ¢ = 1.)

It follows that the class of all submodular set functions on S forms a convex
cone C in RP). This cone is polyhedral as the constraints (44.1) form a finite set
of linear inequalities defining C. Edmonds [1970b] raised the problem of determin-
ing the extreme rays of the cone of all nonnegative nondecreasing submodular set
functions f on S with f(@) = 0. It is not difficult to show that the rank function
r of a matroid M determines an extreme ray of this cone if and only if r is not
the sum of the rank functions of two other matroids, i.e., if and only if M is the
sum of a connected matroid and a number of loops. But these do not represent
all extreme rays: if S = {1,...,5} and w(1) = 2,w(s) = 1 for s € S\ {1}, let
fU) = min{3,w(U)} for U C S; then f is on an extreme ray, but cannot be
decomposed as the sum of rank functions of matroids (L. Lovész’s example; cf. also
Murty and Simon [1978] and Nguyen [1978]).

Lovész [1983c] observed that if f1 and fs are submodular and fi — f2 is nonde-
creasing, then min{f1, f} is submodular.

Let f be a nonnegative submodular set function on S. Clearly, for any A > 0
we have Pay = APy (where APy = {\zx | # € Py}). If ¢ > 0, and f’ is given by
f/(U) = min{q, f(U)} for U C S, then f is submodular and

(44.70) Ppr={z € Py |2(5) < q},

as can be checked easily. So the class of polymatroids is closed under intersections
with affine halfspaces of the form {z € R® | 2(S) < ¢}, for ¢ > 0.

Let fi and f2 be nondecreasing submodular set functions on S, with f1(0) =
f2(0) = 0, and associated polymatroids P; and P» respectively. Let P be the poly-
matroid associated with f := fi 4+ f2. Then (McDiarmid [1975c¢]):

Theorem 44.6. Py, ¢, = Py, + Py,.

Proof. It is easy to see that Pr, yf, 2 Py + Py,. To prove the reverse inclusion, let
x be a vertex of Py, 1y,. Then z has the form (44.49). Hence, by taking the same
permutation 7 and the same k,x = x1 + x2 for certain vertices z;, of Py, and z2 of
Py,. Since Py, 4 Py, is convex it follows that Py, 1 r, = Py, + Py,.

In fact, if f; and fo are integer, each integer vector in Py, + Py, is the sum of
integer vectors in Py, and Py, — see Corollary 46.2c. Similarly, if fi and f> are
integer, each integer vector in EPy, + E Py, is the sum of integer vectors in E Py,
and EPy,.

Faigle [1984a] derived from Theorem 44.6 that, for any submodular function f,
if v,y € Pr and z = 1 + x2 with x1,22 € Py, then there exist y1,y2 € Py with
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y=vy1+y2 and x14+y1,x2+y2 € Py. (Proof:y € Py C Poy_g = Pf_5, +Pf_s,.) An
integer version of this can be derived from Corollary 46.2c and generalizes (42.13).

If My = (S,Z1) and M2 = (S,Z) are matroids, with rank functions 71 and
ro and corresponding independent set polytopes Pi and Pa, respectively, then by
Section 44.6¢ above, P; + P> is the convex hull of sums of incidence vectors of
independent sets in M; and M;. Hence the 0,1 vectors in P, + P> are just the
incidence vectors of the sets I; U Ia, for I € Z; and I» € Z,. Therefore, the
polyhedron

(44.71) (Pi+P)1l={z€eP+P|x<1}

is the convex hull of the independent sets of M1V M;. By Theorem 44.6 and (44.45),
it follows that the rank function r of M; V M> satisfies

(44.72) r(U) = min(|U\T| +r1(T) + r2(T))

for U C S. Thus we have derived the matroid union theorem (Corollary 42.1a).

44.6f. Duals of polymatroids

McDiarmid [1975¢] described the following duality of polymatroids. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S with
f(®) = 0 and let a be a vector in R® with a > z for all z in P (i.e., a(s) > f({s})
for all s in S). Define

(44.73) frU) :=a(U) + f(S\U) = f(5)

for U C S. One easily checks that f* again is nondecreasing and submodular, and
that f*(@) = 0. We call f* the dual of f (with respect to a). Then f** = f taking
the second dual with respect to the same a, as follows immediately from (44.73).

Let P* be the polymatroid associated with f*, and call P* the dual polymatroid
of P (with respect to a). Now the maximal vertices of P and P* are given by (44.49)
by choosing & = n. It follows that x is a maximal vertex of P if and only if a — =
is a maximal vertex of P*. Since the maximal vectors of a polymatroid form just
the convex hull of the maximal vertices, we may replace in the previous sentence
the word ‘vertex’ by ‘vector’. So the set of maximal vectors of P* arises from the
set of maximal vectors of P by reflection in the point %a.

Clearly, duals of matroids correspond in the obvious way to duals of the related
polymatroids (with respect to the vector 1).

44.6g. Induction of polymatroids

Let G = (V,E) be a bipartite graph, with colour classes S and T. Let f be a
nondecreasing submodular set function on S with f(@) = 0, and define

(44.74) g(U) == f(N(U))

for U C T (cf. Section 44.1a). (As usual, N(U) denotes the set of vertices not in U
adjacent to at least one vertex in U.)

The function g again is nondecreasing and submodular. Similarly to Rado’s
theorem (Corollary 41.1c), one may prove that a vector z belongs to P, if and only
if there exist y € R¥ and z € Pf such that
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(44.75)  y(6(t) =a, (teT),
y(6(s)) =2z (s €S).

Moreover, if f and g are integer, we can take y and z to be integer. This procedure
gives an ‘induction’ of polymatroids through bipartite graphs, and yields ‘Rado’s
theorem for polymatroids’ (cf. McDiarmid [1975¢]).

In case f is the rank function of a matroid on S, a 0,1 vector x belongs to Py if
and only if there exists a matching in G whose end vertices in S form an independent
set of the matroid, and the end vertices in T" have x as incidence vector. So these
0,1 vectors determine a matroid on 7', with rank function r given by

(4476)  (U) = min (U \ W]+ FN (D))

for U C T (cf. (44.45) and (44.74)).

Another extension is the following. Let D = (V, A) be a directed graph and
let V' be partitioned into classes S and T. Let furthermore a ‘capacity’ function
c: A — Ry be given. Define the set function g on T" by

(44.77) g(U) := c(6°"(U))

for U C T, where 5OUt(U) denotes the set of arcs leaving U. Then g is nonnegative
and submodular, and it may be derived straightforwardly from the max-flow min-
cut theorem (Theorem 10.3) that a vector z in RY belongs to P, if and only if
there exist T'— S paths Q1,...,Qr and nonnegative numbers A1, ..., A\r (for some
k), such that

k k
(44.78) Z Aix?9 < ¢ and Z )\ixb(Qi) =z,

i=1 i=1

where b(Q;) is the beginning vertex of Q;. If the ¢ and x are integer, we can take
also the \; integer.
Here the function g in general is not nondecreasing, but the value

(4479)  §(U) = minf{g(W) | U C W C T}

of the associated nondecreasing submodular function (cf. (44.35)) is equal to the
minimum capacity of a cut separating U and S, which is equal to the maximum
amount of flow from U to S, subject to the capacity function ¢ (by the max-flow
min-cut theorem).

In an analogous way, one can construct polymatroids by taking vertex-capacities
instead of arc-capacities. Moreover, the notion of induction of polymatroids through
bipartite graphs can be extended in a natural way to the induction of polymatroids
through directed graphs (cf. McDiarmid [1975¢], Schrijver [1978]).

44.6h. Lovasz’s generalization of Ko6nig’s matching theorem

Lovész [1970a] gave the following generalization of Kénig’s matching theorem (The-
orem 16.2).

For a graph G = (V,E), U C V, and F C E, let Np(U) denote the set of
vertices not in U that are adjacent in (V, F) to at least one vertex in U. Kénig’s
matching theorem follows by taking g(X) := | X]| in the following theorem.
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Theorem 44.7. Let G = (V, E) be a simple bipartite graph, with colour classes S
and T. Let g be a supermodular set function on S, such that g({v}) > 0 for each
v € S and such that

(44.80) g(UU{v}) < g(U) + g({v}) for nonempty U C S and v € S\ U.

Then E has a subset F with degp(v) = g({v}) for each v € V and |[Nr(U)| > g(U)
for each nonempty U C S if and only if |INg(U)| > g(U) for each nonempty U C S.

Proof. Necessity being trivial, we show sufficiency. Choose F' C E such that
(44.81)  [Np(U)] 2 g(U)

for each nonempty U C S, with |F| as small as possible. We show that F is as
required.

Suppose to the contrary that degp(v) > g({v}) for some v € S. By the min-
imality of F', for each edge e = vw € F, there is a subset U, of S with v € U,,
INr(Ue)| = g(Ue), and w & Np(Ue \ {v}). Since the function |[Ng(U)| is submod-
ular, the intersection U of the U, over e € §(v) satisfies |[Np(U)| = g(U) (using
(44.81)). Then no neighbour w of v is adjacent to U. Hence Nr(v) and Ng(U\ {v})
are disjoint. Moreover, U # {v}, since Np(U) = g(U) and Np({v}) > g(v). This
gives the contradiction

(44.82) 9(U) < g(U\ {v}) + g({v}) < INr(U\ {o})| + [Nr(v)| = [Nr(U)]. 1

For a derivation of this theorem with the Edmonds-Giles method, see Frank
and Tardos [1989].

44.6i. Further notes

Edmonds [1970b] and D.A. Higgs (as mentioned in Edmonds [1970b]) observed that
if f is a set function on a set S, we can define recursively a submodular function f
as follows:

(44.83) F(T) := min{f(T), min(f(S1) + f(S2) — f(S1 N S2))},

where the second minimum ranges over all pairs Si,S2 of proper subsets of T" with
S1uUSy=T.

Lovész [1983c] gave the following characterization of submodularity in terms of
convexity. Let f be a set function on S and define for each ¢ € RS

(44.84) fle):= Z Xif (Us),

where ) # Uy C Uz C --- C Uy C S and At,..., Ak > 0 are such that
c = Zle XixVi. Then f is submodular if and only if f is convex. Similarly, f

is supermodular if and only if f is concave. Related is the ‘subdifferential’ of a
submodular function, investigated by Fujishige [1984d].

Korte and Lovdsz [1985¢] and Nakamura [1988a] studied polyhedral structures
where the greedy algorithm applies. Federgruen and Groenevelt [1986] extended the
greedy method for polymatroids to ‘weakly concave’ objective functions (instead
of linear functions). (Related work was reported by Bhattacharya, Georgiadis, and
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Tsoucas [1992].) Nakamura [1993] extended polymatroids and submodular functions
to A-polymatroids and A-submodular functions.

Groflin and Liebling [1981] studied the following example of ‘transversal poly-
matroids’. Let G = (V, E) be an undirected graph, and define the submodular set
function f on E by f(F) := ||JF| for F C E. Then the vertices of the associ-
ated polymatroid are all {0, 1,2} vectors = in R” with the property that the set
F :={e€ E| z. > 1} forms a forest each component of which contains at most
one edge e with z. = 2. If z is a maximal vertex, then each component contains
exactly one edge e with xz. = 2.

Narayanan [1991] studied, for a given submodular function f on S, the lattice of
all partitions P of S into nonempty sets such that there exists a A € R for which P
attains min ), .5 (f(U) =) (taken over all partitions P). Fujishige [1980b] studied
minimum values of submodular functions.

For results on the (NP-hard) problems of mazimizing a submodular function and
of submodular set cover, see Fisher, Nemhauser, and Wolsey [1978], Nemhauser and
Wolsey [1978,1981], Nemhauser, Wolsey, and Fisher [1978], Wolsey [1982a,1982b],
Conforti and Cornuéjols [1984], and Fujito [1999].

Cunningham [1983], Fujishige [1983], and Nakamura [1988c] presented decom-
position theories for submodular functions. Benczir and Frank [1999] considered
covering symmetric supermodular functions by graphs.

For surveys and books on polymatroids and submodular functions, see McDi-
armid [1975¢]|, Welsh [1976], Lovéasz [1983c], Lawler [1985], Nemhauser and Wolsey
[1988], Fujishige [1991], Narayanan [1997], and Murota [2002]. For a survey on ap-
plications of submodular functions, see Frank [1993a].

Historically, submodular functions arose in lattice theory (Bergmann [1929],
Birkhoff [1933]), while submodularity of the rank function of a matroid was shown
by Bergmann [1929] and Whitney [1935]. Choquet [1951,1955] and Kelley [1959]
studied submodular functions in relation to the Newton capacity and to measures
in Boolean algebras. The relevance of submodularity for optimization was revealed
by Edmonds [1970b].

Several alternative names have been proposed for submodular functions, like
sub-valuation (Choquet [1955]), 3-function (Edmonds [1970b]), and ground set rank
function (McDiarmid [1975c¢]). The set of integer vectors in an integer polymatroid
was called a hypermatroid by Helgason [1974] and Lovész [1977c|. A generaliza-
tion of polymatroids (called supermatroids) was studied by Dunstan, Ingleton, and
Welsh [1972].



