
Chapter 41

Matroid intersection

Edmonds discovered that matroids have even more algorithmic power than
just that of the greedy method. He showed that there exist efficient algo-
rithms also for intersections of matroids. That is, a maximum-weight com-
mon independent set in two matroids can be found in strongly polynomial
time. Edmonds also found good min-max characterizations for matroid
intersection.
Matroid intersection yields a motivation for studying matroids: we may
apply it to two matroids from different classes of examples of matroids,
and thus we obtain methods that exceed the bounds of any particular
class.
We should note here that if M1 = (S, I1) and M2 = (S, I2) are matroids,
then (S, I1 ∩ I2) need not be a matroid. (An example with |S| = 3 is easy
to construct.)
Moreover, the problem of finding a maximum-size common independent
set in three matroids is NP-complete (as finding a Hamiltonian circuit in
a directed graph is a special case; also, finding a common transversal of
three partitions is a special case).

41.1. Matroid intersection theorem

Let M1 = (S, I1) and M2 = (S, I2) be two matroids, on the same set S.
Consider the collection I1 ∩I2 of common independent sets. The pair (S, I1 ∩
I2) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two
proofs — one based on linear programming duality and total unimodularity
(see the proof of Theorem 41.12 below), and one reducing it to the matroid
union theorem (see Corollary 42.1a and the remark thereafter). We give the
direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let M1 = (S, I1) and M2 =
(S, I2) be matroids, with rank functions r1 and r2, respectively. Then the

maximum size of a set in I1 ∩ I2 is equal to

(41.1) min
U⊆S

(r1(U) + r2(S \ U)).
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Proof. Let k be equal to (41.1). It is easy to see that the maximum is not
more than k, since for any common independent set I and any U ⊆ S:

(41.2) |I| = |I ∩ U | + |I \ U | ≤ r1(U) + r2(S \ U).

We prove equality by induction on |S|, the case |S| ≤ 1 being trivial. So
assume that |S| ≥ 2.

If minimum (41.1) is attained only by U = S or U = ∅, choose s ∈ S.
Then r1(U) + r2(S \ (U ∪ {s})) ≥ k for each U ⊆ S \ {s}, since otherwise
both U and U ∪ {s} would attain (41.1), whence {U, U ∪ {s}} = {∅, S},
contradicting the fact that |S| ≥ 2. Hence, by induction, M1 \ s and M2 \ s
have a common independent set of size k, implying the theorem.

So we can assume that (41.1) is attained by some U with ∅ �= U �= S.
Then M1|U and M2 · U have a common independent set I of size r1(U).
Otherwise, by induction, there exists a subset T of U with

(41.3) r1(U) > rM1|U (T )+rM2·U (U \T ) = r1(T )+r2(S \T )−r2(S \U),

contradicting the fact that U attains (41.1). Similarly, M1 ·(S\U) and M2|(S\
U) have a common independent set J of size r2(S \ U).

Now I ∪ J is a common independent set of M1 and M2. Indeed, I ∪ J
is independent in M1, as I is independent in M1|U and J is independent in
M1 · (S \ U) = M1/U (cf. (39.10)). Similarly, I ∪ J is independent in M2. As
|I ∪ J | = r1(U) + r2(S \ U), this proves the theorem.

This implies a characterization of the existence of a common base in two
matroids:

Corollary 41.1a. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank

functions r1 and r2, respectively, such that r1(S) = r2(S). Then M1 and M2

have a common base if and only if r1(U)+r2(S \U) ≥ r1(S) for each U ⊆ S.

Proof. Directly from Theorem 41.1.

It is easy to derive from the matroid intersection theorem a similar min-
max relation for the minimum size of a common spanning set:

Corollary 41.1b. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with

rank functions r1 and r2, respectively. Then the minimum size of a common

spanning set of M1 and M2 is equal to

(41.4) max
U⊆S

(r1(S) − r1(U) + r2(S) − r2(S \ U)).

Proof. The minimum is equal to the minimum of |B1 ∪ B2| where B1 and
B2 are bases of M1 and M2 respectively. Hence the minimum is equal to
r1(S) + r2(S) minus the maximum of |B1 ∩ B2| over such B1, B2. This last
maximum is characterized in the matroid intersection theorem, yielding the
present corollary.
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The following result of Rado [1942] (a generalization of Hall’s marriage
theorem (Theorem 22.1), and therefore sometimes called the Rado-Hall the-
orem) may be derived from the matroid intersection theorem, applied to M
and the transversal matroid M2 induced by X .

Corollary 41.1c (Rado’s theorem). Let M = (S, I) be a matroid, with rank

function r, and let X = (X1, . . . , Xn) be a family of subsets of S. Then X
has a transversal which is independent in M if and only if

(41.5) r(
⋃

i∈I

Xi) ≥ |I|

for each I ⊆ {1, . . . , n}.

Proof. Let r2 be the rank function of the transversal matroid M2 induced
by X . By the matroid intersection theorem, M and M2 have a common
independent set of size n if and only if

(41.6) r(U) + r2(S \ U) ≥ n for each U ⊆ S.

Now for each T ⊆ S one has (by Kőnig’s matching theorem (cf. Corollary
22.2a)):

(41.7) r2(T ) = min
I⊆{1,...,n}

(
∣

∣

⋃

i∈I

Xi ∩ T
∣

∣ + n − |I|).

So (41.6) is equivalent to:

(41.8) r(U) +
∣

∣

⋃

i∈I

Xi \ U
∣

∣ + n − |I| ≥ n

for all U ⊆ S and I ⊆ {1, . . . , n}. We can assume that U =
⋃

i∈I Xi, since
replacing U by

⋃

i∈I Xi does not increase the left-hand side in (41.8). So the
condition is equivalent to (41.5), proving the corollary.

Notes. Mirsky [1971a] gave an alternative proof of Rado’s theorem. Welsh [1970]
showed that, in turn, Rado’s theorem implies the matroid intersection theorem. Las
Vergnas [1970] gave an extension of Rado’s theorem. Rado [1942] (and also Welsh
[1971]) showed that Rado’s theorem in fact characterizes matroids. Perfect [1969a]
generalized Rado’s theorem to characterizing the maximum size of an independent
partial transversal. Related results are in Perfect [1971].

41.1a. Applications of the matroid intersection theorem

In this section we mention a number of applications of the matroid intersection
theorem. Further applications will be given in the next chapter on matroid union.

Kőnig’s theorems. Let G = (V, E) be a bipartite graph, with colour classes U1

and U2. For i = 1, 2, let Mi = (E, Ii) be the matroid with F ⊆ E independent if
and only if each vertex in Ui is covered by at most one edge in F .
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So M1 and M2 are partition matroids. The common independent sets in M1

and M2 are the matchings in G, and the common spanning sets are the edge covers
in G. For i = 1, 2 and F ⊆ E, the rank ri(F ) of F in Mi is equal to the number of
vertices in Ui covered by F .

By the matroid intersection theorem, the maximum size of a matching in G is
equal to the minimum of r1(F ) + r2(E \ F ) taken over F ⊆ E. This last is equal
to the minimum size of a vertex cover in G. So we have Kőnig’s matching theorem
(Theorem 16.2).

Similarly, by Corollary 41.1b, the minimum size of an edge cover in G (assuming
G has no isolated vertices), is equal to the maximum of |V | − r1(F ) − r2(E \ F )
taken over F ⊆ E. This last is equal to the maximum size of a stable set in G. So
we have the Kőnig-Rado edge cover theorem (Theorem 19.4).

Common transversals. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be families
of subsets of a finite set S. Then the matroid intersection theorem implies Theorem
23.1 of Ford and Fulkerson [1958c]: X and Y have a common transversal if and only
if

(41.9) |XI ∩ YJ | ≥ |I| + |J | − m

for all subsets I and J of {1, . . . , m}, where XI :=
⋃

i∈I Xi and YJ :=
⋃

j∈J Yj .
To see this, let M1 and M2 be the transversal matroids induced by X and

Y respectively, with rank functions r1 and r2 say. So X and Y have a common
transversal if and only if M1 and M2 have a common independent set of size m. By
Theorem 41.1, this last holds if and only if r1(Z) + r2(S \ Z) ≥ m for each Z ⊆ S.
Using Kőnig’s matching theorem, this is equivalent to:

(41.10) min
I⊆{1,...,m}

(m − |I| + |XI ∩ Z|) + min
J⊆{1,...,m}

(m − |J | + |YJ \ Z|) ≥ m

for each Z ⊆ S. Equivalently, for all I, J ⊆ {1, . . . , m}:

(41.11) min
Z⊆S

(m − |I| + |XI ∩ Z| + m − |J | + |YJ \ Z|) ≥ m.

As this minimum is attained by Z := YJ , this is equivalent to (41.9).

Coloured trees. Let G = (V, E) be a graph and let the edges of G be coloured
with k colours. That is, we have partitioned E into sets E1, . . . , Ek, called colours.
Then there exists a spanning tree with all edges coloured differently if and only if
G − F has at most t + 1 components, for any union F of t colours, for any t ≥ 0.
This follows from the matroid intersection theorem applied to the cycle matroid
M(G) of G and the partition matroid N induced by E1, . . . , Ek.

Indeed, M(G) and N have a common independent set of size |V |−1 if and only
if rM(G)(E \ F ) + rN (F ) ≥ |V | − 1 for each F ⊆ E. Now rN (F ) is equal to the
number of Ei intersecting F . So we can assume that F is equal to the union of t
of the Ei, with t := rN (F ). Moreover, rM(G)(E \ F ) is equal to |V | − κ(G − F ),
where κ(G − F ) is the number of components of G − F . So the requirement is that
|V | − κ(G − F ) + t ≥ |V | − 1. In other words, κ(G − F ) ≤ t + 1.

Detachments. The following is a special case of a theorem of Nash-Williams [1985],
which he derived from the matroid intersection theorem — in fact it is a consequence
of the result on coloured trees given above.



704 Chapter 41. Matroid intersection

Let G = (V, E) be a graph and let b : V −→ Z+. Call a graph G̃ = (Ṽ , Ẽ)

a b-detachment of G if there is a function φ : Ṽ −→ V such that |φ−1(v)| = b(v)

for each v ∈ V , and such that there is a one-to-one function ψ : Ẽ −→ E with
ψ(e) = {φ(u), φ(v)} for each edge e = uv of G̃.

Then there exists a connected b-detachment if and only if

(41.12) b(U) + κ(G − U) ≤ |EU | + 1 for each U ⊆ V ,

where κ(G′) denotes the number of components of graph G′ and where EU denotes
the set of edges intersecting U .

To see this, let H = (Ṽ , E′) be the graph obtained from G by replacing each
vertex v by b(v) new vertices, and by connecting for each edge e = uv of G, the
b(u) new vertices associated with u with the b(v) new vertices associated with v.
We assign to these b(u)b(v) edges the ‘colour’ e.

Then there exists a connected b-detachment if and only if H has a spanning
tree in which all edges have a different colour. By the previous example, such a
spanning tree exists if and only if for each F ⊆ E, deleting from H the edges with
colour in F gives a graph H ′ with at most |F | + 1 components.

Now the number of components of H ′ is equal to the κ(G − F ) + b(IF ) − |IF |,
where IF denotes the set of isolated (hence loopless) vertices of G − F . So the
condition is equivalent to: κ(G − F ) − |F | + b(IF ) − |IF | ≤ 1. As κ(G − F ) − |F |
does not decrease by removing edges from F , we can assume that F is equal to the
set of edges incident with IF . So F is determined by U := IF , namely F = EU .
Then κ(G − F ) − |IF | = κ(G − U). So the condition is equivalent to (41.12).

41.1b. Woodall’s proof of the matroid intersection theorem

P.D. Seymour attributed the following proof of the matroid intersection theorem
to D.R. Woodall (cf. Seymour [1976a]):

Let k be the value of (41.1). Let x ∈ S be such that r1({x}) = r2({x}) = 1.
(If no such x exists the theorem is trivial, as in that case the minimum is 0.) Let
Y := S \ {x}. Now we may assume that the restrictions M1 \ x and M2 \ x have no
common independent set of size k. So, by induction,

(41.13) r1(A1) + r2(A2) ≤ k − 1,

for some partition A1, A2 of Y . Moreover, the contractions M1/x and M2/x have no
common independent set of size k −1 (otherwise we can add x to obtain a common
independent set of size k for M1 and M2). So, by induction,

(41.14) r1(B1 ∪ {x}) − 1 + r2(B2 ∪ {x}) − 1 ≤ k − 2

(cf. (39.9) above), for some partition B1, B2 of Y . However,

(41.15) r1(A1 ∩ B1) + r1(A1 ∪ B1 ∪ {x}) ≤ r1(A1) + r1(B1 ∪ {x}),
r2(A2 ∩ B2) + r2(A2 ∪ B2 ∪ {x}) ≤ r2(A2) + r2(B2 ∪ {x}),

by the submodularity (cf. (39.38)(ii)) of the rank functions. Moreover, by the defi-
nition of k,

(41.16) k ≤ r1(A1 ∩ B1) + r2(A2 ∪ B2 ∪ {x}),
k ≤ r1(A1 ∪ B1 ∪ {x}) + r2(A2 ∩ B2),

as A1 ∩ B1, A2 ∪ B2 ∪ {x} and A1 ∪ B1 ∪ {x}, A2 ∩ B2 form partitions of S. Adding
the inequalities in (41.13), (41.14), (41.15), and (41.16) gives a contradiction.
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41.2. Cardinality matroid intersection algorithm

A maximum-size common independent set can be found in polynomial time.
This result follows from the matroid union algorithm of Edmonds [1968],
since (as Edmonds [1970b] and Lawler [1970] observed) cardinality matroid
intersection can be reduced to matroid union.

We describe below the direct algorithm given by Aigner and Dowling
[1971] and Lawler [1975], based on finding paths in auxiliary graphs. A dif-
ferent algorithm was given by Edmonds [1979].

Note that the examples given in Section 41.1a provide applications for
the matroid intersection algorithm. We should note that in the algorithm we
require that in any matroid M = (S, I), we can test in polynomial time if any
subset of S belongs to I — no explicit list of all sets in I is required. Thus
complexity results are all relative to the complexity of testing independence.
As such a membership testing algorithm exists in each example mentioned,
we obtain polynomial-time algorithms for these special cases.

For any two matroids M1 = (S, I1) and M2 = (S, I2) and any I ∈ I1 ∩I2,
we define a directed graph DM1,M2

(I), with vertex set S, as follows. For any
y ∈ I, x ∈ S \ I,

(41.17) (y, x) is an arc of DM1,M2
(I) if and only if I − y + x ∈ I1,

(x, y) is an arc of DM1,M2
(I) if and only if I − y + x ∈ I2.

These are all arcs of DM1,M2
(I). So this graph is the union of the graphs

DM1
(I) and the reverse of DM2

(I) defined in Section 39.9.
The following is the base for finding a maximum-size common independent

set in two matroids.

Cardinality common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2) and a set I ∈ I1 ∩ I2;
output: a set I ′ ∈ I1 ∩ I2 with |I ′| > |I| (if any).
description of the algorithm: Consider the sets

(41.18) X1 := {x ∈ S \ I | I ∪ {x} ∈ I1},
X2 := {x ∈ S \ I | I ∪ {x} ∈ I2}.

Moreover, consider the directed graph DM1,M2
(I) defined above. There are

two cases.

Case 1: DM1,M2
(I) has an X1 − X2 path P . (Possibly of length 0 if

X1 ∩ X2 �= ∅.) We take a shortest such path P (that is, with a minimum
number of arcs). Now output I ′ := I△V P .

Case 2: DM1,M2
(I) has no X1 − X2 path. Then I is a maximum-size

common independent set.
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This finishes the description of the algorithm. The correctness of the al-
gorithm is given by the following two theorems.

Theorem 41.2. If Case 1 applies, then I ′ ∈ I1 ∩ I2.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that I ′

belongs to I1.
Let P start at z0 ∈ X1. The arcs in P leaving I form the only matching

in DM1
(I) with union equal to V P − z0, since otherwise P would have a

shortcut. Moreover, for each z ∈ V P \ I with z �= z0, one has I + z �∈ I1,
since otherwise z ∈ X1, and hence P would have a shortcut. So by Corollary
39.13a, I ′ belongs to I1.

Theorem 41.3. If Case 2 applies, then I is a maximum-size common inde-

pendent set.

Proof. As Case 2 applies, there is no X1 − X2 path in DM1,M2
(I). Hence

there is a subset U of S with X1 ∩ U = ∅ and X2 ⊆ U , and such that no arc
enters U . We show

(41.19) rM1
(U) + rM2

(S \ U) ≤ |I|.

To this end, we first show

(41.20) rM1
(U) ≤ |I ∩ U |.

Suppose that rM1
(U) > |I ∩ U |. Then there exists an x in U \ I such that

(I ∩ U) ∪ {x} ∈ I1. Since I ∪ {x} �∈ I1 (as x �∈ X1), there is a y ∈ I \ U with
I − y + x ∈ I1. But then DM1

(I) has an arc from y to x, contradicting the
facts that x ∈ U and y �∈ U and that no arc enters U .

This shows (41.20). Similarly, rM2
(S\U) ≤ |I \U |. Hence we have (41.19).

So by the matroid intersection theorem, I is a maximum-size common inde-
pendent set.

Clearly, the running time of the algorithm is polynomially bounded, since
we can construct the auxiliary directed graph DM1,M2

(I) and find the path
P (if any), in polynomial time. Therefore:

Theorem 41.4. A maximum-size common independent set in two matroids

can be found in polynomial time.

Proof. Directly from the above, as we can find a maximum-size common
independent set after applying at most |S| times the common independent
set augmenting algorithm.

The algorithm also yields a proof of the matroid intersection theorem
(Theorem 41.1 above): if the algorithm stops with set I, we obtain a set U
for which (41.19) holds.
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Notes. The above algorithm can be shown to take O(n2m(n+Q)) time, where n is
the maximum size of a common independent set, m is the size of the underlying set,
and Q is the time needed to test if a given set is independent (in either matroid).
Cunningham [1986] showed that if one chooses a shortest path as augmenting path,
the sum of the lengths of all augmenting paths chosen is O(n log n), which gives
an O(n3/2mQ)-time algorithm. This algorithm extends several of the ideas behind
the O(n1/2m) algorithm of Hopcroft, Karp, and Karzanov for cardinality bipartite
matching (see Section 16.4). For more efficient algorithms, see Gabow and Tarjan
[1984], Gusfield [1984], Gabow and Stallmann [1985], Frederickson and Srinivas
[1989], Gabow and Xu [1989,1996], and Fujishige and Zhang [1995].

The problem of finding a maximum-size common independent set in three ma-
troids is NP-complete, as finding a Hamiltonian circuit in a directed graph is a
special case (as was observed by Held and Karp [1970]). Another special case is
finding a common transversal of three collections of sets, which is also NP-complete
(Theorem 23.16). In particular, the k-intersection problem can be reduced to the
3-intersection problem (cf. Lawler [1976b]).

Barvinok [1995] gave an algorithm for finding a maximum-size common inde-
pendent set in k linear matroids, represented by given vectors over the rationals.
The running time is linear in the cardinality of the underlying set and singly poly-
nomial in the maximum rank of the matroids.

41.3. Weighted matroid intersection algorithm

Also a maximum-weight common independent set can be found in strongly
polynomial time. This result was announced by Edmonds [1970b], who pub-
lished an algorithm in Edmonds [1979]. An alternative algorithm (which we
describe below) was announced by Lawler [1970] and described in Lawler
[1975,1976b] — the correctness of this algorithm was proved by Krogdahl
[1974,1976], using the results described in Section 39.9. A similar algorithm
was described by Iri and Tomizawa [1976].

This algorithm is an extension of the cardinality matroid intersection
algorithm given in Section 41.2. In each iteration, instead of finding a path P
with a minimum number of arcs in DM1,M2

(I), we will now require P to have
minimum length with respect to some length function defined on DM1,M2

(I).
To describe the algorithm, if matroids M1 = (S, I1) and M2 = (S, I2)

and a weight function w : S → R are given, call a set I ∈ I1 ∩ I2 extreme if
w(J) ≤ w(I) for each J ∈ I1 ∩ I2 satisfying |J | = |I|.

Weighted common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
Q, and an extreme common independent set I;
output: an extreme common independent set I ′ with |I ′| = |I| + 1 (if any).
description of the algorithm: Consider again the sets X1 and X2 and the
directed graph DM1,M2

(I) on S, as in the cardinality case.
For any x ∈ S define the ‘length’ l(x) of x by:
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(41.21) l(x) :=

{

w(x) if x ∈ I,
−w(x) if x �∈ I.

The length of a path P , denoted by l(P ), is equal to the sum of the lengths
of the vertices traversed by P .

Case 1: DM1,M2
(I) has an X1 − X2 path P . We choose P such that

l(P ) is minimal and such that (secondly) P has a minimum number of arcs
among all minimum-length X1 − X2 paths. Set I ′ := I△V P .

Case 2: DM1,M2
(I) has no X1 − X2 path. Then there is no common

independent set larger than I.

This finishes the description of the algorithm. The correctness of the algo-
rithm if Case 2 applies follows directly from Theorem 41.3. In order to show
the correctness if Case 1 applies, we first prove the following basic property
of the length function l.

Lemma 41.5α. Let C be a directed circuit in DM1,M2
(I) and let t ∈ V C.

Define J := I△V C. If J �∈ I1 ∩ I2, then there exists a directed circuit C ′

with V C ′ ⊂ V C such that l(V C ′) < 0, or l(V C ′) ≤ l(V C) and t ∈ V C ′.

Proof. By symmetry we can assume that J �∈ I1. Let N1 and N2 be the sets
of arcs in C belonging to DM1

(I) and DM2
(I) respectively. As J �∈ I1, there

exists, by Theorem 39.13, a matching N ′
1 in DM1

(I) with union V C and with
N ′

1 �= N1. Consider the directed graph D = (V C, A) formed by the arcs in
N1, N ′

1 (taking arcs in N1 ∩N ′
1 parallel), and by the arcs in N2 taking each of

them twice (parallel). Then each vertex in V C is entered and left by exactly
two arcs of D. Moreover, since N ′

1 �= N1, D contains a directed circuit C1

with V C1 ⊂ V C (as N ′
1 contains a chord of C). As D is Eulerian, we can

extend this to a decomposition of A into directed circuits C1, . . . , Ck. Then

(41.22) χV C1 + · · · + χV Ck = 2 · χV C .

Since V C1 �= V C we know that V Cj = V C for at most one j. If, say V Ck =
V C, then (41.22) implies that either l(V Cj) < 0 for some j < k or l(V Cj) ≤
l(V C) for all j < k, implying the proposition.

Suppose next that V Cj �= V C for all j. If l(V Cj) < 0 for some j ≤ k we
are done. So assume l(V Cj) ≥ 0 for each j ≤ k. We can assume that C1 and
C2 traverse t. Then

(41.23) l(V C1) + l(V C2) ≤ l(V C1) + · · · + l(V Ck) = 2l(V C).

Hence l(V C1) ≤ l(V C) or l(V C2) ≤ l(V C), and again we are done.

This implies (Krogdahl [1976], Fujishige [1977a]):

Theorem 41.5. Let I ∈ I1 ∩I2. Then I is extreme if and only if DM1,M2
(I)

has no directed circuit of negative length.
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Proof. To see necessity, suppose that DM1,M2
(I) has a directed circuit C of

negative length. Choose C with |V C| minimal. Consider J := I△V C. Since
w(J) = w(I)− l(C) > w(I), while |J | = |I|, we know that J �∈ I1 ∩I2. Hence
by Lemma 41.5α, DM1,M2

(I) has a negative-length directed circuit covering
fewer than |V C| vertices, contradicting our assumption.

To see sufficiency, consider a J ∈ I1 ∩ I2 with |J | = |I|. By Corollary
39.12a, both DM1

(I) and DM2
(I) have a perfect matching on I△J . These

two matchings together form a vertex-disjoint union of a number of directed
circuits C1, . . . , Ct. Then

(41.24) w(I) − w(J) =

t
∑

j=1

l(V Cj) ≥ 0,

implying w(J) ≤ w(I). So I is extreme.

This theorem implies that we can find a shortest path P , in Case 1 of the
algorithm, in strongly polynomial time (with the Bellman-Ford method). It
also gives:

Theorem 41.6. If Case 1 applies, I ′ is an extreme common independent

set.

Proof. We first show that I ′ ∈ I1 ∩ I2. To this end, let t be a new element,
and extend (for each i = 1, 2), Mi to a matroid M ′

i = (S + t, I ′
i), where for

each T ⊆ S + t:

(41.25) T ∈ I ′
i if and only if T − t ∈ Ii.

Note that DM ′

1
,M ′

2
(I + t) arises from DM1,M2

(I) by extending it with a new
vertex t and adding arcs from t to each vertex in X1, and from each vertex
in X2 to t.

Let P be the path found in the algorithm. Define

(41.26) w(t) := l(t) := −l(P ).

As P is a shortest X1 − X2 path, this makes that DM ′

1
,M ′

2
(I + t) has no

negative-length directed circuit. Hence, by Theorem 41.5, I + t is an extreme
common independent set of M ′

1 and M ′
2.

Let P run from z1 ∈ X1 to z2 ∈ X2. Extend P by the arcs (t, z1) and
(z2, t) to a directed circuit C. So J = (I + t)△V C. As P has a minimum
number of arcs among all shortest X1−X2 paths, and as DM ′

1
,M ′

2
(I+t) has no

negative-length directed circuits, by Lemma 41.5α we know that J ∈ I1 ∩I2.
Moreover, J is extreme, since I + t is extreme and w(J) = w(I + t).

So the weighted common independent set augmenting algorithm is correct.
It obviously has strongly polynomially bounded running time. Therefore:
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Theorem 41.7. A maximum-weight common independent set in two ma-

troids can be found in strongly polynomial time.

Proof. Starting with the extreme common independent set I0 := ∅ we can
find iteratively extreme common independent sets I0, I1, . . . , Ik, where |Ii| = i
for i = 0, . . . , k and where Ik is a maximum-size common independent set.
Taking one among I0, . . . , Ik of maximum weight, we have a maximum-weight
common independent set.

The above algorithm gives a maximum-weight common independent set
of size k, for each k. In particular, a maximum-weight common base can be
found with the algorithm. Similarly for minimum-weight:

Theorem 41.8. A minimum-weight common base in two matroids can be

found in strongly polynomial time.

Proof. The last extreme common independent set in the above algorithm is
a maximum-weight common base. By flipping the signs of the weights, this
can be turned into a minimum-weight common base algorithm.

Notes. Frank [1981a] gave an O(τn3)-time implementation of this algorithm, where
τ is the time needed to test for any I ∈ Ii and any s ∈ S whether or not I∪{s} ∈ Ii,
and if not, to find a circuit of Mi contained in I ∪ {s}.

Clearly, a maximum-weight common independent set need not be a common
base, even if common bases exist and all weights are positive: Let S = {1, 2, 3}
and let Mi be the matroid on S with unique circuit S \ {i} (for i = 1, 2). Define
w(1) := w(2) := 1 and w(3) := 3. Then {3} is the unique maximum-weight common
independent set, while {1, 2} is the unique common base.

41.3a. Speeding up the weighted matroid intersection algorithm

The algorithm described in Section 41.3 is strongly polynomial-time, since we can
find a shortest path P in strongly polynomial time, as in each iteration the graph
DM1,M2

(I) has no negative-length directed circuit. Hence we can apply the Bellman-
Ford method. To bound the running time, suppose that we can construct, for any
I ∈ I1 ∩I2 the graph DM1,M2

(I) in time T . Then any iteration can be done in time
O(T + n3), where n := |S|.

We can improve this to O(T + n log n) as follows (Frank [1981a], Brezovec,
Cornuéjols, and Glover [1986]). The idea is that, in each iteration, with the extreme
common independent set I, we give a ‘certificate’ of extremity, by specifying a
potential for the length function; that is, a function p ∈ QS satisfying

(41.27) l(v) ≥ p(v) − p(u)

for each arc (u, v) of DM1,M2
(I). By Theorem 41.5, such a potential certifies ex-

tremity of I. We call such a p a potential for I.
Having the potential, we can apply Dijkstra’s method instead of the Bellman-

Ford method, as with the potential we can transform the length function (if defined
on arcs) to a nonnegative length function.
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It is convenient to associate the following functions w1, w2 : S → R to p, w :
S → R:

(41.28) w1(v) = p(v) and w2(v) = w(v) − p(v) if v ∈ I,
w1(v) = w(v) + p(v) and w2(v) = −p(v) if v ∈ S \ I.

So w = w1 + w2. Then:

Theorem 41.9. Let I ∈ I1 ∩ I2 and let p, w, w1, w2 : S → R satisfy (41.28). Then

p is a potential for DM1,M2
(I) if and only if for i = 1, 2 one has

(41.29) I maximizes wi(X) over all J ∈ Ii satisfying |J | = |I|.

Proof. The theorem follows easily with Corollary 39.12b. Indeed, there is an arc
(u, v) leaving I if and only if I − u + v ∈ I1. Then

(41.30) w1(v) ≤ w1(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = −w(v) = −w2(v) − w1(v) and −w2(v) − w1(u) = p(v) − p(u).
Similarly, there is an arc (u, v) entering I if and only if I − v + u ∈ I2. Then

(41.31) w2(v) ≥ w2(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = w(v) = w2(v) + w1(v) and w2(u) + w1(v) = p(v) − p(u).

We trivially have a potential for I := ∅. Consider next an arbitrary iteration,
with as input a common independent set I and a potential p for I. Construct
DM1,M2

(I) and l as before. Let P be an X1 − X2 path with l(P ) minimum, and,
under this condition, with |V P | minimum. (Using the potential described above,
we can find P with Dijkstra’s algorithm.) Let I ′ := I△V P .

We now reset the potential p such that for any v ∈ S with v reachable from
X1, p(v) is equal to the distance from X1 to v (= the minimum of l(V Q) over all
X1 − v paths Q in DM1,M2

(I)).
Let w1 and w2 satisfy (41.28) with respect to I, (the new) p, and w. Then:

Theorem 41.10. w1, w2 satisfy (41.29) with respect to I ′.

Proof. Extend M1 and M2 to matroids M ′
1 = (S + t, I′

1) and M ′
2 = (S + t, I′

2)
as in (41.25). Let P run from z1 ∈ X1 to z2 ∈ X2. Define w(t) := l(t) := −l(P ),
p(t) := 0, w1(t) := 0, and w2(t) := w(t). Now it suffices to show:

(41.32) (i) wi(I + t) = wi(I
′) for i = 1, 2;

(ii) w1, w2 satisfy (41.29) with respect to M ′
1, M ′

2, and I + t.

Let C be the directed circuit obtained by extending P by the arcs (t, z1) and (z2, t).
Now, since I ′ = (I + t)△V C, to show (41.32), it suffices to show, for each arc (u, v):

(41.33) if (u, v) leaves I + t, then w1(v) ≤ w1(u), with equality if (u, v) is on
C;
if (u, v) enters I + t, then w2(u) ≤ w2(v), with equality if (u, v) is on
C.

Note that for each arc (u, v) of DM′

1
,M′

2

(I + t) one has p(v) ≤ p(u) + l(v), with

equality if (u, v) is on C. Hence, if (u, v) leaves I + t, then:
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(41.34) w1(v) = p(v) + w(v) = p(v) − l(v) ≤ p(u) = w1(u),

with equality if (u, v) is on C.
Similarly, if (u, v) enters I + t, then:

(41.35) w2(v) = w(v) − p(v) = l(v) − p(v) ≥ −p(u) = w2(u),

with equality if (u, v) is on C. This proves (41.33).

Using (41.28) and Theorem 41.9, we can obtain from w1, w2 a potential for I ′.
This implies:

Corollary 41.10a. A maximum-weight common independent set can be found in

time O(k(T +n log n)), where n := |S|, k is the maximum size of a common indepen-

dent set, and T is the time needed to find DM1,M2
(I) for any common independent

set I.

Proof. Each iteration can be done in time O(T + n log n), since constructing the
graph DM1,M2

(I) takes T time, implying that there are O(T ) arcs. Hence, by Corol-
lary 7.7a, a shortest X1 − X2 path P can be found in O(T + n log n) time. Hence
I ′, and a potential for I ′ can be found in time O(T + n log n).

Since there are k iterations, we have the time bound given.

In applications where the matroids are specifically given, one can often derive
a better time bound, by obtaining DM1,M2

(I ′) not from scratch, but by adapting
DM1,M2

(I). See also Brezovec, Cornuéjols, and Glover [1986] and Gabow and Xu
[1989,1996].

41.4. Intersection of the independent set polytopes

It turns out that the intersection of the independent set polytopes of two
matroids gives exactly the convex hull of the common independent sets, as
was shown by Edmonds [1970b]27.

We first prove a very useful theorem, due to Edmonds [1970b], which we
often will apply in this part. (A more general statement and interpretation
in terms of network matrices will be given in Section 13.4.)

A family C of sets is called laminar if

(41.36) Y ⊆ Z or Z ⊆ Y or Y ∩ Z = ∅

for all Y, Z ∈ C.

Theorem 41.11. Let C be the union of two laminar families of subsets of a

set X. Let A be the C × X incidence matrix of C. Then A is totally unimod-

ular.

27 Lawler [1976b] wrote that this result was announced by Edmonds ‘at least as long ago
as 1964’.
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Proof. Let A be a counterexample with |C| + |X| minimal, and (secondly)
with a minimal number of 1’s. Then A is nonsingular and has determinant
�= ±1. Let C1 and C2 be laminar families, with union C.

If each Ci consists of pairwise disjoint sets, then A is the incidence matrix
of a bipartite graph, added with some unit base vectors. Hence A is totally
unimodular, a contradiction.

If say C1 does not consist of pairwise disjoint sets, C1 contains a smallest
nonempty set Y that is contained in some other set Z in C1. Choose Z small-
est. Replacing Z by Z\Y , maintains laminarity of C1. As this does not change
the determinant of the corresponding matrix (as it amounts to subtracting
row indexed Y from row indexed Z), we would have a counterexample with
a smaller number of 1’s, a contradiction.

Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank func-
tions r1 and r2. By Corollary 40.2a, the intersection Pindependent set(M1) ∩
Pindependent set(M2) of the independent set polytopes associated with the ma-
troids M1 = (S, I1) and M2 = (S, I2) is determined by:

(41.37) (i) xs ≥ 0 for s ∈ S,
(ii) x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S.

Trivially, this intersection contains the convex hull of the incidence vectors
of common independent sets of M1 and M2. We shall see that these two
polytopes are equal.

Basis is the following result of Edmonds [1970b], whose proof we follow (it
constitutes the base of a fundamental technique developed further in several
other results).

Theorem 41.12. System (41.37) is box-totally dual integral.

Proof. Choose w ∈ ZS . Consider the linear programming problem dual to
maximizing wTx over the constraints (41.37)(ii):

(41.38) minimize
∑

U⊆S

(y1(U)r1(U) + y2(U)r2(U))

where y1, y2 ∈ R
P(S)
+ ,

∑

U⊆S

(y1(U) + y2(U))χU = w.

Let y1, y2 attain this minimum, such that

(41.39)
∑

U⊆S

(y1(U) + y2(U))|U ||S \ U |

is minimized. Define

(41.40) Fi := {U ⊆ S | yi(U) > 0},

for i = 1, 2. We show that for i = 1, 2, the collection Fi is a chain; that is,
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(41.41) if T, U ∈ Fi, then T ⊆ U or U ⊆ T .

Suppose not. Choose α := min{yi(T ), yi(U)}, and decrease yi(T ) and yi(U)
by α, and increase yi(T ∩ U) and yi(T ∪ U) by α. Since

(41.42) χT + χU = χT∩U + χT∪U ,

y1, y2 remains a feasible solution of (41.38); and since

(41.43) ri(T ) + ri(U) ≥ ri(T ∩ U) + ri(T ∪ U),

it remains optimum. However, sum (41.39) decreases (by Theorem 2.1), con-
tradicting the minimality assumption. So F1 and F2 are chains.

As the constraints in (41.37)(ii) corresponding to F1 and F2 form a totally
unimodular matrix (by Theorem 41.11), by Theorem 5.35 system (41.37)(ii)
is box-TDI, and hence (41.37) is box-TDI.

(The fact that the Fi can be taken to be chains also follows directly from the
proof method of Theorem 40.2.)

This implies a characterization of the common independent set polytope

(41.44) Pcommon independent set(M1, M2)

of two matroids M1 = (S, I1) and M2 = (S, I2), being the convex hull of the
incidence vectors of the common independent sets of M1 and M2:

Corollary 41.12a. Pcommon independent set(M1, M2) is determined by (41.37).

Proof. Directly from Theorem 41.12, since it implies that the vertices of
the polytope determined by (41.37) are integer, and hence are the incidence
vectors of common independent sets.

Another way of stating this is:

Corollary 41.12b.

(41.45) Pcommon independent set(M1, M2)
= Pindependent set(M1) ∩ Pindependent set(M2).

Proof. From Corollary 41.12a, using the fact that (41.37) is the union of the
constraints for the independent set polytopes of M1 and M2, by Corollary
40.2b.

The total dual integrality of (41.37) gives the following extension of the
matroid intersection theorem:

Corollary 41.12c. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with

rank functions r1 and r2, respectively, and let w ∈ ZS
+. Then the maximum

value of w(I) over I ∈ I1 ∩ I2 is equal to the minimum value of
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(41.46) r1(U1) + · · · + r1(Uk) + r2(T1) + · · · + r2(Tl),

where U1 ⊆ · · · ⊆ Uk ⊆ S and T1 ⊆ · · · ⊆ Tl ⊆ S such that each element s of

S occurs in precisely w(s) sets among U1, . . . , Uk, T1, . . . , Tl.

Proof. Directly from Theorem 41.12 and its proof.

(Edmonds [1979] gave an algorithmic proof of this result.)
These corollaries cannot be extended to the intersection of the inde-

pendent set polytopes of three matroids. Let S = {1, 2, 3}, and for i =
1, 2, 3, let Mi be the matroid on S with S \ {i} as unique circuit. Then
Pindependent set(M1) ∩ Pindependent set(M2) ∩ Pindependent set(M3) contains the
all-1

2 vector, while each integer vector in this intersection contains at most
one 1. So the intersection is not the convex hull of the common independent
sets.

Similar results hold for the common base polytope. For matroids M1 and
M2, let the common base polytope Pcommon base(M1, M2) be the convex hull
of the incidence vectors of common bases of M1 and M2. Then:

Corollary 41.12d. Pcommon base(M1, M2) = Pbase(M1) ∩ Pbase(M2).

Proof. Directly from the foregoing.

So the common base polytope is determined by:

(41.47) xs ≥ 0 for s ∈ S,
x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S,
x(S) = ri(S) for i = 1, 2.

Corollary 41.12e. System (41.47) is box-TDI.

Proof. From Theorem 41.12, with Theorem 5.25.

Moreover, similar results hold for the common spanning set polytope.
For matroids M1 and M2, let the common spanning set polytope, in notation
Pcommon spanning set(M1, M2), be the convex hull of the incidence vectors of
common spanning sets of M1 and M2. Then:

Corollary 41.12f.

(41.48) Pcommon spanning set(M1, M2)
= Pspanning set(M1) ∩ Pspanning set(M2).

Proof. This can be reduced to Corollary 41.12b on the common independent
set polytope, by duality: x belongs to the spanning set polytope of Mi if and
only if 1 − x belongs to the independent set polytope of M∗

i .
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Similarly, x belongs to the common spanning set polytope of M1 and M2

if and only if 1 − x belongs to the common independent set polytope of M∗
1

and M∗
2 .

So the common spanning set polytope is determined by:

(41.49) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≤ ri(S) − ri(S \ U) for i = 1, 2 and U ⊆ S.

Corollary 41.12g. System (41.49) is box-TDI.

Proof. Again, this can be derived from Theorem 41.12, by replacing x by
1 − x.

Another consequence of Theorem 41.12 is:

Corollary 41.12h. Let M1 = (S, I1) and M2 = (S, I2) be matroids and let

x ∈ RS
+. Then

(41.50) max{z(S) | z ≤ x, z ∈ Pcommon independent set(M1, M2)}
= min{r(U) + x(S \ U) | U ⊆ S},

where r(U) denotes the maximum size of a common independent set contained

in U .

Proof. This follows from the box-total dual integrality of (41.37), using the
fact that r(U1 ∪ U2) ≤ r1(U1) + r2(U2) for disjoint U1, U2.

Cunningham [1984] showed that, if matroids M1 = (S, I1) and M2 =
(S, I2) are given by independence testing oracles, one can find in strongly
polynomial time for any x ∈ QS , optimum solutions of (41.50). This will
follow from the results in Section 47.4.

The result of Cunningham [1984] also implies:

Theorem 41.13. Given matroids M1 = (S, I1) and M2 = (S, I2) by indepen-

dence testing oracles, and given x ∈ QS, one can test in strongly polynomial

time if x belongs to the common independent set polytope, and if so, decom-

pose x as a convex combination of incidence vectors of common independent

sets.

Proof. Let ri be the rank function of Mi (i = 1, 2) and let r(U) :=
min{r1(U), r2(U)} for i = 1, 2. Let P be the common independent set poly-
tope. Corollaries 40.4a and 41.12b imply that one can test in strongly poly-
nomial time if x belongs to P .

So we can assume that x belongs to P . We decompose x as a convex
combination of incidence vectors of common independent sets. Iteratively
resetting x, we keep a collection U of subsets of S with x(U) = r(U) for each
U ∈ U . Initially, U := ∅. We describe the iteration.
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Define

(41.51) F := {y ∈ P | ∀s ∈ S : xs = 0 ⇒ ys = 0;∀U ∈ U : y(U) = r(U)}.

So F is a face of P containing x.
Find a common independent set I with χI ∈ F . This can be done by

finding a common independent set I ⊆ supp(x) maximizing wTx, where w :=
∑

U∈U χU . (Here supp(x) is the support of x; so supp(x) = {s ∈ S | xs > 0}.)
If x = χI we stop. Otherwise, define u := x − χI . Let λ be the largest

rational such that

(41.52) χI + λu

belongs to P .
We describe an inner iteration to find λ. We consider vectors z along the

halfline L = {χI + λu | λ ≥ 0}. First we let λ be the largest rational with
χI + λu ≥ 0, and set z := χI + λu.

We iteratively reset z. We check if z belongs to the common independent
set polytope, and if not, we find a U ⊆ S minimizing r(U) − z(U) (with
Corollary 40.4c). Let z′ be the (unique) vector on L achieving x(U) ≤ r(U)
with equality; that is, satisfying z′(U) = r(U).

Consider any inequality x(U ′) ≤ r(U ′) violated by z′. Then

(41.53) r(U ′) − |U ′ ∩ I| < r(U) − |U ∩ I|.

This can be seen by considering the function

(41.54) d(y) := (r(U) − y(U)) − (r(U ′) − y(U ′)).

We have d(z) ≤ 0 (since U minimizes r(U) − z(U)) and d(z′) > 0 (since
z′(U) = r(U) and z′(U ′) > r(U ′)). Hence, as d is linear, d(χI) > 0; that is,
we have (41.53). This implies that resetting z := z′, there are at most r(S)
inner iterations.

Let x′ be the final z found. If we apply no inner iteration, then x′
s = 0 for

some s ∈ I ⊆ supp(x) (since we chose λ largest with χI +λu ≥ 0). If we do at
least one inner iteration, we find a U such that x′ satisfies x′(U) = r(U) while
|U ∩ I| < r(U) (since x′ is the unique vector on L satisfying x′(U) = r(U)
and since x′ �= χI).

In the latter case, set U ′ := U ∪{U}; otherwise set U ′ := U . Then resetting
x to x′ and U to U ′, the dimension of F decreases (as χI does not belong to
the new F ). So the number of iterations is at most |S|. This shows that the
method is strongly polynomial-time.

41.4a. Facets of the common independent set polytope

Since the common independent set polytope of two matroids is the intersection of
their independent set polytopes, each facet-inducing inequality for the intersection
is facet-inducing for (at least) one of the independent set polytopes, but not nec-
essarily conversely. Giles [1975] characterized which inequalities are facet-inducing
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for the common independent set polytope. If this polytope is full-dimensional, then
each inequality xs ≥ 0 is facet-inducing. As for the other inequalities, Giles proved:

Theorem 41.14. Let M1 = (S, I1) and M2 = (S, I2) be loopless matroids, with

rank functions r1 and r2. For U ⊆ S, define r(U) := min{r1(U), r2(U)}. Then, for

U ⊆ S, the inequality

(41.55) x(U) ≤ r(U)

is facet-inducing for Pcommon independent set(M1, M2) if and only if there is no par-

tition of U into nonempty proper subsets U1, U2 with

(41.56) r(U) ≥ r(U1) + r(U2)

and there is no proper superset U ′ of U with r(U ′) ≤ r(U).

Proof. By symmetry, we can assume that r(U) = r1(U).
Necessity is easy: Assume that x(U) ≤ r1(U) is facet-inducing. If (41.56) would

hold, then each common independent set I with |I ∩ U | = r1(U) satisfies |I ∩ U1| =
r(U1) (since |I ∩ U1| = |I ∩ U | − |I ∩ U2| ≥ r(U) − r(U2) ≥ r(U1)). Hence each x
in the facet determined by x(U) ≤ r1(U) satisfies x(U1) = r(U1), a contradiction.
Similarly, if r(U ′) ≤ r1(U) for some proper superset U ′ of U , then each common
independent set I with |I ∩ U | = r1(U) satisfies |I ∩ U ′| = r(U ′), implying that
each x in the facet determined by x(U) ≤ r1(U) satisfies x(U ′) = r(U ′), again a
contradiction.

To see sufficiency, suppose that (41.55) satisfies the conditions, but is not facet-
inducing for the common independent set polytope. This implies that the inequality
x(U) ≤ r1(U) is implied by other inequalities in (41.37). So there exist λi : P(S) →
Q+ (for i = 1, 2) such that

(41.57)
∑

T∈P(S)

(λ1(T ) + λ2(T ))χT ≥ χU and

∑

T∈P(S)

(λ1(T )r1(T ) + λ2(T )r2(T )) ≤ r1(U),

and such that λi(U) = 0 for i = 1, 2. Let D be the least common denominator of the
values of the λi. Choose the λi such that D is as small as possible and (secondly)
such that

(41.58) D ·
∑

T⊆S

(λ1(T ) + λ2(T ))|T |(|S \ T | + 1)

is as small as possible. For i = 1, 2, define

(41.59) Fi := {T ⊆ S | λi(T ) > 0}.

We claim that for i = 1, 2:

(41.60) Fi is a chain.

Suppose to the contrary that T1, T2 ∈ Fi satisfy T1 �⊆ T2 �⊆ T1. Then decreasing
λi(T1) and λi(T2) by 1/D and increasing λi(T1 ∩ T2) and λi(T1 ∪ T2) by 1/D
maintains (41.57) but decreases (41.58). This would be a contradiction, except if
T1 ∩ T2 or T1 ∪ T2 equals U . If one of these sets equals U and D ≥ 2, we can
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reset λi(U) := 0, and multiply all values of λ1 and λ2 by D/(D − 1). This again
maintains (41.57) but decreases the least common divisor of the denominators. So
the contradiction would remain, except if D = 1. Then (41.57) implies ri(T1) +
ri(T2) ≤ r1(U). Now if T1 ∩ T2 = U , then U ⊂ T1 and

(41.61) r(T1) ≤ ri(T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

contradicting the condition. If T1 ∪ T2 = U , then

(41.62) r(T1) + r(U \ T1) ≤ ri(T1) + ri(U \ T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

again contradicting the condition.
This proves (41.60). As each Fi is a chain, the incidence matrix of F1 ∪ F2

is totally unimodular (by Theorem 41.11). Therefore, there are integer-valued λi

satisfying (41.57), with λi(T ) = 0 for T �∈ Fi. Then we can assume that |Fi| ≤ 1 for
i = 1, 2, since if T, T ′ ∈ Fi and T ⊂ T ′, we can decrease λi(T ) by 1 without violating
(41.57). If U ′ ∈ Fi with U ′ ⊃ U , then r(U ′) ≤ ri(U

′) ≤ r(U), contradicting
the condition. So each Fi contains a set Ui �⊇ U , implying r(U1) + r(U \ U1) ≤
r(U1) + r(U2) ≤ r1(U1) + r2(U2) ≤ r(U), again contradicting the condition.

This theorem can be seen to imply a variant of it, in which, instead of r(U) :=
min{r1(U), r2(U)}, we define

(41.63) r(U) := max{|I|
∣∣ I ∈ I1 ∩ I2} = min

T⊆U
(r1(T ) + r2(U \ T )).

Fonlupt and Zemirline [1983] characterized the dimension of the common base
polytope of two matroids.

41.4b. Up and down hull of the common base polytope

We saw in Corollary 41.12d a characterization of the common base polytope
Pcommon base(M1, M2) of two matroids M1 = (S, I1) and M2 = (S, I2). The up
hull of this polytope:

(41.64) P ↑

common base(M1, M2) := Pcommon base(M1, M2) + R
S
+

was characterized by Cunningham [1977] and McDiarmid [1978] as follows (proving
a conjecture of Fulkerson [1971a]).

Let M1 = (S, I1) and M2 = (S, I2) be matroids having a common base. Then
P ↑

common base(M1, M2) is determined by:

(41.65) x(U) ≥ r(S) − r(S \ U) for U ⊆ S,

where r(Z) := the maximum size of a common independent set contained in Z. (A
weaker version of this was proved by Edmonds and Giles [1977].)

For a proof we refer to Section 46.7a, where it is also shown that (41.65) is TDI
(Gröflin and Hoffman [1981]). (Frank and Tardos [1984a] derived this, with a direct
algorithmic construction, from the total dual integrality of (41.47).)

Note that by the matroid intersection theorem, the inequalities (41.65) are
equivalent to:

(41.66) x(U) ≥ k − r1(A) − r2(B) for each partition U, A, B of S,
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where r1 and r2 are the rank functions of M1 and M2 respectively, and where k is
the size of a common base. This implies that if we add x ≤ 1 to (41.66) we obtain
the convex hull of the subsets of S that contain a common base.

Similarly, the down hull of the common base polytope:

(41.67) P ↓

common base(M1, M2) := Pcommon base(M1, M2) − R
S
+,

is determined by

(41.68) x(U) ≤ r1(S \ A) + r2(S \ B) − k for each partition U, A, B of S.

This can be derived from the description of the up hull of the common base polytope,
since

(41.69) P ↓

common base(M1, M2) = 1 − P ↑

common base(M
∗
1 , M∗

2 )

(where 1 stands for the all-one vector in RS).
This implies that the convex hull of the incidence vectors of the subsets of

common bases is determined by x ≥ 0 and (41.68).
Cunningham [1984] gave a strongly polynomial-time algorithm to test if a vector

belongs to P ↑

common base(M1, M2), or to P ↓

common base(M1, M2), using only indepen-
dence testing oracles for M1 and M2.

41.5. Further results and notes

41.5a. Menger’s theorem for matroids

Tutte [1965b] showed a special case of the matroid intersection theorem, namely
when both M1 and M2 are minors of one matroid. Specialized to graphic matroids,
it gives the vertex-disjoint, undirected version of Menger’s theorem.

Let M = (E, I) be a matroid, with rank function r, and let U and W be disjoint
subsets of E. Then the maximum size of a common independent set in M/U \ W
and M/W \ U is equal to the minimum value of

(41.70) r(X) − r(U) + r(E \ X) − r(W )

taken over sets X with U ⊆ X ⊆ E \ W . This is the special case of the matroid
intersection theorem for the matroids M/U \ W and M/W \ U , since for Y ⊆
E \ (U ∪ W ) one has

(41.71) rM/U\W (Y ) = r(Y ∪ U) − r(U),

and similarly for M/W \ U .
To see that this implies the vertex-disjoint, undirected version of Menger’s the-

orem, let G = (V, E) be a graph and let S and T be disjoint nonempty subsets of
V . We show that the above theorem implies that the maximum number of disjoint
S − T paths in G is equal to the minimum number of vertices intersecting each
S − T path.

To this end, we can assume that G is connected, and that E contains subsets
U and W such that (S, U) and (T, W ) are trees. (Adding appropriate edges does
not modify the result to be proved.)

Let M := M(G) be the cycle matroid of G. Define R := V \ (S ∪ T ). Then
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(41.72) the maximum number of disjoint S −T paths is at least the maximum
size of a common independent set I of M/U \W and M/W \U , minus
|R|.

(In fact, there is equality.)
To prove (41.72), let I be a maximum-size common independent in M/U\W and

M/W \ U . So I is a forest. Consider any component K of I. Since I is independent
in M/U , K intersects S in at most one vertex. Similarly, K intersects T in at most
one vertex. Let p be the number of components K intersecting both S and T . By
deleting p edges we obtain a forest I ′ such that no component of I ′ intersects both
S and T . So |I ′| ≤ |R| (since I ′ remains a forest after contracting (in the graphical
sense) S ∪ T to one vertex). Hence p = |I| − |I ′| ≥ |I| − |R|. So we have (41.72).

On the other hand,

(41.73) the minimum size of a set of vertices intersecting each S − T path is
at most the minimum value of (41.70), minus |R|.

(Again, we have in fact equality.)
To prove (41.73), let X attain the minimum value of (41.70). So U ⊆ X ⊆ E\W .

Let K be the component of (V, X) containing S and let L be the component of
(V, E \ X) containing T . We choose X with |K ∪ L| maximized.

Then K ∪ L = V . For suppose not. Then, as G is connected, there is an edge
e of G leaving K ∪ L. By symmetry, we can assume that e ∈ X. Let K′ be the
component of (V, X) containing e. So K′ �= K and E[K′] ∩ U = ∅. Resetting X by
X \E[K′], r(X) decreases by |K′|−1, while r(E \X) increases by at most |K′|−1.
So the new X again attains the minimum in (41.70), while K ∪ L increases. This
contradicts our maximality assumption.

So K ∪ L = V . Hence K ∩ L intersects each S − T path (since S ⊆ K and
T ⊆ L, and there is no edge connecting K \ L and L \ K). Moreover

(41.74) |K ∩ L| = |K| + |L| − |V | ≤ (r(X) + 1) + (r(E \ X) + 1) − |V |
= r(X) + r(E \ X) − |V | + 2 = r(X) + r(E \ X) − r(U) − r(W ) − |R|.

So we have (41.73).
Since the maximum number of disjoint S−T paths is trivially not more than the

minimum number of vertices intersecting all S − T paths, we thus obtain Menger’s
theorem (and also equality in (41.72) and (41.73)).

(Tomizawa [1976a] gave an algorithm for Menger’s theorem for matroids.)

41.5b. Exchange properties

Kundu and Lawler [1973] showed the following extension of the exchange property
of bipartite graphs given in Theorem 16.8. Let M1 = (S, I1) and M2 = (S, I2) be
matroids, with span functions span1 and span2. Then

(41.75) For any I1, I2 ∈ I1 ∩ I2 there exists an I ∈ I1 ∩ I2 with I1 ⊆ span1(I)
and I2 ⊆ span2(I).

(Theorem 16.8 is equivalent to the case where the Mi are partition matroids.)
To prove (41.75), choose I ∈ I1 ∩I2 with I1 ⊆ span1(I) and |I ∩ I2| maximized.

Suppose that I2 �⊆ span2(I). Choose s ∈ I2 \ span2(I) with I ∪ {s} ∈ I2. By
the maximality of |I ∩ I2| we know that I ∪ {s} �∈ I1. So M1 has a circuit C



722 Chapter 41. Matroid intersection

contained in I ∪ {s}. Since I2 ∈ I1 we know that C �⊆ I2. Choose t ∈ C \ I2.
Then for I ′ := I − t + s we have I ′ ∈ I1 ∩ I2, while span1(I

′) = span1(I). Since
|I ′ ∩ I2| > |I ∩ I2| this contradicts the maximality assumption.

A second exchange property was shown by Davies [1976]:

(41.76) Two matroids M1 and M2 have bases B1 and B2 (respectively) with
|B1 ∩B2| = k if and only if M1 has bases X1 and Y1 and M2 has bases
X2 and Y2 with |X1 ∩ X2| ≤ k and |Y1 ∩ Y2| ≥ k.

To see this, we may assume that X2 = Y2, since if |X1 ∩ Y2| ≤ k we can reset
X2 := Y2, and if |X1 ∩ Y2| > k we can reset Y1 := X1 and exchange indices.

By (39.33)(ii), there exists a series of bases Z0, . . . , Zt of M1 such that Z0 = X1,
Zt = Y1, and |Zi−1△Zi| = 2 for i = 1, . . . , t. Hence

(41.77)
∣∣|Zi−1 ∩ X2| − |Zi ∩ X2|

∣∣ ≤ 1

for i = 1, . . . , t. Since |Z0 ∩ X2| ≤ k and |Zt ∩ X2| ≥ k, we know |Zi ∩ X2| = k for
some i. This proves (41.76).

41.5c. Jump systems

A framework that includes both matroid intersection and maximum-size matching
was introduced by Bouchet and Cunningham [1995]. For x, y ∈ Zn, let [x, y] be the
set of vectors z ∈ Zn with ‖x − y‖1 = ‖x − z‖1 + ‖z − y‖1. So [x, y] consists of all
integer vectors z in the box x ∧ y ≤ z ≤ x ∨ y.

Call a vector z a step from x to y if z ∈ [x, y] and ‖z − x‖1 = 1. A jump system

is a finite subset J of Zn satisfying the following axiom:

(41.78) if x, y ∈ J and z is a step from x to y, then z ∈ J or J contains a step
from z to y.

Trivially, for any jump system J and any x, y ∈ Zn, the intersection J∩[x, y] is again
a jump system. Moreover, being a jump system is maintained under translations
by an integer vector and by reflections in a coordinate hyperplane. Bouchet and
Cunningham [1995] showed that the sum of jump systems is again a jump system
(attributing the proof below to A. Sebő):

Theorem 41.15. If J1 and J2 are jump systems in Zn, then J1 + J2 is a jump

system.

Proof. For x, y ∈ J1 + J2 we prove (41.78) by induction on the minimum value of

(41.79) ‖y′ − x′‖1 + ‖y′′ − x′′‖1,

where x′, y′ ∈ J1, x′′, y′′ ∈ J2, x′ + x′′ = x, and y′ + y′′ = y.
Let z be a step from x to y. By reflection and permutation of coordinates, we

can assume that z = x + χ1. So x1 < y1. Hence, by symmetry of J1 and J2, we can
assume that x′

1 < y′
1. Next, by reflection, we can assume that x′ ≤ y′.

Now x′+χ1 is a step from x′ to y′. If x′+χ1 ∈ J1, then z = x′+χ1+x′′ ∈ J1+J2,
and we have (41.78). So we can assume that x′ +χ1 �∈ J1. Hence, by (41.78) applied
to J1, there is an i ∈ {1, . . . , n} with x̃′ := x′ + χ1 + χi ∈ J1 and x̃′ ≤ y′.

So z + χi = x̃′ + x′′ ∈ J1 + J2. If z + χi ∈ [x, y], we have (41.78). If z + χi �∈
[x, y], then as z ∈ [x, y], we have zi = yi. So z is a step from z + χi to y. Also,
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‖y′ − x̃′‖1 = ‖y′ − x′‖1 − 2. Hence, by our induction hypothesis applied to z + χi

and y, we have (41.78).

As Bouchet and Cunningham [1995] observed, this theorem implies that the
following two constructions give jump systems J ⊆ ZV .

For any matroid M = (S, I), the set {χB | B base of M} is a jump system in
ZS , as follows directly from the axioms (39.33). With Theorem 41.15, this implies
that for matroids M1 = (S, I1) and M2 = (S, I2), the set

(41.80) J := {χB1 − χB2 | Bi base of Mi (i = 1, 2)}

is a jump system.
Let G = (V, E) be an undirected graph and let

(41.81) J := {degF | F ⊆ E} ⊆ ZV ;

that is, J is the collection of degree sequences of spanning subgraphs of G. Again,
J is a jump system. This follows from Theorem 41.15, since for each edge e = uv
the set {0, χ{u,v}} is trivially a jump system in ZV and since J is the sum of these
jump systems.

Bouchet and Cunningham [1995] showed that the following greedy approach
finds, for any w ∈ Rn, a vector x ∈ J maximizing wTx. By reflecting, we can
assume that w ≥ 0. We can also assume that w1 ≥ w2 ≥ · · · ≥ wn. Let J0 := J ,
and for i = 1, . . . , n, let Ji be the set of vectors x in Ji−1 maximizing xi over Ji−1.
Trivially, Jn consists of one vector, y say. Then:

Theorem 41.16. y maximizes wTx over J .

Proof. It suffices to show that the maximum value of wTx over J1 is the same as
over J (since applying this to the jump systems J1, . . . , Jn gives the theorem). Let
the maximum over J be attained by x and over J1 by y. Suppose wTy < wTx.
So x �∈ J1, and hence x1 < y1. We choose x, y such that y1 − x1 is minimal. Let
z := x + χ1. So z is a step from x to y.

Then wTz = wTx + w1 ≥ wTx. Hence z �∈ J , since otherwise we can replace x
by z, contradicting the minimality of y1 − x1. So, by (41.78), J contains a step u
from z to y. So u = z ± χi for some i ∈ {1, . . . , n}. Then

(41.82) wTu = wTz ± wi ≥ wTz − wi = wTx + w1 − wi ≥ wTx.

So we can replace x by u, again contradicting the minimality of y1−x1 (as u1 > x1).

Lovász [1997] gave a min-max relation for the minimum l1-distance of an integer
vector to a jump system of special type. It can be considered as a common gener-
alization of the matroid intersection theorem (Theorem 41.1) and the Tutte-Berge
formula (Theorem 24.1).

For a survey, see Cunningham [2002].

41.5d. Further notes

A special case of the weighted matroid intersection algorithm (where one matroid
is a partition matroid) was studied by Brezovec, Cornuéjols, and Glover [1988].
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Data structures for on-line updating of matroid intersection solutions were given
by Frederickson and Srinivas [1984,1987], and a randomized parallel algorithm for
linear matroid intersection by Narayanan, Saran, and Vazirani [1992,1994].

An extension of matroid intersection to ‘supermatroid’ intersection was given
by Tardos [1990]. Fujishige [1977a] gave a primal approach to weighted matroid in-
tersection, and Shigeno and Iwata [1995] a dual approximation approach. Camerini
and Maffioli [1975,1978] studied 3-matroid intersection problems.


