
Chapter 40

The greedy algorithm and the

independent set polytope

We now pass to algorithmic and polyhedral aspects of matroids. We show
that the greedy algorithm characterizes matroids and that it implies a
characterization of the independent set polytope (the convex hull of the
incidence vectors of the independent sets).
Algorithmic and polyhedral aspects of the intersection of two matroids will
be studied in Chapter 41.

40.1. The greedy algorithm

Let I be a nonempty collection of subsets of a finite set S closed under
taking subsets. For any weight function w : S → R we want to find a set I

in I maximizing w(I). The greedy algorithm consists of setting I := ∅, and
next repeatedly choosing y ∈ S \ I with I ∪ {y} ∈ I and with w(y) as large
as possible. We stop if no such y exists.

For general collections I of this kind this need not lead to an optimum
solution. Indeed, matroids are precisely the structures where it always works,
as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and
Edmonds [1971] (sufficiency)):

Theorem 40.1. Let I be a nonempty collection of subsets of a set S, closed

under taking subsets. Then the pair (S, I) is a matroid if and only if for each

weight function w : S → R+, the greedy algorithm leads to a set I in I of

maximum weight w(I).

Proof. Necessity. Let (S, I) be a matroid and let w : S → R+ be any weight
function on S. Call an independent set I good if it is contained in a maximum-
weight base. It suffices to show that if I is good, and y is an element in S \ I

with I + y ∈ I and with w(y) as large as possible, then I + y is good.
As I is good, there exists a maximum-weight base B ⊇ I. If y ∈ B, then

I + y is good again. If y �∈ B, then there exists a base B′ containing I + y

and contained in B + y. So B′ = B − z + y for some z ∈ B \ I. As w(y) is
chosen maximum and as I + z ∈ I since I + z ⊆ B, we know w(y) ≥ w(z).
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Hence w(B′) ≥ w(B), and therefore B′ is a maximum-weight base. So I + y

is good.

Sufficiency. Suppose that the greedy algorithm leads to an independent set
of maximum weight for each weight function w : S → R+. We show that
(S, I) is a matroid.

Condition (39.1)(i) is satisfied by assumption. To see condition (39.1)(ii),
let I, J ∈ I with |I| < |J |. Suppose that I + z �∈ I for each z ∈ J \ I.

Let k := |I|. Consider the following weight function w on S:

(40.1) w(s) :=





k + 2 if s ∈ I,
k + 1 if s ∈ J \ I,

0 if s ∈ S \ (I ∪ J).

Now in the first k iterations of the greedy algorithm we find the k elements
in I. By assumption, at any further iteration, we cannot choose any element
in J \ I. Hence any further element chosen, has weight 0. So the greedy
algorithm yields an independent set of weight k(k + 2).

However, J has weight at least |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2).
Hence the greedy algorithm does not give a maximum-weight independent
set, contradicting our assumption.

The theorem restricts w to nonnegative weight functions. However, it is
shown similarly that for matroids M = (S, I) and arbitrary weight functions
w : S → R, the greedy algorithm finds a maximum-weight base. By replacing
‘as large as possible’ in the greedy algorithm by ‘as small as possible’, one
obtains an algorithm finding a minimum-weight base in a matroid. Moreover,
by deleting elements of negative weight, the algorithm can be adapted to yield
an independent set of maximum weight, for any weight function w : S → R.

Throughout we assume that the matroid M = (S, I) is given by an algo-
rithm testing if a given subset of S belongs to I. We call this an independence

testing oracle. So the full list of all independent sets is not given explicitly
(such a list would increase the size of the input exponentially, making most
complexity issues meaningless).

In explicit applications, the matroid usually can be described by such a
polynomial-time algorithm (polynomial in |S|). For instance, we can test if
a given set of edges of a graph G = (V, E) is a forest in time polynomially
bounded by |V | + |E|. So the matroid (E, F) can be described by such an
algorithm.

Under these assumptions we have:

Corollary 40.1a. A maximum-weight independent set in a matroid can be

found in strongly polynomial time.

Proof. See above.
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Similarly, for minimum-weight bases:

Corollary 40.1b. A minimum-weight base in a matroid can be found in

strongly polynomial time.

Proof. See above.

40.2. The independent set polytope

The algorithmic results obtained in the previous section have interesting con-
sequences for polyhedra associated with matroids, as was shown by Edmonds
[1970b,1971,1979].

The independent set polytope Pindependent set(M) of a matroid M = (S, I)
is, by definition, the convex hull of the incidence vectors of the independent
sets of M . So Pindependent set(M) is a polytope in RS .

Each vector x in Pindependent set(M) satisfies the following linear inequal-
ities:

(40.2) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,

because the incidence vector χI of any independent set I of M satisfies (40.2).
Note that x is an integer vector satisfying (40.2) if and only if x is the
incidence vector of some independent set of M .

Edmonds showed that system (40.2) fully determines the independent set
polytope, by deriving it from the following formula (yielding a good charac-
terization):

Theorem 40.2. Let M = (S, I) be a matroid, with rank function r. Then

for any weight function w : S → R+:

(40.3) max{w(I) | I ∈ I} =

n∑

i=1

λir(Ui),

where U1 ⊂ · · · ⊂ Un ⊆ S and where λi ≥ 0 satisfy

(40.4) w =

n∑

i=1

λiχ
Ui .

Proof. Order the elements of S as s1, . . . , sn such that w(s1) ≥ w(s2) ≥
· · · ≥ w(sn). Define

(40.5) Ui := {s1, . . . , si}

for i = 0, . . . , n, and

(40.6) I := {si | r(Ui) > r(Ui−1)}.



Section 40.2. The independent set polytope 691

So I is the output of the greedy algorithm. Hence I is a maximum-weight
independent set.

Next let:

(40.7) λi := w(si) − w(si+1) for i = 1, . . . , n − 1,
λn := w(sn).

This implies (40.3):

(40.8) w(I) =
∑

s∈I

w(s) =

n∑

i=1

w(si)(r(Ui) − r(Ui−1))

= w(sn)r(Un) +

n−1∑

i=1

(w(si) − w(si+1))r(Ui) =

n∑

i=1

λir(Ui).

By taking any ordering of S for which w is nonincreasing, (40.5) gives any
chain of subsets Ui satisfying (40.4) for some λi ≥ 0. Hence we have the
theorem.

This can be interpreted in terms of LP-duality. For any weight function
w : S → R, consider the linear programming problem

(40.9) maximize wTx,

subject to xs ≥ 0 (s ∈ S),
x(U) ≤ rM (U) (U ⊆ S),

and its dual:

(40.10) minimize
∑

U⊆S

yUrM (U),

subject to yU ≥ 0 (U ⊆ S),∑

U⊆S

yUχU ≥ w.

Corollary 40.2a. If w : S → Z, then (40.9) and (40.10) have integer opti-

mum solutions.

Proof. We can assume that w(s) ≥ 0 for each s ∈ S (as neither the maximum
nor the minimum changes by resetting w(s) to 0 if negative). Then (40.4)
implies that the λi are integer. This gives integer optimum solutions of (40.9)
and (40.10).

In polyhedral terms, Theorem 40.2 implies:

Corollary 40.2b. The independent set polytope is determined by (40.2).

Proof. Immediately from Theorem 40.2 (with (40.10)).

Moreover, in TDI terms:
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Corollary 40.2c. System (40.2) is totally dual integral.

Proof. Immediately from Corollary 40.2a.

Similar results hold for the base polytope. For any matroid M , let
Pbase(M) be the base polytope of M , defined as the convex hull of the in-
cidence vectors of bases of M . Then:

Corollary 40.2d. The base polytope of a matroid M = (S, I) is determined

by

(40.11) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,
x(S) = rM (S).

Proof. This follows directly from Corollary 40.2b, since the base polytope
is the intersection of the independent set polytope with the hyperplane {x |
x(S) = rM (S)}, as an independent set I is a base if and only if |I| ≥ rM (S).

The corresponding TDI result reads:

Corollary 40.2e. System (40.11) is totally dual integral.

Proof. By Theorem 5.25 from Corollary 40.2c.

One can similarly describe the spanning set polytope Pspanning set(M) of
M , which is, by definition, the convex hull of the incidence vectors of the
spanning sets of M . It is determined by the system:

(40.12) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≥ rM (S) − rM (S \ U) for U ⊆ S.

Corollary 40.2f. The spanning set polytope is determined by (40.12).

Proof. A subset U of S is spanning in M if and only if S \ U is independent
in M∗. Hence for any x ∈ RS we have:

(40.13) x ∈ Pspanning set(M) ⇐⇒ 1 − x ∈ Pindependent set(M
∗).

By Corollary 40.2b, 1 − x belongs to Pindependent set(M
∗) if and only if x

satisfies:

(40.14) 1 − xs ≥ 0 for s ∈ S,
|U | − x(U) ≤ rM∗(U) for U ⊆ S.

Since rM∗(U) = |U | + rM (S \ U) − rM (S), the present corollary follows.

Corollary 40.2c gives similarly the TDI result:
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Corollary 40.2g. System (40.12) is totally dual integral.

Proof. By reduction to Corollary 40.2c, by a similar reduction as in the proof
of the previous corollary.

Note that

(40.15) Pbase(M) = Pindependent set(M) ∩ Pspanning set(M),

Pindependent set(M) = P
↓

base(M) ∩ [0, 1]S ,

Pspanning set(M) = P
↑

base(M) ∩ [0, 1]S .

The following consequence on the intersection of the base polytope with a
box was observed by Hell and Speer [1984]:

Corollary 40.2h. Let M = (S, I) be a matroid and let l, u ∈ RS with l ≤ u.

Then there is an x ∈ Pbase(M) with l ≤ x ≤ u if and only if l ∈ P
↓

base(M)

and u ∈ P
↑

base(M).

Proof. Necessity being trivial, we show sufficiency. We may assume that
l, u ∈ [0, 1]S . So l ∈ Pindependent set(M) and u ∈ Pspanning set(M). Choose
l′, u′ such that l ≤ l′ ≤ u′ ≤ u, l′ ∈ Pindependent set(M), u′ ∈ Pspanning set(M),
and ‖u′ − l′‖1 minimal.

If l′ = u′ we are done, so assume that there is an s ∈ S with l′(s) < u′(s).
As we cannot increase l′(s), there is a T ⊆ S with s ∈ T and l′(T ) = r(T ).
Similarly, as we cannot decrease u′(s), there is a U ⊆ S with s �∈ U and
u′(S \ U) = r(S) − r(U). Then we have the contradiction

(40.16) l′(T ∩ U) + u′(T ∪ U) ≤ r(T ∩ U) + u′(S) + r(T ∪ U) − r(S)
≤ r(T ) + r(U) + u′(S) − r(S) = l′(T ) + u′(U)
< l′(T ∩ U) + u′(T ∪ U).

The last inequality follows from

(40.17) u′(T ∪ U) − u′(U) = u′(T \ U) > l′(T \ U) = l′(T ) − l′(T ∩ U),

since s ∈ T \ U and u′(s) > l′(s).

40.3. The most violated inequality

We now consider the problem to find, for any matroid M = (S, I) and any
x ∈ RS

+ not in the independent set polytope of M , an inequality among (40.2)
most violated by x. That is, to find U ⊆ S maximizing x(U) − rM (U).

The following theorem implies a min-max relation for this (Edmonds
[1970b]):

Theorem 40.3. Let M = (S, I) be a matroid and let x ∈ RS
+. Then
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(40.18) max{z(S) | z ∈ Pindependent set(M), z ≤ x}
= min{rM (U) + x(S \ U) | U ⊆ S}.

Proof. The inequality ≤ in (40.18) follows from

(40.19) z(S) = z(U) + z(S \ U) ≤ rM (U) + x(S \ U).

To see equality, let z attain the maximum. Then for each s ∈ S with zs < xs

there exists a U ⊆ S with s ∈ U and z(U) = rM (U) (otherwise we can
increase zs). Now the collection of sets U ⊆ S satisfying z(U) = rM (U) is
closed under taking unions (and intersections), since if z(T ) = rM (T ) and
z(U) = rM (U), then

(40.20) z(T ∪U) = z(T )+z(U)−z(T ∩U) ≥ rM (T )+rM (U)−rM (T ∩U)
≥ rM (T ∪ U).

Hence there exists a U ⊆ S such that z(U) = rM (U) and such that U contains
each s ∈ S with zs < xs. Hence:

(40.21) z(S) = z(U) + z(S \ U) = rM (U) + x(S \ U),

giving (40.18).

Cunningham [1984] showed that from an independence testing oracle for
a matroid one can derive a strongly polynomial time algorithm to find for
any given vector x, a maximum violated inequality for the independent set
polytope.

More strongly, Cunningham showed that one can solve the following prob-
lem in strongly polynomial time:

(40.22) given: a matroid M = (S, I), by an independence testing oracle,
and an x ∈ QS

+;
find: a z ∈ Pindependent set(M) with z ≤ x maximizing z(S),

with a decomposition of z as convex combination of incidence
vectors of independent sets, and a subset U of S satisfying
z(S) = rM (U) + x(S \ U).

By (40.18), the set U certifies that z maximizes z(S). In the algorithm
for (40.22), Cunningham utilized the ‘consistent breadth-first search’ based
on lexicographic order, given by Schönsleben [1980] and Lawler and Martel
[1982a].

To prove Cunningham’s result, we first show two lemmas. The first lemma
is used only to prove the second lemma. As in Section 39.9, we define for any
independent set I of a matroid M = (S, I):

(40.23) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.

Lemma 40.4α. Let M = (S, I) be a matroid and let I ∈ I. Let (s, t) ∈ A(I),
define I ′ := I−s+t, and let (u, v) ∈ A(I ′)\A(I). Then t = u or (u, t) ∈ A(I),
and s = v or (s, v) ∈ A(I).
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Proof. By symmetry, it suffices to show that t = u or (u, t) ∈ A(I) (as we may
assume that I is a base, and hence the second part follows by duality). We
can assume that t �= u. Then t �= v, since v �∈ I ′ = I − s+ t, as (u, v) ∈ A(I ′).

If v = s, then I − u + t = I − u − s + t + v = I ′ − u + v ∈ I and hence
(u, t) ∈ A(I). If v �= s, then I −u ∈ I and I −u− s+ t+ v ∈ I, and therefore
I − u + t ∈ I or I − u + v ∈ I; that is, (u, v) ∈ A(I) or (u, t) ∈ A(I).

Lemma 40.4β. Let M = (S, I) be a matroid and let q be a new element.

For any I ∈ I, define

(40.24) Ã(I) := {(u, v) | u ∈ I + q, v ∈ S \ I, I − u + v ∈ I}.

Let (s, t) ∈ A(I), define I ′ := I − s + t, and let (u, v) ∈ Ã(I ′) \ Ã(I). Then

t = u or (u, t) ∈ Ã(I), and s = v or (s, v) ∈ Ã(I).

Proof. Let Ĩ := {J ⊆ S + q | J − q ∈ I}. Then the present lemma follows

from Lemma 40.4α applied to the matroid (S + q, Ĩ).

Now we can derive Cunningham’s result:

Theorem 40.4. Problem (40.22) is solvable in strongly polynomial time.

Proof. We keep a vector z ≤ x in the independent set polytope of M and a
decomposition

(40.25) z =

k∑

i=1

λiχ
Ii ,

with I1, . . . , Ik ∈ I, λ1, . . . , λk > 0, and
∑

i λi = 1. Initially z := 0, k := 1,
I1 := ∅, λ1 := 1.

Let

(40.26) T := {s ∈ S | zs < xs}.

Let q be a new element. For each i, define Ã(Ii) as in (40.24), and let D =
(S + q, A) be the directed graph with

(40.27) A := Ã(I1) ∪ · · · ∪ Ã(Ik).

Fix an arbitrary linear order of the elements of S + q, by setting S + q =
{1, . . . , n}.

Case 1: D has no q − T path. Let U be the set of s ∈ S for which D has
an s − T path. As T ⊆ U , we know z(S \ U) = x(S \ U). Also, as no arc of
D enters U , we have |U ∩ Ii| = rM (U) for all i, implying

(40.28) z(U) =

k∑

i=1

λi|U ∩ Ii| =

k∑

i=1

λirM (U) = rM (U).



696 Chapter 40. The greedy algorithm and the independent set polytope

Hence z(S) = rM (U) + x(S \ U) as required.

Case 2: D has a q−T path. For each v ∈ S+q, let d(v) denote the distance
in D from q to v (set to ∞ if no q − v path exists). Choose a t ∈ T with d(t)
finite and maximal, and among these t we choose the largest t. Let (s, t) ∈ A,

with d(s) = d(t) − 1, and s largest. We can assume that (s, t) ∈ Ã(I1). Let

(40.29) α := min{xt − zt, λ1}

and define z′ by

(40.30) z′ := z + α(χt − χs) if s �= q, and z′ := z + αχt if s = q.

Let I ′
1 := I1 − s + t (so I ′

1 = I1 + t if s = q).
Then

(40.31) z′ = αχI′

1 + (λ1 − α)χI1 +

k∑

i=2

λiχ
Ii .

If α = λ1, we delete the second term. We obtain a decomposition of z′ as a
convex combination of at most k + 1 independent sets, and we can iterate.

Running time. We show that the number of iterations is at most |S|9. Con-
sider any iteration. Let d′ and A′ be the objects d and A of the next iteration.
We first show:

(40.32) for each v ∈ S + q: d′(v) ≥ d(v).

To show this, we can assume that d′(v) < ∞. We show (40.32) by induction on
d′(v), the case d′(v) = 0 being trivial (as it means v = q). Assume d′(v) > 0.
Let u be such that (u, v) ∈ A′ and d′(u) = d′(v) − 1. By induction we know
d′(u) ≥ d(u).

If (u, v) ∈ A, then d(v) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v), as required. If

(u, v) �∈ A, then (u, v) ∈ Ã(I ′
1) and (u, v) �∈ Ã(I1). By Lemma 40.4β, t = u

or (u, t) ∈ Ã(I1), and s = v or (s, v) ∈ Ã(I1). Hence

(40.33) d(v) ≤ d(s) + 1 = d(t) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v).

So d(v) ≤ d′(v). This shows (40.32).

Let β be the number of j = 1, . . . , k with (s, t) ∈ Ã(Ij). Let T ′, t′, s′, and
β′ be the objects T , t, s, β in the next iteration. We show:

(40.34) if d′(v) = d(v) for each v ∈ S + q, then (d′(t′), t′, s′, β′) is lexico-
graphically less than (d(t), t, s, β).

Indeed, if α = xt − zt, then T ′ = T − t + s or T ′ = T − t. So d′(t′) < d(t),
or d′(t′) = d(t) and t′ < t. If α < xt − zt, then T ′ = T + s or T ′ = T .
Moreover, α = λ1, so I1 has been omitted from the convex combination. So,
as t ∈ T ′ and d(s) < d(t), we know that t′ = t and d′(t′) = d(t). As t ∈ I ′

1, we

know (s′, t) �∈ Ã(I ′
1). Hence, as (s′, t) ∈ A′, we have (s′, t) ∈ Ã(Ij) for some

j = 2, . . . , k. Hence (s′, t) ∈ A. By the choice of s, we know s′ ≤ s. If s′ < s,
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we have (40.34), so assume s′ = s. Then β′ = β − 1, as (s, t) �∈ Ã(I ′
1). This

proves (40.34).
The number k of independent sets in the decomposition grows by 1 if

α = xt − zt < λ1. In that case, d′(v) = d(v) for each v ∈ S + q (by (40.32),
as A′ ⊇ A). Moreover, d′(t′) < d(t) or t′ < t (since T ′ ⊆ T − t + s). So k

does not exceed |S|4, and hence β is at most |S|4. Concluding, the number
of iterations is at most |S|9.

With Gaussian elimination, we can reduce the number k in each iteration
to at most |S| (by Carathéodory’s theorem). Incorporating this reduces the
number of iterations to |S|6.

Theorem 40.4 immediately implies that one can test if a given vector
belongs to the independent set polytope of a matroid:

Corollary 40.4a. Given a matroid M = (S, I) by an independence testing

oracle and an x ∈ QS, one can test in strongly polynomial time if x belongs

to Pindependent set(M), and if so, decompose x as a convex combination of

incidence vectors of independent sets.

Proof. Directly from Theorem 40.4.

One can derive a similar result for the spanning set polytope:

Corollary 40.4b. Given a matroid M = (S, I) by an independence testing

oracle and an x ∈ QS, one can test in strongly polynomial time if x belongs to

Pspanning set(M), and if so, decompose x as a convex combination of incidence

vectors of spanning sets.

Proof. x belongs to the spanning set polytope of M if and only if 1 − x

belongs to the independent set polytope of the dual matroid M∗. Also convex
combinations of spanning sets of M and independent sets of M∗ transfer to
each other by this operation. Since rM∗(U) = |U | + rM (S \ U) − rM (S) for
each U ⊆ S, also an independence testing oracle for M∗ is easily obtained
from one for M .

The theorem also implies that the following most violated inequality prob-

lem can be solved in strongly polynomial time:

(40.35) given: a matroid M = (S, I) by an independence testing oracle,
and a vector x ∈ QS ;

find: a subset U of S minimizing rM (U) − x(U).

Corollary 40.4c. The most violated inequality problem can be solved in

strongly polynomial time.



698 Chapter 40. The greedy algorithm and the independent set polytope

Proof. Any negative component of x can be reset to 0, as this does not
change the problem. So we can assume that x ≥ 0. Then by Theorem 40.4
we can find a U ⊆ S minimizing rM (U) + x(S \ U) in strongly polynomial
time. This U is as required.

40.3a. Facets and adjacency on the independent set polytope

Let M = (S, I) be a matroid, with rank function r. Trivially, the independent
set polytope P of M is full-dimensional if and only if M has no loops. If P is
full-dimensional there is a unique minimal collection of linear inequalities defining
P (up to scalar multiplication), which corresponds to the facets of P . Edmonds
[1970b] found that this collection is given by the following theorem. Recall that a
subset F of S is called a flat if for all s in S \ F one has r(F + s) > r(F ). A subset
F is called inseparable if there is no partition of F into nonempty sets F1 and F2

with r(F ) = r(F1) + r(F2). Then:

Theorem 40.5. If M is loopless, the following is a minimal system for the inde-

pendent set polytope of M :

(40.36) (i) xs ≥ 0 (s ∈ S),
(ii) x(F ) ≤ r(F ) (F is a nonempty inseparable flat).

Proof. As M is loopless, the independent set polytope of M is full-dimensional.
It is easy to see that (40.36) determines the independent set polytope, as any
other inequality x(U) ≤ r(U) is implied by the inequalities x(Fi) ≤ r(Fi), where
F1, . . . , Ft is a maximal partition of F := spanM (U) such that r(F1)+ · · ·+r(Ft) =
r(F ).

The irredundancy of collection (40.36) can be seen as follows. Each inequality
xs ≥ 0 is irredundant, since the vector −χs satisfies all other inequalities.

We show that also the inequalities (40.36)(ii) are irredundant, by showing that
for any two nonempty nonseparable flats T, U there exists a base I of T with
|I ∩ U | < r(U) (implying that the face determined by T is contained in no (other)
facet).

To show this, let I be a base of T with |I ∩ (T \ U)| = r(T \ U). Suppose
|I ∩ U | = r(U). Then

(40.37) r(U) ≥ r(T ∩ U) ≥ r(T ) − r(T \ U) = |I ∩ U | = r(U).

Hence we have equality throughout. This implies (as T is inseparable) that T \U = ∅
or T ∩ U = ∅, and that r(U) = r(T ∩ U). If T \ U = ∅, then T ⊂ U , and hence (as
T is a flat) r(U) > r(T ) ≥ r(T ∩ U), a contradiction. If T ∩ U = ∅, then r(U) =
r(T ∩ U) = 0, implying that U = ∅ (as M has no loops), again a contradiction.

It follows that the base polytope, which is the face {x ∈ P | x(S) = r(S)} of
P , has dimension |S| − 1 if and only if S is inseparable (that is, the matroid is
connected).

As for adjacency of vertices of the independent set polytope, we have:

Theorem 40.6. Let M = (S, I) be a loopless matroid and let I and J be distinct

independent sets. Then χI and χJ are adjacent vertices of the independent set
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polytope of M if and only if |I△J | = 1, or |I \ J | = |J \ I| = 1 and rM (I ∪ J) =
|I| = |J |.

Proof. To see sufficiency, note that the condition implies that I and J are the
only two independent sets with incidence vector x satisfying x(I ∩ J) = rM (I ∩ J),
xs = 0 for s �∈ I ∪ J , and (if |I△J | = 2) x(I ∪ J) = rM (I ∪ J). Hence I and J are
adjacent.

To see necessity, assume that χI and χJ are adjacent. If I is not a base of I ∪J ,
then I + j is independent for some j ∈ J \ I. Hence

(40.38) 1

2
(χI + χ

J) = 1

2
(χI+j + χ

J−j),

implying (as χI and χJ are adjacent) that I+j = J and J−j = I, that is |I△J | = 1.
So we can assume that I and J are bases of I ∪J . Choose i ∈ I \J . By Theorem

39.12, there is a j ∈ J \ I such that I − i + j and J − j + i are bases of I ∪ J . Then

(40.39) 1

2
(χI + χ

J) = 1

2
(χI−i+j + χ

J−j+i),

implying (as χI and χJ are adjacent) that I − i + j = J and J − j + i = I, that is
we have the second alternative in the condition.

More on the combinatorial structure of the independent set polytope can be
found in Naddef and Pulleyblank [1981a].

40.3b. Further notes

Prodon [1984] showed that the separation problem for the independent set polytope
of a matching matroid can be solved by finding a minimum-capacity cut in an
auxiliary directed graph.

Frederickson and Solis-Oba [1997,1998] gave strongly polynomial-time algo-
rithm for measuring the sensitivity of the minimum weight of a base under per-
turbing the weight. (Related analysis was given by Libura [1991].)

Narayanan [1995] described a rounding technique for the independent set poly-
tope membership problem, leading to an O(n3r2)-time algorithm, where n is the
size of the underlying set of the matroid and r is the rank of the matroid.

A strongly polynomial-time algorithm maximizing certain convex objective
functions over the bases was given by Hassin and Tamir [1989].

For studies of structures where the greedy algorithm applies if condition (39.1)(i)
is deleted, see Faigle [1979,1984b], Hausmann, Korte, and Jenkyns [1980], Korte and
Lovász [1983,1984a,1984b,1984c,1985a,1985b,1989], Bouchet [1987a], Goecke [1988],
Dress and Wenzel [1990], Korte, Lovász, and Schrader [1991], Helman, Moret, and
Shapiro [1993], and Faigle and Kern [1996].


