Chapter 40

The greedy algorithm and the independent set polytope

We now pass to algorithmic and polyhedral aspects of matroids. We show that the greedy algorithm characterizes matroids and that it implies a characterization of the independent set polytope (the convex hull of the incidence vectors of the independent sets).

Algorithmic and polyhedral aspects of the *intersection* of two matroids will be studied in Chapter 41.

40.1. The greedy algorithm

Let $\mathcal I$ be a nonempty collection of subsets of a finite set S closed under taking subsets. For any weight function $w : S \to \mathbb{R}$ we want to find a set I in I maximizing w(I). The greedy algorithm consists of setting $I := \emptyset$, and next repeatedly choosing $y \in S \setminus I$ with $I \cup \{y\} \in \mathcal{I}$ and with $w(y)$ as large as possible. We stop if no such y exists.

For general collections $\mathcal I$ of this kind this need not lead to an optimum solution. Indeed, matroids are precisely the structures where it always works, as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and Edmonds [1971] (sufficiency)):

Theorem 40.1. Let $\mathcal I$ be a nonempty collection of subsets of a set S , closed under taking subsets. Then the pair (S, \mathcal{I}) is a matroid if and only if for each weight function $w : S \to \mathbb{R}_+$, the greedy algorithm leads to a set I in $\mathcal I$ of maximum weight $w(I)$.

Proof. Necessity. Let (S, \mathcal{I}) be a matroid and let $w : S \to \mathbb{R}_+$ be any weight function on S . Call an independent set I good if it is contained in a maximumweight base. It suffices to show that if I is good, and y is an element in $S \setminus I$ with $I + y \in \mathcal{I}$ and with $w(y)$ as large as possible, then $I + y$ is good.

As I is good, there exists a maximum-weight base $B \supset I$. If $y \in B$, then $I + y$ is good again. If $y \notin B$, then there exists a base B' containing $I + y$ and contained in $B + y$. So $B' = B - z + y$ for some $z \in B \setminus I$. As $w(y)$ is chosen maximum and as $I + z \in \mathcal{I}$ since $I + z \subseteq B$, we know $w(y) \geq w(z)$.

Hence $w(B') \geq w(B)$, and therefore B' is a maximum-weight base. So $I + y$ is good.

Sufficiency. Suppose that the greedy algorithm leads to an independent set of maximum weight for each weight function $w : S \to \mathbb{R}_+$. We show that (S, \mathcal{I}) is a matroid.

Condition $(39.1)(i)$ is satisfied by assumption. To see condition $(39.1)(ii)$, let $I, J \in \mathcal{I}$ with $|I| < |J|$. Suppose that $I + z \notin \mathcal{I}$ for each $z \in J \setminus I$.

Let $k := |I|$. Consider the following weight function w on S:

(40.1)
$$
w(s) := \begin{cases} k+2 & \text{if } s \in I, \\ k+1 & \text{if } s \in J \setminus I, \\ 0 & \text{if } s \in S \setminus (I \cup J). \end{cases}
$$

Now in the first k iterations of the greedy algorithm we find the k elements in I. By assumption, at any further iteration, we cannot choose any element in $J \setminus I$. Hence any further element chosen, has weight 0. So the greedy algorithm yields an independent set of weight $k(k+2)$.

However, J has weight at least $|J|(k+1) > (k+1)(k+1) > k(k+2)$. Hence the greedy algorithm does not give a maximum-weight independent set, contradicting our assumption.

The theorem restricts w to nonnegative weight functions. However, it is shown similarly that for matroids $M = (S, \mathcal{I})$ and arbitrary weight functions $w : S \to \mathbb{R}$, the greedy algorithm finds a maximum-weight base. By replacing 'as large as possible' in the greedy algorithm by 'as small as possible', one obtains an algorithm finding a minimum-weight base in a matroid. Moreover, by deleting elements of negative weight, the algorithm can be adapted to yield an independent set of maximum weight, for any weight function $w : S \to \mathbb{R}$.

Throughout we assume that the matroid $M = (S, \mathcal{I})$ is given by an algorithm testing if a given subset of S belongs to I . We call this an *independence* testing oracle. So the full list of all independent sets is not given explicitly (such a list would increase the size of the input exponentially, making most complexity issues meaningless).

In explicit applications, the matroid usually can be described by such a polynomial-time algorithm (polynomial in $|S|$). For instance, we can test if a given set of edges of a graph $G = (V, E)$ is a forest in time polynomially bounded by $|V| + |E|$. So the matroid (E, \mathcal{F}) can be described by such an algorithm.

Under these assumptions we have:

Corollary 40.1a. A maximum-weight independent set in a matroid can be found in strongly polynomial time.

Proof. See above.

Г

Similarly, for minimum-weight bases:

Corollary 40.1b. A minimum-weight base in a matroid can be found in strongly polynomial time.

I

Proof. See above.

40.2. The independent set polytope

The algorithmic results obtained in the previous section have interesting consequences for polyhedra associated with matroids, as was shown by Edmonds [1970b,1971,1979].

The *independent set polytope* $P_{\text{independent set}}(M)$ of a matroid $M = (S, \mathcal{I})$ is, by definition, the convex hull of the incidence vectors of the independent sets of M. So $P_{\text{independent set}}(M)$ is a polytope in \mathbb{R}^S .

Each vector x in $P_{\text{independent set}}(M)$ satisfies the following linear inequalities:

(40.2)
$$
x_s \ge 0 \quad \text{for } s \in S,
$$

$$
x(U) \le r_M(U) \quad \text{for } U \subseteq S,
$$

because the incidence vector χ^I of any independent set I of M satisfies (40.2). Note that x is an integer vector satisfying (40.2) if and only if x is the incidence vector of some independent set of M.

Edmonds showed that system (40.2) fully determines the independent set polytope, by deriving it from the following formula (yielding a good characterization):

Theorem 40.2. Let $M = (S, \mathcal{I})$ be a matroid, with rank function r. Then for any weight function $w : S \to \mathbb{R}_+$:

(40.3)
$$
\max\{w(I) | I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i),
$$

where $U_1 \subset \cdots \subset U_n \subseteq S$ and where $\lambda_i \geq 0$ satisfy

(40.4)
$$
w = \sum_{i=1}^{n} \lambda_i \chi^{U_i}.
$$

Proof. Order the elements of S as s_1, \ldots, s_n such that $w(s_1) \geq w(s_2) \geq$ $\cdots \geq w(s_n)$. Define

$$
(40.5) \t U_i := \{s_1, \ldots, s_i\}
$$

for $i = 0, \ldots, n$, and

$$
(40.6) \t I := \{ s_i \mid r(U_i) > r(U_{i-1}) \}.
$$

So I is the output of the greedy algorithm. Hence I is a maximum-weight independent set.

Next let:

(40.7)
$$
\lambda_i := w(s_i) - w(s_{i+1}) \text{ for } i = 1, ..., n-1, \lambda_n := w(s_n).
$$

This implies (40.3):

(40.8)
$$
w(I) = \sum_{s \in I} w(s) = \sum_{i=1}^{n} w(s_i) (r(U_i) - r(U_{i-1}))
$$

$$
= w(s_n) r(U_n) + \sum_{i=1}^{n-1} (w(s_i) - w(s_{i+1})) r(U_i) = \sum_{i=1}^{n} \lambda_i r(U_i).
$$

By taking any ordering of S for which w is nonincreasing, (40.5) gives any chain of subsets U_i satisfying (40.4) for some $\lambda_i \geq 0$. Hence we have the theorem.

This can be interpreted in terms of LP-duality. For any weight function $w : S \to \mathbb{R}$, consider the linear programming problem

(40.9) maximize
$$
w^{\mathsf{T}} x
$$
,
subject to $x_s \ge 0$ $(s \in S)$,
 $x(U) \le r_M(U)$ $(U \subseteq S)$,

and its dual:

(40.10) minimize
$$
\sum_{U \subseteq S} y_U r_M(U),
$$
subject to
$$
y_U \ge 0
$$

$$
\sum_{U \subseteq S} y_U \chi^U \ge w.
$$
 $(U \subseteq S),$

Corollary 40.2a. If $w : S \to \mathbb{Z}$, then (40.9) and (40.10) have integer optimum solutions.

Proof. We can assume that $w(s) \geq 0$ for each $s \in S$ (as neither the maximum nor the minimum changes by resetting $w(s)$ to 0 if negative). Then (40.4) implies that the λ_i are integer. This gives integer optimum solutions of (40.9) and (40.10). в

In polyhedral terms, Theorem 40.2 implies:

Corollary 40.2b. The independent set polytope is determined by (40.2).

Proof. Immediately from Theorem 40.2 (with (40.10)).

г

Moreover, in TDI terms:

Corollary 40.2c. System (40.2) is totally dual integral.

Proof. Immediately from Corollary 40.2a.

Similar results hold for the base polytope. For any matroid M , let $P_{\text{base}}(M)$ be the *base polytope* of M, defined as the convex hull of the incidence vectors of bases of M . Then:

П

П

Corollary 40.2d. The base polytope of a matroid $M = (S, \mathcal{I})$ is determined by

(40.11)
$$
x_s \ge 0 \quad \text{for } s \in S,
$$

$$
x(U) \le r_M(U) \quad \text{for } U \subseteq S,
$$

$$
x(S) = r_M(S).
$$

Proof. This follows directly from Corollary 40.2b, since the base polytope is the intersection of the independent set polytope with the hyperplane $\{x \mid$ $x(S) = r_M(S)$, as an independent set I is a base if and only if $|I| \ge r_M(S)$.

The corresponding TDI result reads:

Corollary 40.2e. System (40.11) is totally dual integral.

Proof. By Theorem 5.25 from Corollary 40.2c.

One can similarly describe the *spanning set polytope* $P_{\text{spanning set}}(M)$ of M, which is, by definition, the convex hull of the incidence vectors of the spanning sets of M . It is determined by the system:

(40.12)
$$
0 \le x_s \le 1 \quad \text{for } s \in S,
$$

$$
x(U) \ge r_M(S) - r_M(S \setminus U) \quad \text{for } U \subseteq S
$$

Corollary 40.2f. The spanning set polytope is determined by (40.12) .

Proof. A subset U of S is spanning in M if and only if $S \setminus U$ is independent in M^* . Hence for any $x \in \mathbb{R}^S$ we have:

(40.13)
$$
x \in P_{\text{spanning set}}(M) \iff 1 - x \in P_{\text{independent set}}(M^*).
$$

By Corollary 40.2b, $1 - x$ belongs to $P_{\text{independent set}}(M^*)$ if and only if x satisfies:

$$
\begin{array}{lll} \text{(40.14)} & 1 - x_s \ge 0 & \text{for } s \in S, \\ & |U| - x(U) \le r_{M^*}(U) & \text{for } U \subseteq S. \end{array}
$$

Since $r_{M^*}(U) = |U| + r_M(S \setminus U) - r_M(S)$, the present corollary follows.

Corollary 40.2c gives similarly the TDI result:

Corollary 40.2g. System (40.12) is totally dual integral.

Proof. By reduction to Corollary 40.2c, by a similar reduction as in the proof of the previous corollary. г

Note that

(40.15)
$$
P_{\text{base}}(M) = P_{\text{independent set}}(M) \cap P_{\text{spanning set}}(M),
$$

$$
P_{\text{independent set}}(M) = P_{\text{base}}^{\downarrow}(M) \cap [0, 1]^S,
$$

$$
P_{\text{spanning set}}(M) = P_{\text{base}}^{\uparrow}(M) \cap [0, 1]^S.
$$

The following consequence on the intersection of the base polytope with a box was observed by Hell and Speer [1984]:

Corollary 40.2h. Let $M = (S, \mathcal{I})$ be a matroid and let $l, u \in \mathbb{R}^S$ with $l \leq u$. Then there is an $x \in P_{base}(M)$ with $l \leq x \leq u$ if and only if $l \in P_{base}^{\downarrow}(M)$ and $u \in P^{\uparrow}_{\text{base}}(M)$.

Proof. Necessity being trivial, we show sufficiency. We may assume that $l, u \in [0,1]^S$. So $l \in P_{\text{independent set}}(M)$ and $u \in P_{\text{spanning set}}(M)$. Choose l', u' such that $l \leq l' \leq u' \leq u, l' \in P_{\text{independent set}}(M), u' \in P_{\text{spanning set}}(M),$ and $||u' - l'||_1$ minimal.

If $l' = u'$ we are done, so assume that there is an $s \in S$ with $l'(s) < u'(s)$. As we cannot increase $l'(s)$, there is a $T \subseteq S$ with $s \in T$ and $l'(T) = r(T)$. Similarly, as we cannot decrease $u'(s)$, there is a $U \subseteq S$ with $s \notin U$ and $u'(S \setminus U) = r(S) - r(U)$. Then we have the contradiction

(40.16)
$$
l'(T \cap U) + u'(T \cup U) \le r(T \cap U) + u'(S) + r(T \cup U) - r(S) \le r(T) + r(U) + u'(S) - r(S) = l'(T) + u'(U) < l'(T \cap U) + u'(T \cup U).
$$

The last inequality follows from

$$
(40.17) \qquad u'(T \cup U) - u'(U) = u'(T \setminus U) > l'(T \setminus U) = l'(T) - l'(T \cap U),
$$

since $s \in T \setminus U$ and $u'(s) > l'(s)$.

40.3. The most violated inequality

We now consider the problem to find, for any matroid $M = (S, \mathcal{I})$ and any $x \in \mathbb{R}_+^S$ not in the independent set polytope of M, an inequality among (40.2) most violated by x. That is, to find $U \subseteq S$ maximizing $x(U) - r_M(U)$.

The following theorem implies a min-max relation for this (Edmonds [1970b]):

Theorem 40.3. Let $M = (S, \mathcal{I})$ be a matroid and let $x \in \mathbb{R}^S_+$. Then

(40.18)
$$
\max\{z(S) \mid z \in P_{\text{independent set}}(M), z \leq x\}
$$

$$
= \min\{r_M(U) + x(S \setminus U) \mid U \subseteq S\}.
$$

Proof. The inequality \leq in (40.18) follows from

$$
(40.19) \qquad z(S) = z(U) + z(S \setminus U) \le r_M(U) + x(S \setminus U).
$$

To see equality, let z attain the maximum. Then for each $s \in S$ with $z_s < x_s$ there exists a $U \subseteq S$ with $s \in U$ and $z(U) = r_M(U)$ (otherwise we can increase z_s). Now the collection of sets $U \subseteq S$ satisfying $z(U) = r_M(U)$ is closed under taking unions (and intersections), since if $z(T) = r_M(T)$ and $z(U) = r_M(U)$, then

(40.20)
$$
z(T \cup U) = z(T) + z(U) - z(T \cap U) \ge r_M(T) + r_M(U) - r_M(T \cap U)
$$

$$
\ge r_M(T \cup U).
$$

Hence there exists a $U \subseteq S$ such that $z(U) = r_M(U)$ and such that U contains each $s \in S$ with $z_s < x_s$. Hence:

П

(40.21)
$$
z(S) = z(U) + z(S \setminus U) = r_M(U) + x(S \setminus U),
$$

giving (40.18).

Cunningham [1984] showed that from an independence testing oracle for a matroid one can derive a strongly polynomial time algorithm to find for any given vector x , a maximum violated inequality for the independent set polytope.

More strongly, Cunningham showed that one can solve the following problem in strongly polynomial time:

- (40.22) given: a matroid $M = (S, \mathcal{I})$, by an independence testing oracle, and an $x \in \mathbb{Q}_+^S$;
	- find: a $z \in P_{\text{independent set}}(M)$ with $z \leq x$ maximizing $z(S)$, with a decomposition of z as convex combination of incidence vectors of independent sets, and a subset U of S satisfying $z(S) = r_M(U) + x(S \setminus U).$

By (40.18), the set U certifies that z maximizes $z(S)$. In the algorithm for (40.22), Cunningham utilized the 'consistent breadth-first search' based on lexicographic order, given by Schönsleben [1980] and Lawler and Martel [1982a].

To prove Cunningham's result, we first show two lemmas. The first lemma is used only to prove the second lemma. As in Section 39.9, we define for any independent set I of a matroid $M = (S, \mathcal{I})$:

$$
(40.23) \qquad A(I) := \{(y, z) \mid y \in I, z \in S \setminus I, I - y + z \in \mathcal{I}\}.
$$

Lemma 40.4 α . Let $M = (S, \mathcal{I})$ be a matroid and let $I \in \mathcal{I}$. Let $(s, t) \in A(I)$, define $I' := I - s + t$, and let $(u, v) \in A(I') \setminus A(I)$. Then $t = u$ or $(u, t) \in A(I)$, and $s = v$ or $(s, v) \in A(I)$.

Proof. By symmetry, it suffices to show that $t = u$ or $(u, t) \in A(I)$ (as we may assume that I is a base, and hence the second part follows by duality). We can assume that $t \neq u$. Then $t \neq v$, since $v \notin I' = I - s + t$, as $(u, v) \in A(I')$. If $v = s$, then $I - u + t = I - u - s + t + v = I' - u + v \in \mathcal{I}$ and hence

 $(u, t) \in A(I)$. If $v \neq s$, then $I - u \in \mathcal{I}$ and $I - u - s + t + v \in \mathcal{I}$, and therefore $I - u + t \in \mathcal{I}$ or $I - u + v \in \mathcal{I}$; that is, $(u, v) \in A(I)$ or $(u, t) \in A(I)$.

Lemma 40.4β. Let $M = (S, \mathcal{I})$ be a matroid and let q be a new element. For any $I \in \mathcal{I}$, define

$$
(40.24) \qquad \tilde{A}(I) := \{(u, v) \mid u \in I + q, v \in S \setminus I, I - u + v \in \mathcal{I}\}.
$$

Let $(s,t) \in A(I)$, define $I' := I - s + t$, and let $(u, v) \in \tilde{A}(I') \setminus \tilde{A}(I)$. Then $t = u$ or $(u, t) \in \widetilde{A}(I)$, and $s = v$ or $(s, v) \in \widetilde{A}(I)$.

Proof. Let $\widetilde{\mathcal{I}} := \{J \subseteq S + q \mid J - q \in \mathcal{I}\}\$. Then the present lemma follows from Lemma 40.4 α applied to the matroid $(S + q, \tilde{\mathcal{I}})$.

Now we can derive Cunningham's result:

Theorem 40.4. Problem (40.22) is solvable in strongly polynomial time.

Proof. We keep a vector $z \leq x$ in the independent set polytope of M and a decomposition

$$
(40.25) \qquad z = \sum_{i=1}^{k} \lambda_i \chi^{I_i},
$$

with $I_1, \ldots, I_k \in \mathcal{I}, \lambda_1, \ldots, \lambda_k > 0$, and $\sum_i \lambda_i = 1$. Initially $z := \mathbf{0}, k := 1$, $I_1 := \emptyset, \lambda_1 := 1.$ Let

$$
(40.26) \qquad T := \{ s \in S \mid z_s < x_s \}.
$$

Let q be a new element. For each i, define $\widetilde{A}(I_i)$ as in (40.24), and let $D =$ $(S + q, A)$ be the directed graph with

$$
(40.27) \qquad A := \widetilde{A}(I_1) \cup \cdots \cup \widetilde{A}(I_k).
$$

Fix an arbitrary linear order of the elements of $S + q$, by setting $S + q =$ $\{1, \ldots, n\}.$

Case 1: D has no $q - T$ path. Let U be the set of $s \in S$ for which D has an $s - T$ path. As $T \subseteq U$, we know $z(S \setminus U) = x(S \setminus U)$. Also, as no arc of D enters U, we have $|U \cap I_i| = r_M(U)$ for all i, implying

(40.28)
$$
z(U) = \sum_{i=1}^{k} \lambda_i |U \cap I_i| = \sum_{i=1}^{k} \lambda_i r_M(U) = r_M(U).
$$

Hence $z(S) = r_M(U) + x(S \setminus U)$ as required.

Case 2: D has a $q-T$ path. For each $v \in S+q$, let $d(v)$ denote the distance in D from q to v (set to ∞ if no $q - v$ path exists). Choose a $t \in T$ with $d(t)$ finite and maximal, and among these t we choose the largest t. Let $(s, t) \in A$, with $d(s) = d(t) - 1$, and s largest. We can assume that $(s, t) \in \widetilde{A}(I_1)$. Let

$$
(40.29) \qquad \alpha := \min\{x_t - z_t, \lambda_1\}
$$

and define z' by

(40.30)
$$
z' := z + \alpha(\chi^t - \chi^s) \text{ if } s \neq q \text{, and } z' := z + \alpha \chi^t \text{ if } s = q.
$$

Let $I'_1 := I_1 - s + t$ (so $I'_1 = I_1 + t$ if $s = q$). Then

(40.31)
$$
z' = \alpha \chi^{I'_1} + (\lambda_1 - \alpha) \chi^{I_1} + \sum_{i=2}^k \lambda_i \chi^{I_i}.
$$

If $\alpha = \lambda_1$, we delete the second term. We obtain a decomposition of z' as a convex combination of at most $k+1$ independent sets, and we can iterate.

Running time. We show that the number of iterations is at most $|S|^9$. Consider any iteration. Let d' and A' be the objects d and A of the next iteration. We first show:

(40.32) for each
$$
v \in S + q
$$
: $d'(v) \ge d(v)$.

To show this, we can assume that $d'(v) < \infty$. We show (40.32) by induction on $d'(v)$, the case $d'(v) = 0$ being trivial (as it means $v = q$). Assume $d'(v) > 0$. Let u be such that $(u, v) \in A'$ and $d'(u) = d'(v) - 1$. By induction we know $d'(u) \geq d(u)$.

If $(u, v) \in A$, then $d(v) \leq d(u) + 1 \leq d'(u) + 1 = d'(v)$, as required. If $(u, v) \notin A$, then $(u, v) \in \tilde{A}(I'_1)$ and $(u, v) \notin \tilde{A}(I_1)$. By Lemma 40.4 β , $t = u$ or $(u, t) \in \tilde{A}(I_1)$, and $s = v$ or $(s, v) \in \tilde{A}(I_1)$. Hence

$$
(40.33) \qquad d(v) \le d(s) + 1 = d(t) \le d(u) + 1 \le d'(u) + 1 = d'(v).
$$

So $d(v) \leq d'(v)$. This shows (40.32).

Let β be the number of $j = 1, ..., k$ with $(s, t) \in \tilde{A}(I_j)$. Let T', t', s' , and β' be the objects T, t, s, β in the next iteration. We show:

 (40.34) $\mathcal{U}(v) = d(v)$ for each $v \in S + q$, then $(d'(t'), t', s', \beta')$ is lexicographically less than $(d(t), t, s, \beta)$.

Indeed, if $\alpha = x_t - z_t$, then $T' = T - t + s$ or $T' = T - t$. So $d'(t') < d(t)$, or $d'(t') = d(t)$ and $t' < t$. If $\alpha < x_t - z_t$, then $T' = T + s$ or $T' = T$. Moreover, $\alpha = \lambda_1$, so I_1 has been omitted from the convex combination. So, as $t \in T'$ and $d(s) < d(t)$, we know that $t' = t$ and $d'(t') = d(t)$. As $t \in I'_1$, we know $(s',t) \notin \tilde{A}(I'_1)$. Hence, as $(s',t) \in A'$, we have $(s',t) \in \tilde{A}(I_j)$ for some $j = 2, \ldots, k$. Hence $(s', t) \in A$. By the choice of s, we know $s' \leq s$. If $s' < s$,

г

we have (40.34), so assume $s' = s$. Then $\beta' = \beta - 1$, as $(s, t) \notin \tilde{A}(I'_1)$. This proves (40.34).

The number k of independent sets in the decomposition grows by 1 if $\alpha = x_t - z_t < \lambda_1$. In that case, $d'(v) = d(v)$ for each $v \in S + q$ (by (40.32), as $A' \supseteq A$). Moreover, $d'(t') < d(t)$ or $t' < t$ (since $T' \subseteq T - t + s$). So k does not exceed $|S|^4$, and hence β is at most $|S|^4$. Concluding, the number of iterations is at most $|S|^9$.

With Gaussian elimination, we can reduce the number k in each iteration to at most $|S|$ (by Carathéodory's theorem). Incorporating this reduces the number of iterations to $|S|^6$.

Theorem 40.4 immediately implies that one can test if a given vector belongs to the independent set polytope of a matroid:

Corollary 40.4a. Given a matroid $M = (S, \mathcal{I})$ by an independence testing oracle and an $x \in \mathbb{Q}^S$, one can test in strongly polynomial time if x belongs to $P_{\text{independent set}}(M)$, and if so, decompose x as a convex combination of incidence vectors of independent sets.

Proof. Directly from Theorem 40.4.

One can derive a similar result for the spanning set polytope:

Corollary 40.4b. Given a matroid $M = (S, \mathcal{I})$ by an independence testing oracle and an $x \in \mathbb{Q}^S$, one can test in strongly polynomial time if x belongs to $P_{\text{spanning set}}(M)$, and if so, decompose x as a convex combination of incidence vectors of spanning sets.

Proof. x belongs to the spanning set polytope of M if and only if $1 - x$ belongs to the independent set polytope of the dual matroid M^* . Also convex combinations of spanning sets of M and independent sets of M^* transfer to each other by this operation. Since $r_{M^*}(U) = |U| + r_M(S \setminus U) - r_M(S)$ for each $U \subseteq S$, also an independence testing oracle for M^* is easily obtained from one for M.

The theorem also implies that the following most violated inequality problem can be solved in strongly polynomial time:

(40.35) given: a matroid $M = (S, \mathcal{I})$ by an independence testing oracle, and a vector $x \in \mathbb{Q}^S$; find: a subset U of S minimizing $r_M(U) - x(U)$.

Corollary 40.4c. The most violated inequality problem can be solved in strongly polynomial time.

Proof. Any negative component of x can be reset to 0, as this does not change the problem. So we can assume that $x \ge 0$. Then by Theorem 40.4 we can find a $U \subseteq S$ minimizing $r_M(U) + x(S \setminus U)$ in strongly polynomial time. This U is as required.

40.3a. Facets and adjacency on the independent set polytope

Let $M = (S, \mathcal{I})$ be a matroid, with rank function r. Trivially, the independent set polytope P of M is full-dimensional if and only if M has no loops. If P is full-dimensional there is a unique minimal collection of linear inequalities defining P (up to scalar multiplication), which corresponds to the facets of P . Edmonds [1970b] found that this collection is given by the following theorem. Recall that a subset F of S is called a *flat* if for all s in $S \setminus F$ one has $r(F + s) > r(F)$. A subset F is called *inseparable* if there is no partition of F into nonempty sets F_1 and F_2 with $r(F) = r(F_1) + r(F_2)$. Then:

Theorem 40.5. *If* M *is loopless, the following is a minimal system for the independent set polytope of* M*:*

(40.36) (i) $x_s \ge 0$ ($s \in S$), (ii) $x(F) \leq r(F)$ (*F* is a nonempty inseparable flat).

Proof. As M is loopless, the independent set polytope of M is full-dimensional. It is easy to see that (40.36) determines the independent set polytope, as any other inequality $x(U) \leq r(U)$ is implied by the inequalities $x(F_i) \leq r(F_i)$, where F_1, \ldots, F_t is a maximal partition of $F := \text{span}_M(U)$ such that $r(F_1) + \cdots + r(F_t) =$ $r(F).$

The irredundancy of collection (40.36) can be seen as follows. Each inequality $x_s \geq 0$ is irredundant, since the vector $-\chi^s$ satisfies all other inequalities.

We show that also the inequalities (40.36)(ii) are irredundant, by showing that for any two nonempty nonseparable flats T, U there exists a base I of T with $|I \cap U| < r(U)$ (implying that the face determined by T is contained in no (other) facet).

To show this, let I be a base of T with $|I \cap (T \setminus U)| = r(T \setminus U)$. Suppose $|I \cap U| = r(U)$. Then

$$
(40.37) \t r(U) \ge r(T \cap U) \ge r(T) - r(T \setminus U) = |I \cap U| = r(U).
$$

Hence we have equality throughout. This implies (as T is inseparable) that $T \setminus U = \emptyset$ or $T \cap U = \emptyset$, and that $r(U) = r(T \cap U)$. If $T \setminus U = \emptyset$, then $T \subset U$, and hence (as T is a flat) $r(U) > r(T) \ge r(T \cap U)$, a contradiction. If $T \cap U = \emptyset$, then $r(U)$ $r(T \cap U) = 0$, implying that $U = \emptyset$ (as M has no loops), again a contradiction.

It follows that the base polytope, which is the face $\{x \in P \mid x(S) = r(S)\}\$ of P, has dimension $|S| - 1$ if and only if S is inseparable (that is, the matroid is *connected*).

As for adjacency of vertices of the independent set polytope, we have:

Theorem 40.6. Let $M = (S, \mathcal{I})$ be a loopless matroid and let I and J be distinct *independent sets.* Then χ^I and χ^J are adjacent vertices of the independent set *polytope of* M *if and only if* $|I \triangle J| = 1$ *, or* $|I \setminus J| = |J \setminus I| = 1$ *and* $r_M(I \cup J) =$ $|I| = |J|$ *.*

Proof. To see sufficiency, note that the condition implies that I and J are the only two independent sets with incidence vector x satisfying $x(I \cap J) = r_M(I \cap J)$, $x_s = 0$ for $s \notin I \cup J$, and (if $|I \triangle J| = 2$) $x(I \cup J) = r_M(I \cup J)$. Hence I and J are adjacent.

To see necessity, assume that χ^I and χ^J are adjacent. If I is not a base of $I \cup J$, then $I + i$ is independent for some $j \in J \setminus I$. Hence

(40.38)
$$
\frac{1}{2}(\chi^I + \chi^J) = \frac{1}{2}(\chi^{I+j} + \chi^{J-j}),
$$

implying (as χ^I and χ^J are adjacent) that $I+j = J$ and $J-j = I$, that is $|I \triangle J| = 1$. So we can assume that I and J are bases of $I \cup J$. Choose $i \in I \setminus J$. By Theorem

39.12, there is a $j \in J \setminus I$ such that $I - i + j$ and $J - j + i$ are bases of $I \cup J$. Then (40.39) $\frac{1}{2}(\chi^{I} + \chi^{J}) = \frac{1}{2}(\chi^{I-i+j} + \chi^{J-j+i}),$

implying (as χ^I and χ^J are adjacent) that $I - i + j = J$ and $J - j + i = I$, that is we have the second alternative in the condition. Г

More on the combinatorial structure of the independent set polytope can be found in Naddef and Pulleyblank [1981a].

40.3b. Further notes

Prodon [1984] showed that the separation problem for the independent set polytope of a matching matroid can be solved by finding a minimum-capacity cut in an auxiliary directed graph.

Frederickson and Solis-Oba [1997,1998] gave strongly polynomial-time algorithm for measuring the sensitivity of the minimum weight of a base under perturbing the weight. (Related analysis was given by Libura [1991].)

Narayanan [1995] described a rounding technique for the independent set polytope membership problem, leading to an $O(n^3r^2)$ -time algorithm, where *n* is the size of the underlying set of the matroid and r is the rank of the matroid.

A strongly polynomial-time algorithm maximizing certain convex objective functions over the bases was given by Hassin and Tamir [1989].

For studies of structures where the greedy algorithm applies if condition (39.1)(i) is deleted, see Faigle [1979,1984b], Hausmann, Korte, and Jenkyns [1980], Korte and Lov´asz [1983,1984a,1984b,1984c,1985a,1985b,1989], Bouchet [1987a], Goecke [1988], Dress and Wenzel [1990], Korte, Lovász, and Schrader [1991], Helman, Moret, and Shapiro [1993], and Faigle and Kern [1996].