
Chapter 39

Matroids

This chapter gives the basic definitions, examples, and properties of ma-
troids. We use the shorthand notation

X + y := X ∪ {y} and X − y := X \ {y}.

39.1. Matroids

A pair (S, I) is called a matroid if S is a finite set and I is a nonempty
collection of subsets of S satisfying:

(39.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J \ I.

(These axioms are given by Whitney [1935].)
Given a matroid M = (S, I), a subset I of S is called independent if I

belongs to I, and dependent otherwise. For U ⊆ S, a subset B of U is called
a base of U if B is an inclusionwise maximal independent subset of U . That
is, B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii)
is equivalent to:

(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the rank of U ,
denoted by rM (U). If the matroid is clear from the context, we write r(U)
for rM (U).

A set is called simply a base if it is a base of S. The common size of all
bases is called the rank of the matroid. A subset of S is called spanning if
it contains a base as a subset. So bases are just the inclusionwise minimal
spanning sets, and also just the independent spanning sets. A circuit of a
matroid is an inclusionwise minimal dependent set. A loop is an element s
such that {s} is a circuit. Two elements s, t of S are called parallel if {s, t} is
a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an
ostensibly weaker system, which will be useful in proofs:
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Theorem 39.1. Let S be a finite set and let I be a nonempty collection of

subsets satisfying (39.1)(i). Then (39.1)(ii) is equivalent to:

(39.3) if I, J ∈ I and |I \ J | = 1, |J \ I| = 2, then I + z ∈ I for some

z ∈ J \ I.

Proof. Obviously, (39.1)(ii) implies (39.3). Conversely, (39.1)(ii) follows from
(39.3) by induction on |I \ J |, the case |I \ J | = 0 being trivial. If |I \ J | ≥ 1,
choose i ∈ I \ J . We apply the induction hypothesis twice: first to I − i and
J to find j ∈ J \ I with I − i + j ∈ I, and then to I − i + j and J to find
j′ ∈ J \ (I + j) with I − i + j + j′ ∈ I. Then by (39.3) applied to I and
I − i + j + j′, we have that I + j ∈ I or I + j′ ∈ I.

39.2. The dual matroid

With each matroid M , a dual matroid M∗ can be associated, in such a way
that (M∗)∗ = M . Let M = (S, I) be a matroid, and define

(39.4) I∗ := {I ⊆ S | S \ I is a spanning set of M}.

Then (Whitney [1935]):

Theorem 39.2. M∗ = (S, I∗) is a matroid.

Proof. Condition (39.1)(i) trivially holds for I∗. To see (39.1)(ii), consider
I, J ∈ I∗ with |I| < |J |. By definition of I∗, S \ J contains some base B of
M . As also S \ I contains some base of M , and as B \ I ⊆ S \ I, there exists
a base B′ of M with B \ I ⊆ B′ ⊆ S \ I. Then J \ I �⊆ B′, since otherwise
(as B ∩ I ⊆ I \ J , and as B \ I and J \ I are disjoint, since B ∩ J = ∅)

(39.5) |B| = |B ∩ I| + |B \ I| ≤ |I \ J | + |B \ I| < |J \ I| + |B \ I| ≤ |B′|,

which is a contradiction. As J \ I �⊆ B′, there is a z ∈ J \ I with z �∈ B′. So
B′ is disjoint from I + z. Hence I + z ∈ I∗.

The matroid M∗ is called the dual matroid of M . The bases of M∗ are
precisely the complements of the bases of M . This implies (M∗)∗ = M , which
justifies the name dual.

Theorem 39.3. The rank function rM∗ of the dual matroid M∗ satisfies, for

U ⊆ S:

(39.6) rM∗(U) = |U | + rM (S \ U) − rM (S).

Proof. Let B and B∗ denote the collections of bases of M and of M∗, respec-
tively. Then
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(39.7) rM∗(U) = max{|U ∩ A|
∣

∣ A ∈ B∗} = max{|U \ B|
∣

∣ B ∈ B}

= |U | − min{|B ∩ U |
∣

∣ B ∈ B}

= |U | − rM (S) + max{|B \ U |
∣

∣ B ∈ B}
= |U | − rM (S) + rM (S \ U).

The circuits of M∗ are called the cocircuits of M . They are the inclusion-
wise minimal sets intersecting each base of M (as they are the inclusionwise
minimal sets contained in no base of M∗, that is, not contained in the com-
plement of any base of M). The loops of M∗ are the coloops or bridges of M ,
and parallel elements of M∗ are called coparallel or in series in M .

Let M = (S, I) be a matroid, and suppose that we can test in polyno-
mial time if any subset of S is independent in M (or we have an oracle for
that). Then we can calculate, for any subset U of S, the rank rM (U) of U
in polynomial time (by growing an independent set (starting from ∅) to an
inclusionwise maximal independent subset of U). It follows that we can test
in polynomial time if any subset U of S in independent in M∗, just by testing
if rM (S \ U) = rM (S).

A matroid M = (S, I) is called connected if rM (U) + rM (S \ U) > rM (S)
for each nonempty proper subset U of S. This is equivalent to: for any two
elements s, t ∈ S there exists a circuit containing both s and t. One may derive
from (39.6) that a matroid M is connected if and only if M∗ is connected.

39.3. Deletion, contraction, and truncation

We can derive matroids from matroids by ‘deletion’ and ‘contraction’. Let
M = (S, I) be a matroid and let Y ⊆ S. Define

(39.8) I ′ := {Z | Z ⊆ Y, Z ∈ I}.

Then M ′ = (Y, I ′) is a matroid again, as directly follows from the matroid
axioms (39.1). M ′ is called the restriction of M to Y , denoted by M |Y . If
Y = S \ Z with Z ⊆ S, we say that M ′ arises by deleting Z, and denote M ′

by M \ Z. Clearly, the rank function of M |Y is the restriction of the rank
function of M to subsets of Y .

Contraction is the operation dual to deletion. Contracting Z means re-
placing M by (M∗ \ Z)∗. This matroid is denoted by M/Z. If Y = S \ Z,
then we denote M · Y := M/Z. Theorem 39.3 implies that the rank function
r′ of M/Z satisfies

(39.9) rM/Z(X) = r(X ∪ Z) − r(Z)

for X ⊆ S \ Z.
We can describe contraction as follows. Let Z ⊆ S and let X be a base of

Z. Then

(39.10) a subset I of S \ Z is independent in M/Z if and only if I ∪ X is
independent in M .
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Note that for disjoint subsets Y, Z of S one has (M \ Y ) \ Z = M \ (Y ∪
Z) and hence (M/Y )/Z = M/(Y ∪ Z). Moreover, deletion and contraction
commute, as for any two distinct x, y ∈ S and any Z ⊆ S \ {x, y} one has
(using (39.9)):

(39.11) rM\x/y(Z) = rM\x(Z∪{y})−rM\x({y}) = rM (Z∪{y})−rM ({y})
= rM/y(Z) = rM/y\x(Z).

If matroid M ′ arises from M by a series of deletions and contractions, M ′ is
called a minor of M .

The circuits of M |Y are exactly the circuits of M contained in Y , and
the circuits of M · Y are exactly the minimal nonempty sets C ∩ Y , where C
is a circuit of M .

Another operation is that of ‘truncation’. Let M = (S, I) be a matroid
and let k be a natural number. Define I ′ := {I ∈ I

∣

∣ |I| ≤ k}. Then (S, I ′)
is again a matroid, called the k-truncation of M .

39.4. Examples of matroids

We describe some basic classes of matroids.

Uniform matroids. An easy class of matroids is given by the uniform ma-

troids. They are determined by a set S and a number k: the independent sets
are the subsets I of S with |I| ≤ k. This trivially gives a matroid, called a
k-uniform matroid and denoted by Uk

n , where n := |S|.

Linear matroids (Grassmann [1862], Steinitz [1913]). Let A be an m × n
matrix. Let S := {1, . . . , n} and let I be the collection of all those subsets
I of S such that the columns of A with index in I are linearly independent.
That is, such that the submatrix of A consisting of the columns with index
in I has rank |I|.

Then (S, I) is a matroid (property (39.1)(ii) was proved by Grassmann
[1862] and by Steinitz [1913], and is called Steinitz’ exchange property). Con-
dition (39.1)(i) is trivial. To see condition (39.1)(ii), let I, J ∈ I with |I| < |J |.
Then I spans an |I|-dimensional space I. So J �⊆ I. Take j ∈ J \ I. Then
I + j ∈ I and j ∈ J \ I.

Any matroid obtained in this way, or isomorphic to such a matroid, is
called a linear matroid. If A has entries in a field F, then M is called repre-

sentable over F. We will also say that M is represented by (the columns of)
A, and A is called a representation of M .

Note that the rank rM (U) of any subset U of S is equal to the rank of
the matrix formed by the columns indexed by U .

The dual matroid of a matroid representable over a field F is again rep-
resentable over F. Indeed, we can assume that the matrix A is of the form
[Im B], where Im is the m × m identity matrix, and B is an m × (n − m)
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matrix. Then the dual matroid can be represented by the matrix [BT In−m],
as follows directly from elementary linear algebra. This implies that the class
of matroids representable over F is closed under taking minors.

MacLane [1936] (and also Lazarson [1958]) showed that nonlinear ma-
troids exist.

Binary matroids. A matroid representable over GF(2) — the field with
two elements — is called a binary matroid. For later purposes, we give some
characterizations of binary matroids. The following is direct (Whitney [1935]):

(39.12) a matroid M is binary if and only if for each choice of circuits
C1, . . . , Ct, the set C1△ · · · △Ct can be partitioned into circuits.

In a binary matroid M , disjoint unions of circuits are called the cycles of M .
Of special interest is the Fano matroid F7, represented by the nonzero vectors
in GF(2)3.

Tutte [1958a,1958b] showed that the unique minor-minimal nonbinary
matroid is U2

4 , the 2-uniform matroid on 4 elements. (We follow the proof
suggested by A.M.H. Gerards.)

Theorem 39.4. A matroid is binary if and only if it has no U2
4 minor.

Proof. Necessity follows from the facts that the class of binary matroids is
closed under taking minors and that U2

4 is not binary.
To see sufficiency, we first show the following. Let M and N be matroids

on the same set S. Call a set wrong if it is a base of precisely one of M and
N . A far base is a common base B of M and N such that there is no wrong
set X with |B△X| = 2. We first show:

(39.13) if M and N are different and have a far base, then M or N has
a U2

4 minor.

Let M, N form a counterexample with S as small as possible. Let B be a far
base and X be a wrong set with |B△X| minimal. Then B ∪ X = S, since we
can delete S \ (B ∪ X). Similarly (by considering M∗ and N∗), B ∩ X = ∅.
Then, by the minimality of |B△X|, X is the only wrong set. By symmetry, we
may assume that X is a base of M . Then M has a base B′ with |B△B′| = 2.
By the uniqueness of X, B′ is also a base of N . By the minimality of |B△X|,
B′ is not far. Hence, by the uniqueness of X, |B′△X| = 2. So |S| = 4.

Let S = {a, b, c, d}, B = {a, b}, X = {c, d}. Since M �= U2
4 by assumption,

we may assume that {a, c} is not a base of M . Hence, since {a} and {c, d}
are independent in M , {a, d} is a base of M . Similarly, since {c} and {a, b}
are independent in M , {b, c} is a base of M .

Since B is far, {a, d} and {b, c} are bases also of N , and {a, c} is not a
base of N . So {c} is independent in N , implying that {c, a} or {c, d} is a base
of N , a contradiction. This proves (39.13).
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Now let M be a nonbinary matroid on a set S. Choose a base B of M .
Let {xb | b ∈ B} be a collection of linearly independent vectors over GF(2).
For each s ∈ S \ B, let Cs be the circuit contained in B ∪ {s}, and define

(39.14) xs :=
∑

b∈Cs\{s}

xb.

Let N be the binary matroid represented by {xs | s ∈ S}. Now for each b ∈ B
and each s ∈ S \ B one has that (B \ {b}) ∪ {s} is a base of M if and only if
it is a base of N . So B is a far base. Since N is binary, we know that N �= M
and that N has no U2

4 minor. Hence, by (39.13), M has a U2
4 minor.

Regular matroids. A matroid is called regular if it is representable over
each field. It is equivalent to requiring that it can be represented over R by
the columns of a totally unimodular matrix.

Regular matroids are characterized by Tutte [1958a,1958b] as those binary
matroids not having an F7 or F ∗

7 minor. (Gerards [1989b] gave a short proof.)
A basic decomposition theorem of Seymour [1980a] states that each reg-

ular matroid can be obtained by taking 1-, 2-, and 3-sums from graphic and
cographic matroids and from copies of a 10-element matroid called R10. (We
do not use this theorem in this book. Background can be found in the book
of Truemper [1992].)

Algebraic matroids (Steinitz [1910]). Let L be a field extension of a field
K and let S be a finite subset of L. Let I be the collection of all subsets
{s1, . . . , sn} of S that consist of algebraically independent elements over K.
That is, there is no nonzero polynomial p(x1, . . . , xn) ∈ K[x1, . . . , xn] with
p(s1, . . . , sn) = 0. Then (S, I) is a matroid, and matroids arising in this way
are called algebraic (over K). (Steinitz [1910] showed that (S, I) satisfies the
matroid axioms, although the term matroid was not yet introduced.)

To see that (S, I) is a matroid, we check (39.3). It suffices to show that
for all s1, . . . , sn ∈ S one has:

(39.15) if {s1, s2, s3, . . . , sn−1} ∈ I and {s3, . . . , sn−1, sn} ∈ I, then
{s1, s3, . . . , sn} ∈ I or {s2, s3, . . . , sn} ∈ I.

Suppose not. Then there exist nonzero polynomials p(x1, x3, . . . , xn) and
q(x2, x3, . . . , xn) over K with p(s1, s3, . . . , sn) = 0 and q(s2, s3, . . . , sn) = 0.
We may assume that p and q are irreducible. Moreover, since {s3, . . . , sn} ∈ I,
p and q are relatively prime. Define F := K(x1, x2, . . . , xn−1). So p and q be-
long to the Euclidean ring F [xn]. Let r be the g.c.d. of p and q in F [xn].
As p and q are relatively prime, we know r ∈ F , and hence we may as-
sume r ∈ K[x1, . . . , xn−1]. Now r = αp + βq for some α, β ∈ F [xn]. So
r(s1, . . . , sn−1) = 0, contradicting the fact that {s1, . . . , sn−1} ∈ I. This
proves (39.15).

Each linear matroid is algebraic (as we can consider the linear relations
between the elements as polynomials of rank 1), while Ingleton [1971] gave an



Section 39.4. Examples of matroids 657

example of a nonlinear algebraic matroid. Examples of nonalgebraic matroids
were given by Ingleton and Main [1975] and Lindström [1984,1986]. The class
of algebraic matroids can be easily seen to be closed under taking minors
(deletion is direct, while contraction of an element t corresponds to replacing
K by K(t)), but it is unknown if it is closed under duality.

In fact, for any field K, the class of matroids that are algebraic over K is
closed under taking minors, since Lindström [1989] showed that any matroid
algebraic over K(t) (for any t), is also algebraic over K.

For an in-depth survey on algebraic matroids, see Oxley [1992].

Graphic matroids (Birkhoff [1935c], Whitney [1935]). Let G = (V, E) be
a graph and let I be the collection of all subsets of E that form a forest.
Then M = (E, I) is a matroid. Condition (39.1)(i) is trivial. To see that
condition (39.2) holds, let F ⊆ E. Then, by definition, each base U of F is an
inclusionwise maximal forest contained in F . Hence U forms a spanning tree
in each component of the graph (V, F ). So U has |V |−k elements, where k is
the number of components of (V, F ). So each base of F has |V | − k elements,
proving (39.2).

The matroid M is called the cycle matroid of G, denoted by M(G). Any
matroid obtained in this way, or isomorphic to such a matroid, is called a
graphic matroid.

Trivially, the circuits of M(G), in the matroid sense, are exactly the cir-
cuits of G, in the graph sense. The bases of M(G) are exactly the inclusionwise
maximal forests F of G. So if G is connected, the bases are the spanning trees.

The rank function of M(G) can be described as follows. For each subset
F of E, let κ(V, F ) denote the number of components of the graph (V, F ).
Then for each F ⊆ E:

(39.16) rM(G)(F ) = |V | − κ(V, F ).

Note that deletion and contraction in the matroid correspond to deletion and
contraction of edges in the graph.

Graphic matroids are regular, that is, representable over any field: orient
the edges of G arbitrarily, and consider the V × E matrix L given by: Lv,e =
+1 if v is the head of e, Lv,e := −1 if v is the tail of e, and Lv,e := 0 otherwise
(for v ∈ V , e ∈ E). Then a subset F of E is a forest if and only if the set of
columns with index in F is linearly independent.

By a theorem of Tutte [1959], the graphic matroids are precisely those
regular matroids containing no M(K5)

∗ and M(K3,3)
∗ minor. (Alternative

proofs were given by Ghouila-Houri [1964] (Chapitre III), Seymour [1980d],
Truemper [1985], Wagner [1985], and Gerards [1995b].)

Cographic matroids (Whitney [1935]). The dual of the cycle matroid M(G)
of a graph G = (V, E) is called the cocycle matroid of G, and denoted by
M∗(G). Any matroid obtained in this way, or isomorphic to such a matroid,
is called a cographic matroid.
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So the bases of M∗(G) are the complements of maximal forests of G. (So
if G is connected, these are exactly the complements of the spanning trees in
G.)

Hence the independent sets are those edge sets F for which E \F contains
a maximal forest of G; that is, (V, E \F ) has the same number of components
as G.

A subset C of E is a circuit of M∗(G) if and only if C is an inclusionwise
minimal set with the property that (V, E \ C) has more components than G.
Hence C is a circuit of M∗(G) if and only if C is an inclusionwise minimal
nonempty cut in G.

The rank function of M∗(G) can be described as follows. Again, for each
subset F of E, let κ(V, F ) denote the number of components of the graph
(V, F ). Then (39.6) and (39.16) give that for each F ⊆ E:

(39.17) rM∗(G)(F ) = |F | − κ(V, E \ F ) + κ(V, E).

Let G be an (embedded) planar graph, and let G∗ be the dual planar
graph of G. Then the cycle matroid M(G∗) of G∗ is isomorphic to the cocycle
matroid M∗(G) of G.

A theorem of Whitney [1933] implies that a matroid is both graphic and
cographic if and only if it is isomorphic to the cycle matroid of a planar
graph.

Transversal matroids (Edmonds and Fulkerson [1965], Mirsky and Perfect
[1967]). Let X = (X1, . . . , Xn) be a family of subsets of a finite set S and
let I be the collection of all partial transversals of X . Then M = (S, I) is
a matroid, as follows directly from Corollary 22.4a. Any matroid obtained
in this way, or isomorphic to such a matroid, is called a transversal matroid

(induced by X ).
The bases of this matroid are the inclusionwise maximal partial transver-

sals. If X has a transversal, the bases of M are the transversals of X . In fact,
Theorem 22.5 implies that we can assume the latter situation:

(39.18) Let M be the transversal matroid induced by the family X . Then
X has a subfamily Y such that M is equal to the transversal
matroid induced by Y and such that Y has a transversal.

So we can assume that any transversal matroid has the transversals of a
family of sets as bases.

It follows from Kőnig’s matching theorem that the rank function r of the
transversal matroid induced by X is given by

(39.19) r(U) = min
T⊆U

(|U \ T | + |{i | Xi ∩ T �= ∅}|)

= min
I⊆{1,...,n}

(n − |I| +
∣

∣

⋃

i∈I

(Xi ∩ U)
∣

∣)

for U ⊆ S. This follows directly from Theorem 22.2 and Corollary 22.2a,
applied to the family (X1 ∩ U, . . . , Xn ∩ U).



Section 39.4a. Relations between transversal matroids and gammoids 659

Piff and Welsh [1970] (cf. Atkin [1972]) showed that

(39.20) any transversal matroid is representable over all fields, except for
finitely many finite fields.

If the sets X1, . . . , Xm form a partition of S, one speaks of a partition

matroid. Trivially, each partition matroid is graphic and cographic (by con-
sidering a graph consisting of vertex-disjoint parallel classes of edges). Also
uniform matroids are special cases of transversal matroids.

Gammoids (Perfect [1968]). An extension of transversal matroids is obtained
by taking a directed graph D = (V, A) and subsets U and S of V . For
X, Y ⊆ V , call X linked to Y if |X| = |Y | and D has |X| vertex-disjoint
X − Y paths. (So X is the set of starting vertices of these paths, and Y the
set of end vertices.)

Let I be the collection of subsets I of S such that some subset of U is
linked to I. Then M = (S, I) is a matroid. This follows from Theorem 9.11:
let I, J ∈ I with |I| < |J |. Let T := I ∪ J . Let k be the maximum number
of disjoint U − T paths. So k ≥ |J | > |I|. By Theorem 9.11, there exist k
disjoint U − T paths covering I. Hence I + j ∈ I for some j ∈ J \ I. So M is
a matroid.

Matroids obtained in this way are called gammoids. If S = V , the gam-
moid is called a strict gammoid (induced by D, U). Hence:

(39.21) gammoids are exactly the restrictions of strict gammoids.

The bases of the strict gammoid induced by D, U are the subsets B of V such
that U is linked to B. In particular, U is a base.

From Menger’s theorem (Corollary 9.1a) one easily derives the following
formula for the rank function rM of M :

(39.22) rM (X) = min{|Y |
∣

∣ Y intersects each U − X path}

for X ⊆ S. (One may prove easily that the right-hand side of (39.22) satisfies
Theorem 39.8 below, thus proving again that M is a matroid.)

39.4a. Relations between transversal matroids and gammoids

Ingleton and Piff [1973] showed the following theorem (based on a duality of bi-
partite graphs and directed graphs similar to that described in Section 16.7c). The
proof provides an alternative proof that gammoids are indeed matroids.

Theorem 39.5. Strict gammoids are exactly the duals of the transversal matroids.

Proof. Let M be the strict gammoid induced by the directed graph D = (V, A)
and U ⊆ V . We can assume that (v, v) ∈ A for each v ∈ V . For each v ∈ V , let

(39.23) Xv := {u ∈ V | (u, v) ∈ A}.
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Let L be the transversal matroid induced by the family X := (Xv | v ∈ V \ U). We
show that L = M∗.

As v ∈ Xv for each v ∈ V \ U , the set V \ U is a transversal of X . Hence the
bases of L are the transversals of X . As U is a base of the strict gammoid induced
by D, U , it suffices to show, for each B ⊆ V :

(39.24) U is linked to B in D if and only if V \ B is a transversal of X .

To see necessity in (39.24), let U be linked to B in D and let P be a set of |U |
disjoint U − B paths. Then for each v ∈ V \ U , let xv := u if v is entered by an arc
(u, v) in a path P in P and let xv := v otherwise. Then:

(39.25) (i) xv ∈ Xv, (ii) xv �= xv′ for v �= v′ ∈ V \ U , and (iii) {xv | v ∈
V \ U} = V \ B.

So V \ B is a transversal of X .
To see sufficiency in (39.24), let V \ B be a transversal of X . Hence there exist

xv for v ∈ V \ U satisfying (39.25). Let A′ be the set of arcs (xv, v) of D with
v ∈ V \ U . Then V \ U is the set of vertices entered by an arc in A′, and V \ B is
the set of vertices left by an arc in A′. Hence U is linked to B in D.

This shows (39.24), and hence that M∗ = L. So the dual of a strict gammoid
is a transversal matroid.

To see that each transversal matroid is the dual of a strict gammoid, we show
that the construction described above can be reversed. Let L be the transversal
matroid induced by the family X = (Xi | i = 1, . . . , m) of sets. By (39.18) we can
assume that X has a transversal. Hence we can assume that i ∈ Xi for i = 1, . . . , m

(by renaming). Let V := X1 ∪ · · · ∪ Xm and let

(39.26) A := {(u, v) | v ∈ {1, . . . , m}, u ∈ Xv}.

Let D = (V, A) and define U := V \ {1, . . . , m}. Since D, U and X are related as
in (39.23), we again have (39.25). So L is equal to the dual of the strict gammoid
induced by D, U .

This theorem has a number of implications for the interrelations of the classes
of transversal matroids and of gammoids. Consider the following class of matroids,
introduced by Ingleton and Piff [1973]. Let G = (V, E) be a bipartite graph, with
colour classes U and W . Let M = (V, I) be the transversal matroid induced by the
family ({v}∪N(v) | v ∈ U) (where N(v) is the set of neighbours of v). So B ⊆ V is
a base of M if and only if (U \ B) ∪ (W ∩ B) is matchable in G (that is, it induces
a subgraph of G having a perfect matching).

Any such matroid M is called a deltoid (induced by G, U, W ). Then M∗ is the
deltoid induced by G, W, U . So

(39.27) the dual of a deltoid is a deltoid again.

Now

(39.28) transversal matroids are exactly those matroids that are the restriction
of a deltoid.

Indeed, each deltoid is a transversal matroid, and hence the restriction of any deltoid
is a transversal matroid (as the class of transversal matroids is closed under taking
restrictions). Conversely, any transversal matroid, induced by (say) X1, . . . , Xm is
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the restriction to W of the deltoid induced by the bipartite graph G with colour
classes U := {1, . . . , m} and W := X1 ∪ · · · ∪ Xm, with i ∈ U and x ∈ W adjacent
if and only if x ∈ Xi. (Assuming without loss of generality that U ∩ W = ∅.) This
shows (39.28).

Then (39.27) and (39.28) give with Theorem 39.5:

(39.29) the strict gammoids are exactly the contractions of the deltoids.

Indeed, the strict gammoids are the duals of transversal matroids, hence the duals
of restrictions of deltoids, and therefore the contractions of (the duals of) deltoids.

This gives:

Corollary 39.5a. The gammoids are exactly the contractions of the transversal

matroids.

Proof. Gammoids are the restrictions of strict gammoids, hence the restrictions of
contractions of deltoids, hence the contractions of restrictions of deltoids, therefore
the contractions of transversal matroids.

Similarly:

(39.30) the gammoids are exactly the minors of deltoids,

which implies (with (39.27)) a result of Mason [1972]:

(39.31) the class of gammoids is closed under taking minors and duals.

Theorem 39.5 also implies, with (39.20), that gammoids are representable over
all fields, except for a finite number of finite fields (Mason [1972]). In fact, Lindström
[1973] showed that any gammoid (S, I) is representable over each field with at least
2|S| elements.

Edmonds and Fulkerson [1965] showed that one gets a transversal matroid as
follows. Let G = (V, E) be an undirected graph and let S ⊆ V . Let I be the
collection of subsets of S which are covered by some matching in G. Then M =
(S, I) is a matroid (which is easy to show), called the matching matroid of G.
In fact, any matching matroid is a transversal matroid. To prove this, we may
assume S = V . Let D(G), A(G), C(G) form the Edmonds-Gallai decomposition of
G (Section 24.4b). Let K be the collection of components of G[D(G)]. Let X be the
family of sets

(39.32) {v} for each v ∈ A(G) ∪ C(G),
N(v) ∩ D(G) for each v ∈ A(G),
K, repeated |K| − 1 times, for each K ∈ K.

Then M is equal to the transversal matroid induced by X , as is easy to derive from
the properties of the Edmonds-Gallai decomposition. A min-max relation for the
rank function is given by Theorem 24.6.

It is straightforward to see that, conversely, each transversal matroid is a match-
ing matroid, by taking G bipartite.
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39.5. Characterizing matroids by bases

In Section 39.1, the notion of matroid is defined by ‘axioms’ in terms of the
independent sets. There are several other axiom systems that characterize
matroids. In this and the next sections we give a number of them.

Clearly, a matroid is determined by the collection of its bases, since a set is
independent if and only if it is contained in a base. Conditions characterizing
a collection of bases of a matroid are given in the following theorem (Whitney
[1935]).

Theorem 39.6. Let S be a set and let B be a nonempty collection of subsets

of S. Then the following are equivalent:

(39.33) (i) B is the collection of bases of a matroid;

(ii) if B, B′ ∈ B and x ∈ B′ \ B, then B′ − x + y ∈ B for some

y ∈ B \ B′;

(iii) if B, B′ ∈ B and x ∈ B′ \ B, then B − y + x ∈ B for some

y ∈ B \ B′.

Proof. (i)⇒(ii): Let B be the collection of bases of a matroid (S, I). Then
all sets in B have the same size. Now let B, B′ ∈ B and x ∈ B′ \ B. Since
B′ − x ∈ I, there exists a y ∈ B \ B′ with B′′ := B′ − x + y ∈ I. Since
|B′′| = |B′|, we know B′′ ∈ B.

(iii)⇒(i): (iii) directly implies that no set in B is contained in another.
Let I be the collection of sets I with I ⊆ B for some B ∈ B. We check (39.3).
Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let I \ J = {x}.

Consider sets B, B′ ∈ B with I ⊆ B, J ⊆ B′. If x ∈ B′, we are done.
So assume x �∈ B′. Then by (iii), B′ − y + x ∈ B for some y ∈ B′ \ B. As
|J \ I| = 2, there is a z ∈ J \ I with z �= y. Then I + z ⊆ B′ − y + x, and so
I + z ∈ I.

(ii)⇒(iii): By the foregoing we know that (iii) implies (ii). Now axioms
(ii) and (iii) interchange if we replace B by the collection of complements of
sets in B. Hence also the implication (ii)⇒(iii) holds.

The equivalence of (ii) and (iii) also follows from the fact that the collec-
tion of complements of bases of a matroid is the collection of bases of the dual
matroid. Conversely, Theorem 39.6 implies that the dual indeed is a matroid.

39.6. Characterizing matroids by circuits

A matroid is determined by the collection of its circuits, since a set is in-
dependent if and only if it contains no circuit. Conditions characterizing a
collection of circuits of a matroid are given in the following theorem (Whitney
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[1935] proved (i)⇔(iii), and Robertson and Weston [1958] (and also Lehman
[1964] and Asche [1966]) proved (i)⇔(ii)).

Theorem 39.7. Let S be a set and let C be a collection of nonempty subsets of

S, such that no two sets in C are contained in each other. Then the following

are equivalent:

(39.34) (i) C is the collection of circuits of a matroid;

(ii) if C, C ′ ∈ C with C �= C ′ and x ∈ C ∩ C ′, then (C ∪ C ′) \ {x}
contains a set in C;

(iii) if C, C ′ ∈ C, x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}
contains a set in C containing y.

Proof. (i)⇒(iii): Let C be the collection of circuits of a matroid (S, I) and
let B be its collection of bases. Let C, C ′ ∈ C, x ∈ C ∩C ′, and y ∈ C \C ′. We
can assume that S = C ∪C ′. Let B, B′ ∈ B with B ⊇ C −y and B′ ⊇ C ′ −x.
Then y �∈ B and x �∈ B′ (since C �⊆ B and C ′ �⊆ B′).

We can assume that y �∈ B′. Otherwise, y ∈ B′ \ B, and hence by (ii) of
Theorem 39.6, there exists a z ∈ B \ B′ with B′′ := B′ − y + z ∈ B. Then
z �= x, since otherwise C ′ ⊆ B′′. Hence, replacing B′ by B′′ gives y �∈ B′.

As y �∈ B′, we know B′ ∪ {y} �∈ I, and hence there exists a C ′′ ∈ C
contained in B′ ∪ {y}. As C ′′ �⊆ B′, we know y ∈ C ′′. Moreover, as x �∈ B′

we know x �∈ C ′′.

(iii)⇒(ii): is trivial.

(ii)⇒(i): Let I be the collection of sets containing no set in C as a subset.
We check (39.3). Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Assume that
I + z �∈ I for each z ∈ J \ I. Let y be the element of I \ J . If J + y ∈ I,
then I ∪ J ∈ I, contradicting our assumption. So J + y contains a set C ∈ C.
Then C is the unique set in C contained in J + y. For suppose that there is
another, C ′ say. Again, y ∈ C ′, and hence by (39.34)(ii) there exists a C ′′ ∈ C
contained in (C ∪ C ′) \ {y}. But then C ′′ ⊆ J , a contradiction.

As C �⊆ I, C intersects J \ I. Choose x ∈ C ∩ (J \ I). Then X := J +y −x
contains no set in C (as C is the only set in C contained in J + y). So X ∈ I,
implying that I + z ∈ I for the z ∈ J \ I with z �= x.

This theorem implies the following important property for a matroid M =
(S, I):

(39.35) for any independent set I and any s ∈ S \ I there is at most one
circuit contained in I ∪ {s}.

39.6a. A characterization of Lehman

Lehman [1964] showed that the cocircuits of a matroid M are exactly the inclu-
sionwise minimal nonempty subsets D of S with |D ∩ C| �= 1 for each circuit C of
M .



664 Chapter 39. Matroids

To show this, it suffices to show that

(39.36) (i) |D ∩ C| �= 1 for each cocircuit D and circuit C,
(ii) for each nonempty D ⊆ S, if |D ∩ C| �= 1 for each circuit C, then

D contains a cocircuit; that is, then D is dependent in M∗.

To see (i), suppose that D ∩ C = {s} for some circuit C and cocircuit D. As D − s

is independent in M∗, M has a base B disjoint from D − s. Since C − s is disjoint
from D − s and since C − s ∈ I, we can assume that C − s ⊆ B. Then s �∈ B, and
so B is disjoint from D. This implies that D is independent in M∗, contradicting
the fact that D is a circuit in M∗. This shows (i).

To see (ii), let ∅ �= D ⊆ S with |D ∩ C| �= 1 for each circuit C. We show
that D is dependent in M∗. Suppose not. Then M has a base B disjoint from D.
Choose s ∈ D. Then B + s contains a circuit C with s ∈ C. Hence D ∩ C = {s},
contradicting our assumption, thus showing (ii).

39.7. Characterizing matroids by rank functions

The rank function of a matroid M = (S, I) is the function rM : P(S) → Z+

given by:

(39.37) rM (U) := max{|Z|
∣

∣ Z ∈ I, Z ⊆ U}

for U ⊆ S. Again, a matroid is determined by its rank function, as a set U
is independent if and only if r(U) = |U |. Conditions characterizing a rank
function are given by the following theorem (Whitney [1935]; necessity was
also shown (in a different terminology) by Bergmann [1929] and Nakasawa
[1935]):

Theorem 39.8. Let S be a set and let r : P(S) → Z+. Then r is the rank

function of a matroid if and only if for all T, U ⊆ S:

(39.38) (i) r(T ) ≤ r(U) ≤ |U | if T ⊆ U ,

(ii) r(T ∩ U) + r(T ∪ U) ≤ r(T ) + r(U).

Proof. Necessity. Let r be the rank function of a matroid (S, I). Choose
T, U ⊆ S. Clearly (39.38)(i) holds. To see (ii), let I be an inclusionwise
maximal set in I with I ⊆ T ∩ U and let J be an inclusionwise maximal set
in I with I ⊆ J ⊆ T∪U . Since (S, I) is a matroid, we know that r(T∩U) = |I|
and r(T ∪ U) = |J |. Then

(39.39) r(T ) + r(U) ≥ |J ∩ T | + |J ∩ U | = |J ∩ (T ∩ U)| + |J ∩ (T ∪ U)|
≥ |I| + |J | = r(T ∩ U) + r(T ∪ U);

that is, we have (39.38)(ii).

Sufficiency. Let I be the collection of subsets I of S with r(I) = |I|. We
show that (S, I) is a matroid, with rank function r.

Trivially, ∅ ∈ I. Moreover, if I ∈ I and J ⊆ I, then
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(39.40) r(J) ≥ r(I) − r(I \ J) ≥ |I| − |I \ J | = |J |.

So J ∈ I.
In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let

J \ I = {z1, z2}. If I + z1, I + z2 �∈ I, we have r(I + z1) = r(I + z2) = |I|.
Then by (39.38)(ii),

(39.41) r(J) ≤ r(I + z1 + z2) ≤ r(I + z1) + r(I + z2) − r(I) = |I| < |J |,

contradicting the fact that J ∈ I.
So (S, I) is a matroid. Its rank function is r, since r(U) = max{|I|

∣

∣ I ⊆
U, I ∈ I} for each U ⊆ S. Here ≥ follows from (39.38)(i), since if I ⊆ U
and I ∈ I, then r(U) ≥ r(I) = |I|. Equality can be shown by induction on
|U |, the case U = ∅ being trivial. If U �= ∅, choose y ∈ U . By induction,
there is an I ⊆ U − y with I ∈ I and |I| = r(U − y). If r(U) = r(U − y)
we are done, so assume r(U) > r(U − y). Then I + y ∈ I, since r(I + y) ≥
r(I)+r(U)−r(U −y) ≥ |I|+1. Moreover, r(U) ≤ r(U −y)+r({y}) ≤ |I|+1.
This proves equality for U .

Set functions satisfying condition (39.38)(ii) are called submodular, and
will be studied in Chapter 44.

Whitney [1935] also showed that (39.38) is equivalent to:

(39.42) (i) r(∅) = 0,
(ii) r(U) ≤ r(U + s) ≤ r(U) + 1 for U ⊆ S, s ∈ S \ U ,
(iii) for all U ⊆ S, s, t ∈ S \ U , if r(U + s) = r(U + t) = r(U), then

r(U + s + t) = r(U).

The proof above in fact uses only these properties of r.
The following equivalent form of Theorem 39.8 will be useful.

Corollary 39.8a. Let S be a finite set and let I be a nonempty collection

of subsets of S, closed under taking subsets. For U ⊆ S, let r(U) be the

maximum size of a subset of U that belongs to I. Then (S, I) is a matroid if

and only if r satisfies (39.38)(ii) for all T, U ⊆ S.

Proof. Necessity follows directly from Theorem 39.8. To see sufficiency, it
is easy to see that r satisfies (39.38)(i). So by Theorem 39.8, r is the rank
function of some matroid M = (S, J ). Now: I ∈ J ⇐⇒ r(I) = |I| ⇐⇒
I ∈ I. Hence I = J , and so (S, I) is a matroid.

Note that if we can test in polynomial time if a given set is independent,
we can also test in polynomial time if a given set is a base, or a circuit, and
we can determine the rank of a given set in polynomial time.
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39.8. The span function and flats

With any matroid M = (S, I) we can define the span function spanM :
P(S) → P(S) as follows:

(39.43) spanM (T ) := {s ∈ S | rM (T ∪ {s}) = rM (T )}

for T ⊆ S. If the matroid M is clear from the context, we write span(T ) for
spanM (T ). Note that T ⊆ spanM (T ) and that

(39.44) rM (spanM (T )) = rM (T ).

This follows directly from the fact that if rM (Y ) > rM (T ), then rM (T∪{s}) >
rM (T ) for some s ∈ Y .

Note also that

(39.45) T is spanning ⇐⇒ spanM (T ) = S

for any T ⊆ S. To see =⇒, let T be spanning. Then for each s ∈ T : rM (T +
s) ≤ rM (S) = rM (T ). To see ⇐=, suppose spanM (T ) = S. Then rM (T ) =
rM (spanM (T )) = rM (S).

A flat in a matroid M = (S, I) is a subset F of S with spanM (F ) = F .
A matroid is determined by its collection of flats, as is shown by:

(39.46) a subset I of S is independent if and only if for each y ∈ I there
is a flat F with I − y ⊆ F and y �∈ F .

Indeed, if I is independent and y ∈ I, let F := spanM (I −y). Then F is a flat
containing I − y, but not y, since rM (F + y) ≥ rM (I) > rM (I − y) = rM (F ).
Conversely, if I is not independent, then y ∈ spanM (I − y) for some y ∈ I,
and hence each flat containing I − y also contains y.

39.8a. Characterizing matroids by span functions

It was observed by Mac Lane [1938] that the following characterizes span functions
of matroids (sufficiency was shown by van der Waerden [1937]).

Theorem 39.9. Let S be a finite set. A function span : P(S) → P(S) is the span

function of a matroid if and only if:

(39.47) (i) if T ⊆ S, then T ⊆ span(T );
(ii) if T, U ⊆ S and U ⊆ span(T ), then span(U) ⊆ span(T );
(iii) if T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ), then t ∈

span(T + s).

Proof. Necessity. Let span be the span function of a matroid M = (S, I) with
rank function r. Clearly, (39.47)(i) is satisfied. To see (39.47)(ii), let U ⊆ span(T )
and s ∈ span(U). We show s ∈ span(T ). We can assume s �∈ T . Then, by the
submodularity of r,

(39.48) r(T ∪ {s}) ≤ r(T ∪ U ∪ {s}) ≤ r(T ∪ U) + r(U ∪ {s}) − r(U)
= r(T ∪ U) = r(T ).
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(The last equality follows from (39.44).) This shows that s ∈ span(T ).
To see (39.47)(iii), note that s ∈ span(T + t) \ span(T ) is equivalent to: r(T +

t + s) = r(T + t) and r(T + s) > r(T ). Hence

(39.49) r(T + t + s) = r(T + t) ≤ r(T ) + 1 ≤ r(T + s),

that is, t ∈ span(T + s). This shows necessity of the conditions (39.47).

Sufficiency. Let a function span satisfy (39.47), and define

(39.50) I := {I ⊆ S | s �∈ span(I − s) for each s ∈ I}.

We first show the following:

(39.51) if I ∈ I, then span(I) = I ∪ {t | I + t �∈ I}.

Indeed, if t ∈ span(I)\I, then I + t �∈ I, by definition of I. Conversely, I ⊆ span(I)
by (39.47)(i). Moreover, if I + t �∈ I, then by definition of I, s ∈ span(I + t − s) for
some s ∈ I + t. If s = t, then t ∈ span(I) and we are done. So assume s �= t; that is,
s ∈ I. As I ∈ I, we know that s �∈ span(I − s). So by (39.47)(iii) (for T := I − s),
t ∈ span(I), proving (39.51).

We now show that M = (S, I) is a matroid. Trivially, ∅ ∈ I. To see that
I is closed under taking subsets, let I ∈ I and J ⊆ I. We show that J ∈ I.
Suppose to the contrary that s ∈ span(J − s) for some s ∈ J . By (39.47)(ii),
span(J −s) ⊆ span(I −s). Hence s ∈ span(I −s), contradicting the fact that I ∈ I.

In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let
I \J = {i} and J \I = {j1, j2}. Assume that I + j1 �∈ I. That is, J + i− j2 �∈ I, and
so, by (39.51) applied to J − j2, i ∈ span(J − j2). Therefore, I ⊆ span(J − j2), and
so span(I) ⊆ span(J − j2). So j2 �∈ span(I) (as J ∈ I), and therefore, by (39.51)
applied to I, I + j2 ∈ I.

So M is a matroid. We finally show that span = spanM . Choose T ⊆ S. To see
that span(T ) = spanM (T ), let I be a base of T (in M). Then (using (39.51)),

(39.52) spanM (T ) = I ∪ {x | I + x �∈ I} = span(I) ⊆ span(T ).

So we are done by showing span(T ) ⊆ span(I); that is, by (39.47)(ii), T ⊆ span(I).
Choose t ∈ T \I. By the maximality of I, we know I + t �∈ I, and hence, by (39.51),
t ∈ span(I).

39.8b. Characterizing matroids by flats

Conditions characterizing collections of flats of a matroid are given in the following
theorem (Bergmann [1929]):

Theorem 39.10. Let S be a set and let F be a collection of subsets of S. Then F
is the collection of flats of a matroid if and only if:

(39.53) (i) S ∈ F ;

(ii) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;

(iii) if F ∈ F and t ∈ S \F , and F ′ is the smallest flat containing F + t,

then there is no flat F ′′ with F ⊂ F ′′ ⊂ F ′.
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Proof. Necessity. Let F be the collection of flats of a matroid M = (S, I). Condi-
tion (39.53)(i) is trivial, and condition (39.53)(ii) follows from spanM (F1 ∩ F2) ⊆
spanM (F1)∩ spanM (F2) = F1 ∩F2. To see (39.53)(iii), suppose that such an F ′′ ex-
ists. Choose s ∈ F ′′ \F . So s �∈ spanM (F ). As F ′ �⊆ F ′′, we have t �∈ spanM (F + s).
Therefore, by (39.47)(iii) for T := F , s �∈ spanM (F ) = F ′, a contradiction.

Sufficiency. Let F satisfy (39.53). For Y ⊆ S, let span(Y ) be the smallest set
in F containing Y . Since F ∈ F ⇐⇒ span(F ) = F , it suffices to show that
span satisfies the conditions (39.47). Here (39.47)(i) and (ii) are trivial. To see
(39.47)(iii), let T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ). Then span(T ) ⊂
span(T + s) ⊆ span(T + t). Hence, by (39.53)(iii), span(T + s) = span(T + t), and
hence t ∈ span(T + s).

39.8c. Characterizing matroids in terms of lattices

Bergmann [1929] and Birkhoff [1935a] characterized matroids in terms of lattices.
A partially ordered set (L, ≤) is called a lattice if

(39.54) (i) for all A, B ∈ L there is a unique element, called A ∧ B, satisfying
A ∧ B ≤ A, B and C ≤ A ∧ B for all C ≤ A, B;

(ii) for all A, B ∈ L there is a unique element, called A ∨ B, satisfying
A ∨ B ≥ A, B and C ≥ A ∨ B for all C ≥ A, B.

A ∧ B and A ∨ B are called the meet and join respectively of A and B. Here we
assume lattices to be finite. Then a lattice has a unique minimal element, denoted
by 0. The rank of an element A is the maximum number n of elements x1, . . . , xn

with 0 < x1 < · · · < xn = A. An element of rank 1 is called a point or atom.
Call a lattice a point lattice if each element is a join of points, and a matroid

lattice (or a geometric lattice) if it is isomorphic to the lattice of flats of a matroid.
Trivially, each matroid lattice is a point lattice. Moreover, a matroid without loops
and parallel elements is completely determined by the lattice of flats.

In the following theorem, the equivalence of (i) and (ii), and the implication
(ii)⇒(iv) are due (in a different terminology) to Bergmann [1929]; the equivalence
of (iii) and (iv) was shown by Birkhoff [1933], and the implication (iii)⇒(i) was
shown by Birkhoff [1935a].

In a partially ordered set (L, ≤) an element y is said to cover an element x if
x < y and there is no z with x < z < y.

Theorem 39.11. For any finite point lattice (L, ≤), with rank function r, the

following are equivalent:

(39.55) (i) L is a matroid lattice;

(ii) for each a ∈ L and each point p, if p �≤ a, then a ∨ p covers a;

(iii) for each a, b ∈ L, if a and b cover a ∧ b, then a ∨ b covers a and b;

(iv) r(a) + r(b) ≥ r(a ∨ b) + r(a ∧ b) for all a, b ∈ L.

Proof. (i)⇒(iv): Let L be the lattice of flats of a matroid M = (S, I), with rank
function rM . We can assume that M has no loops and no parallel elements. Then for
any flat F we have r(F ) = rM (F ), since rM (F ) is equal to the maximum number k

of nonempty flats F1 ⊂ · · · ⊂ Fk with Fk = F . So (iv) follows from Theorem 39.8.
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(iv)⇒(iii): We first show that (iv) implies that if b covers a, then r(b) = r(a)+1.
As b is a join of points, and as b covers a, we know that b = a∨p for some point p with
p �≤ a. Hence r(b) = r(a∨p) ≤ r(a)+r(p)− r(a∧p) = r(a)+r(p)− r(0) = r(a)+1.
As r(b) > r(a), we have r(b) = r(a) + 1.

To derive (iii) from (iv), let a and b cover a∧ b. Then r(a) = r(b) = r(a∧ b)+1.
Hence r(a ∨ b) ≤ r(a) + r(b) − r(a ∧ b) = r(a) + 1. Hence a ∨ b covers a. Similarly,
a ∨ b covers b.

(iii)⇒(ii): We derive (ii) from (iii) by induction on r(a). If a = 0, the statement
is trivial. If a > 0, let a′ be an element covered by a. Then, by induction, a′ ∨ p

covers a′. So a′ = a ∧ (a′ ∨ p). Hence by (iii), a ∨ (a′ ∨ p) = a ∨ p covers a.
(ii)⇒(i): Let S be the set of points of L, and for f ∈ L define Ff := {s ∈ S |

s ≤ f}. Let F := {Ff | f ∈ L}. Then for all f1, f2 ∈ L we have:

(39.56) f1 ≤ f2 ⇐⇒ Ff1
⊆ Ff2

.

Here =⇒ is trivial, while ⇐= follows from the fact that for each f ∈ L we have
f =

∨

Ff , as L is a point lattice.
By (39.56), (L, ≤) is isomorphic to (F , ⊆). Moreover, by (39.54)(i), Ff1∧f2

=
Ff1

∩ Ff2
. So F is closed under intersections, implying (39.53)(ii), while (39.53)(i)

is trivial. Finally, (39.53)(iii) follows from (39.55)(ii).

Lattices satisfying (39.55)(iii) are called upper semimodular.

39.9. Further exchange properties

In this section we prove a number of exchange properties of bases, as a prepa-
ration to the forthcoming sections on matroid intersection algorithms.

An exchange property of bases, stronger than given in Theorem 39.6, is
(Brualdi [1969c]):

Theorem 39.12. Let M = (S, I) be a matroid. Let B1 and B2 be bases and

let x ∈ B1 \ B2. Then there exists a y ∈ B2 \ B1 such that both B1 − x + y
and B2 − y + x are bases.

Proof. Let C be the unique circuit in B2 +x (cf. (39.35)). Then (B1 ∪C)−x
is spanning, since x ∈ spanM (C − x) ⊆ spanM ((B1 ∪ C) − x), implying
span((B1 ∪ C) − x) = span(B1 ∪ C) = S.

Hence there is a base B3 with B1 − x ⊆ B3 ⊆ (B1 ∪ C) − x. So B3 =
B1 −x+ y for some y in C −x. Therefore, B2 − y +x is a base, as it contains
no circuit (since C is the only circuit in B2 + x).

Let M = (S, I) be a matroid. For any I ∈ I define the (bipartite) directed
graph DM (I) = (S, AM (I)), or briefly (S, A(I)), by:

(39.57) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.

Repeated application of the exchange property described in Theorem 39.12
gives (Brualdi [1969c]):
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Corollary 39.12a. Let M = (S, I) be a matroid and let I, J ∈ I with

|I| = |J |. Then A(I) contains a perfect matching on I△J .1

Proof. By truncating M , we can assume that I and J are bases of M . We
prove the lemma by induction on |I \ J |. We can assume |I \ J | ≥ 1. Choose
y ∈ I \ J . By Theorem 39.12, I − y + z ∈ I and J − z + y ∈ I for some
z ∈ J \ I. By induction, applied to I and J ′ := J − z + y, A(I) has a perfect
matching N on I△J ′. Then N ∪ {(y, z)} is a perfect matching on I△J .

Corollary 39.12a implies the following characterization of maximum-
weight bases:

Corollary 39.12b. Let M = (S, I) be a matroid, let B be a base of M , and

let w : S → R be a weight function. Then B is a base of maximum weight

⇐⇒ w(B′) ≤ w(B) for every base B′ with |B′ \ B| = 1.

Proof. Necessity being trivial, we show sufficiency. Suppose to the contrary
that there is a base B′ with w(B′) > w(B). Let N be a perfect matching in
A(B) covering B△B′. As w(B′) > w(B), there is an edge (y, z) in N with
w(z) > w(y), where y ∈ B \ B′ and z ∈ B′ \ B. Hence w(B − y + z) > w(B),
contradicting the condition.

The following forms a counterpart to Corollary 39.12a (Krogdahl [1974,
1976,1977]):

Theorem 39.13. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be

such that |I| = |J | and such that A(I) contains a unique perfect matching N
on I△J . Then J belongs to I.

Proof. Since N is unique, we can order N as (y1, z1), . . . , (yt, zt) such that
(yi, zj) �∈ A(I) if 1 ≤ i < j ≤ t. Suppose that J �∈ I, and let C be a circuit
contained in J . Choose the smallest i with zi ∈ C. Then (yi, z) �∈ A(I) for all
z ∈ C − zi (since z = zj for some j > i). Therefore, z ∈ span(I − yi) for all
z ∈ C − zi. So C − zi ⊆ span(I − yi), and therefore zi ∈ C ⊆ span(C − zi) ⊆
span(I − yi), contradicting the fact that I − yi + zi is independent.

This implies:

Corollary 39.13a. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be

such that |I| = |J | and rM (I ∪J) = |I|, and such that A(I) contains a unique

perfect matching N on I△J . Let s �∈ I ∪ J with I + s ∈ I. Then J + s ∈ I.

Proof. Let t be a new element and let M ′ = (S ∪ {t}, I ′) be the matroid
with F ∈ I ′ if and only if F \ {t} ∈ I. Then N ′ := N ∪ {(t, s)} forms a

1 A perfect matching on a vertex set U in a digraph is a set of vertex-disjoint arcs such
that U is the set of tails and heads of these arcs.
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unique perfect matching on (I△J) ∪ {s, t} in DM ′(I ∪ {t}) (since there is no
arc from t to J \ I, as I + j �∈ I for all j ∈ J \ I, since rM (I ∪ J) = |I|). So
by Theorem 39.13, J ∪ {s} is independent in M ′, and hence in M .

39.9a. Further properties of bases

Bases satisfy the following exchange property, stronger than that described in The-
orem 39.12 (conjectured by G.-C. Rota, and proved by Brylawski [1973], Greene
[1973], Woodall [1974a]):

(39.58) if B1 and B2 are bases and B1 is partitioned into X1 and Y1, then B2

can be partitioned into X2 and Y2 such that X1 ∪ Y2 and Y1 ∪ X2 are
bases.

This will be proved in Section 42.1a (using the matroid union theorem).
Other exchange properties of bases were given by Greene [1974a] and Kung

[1978a]. Decomposing exchanges was studied by Gabow [1976b].
In Schrijver [1979c] it was shown that the exchange property described in Corol-

lary 16.8b for bipartite graphs and, more generally, in Theorem 9.12 for directed
graphs, in fact characterizes systems that correspond to matroids.

To this end, let U and W be disjoint sets and let Λ be a collection of pairs
(X, Y ) with X ⊆ U and Y ⊆ W . Call (U, W, Λ) a bimatroid (or linking system) if:

(39.59) (i) (∅, ∅) ∈ Λ;
(ii) if (X, Y ) ∈ Λ and x ∈ X, then (X − x, Y − y) ∈ Λ for some y ∈ Y ;
(iii) if (X, Y ) ∈ Λ and y ∈ Y , then (X − x, Y − y) ∈ Λ for some x ∈ X;
(iv) if (X1, Y1), (X2, Y2) ∈ Λ, then there is an (X, Y ) ∈ Λ with X1 ⊆

X ⊆ X1 ∪ X2 and Y2 ⊆ Y ⊆ Y1 ∪ Y2.

Note that (ii) and (iii) imply that |X| = |Y | for each (X, Y ) ∈ Λ.
To describe the relation with matroids, define:

(39.60) B := {(U \ X) ∪ Y | (X, Y ) ∈ Λ}.

So B determines Λ. Then (Schrijver [1979c]):

(39.61) (U, W, Λ) is a bimatroid if and only if B is the collection of bases of a
matroid on U ∪ W , with U ∈ B.

So bimatroids are in one-to-one correspondence with pairs (M, B) of a matroid M

and a base B of M , and the conditions (39.59) yield a characterization of matroids.
An equivalent axiom system characterizing matroids was given by Kung [1978b].

(Bapat [1994] gave an extension of Kőnig’s matching theorem to bimatroids.)

39.10. Further results and notes

39.10a. Further notes

Dilworth [1944] showed that if r : P(S) → Z satisfies (39.38) and r(U) ≥ 0 if U �= ∅,
then
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(39.62) I := {I ⊆ S | ∀ nonempty U ⊆ I : |U | ≤ r(U)}

is the collection of independent sets of a matroid M . Its rank function satisfies:

(39.63) rM (U) = min(r(U1) + · · · + r(Ut)),

where the minimum ranges over partitions of U into nonempty subsets U1, . . . , Ut

(t ≥ 0). If G = (V, E) is a graph, and we define r(F ) :=
∣

∣

⋃

F
∣

∣ − 1 for F ⊆ E, we
obtain the cycle matroid of G (this also was shown by Dilworth [1944]).2

Conforti and Laurent [1988] showed the following sharpening of Corollary 39.8a.
Let C be a collection of subsets of a set S and let f : C → Z+. Let I be the collection
of subsets T of S with |T ∩ U | ≤ f(U) for each U ∈ C. For T ⊆ S, let r(T ) be
the maximum size of a subset of T that belongs to I. Then (S, I) is a matroid if
and only if r satisfies the submodular inequality (39.38)(ii) for all Y, Z ∈ C with
Y ∩ Z �= ∅. In fact, in the right-hand side of this inequality, r may be replaced by
f .

Jensen and Korte [1982] showed that there is no polynomial-time algorithm to
find the minimum size of a circuit of a matroid, if the matroid is given by an oracle
for testing independence. For binary matroids (represented by binary vectors), the
problem of finding a minimum-size circuit was shown by Vardy [1997] to be NP-
complete (solving a problem of Berlekamp, McEliece, and van Tilborg [1978], who
showed the NP-completeness of finding the minimum size of a circuit containing
a given element of the matroid, and of finding a circuit of given size). If we know
that a matroid is binary, a vector representation can be derived by a polynomially
bounded number of calls from an independence testing oracle.

For further studies of the complexity of matroid properties, see Hausmann and
Korte [1978], Robinson and Welsh [1980], and Jensen and Korte [1982].

Extensions of matroid theory to infinite structures were considered by Rado
[1949a], Bleicher and Preston [1961], Johnson [1961], and Dlab [1962,1965].

Standard references on matroid theory are Welsh [1976] and Oxley [1992]. The
book by Truemper [1992] focuses on decomposition of matroids. Earlier texts were
given by Tutte [1965a,1971]. Elementary introductions to matroids were given by
Wilson [1972b,1973], and a survey with applications to electrical networks and
statics by Recski [1989]. Bixby [1982], Faigle [1987], Lee and Ryan [1992], and Bixby
and Cunningham [1995] survey matroid optimization and algorithms. White [1986,
1987,1992] offers a collection of surveys on matroids, and Kung [1986] is a source
book on matroids. Stern [1999] focuses on semimodular lattices. Books discussing
matroid optimization include Lawler [1976b], Papadimitriou and Steiglitz [1982],
Gondran and Minoux [1984], Nemhauser and Wolsey [1988], Parker and Rardin
[1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998], and Korte and Vygen
[2000].

39.10b. Historical notes on matroids

The idea of a matroid, that is, of abstract dependence, seems to have been devel-
oped historically along a number of independent lines during the period 1900-1935.
Independently, different axiom systems were given, each of which is equivalent to

2
⋃

F denotes the union of the edges (as sets) in F .



Section 39.10b. Historical notes on matroids 673

that of a matroid. It indicates the naturalness of the concept. Only at the end of
the 1930s a synthesis of the different streams was obtained.

There is a line, starting with the Dualgruppen (dual groups = lattices) of
Dedekind [1897,1900], introduced in order to study modules (= additive subgroups)
of numbers. They give rise to lattices satisfying what Dedekind called the Modulge-

setz (module law). Later, independently, Birkhoff [1933] studied such lattices, calling
them initially B-lattices, and later (after he had learned about Dedekind’s earlier
work), modular lattices. Both Dedekind and Birkhoff considered, in their studies
of modular lattices, an auxiliary property that characterizes so-called semimodular

lattices. If the lattice is a point lattice (that is, each element of the lattice is a join
of atoms (points)), then such semimodular lattices are exactly the lattices of flats
of a matroid. This connection was pointed out by Birkhoff [1935a] directly after
Whitney’s introduction of matroids.

A second line concerns exchange properties of bases. It starts with the new edi-
tion of the Ausdehnungslehre of Grassmann [1862], where he showed that each lin-
early independent set can be extended to a bases, using elements from a given base.
Next Steinitz [1910], in his fundamental paper Algebraische Theorie der Körper (Al-
gebraic Theory of Fields), showed that algebraic dependence has a number of basic
properties, which makes it into a matroid (like the equicardinality of bases), and he
derived some other properties from these basic properties (thus deriving essentially
properties of matroids). In a subsequent paper, Steinitz [1913] gave, as an auxil-
iary result, the property that is now called Steinitz’ exchange property for linearly
independent sets of vectors. Steinitz did not mention the similarities to his earlier
results on algebraic dependence. These similarities were observed by Haupt [1929a]
and van der Waerden [1930] in their books on ‘modern’ algebra. They formulated
properties shared by linear and algebraic dependence that are equivalent to ma-
troids. In the second edition of his book, van der Waerden [1937] condensed these
properties to three properties, and gave a unified treatment of linear and algebraic
dependence. Mac Lane [1938] observed the relation of this work to the work on
lattices and matroids.

A third line pursued the axiomatization of geometry, which clearly can be rooted
back to as early as Euclid. At the beginning of the 20th century this was consid-
ered by, among others, Hilbert and Veblen. Bergmann [1929] aimed at giving a
lattice-theoretical basis for affine geometry, and from lattice-theoretical conditions
equivalent to matroids (cf. Theorem 39.11 above) he derived a number of properties,
like the equicardinality of bases and the submodularity of the rank function. In their
book Grundlagen der Mathematik I (Foundations of Mathematics I), Hilbert and
Bernays [1934] gave axioms for the collinearity of triples of points, amounting to the
fact that any two distinct points belong to exactly one line. A direct extension of
these axioms to general dimensions gives the axioms described by Nakasawa [1935],
that are again equivalent to the matroid axioms. He introduced the concept of a B1-
space, equivalent to a matroid. In fact, the only reference in Nakasawa [1935] is to
the book Grundlagen der Elementargeometrie (Foundations of Elementary Geome-
try) of Thomsen [1933], in which a different axiom system, the Zyklenkalkül (cycle
calculus), was given (not equivalent to matroids). Nakasawa only gave subsets of
linear spaces as an example. In a sequel to his paper, Nakasawa [1936b] observed
that his axioms are equivalent to those of Whitney. The same axiom system as
Nakasawa’s, added with a continuity axiom, was given by Pauc [1937]. In Haupt,
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Nöbeling, and Pauc [1940] the concept of an Abhängigkeitsraum (dependence space)
based on these axioms was investigated.

The fourth ‘line’ was that of Whitney [1935], who introduced the notion of a
matroid as a concept by itself. He was motivated by generalizing certain separability
and duality phenomena in graphs, studied by him before. This led him to show that
each matroid has a dual. While Whitney showed the equivalence of several axiom
systems for matroids, he did not consider an axiom system based on a closure
operation or on flats. Whitney gave linear dependence as an example, but not
algebraic dependence. In a paper in the same year and journal, Birkhoff [1935a]
showed the relation of Whitney’s work with lattices.

We now discuss some historical papers more extensively, in a more or less
chronological order.

1894-1900: Dedekind: lattices

In the supplements to the fourth edition of Vorlesungen über Zahlentheorie (Lec-
tures on Number Theory) by Lejeune Dirichlet [1894], R. Dedekind introduced the
notion of a module as any nonempty set of (real or complex) numbers closed un-
der addition and subtraction, and he studied the lattice of all modules ordered by
inclusion. He called A divisible by B if A ⊆ B. Trivially, the lattice operations are
given by A ∧ B = A ∩ B and A ∨ B = A + B. In fact, Dedekind denoted A ∩ B by
A − B.

He gave the following ‘charakteristischen Satz’ (characteristic theorem):

Ist m theilbar durch d, und a ein beliebiger Modul, so ist

m + (a − d) = (m + a) − d. 3

In modern notation, for all a, b, c:

(39.64) if a ≤ c, then a ∨ (b ∧ c) = (a ∨ b) ∧ c,

which is now known as the modular law, and lattices obeying it are called modular

lattices.
Next, Dedekind [1897] introduced the notion of a lattice under the name Dual-

gruppe (dual group), motivated by similarities observed by him between operations
on modules and those for logical statements as given in the book Algebra der Logik

(Algebra of Logic) by Schröder [1890]. Dedekind mentioned, as examples, subsets
of a set, modules, ideals in a finite field, subgroups of a group, and all fields, and
he introduced the name module law for property (39.64):

ich will es daher das Modulgesetz nennen, und jede Dualgruppe, in welcher es
herrscht, mag eine Dualgruppe vom Modultypus heißen.4

3 If m is divisible by d, and a is an arbitrary module, then

m + (a − d) = (m + a) − d.

4 I will therefore call it the module law, and every dual group in which it holds, may be
called a dual group of module type.
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Dedekind [1900] continued the study of modular lattices, and showed that each
modular lattice allows a rank function r : M → Z+ with the property that for all
a, b:

(39.65) (i) r(0) = 0;
(ii) r(b) = r(a) + 1 if b covers a;
(iii) r(a ∧ b) + r(a ∨ b) = r(a) + r(b).

In fact, this characterizes modular lattices.
In proving (39.65), Dedekind showed that each modular lattice satisfies

(39.66) if a and b cover c, and a �= b, then a ∨ b covers a and b,

which is the property characterizing upper semimodular lattices, a structure equiv-
alent to matroids.

1862-1913: Grassmann, Steinitz: linear and algebraic dependence

The basic exchange property of linear independence was formulated by Grassmann
[1862], in his book Die Ausdehnungslehre, as follows (in his terminology, vectors are
quantities):

20. Wenn m Grössen a1, . . . am, die in keiner Zahlbeziehung zu einander stehen,
aus n Grössen b1, . . . bn numerisch ableitbar sind, so kann man stets zu den m

Grössen a1, . . . am noch (n − m) Grössen am+1, . . . an von der Art hinzufügen,
dass sich die Grössen b1, . . . bn auch aus a1, . . . an numerisch ableiten lassen,
und also das Gebiet der Grössen a1, . . . an identisch ist dem Gebiete der Grössen
b1, . . . bn; auch kann man jene (n−m) Grössen aus den Grössen b1, . . . bn selbst
entnehmen.5

This property was also given by Steinitz [1913] (see below), but before that,
Steinitz proved it for algebraic independence. In his fundamental paper Algebraische

Theorie der Körper (Algebraic Theory of Fields), Steinitz [1910] studied, in § 22,
algebraic dependence in field extensions. The statements proved are as follows,
where L is a field extension of field K. Throughout, a is algebraically dependent on
S if a is algebraic with respect to the field extension K(S); in other words, if there
is a nonzero polynomial p(x) ∈ K(S)[x] with p(a) = 0.

Calling a set a system, he first observed:

1. Hängt das Element a vom System S algebraisch ab, so gibt es ein endliches
Teilsystem S′ von S, von welchem a algebraisch abhängt.6

and next he showed:

2. Hängt S3 von S2, S2 von S1 algebraisch ab, so ist S3 algebraisch abhängig von
S1.7

5 20. If m quantities a1, . . . am, that stand in no number relation to each other, are
numerically derivable from n quantities b1, . . . bn, then one can always add to the m

quantities a1, . . . am another (n − m) quantities am+1, . . . an such that the quantities
b1, . . . bn can also be derived numerically from a1, . . . an, and that hence the domain of
the quantities a1, . . . an is identical to the domain of the quantities b1, . . . bn; one also
can take those (n − m) quantities from the quantities b1, . . . bn themselves.

6 1. If element a depends algebraically on the system S, then there is a finite subsystem
S′ of S on which a depends algebraically.

7 2. If S3 depends algebraically on S2, and S2 on S1, then S3 is algebraically dependent
on S1.
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He called two sets S1 and S2 equivalent if S1 depends algebraically on S2, and
conversely. A set is reducible if it has a proper subset equivalent to it. He showed:

3. Jedes Teilsystem eines irreduziblen Systems ist irreduzibel.
4. Jedes reduzible System enthält ein endliches reduzibles Teilsystem.8

and (after statement 5, saying that any two field extensions by equicardinal irre-
ducible systems are isomorphic):

6. Wird ein irreduzibles System S durch Hinzufügung eines Elementes a reduzibel,
so ist a von S algebraisch abhängig.9

From these properties, Steinitz derived:

7. Ist S ein (in bezug auf K) irreduzibles System, das Element a in bezug auf
K transzendent, aber von S algebraisch abhängig, so enthält S ein bestimmtes
endliches Teilsystem T von folgender Beschaffenheit: a ist von T algebraisch
abhängig; jedes Teilsystem von S, von welchem a algebraisch abhängt, enthält
das System T ; wird irgendein Element aus T durch a ersetzt, so geht S in ein
äquivalentes irreduzibles System über; keinem der übrigen Elemente von S kommt
diese Eigenschaft zu.10

Steinitz proved this using only the properties given above (together with the fact
that any s ∈ S is algebraically dependent on S). Moreover, he derived from 7, (what
is now called) Steinitz’ exchange property for algebraic dependence:

8. Es seien U und B endliche irreduzible Systeme von m bzw. n Elementen; es
sei n ≤ m und B algebraisch abhängig von U . Dann sind im Falle m = n die
Systeme U und B äquivalent, im Falle n < m aber ist U einem irreduziblen
System äquivalent, welches aus B und m − n Elementen aus U besteht.11

This in particular implies that any two equivalent irreducible systems have the same
size, and that the properties are equivalent to that determining a matroid.

In a subsequent paper, Steinitz [1913] proved a number of auxiliary statements
on linear equations. Among other things, he showed (in his terminology, vectors are
numbers, and a vector space is a module):

Besitzt der Modul M eine Basis von p Zahlen, und enthält er r linear unabhängige
Zahlen β1, . . . , βr, so besitzt er auch eine Basis von p Zahlen, unter denen die
Zahlen β1, . . . , βr sämtlich vorkommen.12

8 3. Every subsystem of an irreducible system is irreducible.
4. Every reducible system contains a finite reducible subsystem.

9 6. If an irreducible system S becomes reducible by adding an element a, then a is
algebraically dependent on S.

10 7. If S is an irreducible system (with respect to K), [and] the element a transcendent
with respect to K, but algebraically dependent on S, then S contains a certain finite
subsystem T with the following quality: a is algebraically dependent on T ; every subsys-
tem of S on which a depends algebraically, contains the system T ; if any element from
T is replaced by a, then S passes into an equivalent irreducible system; this property
belongs to none of the other elements of S .

11 8. Let U and B be finite irreducible systems of m and n elements respectively; let n ≤ m

and let B be algebraically dependent on U . Then, in case m = n, the systems U and
B are equivalent, but in case n < m, U is equivalent to an irreducible system which
consists of B and m − n elements from U .

12 If a module M possesses a base of p numbers, and it contains r linearly independent
numbers β1, . . . , βr, then it possesses also a base of p numbers, among which the num-
bers β1, . . . , βr all occur.
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Steinitz’ proof of this in fact gives a stronger result, known as Steinitz’ exchange

property : the new base is obtained by extending β1, . . . , βr with vectors from the
given base. So Steinitz came to the same result as Grassmann [1862] quoted above.
In his paper, Steinitz [1913] did not make a link with similar earlier results in
Steinitz [1910] on algebraic dependence.

1929: Bergmann

Inspired by Menger [1928a], who aimed at giving an axiomatic foundation for pro-
jective geometry on a lattice-theoretical basis, Bergmann [1929] gave an axiomatic
foundation of affine geometry, again on the basis of lattices. Bergmann’s article
contains a number of proofs that in fact concern matroids, while he assumed, but
not used, a complementation axiom (since he aimed at characterizing full affine
spaces, not subsets of it): for each pair of elements A ≤ B there exist C1 and C2

with A ∨ C1 = B, A ∧ C1 = 0, B ∧ C2 = A, and B ∨ C2 = 1. This obviously implies
(in the finite case) that

(39.67) each element of the lattice is a join of points.

(A point is a minimal nonzero element.) It is property (39.67) that Bergmann uses
in a number of subsequent arguments (and not the complementation axiom). His
further axiom is:

(39.68) for any element A and any point P of the lattice, there is no element
B with A < B < A ∨ P .

He called an ordered sequence (P1, . . . , Pn) of points a chain (Kette) (of an element
A), if Pi �≤ P1 ∨ · · · ∨Pi−1 for i = 1, . . . , n (and A = P1 ∨ · · · ∨Pn). He derived from
(39.67) and (39.68) that being a chain is independent of the order of the elements
in the chain, and that any two chains of an element A have the same length:

Satz: Alle Ketten eines Elementes A haben dieselbe Gliederzahl.13

He remarked that under condition (39.67), this in turn implies (39.68).
Denoting the length of any chain of A by |A|, Bergmann showed that it is equal

to the rank of A in the lattice, and he derived the submodular inequality:

|A| + |B| ≥ |A + B| + |A · B|.

(Bergmann denoted ∨ and ∧ by + and ·.) Thus he proved the submodularity of the
rank function of a matroid. These results were also given by Alt [1936] in Menger’s
mathematischen Kolloquium in Vienna on 1 March 1935 (cf. Menger [1936a,1936b]).

1929-1937: Haupt, van der Waerden

Inspired by the work of Steinitz, in the books Einführung in die Algebra (Introduc-
tion to Algebra) by Haupt [1929a,1929b] and Moderne Algebra (Modern Algebra)
by van der Waerden [1930], the analogies between proof methods for linear and
algebraic dependence were observed.

Haupt mentioned in his preface (after saying that his book will contain the
modern developments of algebra):

13 Theorem: All chains of an element A have the same number of members.
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Demgemäß ist das vorliegende Buch durchweg beeinflußt von der bahnbrechenden
,,Algebraischen Theorie der Körper“ von Herrn E. Steinitz, was hier ein für allemal
hervorgehoben sei. Ferner stützt sich die Behandlung der linearen Gleichungen
(vgl. 9,1 bis 9,4), einer Anregung von Frl. E. Noether folgend, auf die von Herrn
E. Steinitz gegebene Darstellung (vgl. das Zitat in 9,0 ).14

(The quotation in Haupt’s ‘9,0 ’ is to Steinitz [1910,1913].)
A number of theorems on algebraic dependence were proved in Chapter 23

of Haupt [1929b] by referring to the proofs of the corresponding results on linear
dependence in Chapter 9 of Haupt [1929a]. In the introduction of his Chapter 9,
Haupt wrote:

Die Behandlung der linearen Gleichungen ist (soweit es geht) so angelegt, daß
sich ein Teil der dabei gewonnenen Sätze auf Systeme von algebraisch abhängigen
Elementen überträgt, was später (23,6) dargelegt wird.15

In the first edition of his book, van der Waerden [1930] listed the properties of
algebraic dependence:

Die Relation der algebraischen Abhängigkeit hat demnach die folgenden Eigen-
schaften:
1. a ist abhängig von sich selbst, d.h. von der Menge {a}.
2. Ist a abhängig von M , so hängt es auch von jeder Obermenge von M ab.
3. Ist a abhängig von M , so ist a schon von einer endlichen Untermenge
{m1, . . . , mn} von M (die auch leer sein kann) abhängig.
4. Wählt man diese Untermenge minimal, so ist jedes mi von a und den übrigen
mj abhängig.
Weiter gilt:
5. Ist a abhängig von M und jedes Element von M abhängig von N , so ist a

abhängig von N .16

Following Steinitz, van der Waerden called two sets equivalent if each element
of the one set depends algebraically on the other set, and vice versa, while a set is
irreducible if no element of it depends algebraically on the remaining.

Using only the properties 1-5, van der Waerden derived that each set contains
an irreducible set equivalent to it, and that if M ⊆ N , then each irreducible subset
of M equivalent to M can be extended to an irreducible subset of N equivalent
to N — in other words, inclusionwise minimal subsets of M equivalent to M are

14 Accordingly, the present book is invariably influenced by the pioneering ‘Algebraic The-
ory of Fields’ by Mr E. Steinitz, which be emphasized here once and for all. Further,
following a suggestion by Miss E. Noether, the treatment of linear equations (cf. 9,1 to
9,4) leans on the presentation by Mr E. Steinitz (cf. the quotation in 9,0 ).

15 The treatment of linear equations is (as far as it goes) made such that a part of the
theorems obtained therewith transfers to systems of algebraically dependent elements,
which will be discussed later (23,6).

16 The relation of algebraic dependence has therefore the following properties:
1. a is dependent on itself, that is, on the set {a}.
2. If a is dependent on M , then it also depends on every superset of M .
3. If a is dependent on M , then a is dependent already on a finite subset {m1, . . . , mn}

of M (that can also be empty).
4. If one chooses this subset minimal, then every mi is dependent on a and the

remaining mj .
Further it holds:
5. If a is dependent on M and every element of M is dependent on N , then a is

dependent on N .
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independent, and inclusionwise maximal independent subsets of M are equivalent
to M .

Van der Waerden [1930] also showed that two equivalent irreducible systems
have the same size, but in the proof he uses polynomials. This is not necessary,
since the properties 1-5 determine a matroid.

Van der Waerden noticed the analogy with linear dependence, treated in his §
28, where he uses specific facts on linear equations:

Tatsächlich gelten für die dort betrachtete lineare Abhängigkeit dieselben Regeln
1 bis 5, die für die algebraische Abhängigkeit in § 61 aufgestellt wurden; man
kann also alle Beweise wörtlich übertragen.17

In the second edition of his book, van der Waerden [1937] gave a unified treat-
ment of linear and algebraic dependence, slightly different from the first edition. As
for linear dependence he stated in § 33:

Drei Grundsätze genügen. Der erste ist ganz selbstverständlich.
Grundsatz 1. Jedes ui (i = 1, . . . , n) ist von u1, . . . , un linear abhängig.
Grundsatz 2. Ist v linear abhängig von u1, . . . , un, aber nicht von u1, . . . , un−1,
so ist un linear abhängig von u1, . . . , un−1, v.

[· · ·]
Grundsatz 3. Ist w linear abhängig von v1, . . . , vs und ist jedes vj (j = 1, . . . , s)
linear abhängig von u1, . . . , un, so ist w linear abhängig von u1, . . . , un.18

The same axioms are given in § 64 of van der Waerden [1937], with ‘linear’ replaced
by ‘algebraisch’.

Next, van der Waerden called elements u1, . . . , un (linearly or algebraically)
independent if none of them depend on the rest of them. Among the conse-
quences of these principles, he mentioned that if u1, . . . , un−1 are independent but
u1, . . . , un−1, un are not, then un is dependent on u1, . . . , un−1, and that each finite
system of elements u1, . . . , un contains a (possibly empty) independent subsystem
on which each ui is dependent. He called two systems u1, . . . , un and v1, . . . , vs

equivalent if each vk depends on u1, . . . , un and each ui depends on v1, . . . , vs, and
he now derived from the three principles that two equivalent independent systems
have the same size.

Mac Lane [1938] observed that the axioms introduced by Whitney [1935] and
those by van der Waerden [1937] determine equivalent structures.

1934: Hilbert, Bernays: collinearity axioms

Axiom systems for points and lines in a plane were given by Hilbert [1899] in his
book Grundlagen der Geometrie (Foundations of Geometry), and by Veblen [1904].

17 In fact, the same rules 1 to 5, that were formulated for algebraic dependence in § 61,
hold for the linear dependence considered there; one can transfer therefore all proofs
word for word.

18 Three principles suffice. The first one is fully self-evident.
Principle 1. Every ui (i = 1, . . . , n) is linearly dependent on u1, . . . , un.
Principle 2. If v is linearly dependent on u1, . . . , un, but not on u1, . . . , un−1, then

un is linearly dependent on u1, . . . , un−1, v.
[· · ·]

Principle 3. If w is linearly dependent on v1, . . . , vs and every vj (j = 1, . . . , s) is
linearly dependent on u1, . . . , un, then w is linearly dependent on u1, . . . , un.
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Basis is the axiom that any two distinct points are in exactly one line. Note that
this axiom determines precisely all matroids of rank at most 3 with no parallel
elements (by taking the lines as maximal flats).

One of the axioms of Veblen is:

Axiom VI. If points C and D (C �= D) lie on the line AB, then A lies on the line
CD.

This axiom corresponds to axiom 3) in the book Grundlagen der Mathematik

(Foundations of Mathematics) of Hilbert and Bernays [1934], who aim to make an
axiom system based on points only:

Dabei empfiehlt es sich für unseren Zweck, von dem Hilbertschen Axiomen-
system darin abzuweichen, daß wir nicht die Punkte und die Geraden als zwei
Systeme von Dingen zugrunde legen, sondern nur die Punkte als Individuen
nehmen.19

The axiom system of Hilbert and Bernays is in terms of a relation Gr to describe
collinearity of triples of points (where (x) stands for ∀x, (Ex) for ∃x, and P for the
negation of P ):

I. Axiome der Verknüpfung.
1) (x)(y)Gr(x, x, y)
,,x, x, y liegen stets auf einer Geraden.“
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
,,Wenn x, y, z auf einer Geraden liegen, so liegen stets auch y, x, z sowie auch
x, z, y auf einer Geraden.“
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
,,Wenn x, y, verschiedene Punkte sind und wenn x, y, z sowie x, y, u auf einer
Geraden liegen, so liegen stets auch x, z, u auf einer Geraden.“
4) (Ex)(Ey)(Ez)Gr(x, y, z).
,,Es gibt Punkte x, y, z, die nicht auf einer Geraden liegen.“20

The axioms 1) and 2) in fact tell that the relation Gr is determined by unordered
triples of distinct points. The exchange axiom 3) is a special case of the matroid
axiom for circuits in a matroid.

Hilbert and Bernays extended the system by axioms for a betweenness rela-
tion Zw for ordered triples of points, and a parallelism relation Par for ordered
quadruples of points.

19 At that it is advisable for our purpose to deviate from Hilbert’s axiom system in that
we do not lay the points and the lines as two systems of things as base, but take only
the points as individuals.

20 I. Axioms of connection.
1) (x)(y)Gr(x, x, y)
‘x, x, y always lie on a line.’
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
‘If x, y, z lie on a line, then also y, x, z as well as x, z, y always lie on a line.’
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
‘If x, y, are different points and if x, y, z as well as x, y, u lie on a line, then also x, z, u

always lie on a line.’
4) (Ex)(Ey)(Ez)Gr(x, y, z).
‘There are points x, y, z, that do not lie on a line.’
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1933–1935: Birkhoff: Lattices

In his paper ‘On the combination of subalgebras’, Birkhoff [1933] (‘Received 15
May 1933’) wrote:

The purpose of this paper is to provide a point of vantage from which to attack
combinatorial problems in what may be termed modern, synthetic, or abstract
algebra. In this spirit, a research has been made into the consequences and appli-
cations of seven or eight axioms, only one [V] of which itself is new.

The axioms are those for a lattice, added with axiom V, that amounts to (39.64)
above. Any lattice satisfying this condition is called by Birkhoff in this paper a ‘B-
lattice’. In an addendum, Birkhoff [1934b] mentioned that O. Ore had informed him
that part of his results had been obtained before by Dedekind [1900]. Therefore,
Birkhoff [1935b] renamed it to modular lattice.

Birkhoff [1933] mentioned, as examples, the classes of normal subgroups and
of characteristic subgroups of a group. Other examples mentioned are the ideals of
a ring, and the linear subspaces of Euclidean space. (Both examples actually give
sublattices of the lattice of all normal subgroups of the corresponding groups.)

Like Dedekind, Birkhoff [1933] showed that (39.64) implies (39.66). Lattices
satisfying (39.66) are called (upper) semimodular. Birkhoff showed that any upper
semimodular lattice has a rank function satisfying (39.65)(i) and (ii) and satisfying
the submodular law:

(39.69) r(a ∩ b) + r(a ∪ b) ≤ r(a) + r(b).

This characterizes upper semimodular lattices.
Birkhoff noticed that this implies that the modular lattices are exactly those

lattices satisfying both (39.66) and its symmetric form:

(39.70) if c covers a and b and a �= b, then a and b cover a ∧ b.

Birkhoff [1935c] showed that the partition lattice is upper semimodular, that is,
satisfies (39.66), and hence has a rank function satisfying the submodular inequal-
ity21. Thus the complete graph, and hence any graph, gives a geometric lattice (and
hence a matroid — however, Whitney’s work seems not to have been known yet to
Birkhoff at the time of writing this paper).

In a number of other papers, Birkhoff [1934a,1934c,1935b] made a further study
of modular lattices, and gave relations to projective geometries (in which the collec-
tion of all flats gives a modular lattice). Klein-Barmen [1937] further investigated
semimodular lattices (called by him Birkhoffsche Verbände (Birkhoff lattices)), of
which he found several lattice-theoretical characterizations.

1935: Whitney: Matroids

Whitney [1935] (presented to the American Mathematical Society, September 1934)
introduces the notion of matroid as follows:

21 In fact, Birkhoff [1935c] claimed the modular equality for the rank function of a partition
lattice (page 448), but this must be a typo, witness the formulation of, and the reference
in, the first footnote on that page.
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Let C1, C2, · · · , Cn be the columns of a matrix M . Any subset of these columns
is either linearly independent or linearly dependent; the subsets thus fall into two
classes. These classes are not arbitrary; for instance, the two following theorems
must hold:

(a) Any subset of an independent set is independent.
(b) If Np and Np+1 are independent sets of p and p+1 columns respec-
tively, then Np together with some column of Np+1 forms an indepen-
dent set of p + 1 columns.

There are other theorems not deducible from this; for in § 16 we give an example of
a system satisfying these two theorems but not representing any matrix. Further
theorems seem, however, to be quite difficult to find. Let us call a system obeying
(a) and (b) a “matroid.” The present paper is devoted to a study of the elementary
properties of matroids. The fundamental question of completely characterizing
systems which represent matrices is left unsolved. In place of the columns of a
matrix we may equally well consider points or vectors in a Euclidean space, or
polynomials, etc.

In the paper, Whitney observed that forests in a graph form the independent
sets of a matroid, for which reason he carried over various terms from graphs to
matroids.

Whitney described several equivalent axiom systems for the notion of matroid.
First, he showed that the rank function is characterized by (39.42), and he derived
that it is submodular. Next, he showed that the collection of bases is characterized
by (39.33)(ii), and the collection of circuits by (39.34)(iii). Moreover, he showed
that complementing all bases gives again a matroid, the dual matroid, and that
the dual of a linear matroid is again a linear matroid. In the paper, he also studied
separability and representability of matroids. The example given in Whitney’s § 16
(mentioned in the above quotation), is in fact the well-known Fano matroid — he
apparently did not consider matrices over GF(2). However, in an appendix of the
paper, he characterized the matroids representable by a matrix ‘of integers mod 2’:
a matroid is representable over GF(2) if and only if any sum (mod 2) of circuits
can be partitioned into circuits.

In a subsequent paper ‘Abstract linear independence and lattices’, Birkhoff
[1935a] pointed out the relations of Whitney’s work with Birkhoff’s earlier work on
semimodular lattices. He stated:

In a preceding paper, Hassler Whitney has shown that it is difficult to distinguish
theoretically between the properties of linear dependence of ordinary vectors, and
those of elements of a considerably wider class of systems, which he has called
“matroids.”
Now it is obviously impossible to incorporate all of the heterogeneous abstract
systems which are constantly being invented, into a body of systematic theory,
until they have been classified into two or three main species. The purpose of this
note is to correlate matroids with abstract systems of a very common type, which
I have called “lattices.”

Birkhoff showed that a lattice is isomorphic to the lattice of flats of a matroid if
and only if the lattice is semimodular, that is, satisfies (39.66), and each element is
a join of atoms.

In the paper ‘Some interpretations of abstract linear dependence in terms of
projective geometry’, MacLane [1936] gave a geometric interpretation of matroids.
He introduced the notion of a ‘schematic n-dimensional figure’, consisting of ‘k-
dimensional planes’ for k = 1, 2, . . .. Each such plane is a subset of an (abstract)
set of ‘points’, with the following axioms (for any appropriate k):
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(39.71) (i) any k points belonging to no k − 1-dimensional plane, belong to
a unique k-dimensional plane; moreover, this plane is contained in
any plane containing these k points;

(ii) every k-dimensional plane contains k points that belong to no k−1-
dimensional plane.

MacLane mentioned that there is a 1-1 correspondence between schematic figures
and the collections of flats of matroids. As a consequence he mentioned that a
schematic n-dimensional figure is completely determined by its collection of n − 1-
dimensional planes (as a matroid is determined by its hyperplanes = complements
of cocircuits).

1935: Nakasawa: Abhängigkeitsräume

In the paper Zur Axiomatik der linearen Abhängigkeit. I (On the axiomatics of
linear dependence. I) in Science Reports of the Tokyo Bunrika Daigaku (Tokyo
University of Literature and Science), Nakasawa [1935] introduced an axiom sys-
tem for dependence, that he proved to be equivalent to matroids (in a different
terminology).

He was motivated by an axiom system described by Thomsen [1933] in his
book Grundlagen der Elementargeometrie (Foundations of Elementary Geometry).
Thomsen’s ‘cycle calculus’ is an attempt to axiomatize relations (like coincidence,
orthogonality, parallelism) between geometric objects (points, lines, etc.). Thomsen
emphasized that existence questions often are inessential in elementary geometry:

In der Tat erscheinen uns ja auch die Existenzaussagen als ein verhältnismäßig
unwesentliches Beiwerk der Elementargeometrie. Ohne Zweifel empfinden wir als
die eigentlich inhaltsvollsten und die wichtigsten Einzelaussagen der Elementarge-
ometrie die von der folgenden reinen Form: ,,Wenn eine Reihe von geometrischen
Gebilden, d.h. eine Anzahl von Punkten, Geraden, usw., gegeben vorliegt, und
zwar derart, daß zwischen den gegebenen Punkten, Geraden usw. die und die ge-
ometrischen Lagebeziehungen bestehen (Koinzidenz, Senkrechtstehen, Parallel-
laufen, ,,Mittelpunkt sein“ und anderes mehr), dann ist eine notwendige Folge
dieser Annahme, daß auch noch diese bestimmte weitere geometrische Lage-
beziehung gleichzeitig besteht.“ In Sätzen dieser Form kommt nichts von Existen-
zaussagen vor. Was das Wichtigste ist, nicht in den Folgerungen. Dann aber auch
nicht in den Annahmen. Wir nehmen an: Wenn die und die Dinge in den und den
Beziehungen gegeben vorliegen..., usw. Wir machen aber keinerlei Voraussetzun-
gen darüber, ob eine solche Konfiguration in unserer Geometrie existieren kann.
Der Schluß ist nur: Wenn sie existieren, dann .... Falls die Konfiguration gar nicht
existiert, der Satz also gegenstandslos wird, betrachten wir ihn nach der üblichen
Konvention ,,gegenstandslos, also richtig“ als richtig.22

22 Indeed, also the existence statements seem to us a relatively inessential side issue of
elementary geometry. Undoubtedly, we find as the really most substantial and most
important special statements of elementary geometry those of the following pure form:
‘If a sequence of geometric creations, that is, a number of points, lines etc., are given
to us, and that in such a way, that those and those geometric position relations exist
between the given points, lines etc. (coincidence, orthogonality, parallelism, “being a
centre”, and other), then a necessary consequence of this assumption is that also this
certain further geometric position relation exists at the same time.’ In theorems of this
form, no existence statements occur. What is most important: not in the consequences.
But then neither in the assumptions. We assume: If those and those things are given
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Thomsen aimed at founding axiomatically ‘the partial geometry of all elementary
geometric theorems without existence statements’. To that end, he introduced the
concept of a cycle, which is an ordered finite sequence of abstract objects, which
can be thought of as points, lines, etc. Certain cycles are ‘correct’ and the other ‘in-
correct’ (essentially they represent a system of relations defining any binary group):

A) Axiom der Grundzyklen: Der Zyklus αα ist für jedes α richtig, der Zyklus α

für kein α.
B) Axiom des Löschens: β1β2 . . . βnαα → β1β2 . . . βn; in Worten: Aus der

Richtigkeit des Zyklus β1β2 . . . βnαα folgt auch die des Zyklus β1β2 . . . βn.
C) Axiom des Umstellens: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom des Umkehrens: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom des Anfügens: β1β2 . . . βn und γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.23

Axiom B) can be considered as a variant of Steinitz’ exchange property. With
the other axioms it implies that if β1 · · · βnα and γ1 · · · γrα are cycles, then
β1 · · · βnγ1 · · · γr is a cycle. Therefore, the set of all inclusionwise minimal nonempty
sets containing a cycle form the circuits of a matroid.

The purpose of Nakasawa [1935] is to generalize Thomsen’s axiom system:

In der vorliegenden Untersuchung soll ein Axiomensystem für eine neue For-
mulierung der linearen Abhängigkeit des n-dimensionalen projektiven Raumes
angegeben werden, indem wir hauptsächlich den Zyklenkalkül, den Herr G. Thom-
sen bei seiner Grundlegung der elementaren Geometrie hergestellt hat, hier in
einem noch abstrakteren Sinne verwenden.24

While Thomsen’s cycles relate to unions of circuits in a matroid, those of Nakasawa
form the dependent sets of a matroid. His axiom system can be considered as a direct
extension to higher dimensions of the collinearity axioms of Hilbert and Bernays
given above.

He called the structure der erste Verknüpfungsraum (the first connection space),
or a B1-Raum (B1-space), writing a1 · · · as for a1 · · · as = 0:

Grundannahme: Wir denken uns eine gewisse Menge der Elementen; B1 ∋
a1, a2, · · · , as, · · ·. Für gewisse Reihen der Elementen, die wir Zyklen nennen
wollen, denken wir dazu die Relationen “gelten” oder “gültig sein”, in Ze-
ichen a1 · · · as = 0, bzw. “nicht gelten” oder “nicht gültig sein”, in Zeichen
a1 · · · as �= 0. Diese Relationen sollen nun folgenden Axiomen genügen;

to us in those and those relations..., etc. We do not make any assumption on the fact
if such a configuration can exist in our geometry. The conclusion is only: If they exist,
then .... In case the configuration does not exist at all, and the theorem thus becomes
meaningless, we consider it by the usual convention ‘meaningless, hence correct’ as
correct.

23

A) Axiom of ground cycles: The cycle αα is correct for each α, the cycle α for no α.
B) Axiom of solving: β1β2 . . . βnαα → β1β2 . . . βn; in words: From the correctness of the

cycle β1β2 . . . βnαα follows that of the cycle β1β2 . . . βn.
C) Axiom of transposition: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom of inversion: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom of addition: β1β2 . . . βn and γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.

24 In the present research, an axiom system for a new formulation of linear dependence of
the n-dimensional projective space should be indicated, while we use here mainly the
cycle calculus, which Mr G. Thomsen has constructed in his foundation of elementary
geometry, in a still more abstract sense.
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Axiom 1. (Reflexivität) : aa.
Axiom 2. (Folgerung) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (Vertauschung) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (Transitivität) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Eine solche Menge B1 heisst der erste Verknüpfungsraum, in kurzen
Worten, B1-Raum.25

Axiom 3 corresponds to condition (39.3).
Nakasawa introduced the concept of span, and he derived that any two inde-

pendent sets having the same span, have the same size. It implies that B1-spaces
are the same structures as matroids. Moreover, he gave a submodular law for a
rank concept.

In a second paper, Nakasawa [1936a] added a further axiom on intersections of
subspaces, yielding a ‘B2-space’, which corresponds to a projective space (in which
the rank is modular), and in a third paper, Nakasawa [1936b] observed that his
B1-spaces form the same structure as the matroids of Whitney.

1937-1940: Pauc, Haupt, Nöbeling

The axioms presented by Nakasawa were also given by Pauc [1937], added with
an axiom describing the limit behaviour of dependence, if the underlying set is
endowed with a topology:

Introduction axiomatique d’une notion de dépendance sur une classe lim-

ite. — Soit D un prédicat relatif aux systèmes finis non ordonnés de points d’une
classe limite L, assujetti aux axiomes (notation d’Hilbert-Bernays)

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),

(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&
D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)











Quels que soient les points x1, x2, . . . , xp et la suite y1, y2, . . . , yq ,

. . . de L
( lim
q→∞

yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].26

In a subsequent paper, Haupt, Nöbeling, and Pauc [1940] studied systems, called
A-Mannigfaltigkeit, (A-manifolds) that satisfy the axioms A1-A3. They mentioned

25 Basic assumption: We imagine ourselves a certain set of elements; B1 ∋
a1, a2, · · · , as, · · ·. For certain sequences of the elements, which we want to call cycles,
we think the relations on them ‘to hold ’ or ‘to be valid ’, in notation a1 · · · as = 0, and
‘not to hold ’ or ‘not to be valid ’, in notation a1 · · · as �= 0, respectively. These relations
now should satisfy the following axioms;

Axiom 1. (reflexivity) : aa.
Axiom 2. (deduction) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (exchange) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (transitivity) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Such a set B1 is called the first connection space, in short, B1-space.

26 Axiomatic introduction of a notion of dependence on a limit class. — Let D

be a predicate relative to the finite unordered systems of points from a limit class L,
subject to the axioms (notation of Hilbert-Bernays)
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that this axiom system was indeed inspired by those for collinearity of Hilbert-
Bernays quoted above. They commented that its relation with Birkhoff’s lattices,
is analogous to the relation of the Hilbert-Bernays collinearity axioms with those
of Hilbert for points and lines.

Haupt, Nöbeling, and Pauc [1940] gave, as examples, linear and algebraic de-
pendence, and derived several basic facts (all bases have the same size, each inde-
pendent set is contained in a base, for each pair of bases B, B′ and x ∈ B \B′ there
is a y ∈ B′ \ B such that B − x + y is a base, and the rank is submodular).

The authors mentioned that they were informed by G. Köthe about the relations
of their work with the lattice formulation of algebraic dependence of Mac Lane
[1938], but no connection is made with Whitney’s matroid.

Among the further papers related to matroids are Menger [1936b], giving ax-
ioms for (full) affine spaces, and Wilcox [1939,1941,1942,1944] and Dilworth [1941a,
1941b,1944] on matroid lattices. The notion of M -symmetric lattice introduced by
Wilcox [1942] was shown in Wilcox [1944] to be equivalent to upper semimodular
lattice.

Rado

Rado was one of the first to take the independence structure as a source for further
theorems, and to connect it with matching type theorems and combinatorial opti-
mization. He had been interested in Kőnig-Hall type theorems (Rado [1933,1938]),
and in his paper Rado [1942], he extended Hall’s marriage theorem to transversals
that are independent in a given matroid — a precursor of matroid intersection. In
fact, with an elementary construction, Rado’s theorem implies the matroid union
theorem, and hence also the matroid intersection theorem (to be discussed in Chap-
ters 41 and 42).

Rado [1942] did not refer to any earlier literature when introducing the concept
of an independence relation, but the axioms are similar to those of Whitney for
the independent sets in a matroid. Rado mentioned only linear independence as a
special case.

He proved that a family of subsets of a matroid has an independent transversal
if and only if the union of any k of the subsets contains an independent set of size
k, for all k. Rado also showed that this theorem characterizes matroids.

Rado [1949a] extended the concept of matroid to infinite matroids, where he
says that he extends the axioms of Whitney [1935].

Rado [1957] showed that if the elements of a matroid are linearly ordered by ≤,
there is a unique minimal base {b1, . . . , br} with b1 < b2 < · · · < br such that for
each i = 1, . . . , r all elements s < bi belong to span({b1, . . . , bi−1}). Rado derived
that for any independent set {a1, . . . , ak} with a1 < · · · < ak one has bi ≤ ai

for i = 1, . . . , k. Therefore, the greedy method gives an optimum solution when

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),

(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&
D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)











Whatever are the points x1, x2, . . . , xp and the sequence y1, y2, . . . , yq ,

. . . from L
( lim
q→∞

yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].
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applied to find a minimum-weight base. Rado mentioned that it extends the work
of Bor̊uvka and Kruskal on finding a shortest spanning tree in a graph.

For notes on the history of matroid union, see Section 42.6f. For an excellent
survey of early literature on matroids, with reprints of basic articles, see Kung
[1986].


