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ROTA’S BASIS CONJECTURE FOR PAVING MATROIDS∗

JIM GEELEN† AND PETER J. HUMPHRIES‡

Abstract. Rota conjectured that, given n disjoint bases of a rank-n matroid M , there are n
disjoint transversals of these bases that are all bases of M . We prove a stronger statement for the
class of paving matroids.
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1. Introduction. We prove the following theorem.
Theorem 1.1. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) such
that Ai is a basis of Mi for each i ∈ {1, . . . , n}.

A paving matroid M is a matroid in which each circuit has size r(M) or r(M)+1,
where r(M) is the rank of M . Theorem 1.1 implies Rota’s basis conjecture for paving
matroids.

Conjecture 1.2 (Rota (see [6])). Given n disjoint bases B1, . . . , Bn in a rank-n
matroid M , there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) that are all
bases of M .

For n = 2, Conjecture 1.2 follows immediately from basis exchange in matroids.
Chan [2] proved the conjecture for n = 3. Wild [9] proved a stronger conjecture for
the class of strongly base-orderable matroids, while more recently a slightly weaker
result was proved for a general matroid (Ponomarenko [8]). Further partial results
may be found in [1], [3], [4], [5], and [9].

Theorem 1.1 fails for both n = 2 and matroids in general. When n = 2, if we take
B(M1) = {{e, f}, {e, g}, {f, h}, {g, h}} and B(M2) = {{e, f}, {e, h}, {f, g}, {g, h}},
then {e, f}, {g, h} is the only pair of disjoint bases. In the second instance, if rM1(E−
B1) = 0, then there are no M1-independent transversals of (B1, . . . , Bn).

The remainder of this paper is taken up with the proof of the theorem. In sec-
tion 2, we prove that Theorem 1.1 holds when n = 3. This result is used, in section 3,
as the base case of an inductive proof of Theorem 1.1. The induction argument is
surprisingly straightforward and can be read independently of section 2.

2. The case n = 3. For basic concepts in matroid theory, the reader is referred
to Oxley [7]. We follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily be
interested in rank-2 flats, or lines. In the proof of Theorem 2.1, we make frequent use
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ON ROTA’S BASIS CONJECTURE 1043

of the fact that if rM (X) = rM (Y ) = 2 and |X ∩Y | ≥ 2, then X and Y are contained
in the same line in M .

Theorem 2.1. Theorem 1.1 holds for n = 3.

Proof. Assume that the theorem is false. Then there exist bases B1 =
{a1, a2, a3}, B2 = {b1, b2, b3}, B3 = {c1, c2, c3} of rank-3 paving matroids M1,M2,M3,
respectively, with common ground set E = B1∪B2∪B3, that provide a counterexam-
ple. The rank of a set X in Mi will be denoted by ri(X) and the closure by cli(X). A
three-element subset of E will be called a transversal if it meets each of B1, B2, and
B3. Note that we may assume that every nontrivial line in each matroid contains a
transversal, since all nontrivial lines not containing a transversal may be relaxed to
provide an alternative counterexample (see [7, section 1.5, Exercise 3]).

2.1.1. Let X ⊆ E be a set that meets each of B1, B2, B3. If ri(X) = 3, then X
contains an Mi-independent transversal.

Subproof. Let T ⊆ X be a transversal, and suppose that T is Mi-dependent.
Then since ri(X) = 3, there is some e ∈ X such that e /∈ cli(T ). Without loss of
generality, e ∈ B1, so let f be the unique element in T ∩B1. Then ri((T −f)∪e) = 3,
and we are done.

2.1.2. If no M1-dependent transversal contains both a1 and b1, then there exists
e ∈ B3 such that r2(E − {a1, b1, e}) = 2.

Subproof. For each a ∈ B1 and b ∈ B2, there exists c ∈ B3 such that {a, b, c} is
M3-independent (since r3(B3) = 3). In particular, there exist e, f, g ∈ B3 such that
{a2, b3, e}, {a3, b3, f}, and {a2, b2, g} are M3-independent. Then, by 2.1.1, {a3, b2} ∪
(B3 − {e}), {a2, b2} ∪ (B3 − {f}), and {a3, b3} ∪ (B3 − {g}) all have rank 2 in M2

(since otherwise we would find the required partition into transversals). The second
and third of these sets both have two points in common with the first, and so they
are all contained in a common line in M2.

Suppose that M1 has a line L containing at least seven elements. Since r1(B1) = 3,
|L − B1| ≥ 5. Up to symmetry, we may assume that b1, b2, c1, c2, c3 ∈ L and that
a1 /∈ cl1(L). Now neither {a1, b1} nor {a1, b2} is in an M1-dependent transversal.
So by 2.1.2, r2({a2, a3, b2, b3}) = r2({a2, a3, b1, b3}) = 2, contradicting the fact that
r2(B2) = 3. Thus none of M1, M2, and M3 contains a line on seven or more elements.

2.1.3. Every pair e ∈ Bi, f /∈ Bi is contained in some Mi-dependent transversal.

Subproof. Suppose that no M1-dependent transversal contains both a1 and b1.
Then, by 2.1.2 and symmetry, we may assume that r2(E − {a1, b1, c1}) = 2. Let
X = E − {a1, b1, c1} and Y = X − B1. Each transversal in {a2, a3, b2, b3, c1} is
M2-independent, for otherwise E − {a1, b1} is a seven-point line in M2. Since each
transversal in {a1, b1, c2, c3} is M1-independent, there is no M3-independent transver-
sal in X; thus r3(X) = 2. Similarly, since each transversal in {a2, a3, b1, c2, c3} is M2-
independent and each transversal in {a2, a3, b2, b3, c1} is M3-independent, we conclude
that r1(Y ∪{a1}) = 2. Without loss of generality, a2 /∈ cl1(Y ), and so both {a2, b2, c2}
and {a2, b3, c3} are M1-independent. This means that {a1, b1, c2} and {a1, b1, c3} are
M2-dependent, for otherwise we again have three disjoint transversals that are inde-
pendent in their respective matroids. Thus r2({a1, b1, c2, c3}) = 2, and E−{c1} is an
eight-point line in M2, which is a contradiction.

Assume that B2 is dependent in M1. Thus, some line L in M1 contains B2; we may
assume that L also contains a1 and c1, since any nontrivial line contains a transversal.
There must be some element a3, say, of B1 that is not in cl1(L), but then no transversal
containing both a3 and c1 is dependent in M1, leading to a contradiction by 2.1.3.
Thus each of B1, B2, and B3 is independent in all three matroids. This provides
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1044 JIM GEELEN AND PETER J. HUMPHRIES

additional symmetry, since we may now permute (B1, B2, B3).
Suppose next that M1 contains a five- (or six-) point line L. By the conclusion

of the last paragraph, we may assume that a1, b1, b2, c1, c2 ∈ L and that a3 /∈ cl1(L).
Now, since there is an M1-dependent transversal containing a3, b1, we have that
{a3, b1, c3} must be M1-dependent. Likewise {a3, b2, c3} is M1-dependent, and thus
r1({a3, b1, b2, c3}) = 2, contradicting the fact that a3 /∈ cl1(L). Hence, none of M1,
M2, and M3 have lines containing more than four points.

We suppose now that the transversal {a3, b3, c3} is M2-independent and M3-
dependent. Since r1(E − {a3, b3, c3}) = 3, we may assume that {a1, b1, c1} is M1-
independent, and also that r3({a2, b2, c2}) = 2, for otherwise we have the required
disjoint bases. Now, at most one of a3, b3, and c3 may be contained in cl3({a2, b2, c2}),
so without loss of generality both {a2, b3, c2} and {a3, b2, c2} are M3-independent.
Then {a3, b2, c3} and {a2, b3, c3} are both M2-dependent. The transversal {a2, b2, c3}
must now be M2-independent, for otherwise we get a line in M2 containing {a3, b3, c3}.
Thus r3({a3, b3, c2}) = 2, and further r3({a3, b3, c2, c3}) = 2. Then both of {a2, b2, c3}
and {a3, b2, c3} are M3-independent, for otherwise there is a line in M3 that contains
E−{a1, b1, c1}. So we have r2({a3, b3, c2}) = r2({a2, b3, c2}) = 2. This, together with
the dependence of {a3, b2, c3} and {a2, b3, c3} in M2, further implies that {a3, b3, c3}
is M2-dependent, which is a contradiction.

From now on, we may assume that M1, M2, and M3 are the same matroid M ,
since they share the same set of independent transverals. Suppose that M contains
the four-point line {a3, b3, c2, c3}. Without loss of generality, we may assume that
{a1, b1, c1} is independent in M , but then both {a2, b3, c3} and {a3, b2, c2} are also
independent in M , so we are done.

Thus, the rank-2 flats in M each contain at most three points. Let {a3, b3, c3} be
a dependent transversal of M . By 2.1.1, the set {a3, b2, c1, c2} contains a transversal
that is independent in M . Suppose without loss of generality that {a3, b2, c2} is such
a transversal. Then, again by 2.1.1, the set {a1, a2, b1, c1} contains an M -independent
transversal, {a1, b1, c1} say. Finally, {a2, b3, c3} is also independent, for otherwise we
get a four-point line, and we have the three required transversals.

3. Proof of Theorem 1.1. Before proving Theorem 1.1, we require two further
lemmas. These allow us to apply induction with Theorem 2.1 as the base case. Let
B(M) denote the set of bases of a matroid M .

Lemma 3.1. Let B1 ∈ B(M1), B2 ∈ B(M2) be disjoint bases of rank-n paving
matroids on the same ground set, where n ≥ 3. Let X be a two-element subset
of B1. Then there is some x ∈ X, y ∈ B2 such that (B1 − x) ∪ y ∈ B(M1) and
(B2 − y) ∪ x ∈ B(M2).

Proof. Since M1,M2 are paving matroids, (B1 −X)∪ y is M1-independent for all
y ∈ B2. Suppose that both (B1 − x) ∪ y and (B1 − x′) ∪ y are circuits in M1, where
x, x′ are distinct elements of X. Then by circuit elimination, B1 is also a circuit of
M1. Hence for each y ∈ B2, at least one of (B1 − x) ∪ y and (B1 − x′) ∪ y must be a
basis of M1.

Let y1, y2, y3 be distinct elements of B2. Then without loss of generality (B1 −
x)∪ y1, (B1 − x)∪ y2 ∈ B(M1). Also, one of (B2 − y1)∪ x and (B2 − y2)∪ x is a basis
of M2, so we are done.

Lemma 3.2. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there is an ordering of the elements of B1 as a1, . . . , an and
a transversal {b2, . . . , bn} of (B2, . . . , Bn) such that for all j ∈ {2, . . . , n} the set
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ON ROTA’S BASIS CONJECTURE 1045

(B1 − {a2, . . . , aj}) ∪ {b2, . . . , bj} is a basis of M1, and (Bj − bj) ∪ aj is a basis of
Mj.

Proof. For j = 2, the lemma follows immediately from Lemma 3.1. Suppose now
that the lemma holds for some j ∈ {2, . . . , n− 1}, so that B′ = (B1 − {a2, . . . , aj}) ∪
{b2, . . . , bj} ∈ B(M1). Then |B1∩B′| ≥ 2, and so by Lemma 3.1 there is some element
aj+1 ∈ B1 ∩ B′ and some bj+1 ∈ Bj+1 such that (B′ − aj+1) ∪ bj+1 ∈ B(M1) and
(Bj+1 − bj+1) ∪ aj+1 ∈ B(Mj+1), thus proving the lemma.

Lemma 3.2 is stated for j ∈ {2, . . . , n} to simplify the induction process. We need
the result only for j = n to prove main theorem of this paper.

Proof of Theorem 1.1. Assume that the theorem is true for some m ≥ 3, and take
n = m+ 1. Let B1 = {a1, . . . , an} and bi ∈ Bi for each i ∈ {2, . . . , n}. By Lemma 3.2
we may assume that A1 = {a1, b2, . . . , bn} is a basis of M1 and that B′

i = (Bi−bi)∪ai
is a basis of Mi for each i ∈ {2, . . . , n}.

Now let X = E − (B1 ∪ A1) and M ′
i = (Mi/ai)|X for each i ∈ {2, . . . , n}. Then

each M ′
i is a rank-m paving matroid having Bi − bi as a basis. By our induction

hypothesis, there are disjoint transversals A′
2, . . . , A

′
n of these m bases such that A′

i is
a basis of M ′

i . Hence Ai = A′
i ∪ ai is a basis of Mi for each i ∈ {2, . . . , n}. Moreover,

the bases A1, . . . , An are disjoint transversals of (B1, . . . , Bn), as required.

Acknowledgment. The authors thank the anonymous referees for their helpful
comments.
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