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Introduction to Greedoids

ANDERS BJORNER and GUNTER M. ZIEGLER

8.1. Introduction

Greedoids were invented around 1980 by B. Korte and L. Lovasz. Originally,
the main motivation for proposing this generalization of the matroid concept
came from combinatorial optimization. Korte and Lovasz had observed that
the optimality of a ‘greedy’ algorithm could in several instances be traced
back to an underlying combinatorial structure that was not a matroid — but
(as they named it) a ‘greedoid’. In subsequent research greedoids have been
shown to be interesting also from various non-algorithmic points of view.

The basic distinction between greedoids and matroids is that greedoids
are modeled on the algorithmic construction of certain sets, which means that
the ordering of elements in a set plays an important role. Viewing such ordered
sets as words, and the collection of words as a formal language, we arrive
at the general definition of a greedoid as a finite language that is closed under
the operation of taking initial substrings and satisfies a matroid-type exchange
axiom. It is a pleasant feature that greedoids can also be characterized in
terms of set systems (the unordered version), but the language formulation
(the ordered version) seems more fundamental.

Consider, for instance, the algorithmic construction of a spanning tree in
a connected graph. Two simple strategies are: (1) pick one edge at a time,
making sure that the current edge does not form a circuit with those already
chosen; (2) pick one edge at a time, starting at some given node, so that the
current edge connects a visited node with an unvisited node. These well
known strategies are used respectively in Kruskal’s and in Prim’s minimal
spanning tree algorithms. In both cases, the collection of feasible sequences
of edges, i.e. sequences that are generated by the allowed strategy, forms a
greedoid. However, in the first case, but not in the second, any permutation
of a feasible sequence of edges is also feasible, so that ordering is irrelevant.
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This is so because the first greedoid, but not the second, is a matroid. The
optimality of Prim’s algorithm, which is not explained by matroid theory, is
indeed covered by greedoid theory.

In this chapter we shall give an introduction to greedoids. Our aim is to
explain the basic ideas and to give a few glimpses of more specialized topics.
In spite of its youth the subject is already large enough to make a complete
account impossible in the available space. Due to the space limitation we
have frequently chosen to omit detailed proofs, particularly when good proofs
exist in the literature. Also, to unburden the main text, all references to
original papers and additional comments are gathered in the ‘Notes and
Comments’ at the end of the chapter.

Here is an outline of the contents. Section 8.2 discusses the axiomatics of
greedoids and explains the equivalence of the ordered and unordered versions
of the concept. Many of the basic definitions in the area are given here. In
particular, the important class of interval greedoids is defined.

Many examples of greedoids are described in section 8.3. One of the
interesting features of the greedoid concept is that it admits such a variety
of combinatorial examples in addition to matroids: branchings in graphs,
order ideals in posets, convex hull closures in Euclidean and other spaces,
Gaussian elimination sequences, retract sequences, and many more.

In section 8.4 various structural properties of greedoids as combinatorial
systems are discussed. Just like matroids, greedoids have cryptomorphic
descriptions in terms of a rank function and a closure operator. Deletion,
contraction, and some other operations on greedoids are defined, as well as
a suitable notion of connectivity.

Connections with combinatorial optimization are presented in section 8.5.
For a certain kind of objective function, the greedy algorithm is optimal over
a greedoid. In fact, greedoids can be characterized in terms of this algorithmic
property. Examples of greedoid optimization include, e.g., Dijkstra’s shortest
path algorithm. Linear objective functions pose special problems, which are
briefly discussed.

Section 8.6 discusses a certain polynomial that is associated with every
greedoid. It is a greedoid version of the Tutte polynomial of matroid theory.
The polynomial has applications of an algorithmic and of a probabilistic
nature. For instance, it is possible to express in terms of this polynomial the
probability that rank will not decrease if elements are independently deleted
with probability p. Finally, there is a brief discussion of what aspects of
matroid duality can be said to exist for general greedoids.

Antimatroids form a special class of interval greedoids with considerable
additional structure. They are discussed in section 8.7 as dual objects to
convex geometries. Among the interval greedoids, matroids and antimatroids
are from several points of view opposite classes. Each is connected with a
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closure operator, which for matroids abstracts linear span and for antimatroids
abstracts convex hull in Euclidean spaces.

In section 8.8 the connections between greedoids and posets (particularly
lattices) are discussed in some detail. Each greedoid has a poset of flats, which
in general is not a lattice. For interval greedoids the poset of flats is a
semimodular lattice, and every finite semimodular lattice arises in this way.

The following additional topics are briefly discussed in section 8.9: (1) the
characterization of certain classes of greedoids by excluded minors; (2) the
maximum number of feasible pivots needed to move from one basis to any
other basis in a greedoid; (3) examples of greedoid languages that allow
repetition of letters within feasible words.

8.2. Definitions and Basic Facts
8.2.A. Ordered and Unordered Versions

There are two equivalent definitions of greedoids, one as set systems and the
other as languages. We will start by defining and discussing greedoids as set
systems. The equivalence of the two approaches will be heavily used later
by freely choosing, depending on context, whatever formulation seems more
convenient or natural.

In the following, we will work over a finite ground set E. The set of all
subsets of E will be denoted by 2E, and a set system over E is a non-empty
family &# < 2E.

8.2.1. Definition. A greedoid is a pair (E, #), where & < 2 is a set system
satisfying the following conditions.

(G1) For every non-empty X € # there is an xe€ X such that X —xe #.
(G2) For X, Ye # suchthat|X| > |Y|, thereisanxe X — Ysuchthat YUxeZ.

The axiom (G2) is the usual matroid exchange axiom. In fact, every matroid
is a greedoid, and a greedoid is a matroid exactly if it is hereditary, that is,
if the axiom

(M1) If Xe# and YS X, then YeZ.

is satisfied. (M1) is a strengthening of (Gl); (M1) and (G2) together
define a matroid.
Many examples of greedoids that are not matroids will be given in the
next section. To i-llustrate the definition, let us now look at one of these.
Let I' =(V, E, r) be a rooted graph, and let &# be the family of subtrees in
I' that contain the root node r. We think of these subtrees as edge sets, so
F <28 Now, if X # J is such a tree, then it must have at least one leaf
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Figure 8.1.

other than r, and if x is the edge adjacent to such a leaf then also X — xe #.
Also, the cardinality | X| of a subtree X equals the number of vertices other
than r that are reached by X. Consequently, if | X| > |Y]| there must be some
node ve V —r that is reached by X but not by Y. Follow the unique path in
X from r to v and let x be the first edge of that path with a vertex not in Y.
Then clearly YU x is also a subtree in #. We have verified axioms (G1) and
(G2), so (E, #) is a greedoid. The greedoids that arise in this way (called
‘undirected branching greedoids’) will be further discussed in section 8.3.C.
For the particular greedoid given by the rooted graph (V, E, r) in Figure 8.1
we observe e.g. that {b}, {a, ¢}, {b, c, d} € and {a}, {a, d}, {a, b, c}¢ F.

The axiom (G1) states that & is an accessible set system. It implies —
because E is finite and & non-empty — that # contains the empty set. In
fact, by (G1)every X € # can be dismantled by successively removing elements
to get a sequence J=X,<c X, < ... c X, =X, where every X, is a set in
& of cardinality i, 0 < i < k. But the same also follows from (G2): if we assume
5 e F, then repeated application of (G2) implies the existence of a sequence
F=XocX,c ... cX;=X,where X;e # and |X,| =ifor 1 £i< k. Hence,
in Definition 8.2.1, (G1) could be replaced by the weaker axiom.

(Gl') Je#.

Just as for matroids, it is again sufficient (using (G1)) to require the exchange
property of (G2) only for | X|=|Y| + 1:

(G2) For X, Ye#, |X|=|Y| +1, there is an xe X — Y such that Yuxe Z.

The axioms (G1) and (G2') together define greedoids as well as (Gl’) and
(G2). However, (G1') and (G2') together clearly do not suffice.

The following terminology will be used. For greedoids the sets in & are
called feasible (rather than ‘independent’). As usual, the matroid exchange
axiom (G2) implies that the (inclusion-wise) maximal feasible sets, the bases,
have the same size r; r = H(F) is called the rank of the greedoid (E, #). For
an arbitrary subset 4 of the ground set E we define its rank by
r(A)=max{|X|: X € A, XeZ}. Thus 4 is feasible if and only if r(4)=|4|,
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and it is a basis if and only if /{(A4) = |A| = r(#). The characteristic properties
of the greedoid rank function will be discussed in section 8.4.A.

A basis of a subset A € E is a maximal feasible subset of A. Equivalently,
this is an X € # such that X < 4 and r(X) = r(A), because the exchange axiom
(G2) implies that every maximal feasible subset of A has size r(A). In fact,
for any set system (E, %) the property

(B) For any subset A < E all maximal feasible subsets of 4 have the same
cardinality

is implied by the exchange axiom (G2). On the other hand, (B) together with
(G1) does not imply (G2), as shown by E={1,2,3} and
F =2E—{{1, 3}, {2, 3}}. See also Exercise 8.1.

A coloop in a greedoid (E, %) is an element x € E that is contained in every
basis, and a loop is an element that is contained in no basis. If x is a loop
then r({x}) = 0, but not conversely. Another difference from the matroid case
is that r({x}) =0 is possible for a coloop x. These facts are particularly easy
to visualize for branching greedoids, cf. section 8.3.C. We will sometimes
write just U for the union of all feasible sets. Clearly, x is a loop if and
only if xe E — u#. (Note that in matroid theory a coloop is often called an
‘isthmus’).

We will now describe the equivalent ‘ordered’ version of greedoids, in terms
of exchange languages. For the finite ground set E, let E* denote the free
monoid of all words over the alphabet E. We use Greek letters a, f, y, ... for
words in E* and Latin letters x, y, z, ... for ‘letters’, i.e. elements of E. The
concatenation of « and f (the string « followed by the string f) will be denoted
by af. For any word o€ E*, |a| denotes the length of a, i.e. the number of
(not necessarily distinct) letters in a. The support & of a is the set of letters
in a. A word « is called simple if it does not contain any letter more than
once, i.e. if |a| =|d|.

A language £ over E is a non-empty set & < E* of words over the alphabet
E; it is called simple if every word in % is simple. Every simple language
over a finite set E is again finite. Let E¥ denote the (finite) set of simple words
in E*. By the support 2 of the language # we mean the set system
P ={% ac ¥}

8.2.2. Definition. A greedoid language over a finite ground set E is a pair
(E, &%), where % isasimple language ¥ < EZ satisfying the following conditions.

(L1) If =By and e &, then fe &, ie. every beginning section of a word
in . is again in .%;
(L2) If o, B # and || > |B|, then a contains a letter x such that fxe &.

Here (L1) states that % is a (left) hereditary language; (L2) is an exchange
axiom. Again, it would be sufficient to require that (L2) holds for |x| = || + 1.
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The words in £ are called feasible. The maximal words in .Z (that is, the
words that do not have extensions in %) are called basic words. We call a
language pure if all its maximal words have the same length. In particular,
as a consequence of exchange axiom (L2), greedoid languages are pure. The
common length of all basic words is called the rank of the greedoid (E, %).

Let us illustrate Definition 8.2.2 by again considering a rooted graph
I' =(V, E, r), asin the discussion following Definition 8.2.1. A string x,x, ... X;
of distinct edges x; € E will be considered feasibleif the subgraph {x,, x,, ..., x;_, }
connects the root node r to one endpoint of x; but not the other,for 1 <i<k.
It is instructive to check that the language . of such feasible strings is a
greedoid language. For instance, in Figure 8.1 we find that b, ca, chde &,
but a, ac, bdc¢ .

Definitions 8.2.1 and 8.2.2 are tied together by:

8.2.3. Proposition. Greedoids and greedoid languages are equivalent in the
Jollowing sense.

() If (E, &) is a greedoid language, then the support & is a greedoid.
(i) If (E, &) is a greedoid, then
L(F)={xy, X5 ... , €EF: {x}, x5, ..., x;,} €F for 1 Li<k}
is a greedoid language.

(iii) Furthermore, #(£)= % and L(F)=F, so these constructions give a
one-to-one correspondence between greedoids and greedoid languages.

The verification of parts (i) and (ii) is straightforward and very easy. For
part (iii), the only point that requires a small argument is the inclusion
P(&)< &, which follows by induction on the length of words from the
exchange axiom (L2) together with the simplicity of the language .&.

In view of this equivalence between greedoids (as set systems) and greedoid
languages, the two concepts will from now on be used interchangeably. For
a greedoid G we will freely write G = (E, #) = (E, %), and if the ground set
is clear from the context G will often be denoted by just # or &. (If the
ground set is not given by context, one can always take E = U# or E= U2
to recover it, except for loops.)

It is often convenient to think of a greedoid (E, #) as a poset (#, <),
with the partial order given by inclusion. This poset has a least element (¥,
and every unrefinable chain from J to a maximal element B (i.e. a basis)
has the same length (%)= |B|. More generally, if A = C, where 4, Ce #,
then every unrefinable chain 4 = 4, <-4, < ... =4, =C in ¥ has the same
length k =|C — A, since A can be repeatedly augmented from C one element
at a time.

For instance, let E={a, b, ¢, d} and consider the greedoid # =2F—
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Figure 8.2.

(a) 0

{{a, b, c,d}, {a, b, ¢}, {c, d}}. (A systematic reason why this is a greedoid is
given in Exercise 8.4.) The poset & is depicted in Figure 8.2a where for
simplicity set brackets are omitted.

To see clearly the connection with the language version (E, &) of &,
reformulate the poset & of Figure 8.2a into an abstract edge-labeled poset
as in Figure 8.2b. Here each covering edge X <Y is labeled by the single
element of Y— X. Then the words in & = #(%) can be read off as the
sequences of labels along unrefinable chains starting at the bottom. For
instance, the basic words beginning with ‘b’ are: bad, bcd, bda, and bdc. Also,
the feasible set corresponding to an element in this abstract labeled poset
can be reconstructed as the set of labels on any unrefinable chain from the
bottom to that element.

We remark that non-isomorphic greedoids can have isomorphic unlabeled
posets of feasible sets (non-trivial examples are mentioned at the end of
section 8.4.E; see also section 8.8.D). Hence, the edge labels as in Figure 8.2(b)
are essential for such a poset representation of a greedoid.

8.2.B. Interval Greedoids and Antimatroids

The following ‘interval property’ characterizes a very large class of greedoids
that covers many of the main examples (see section 8.3). Greedoids with this
property, usually called interval greedoids, behave better than general
greedoids in many respects. In some types of study the interval property has
to be assumed to obtain meaningful results.

8.24. Definition. A greedoid (E, &) has the interval property if Ac B<C,
A, B, Ce#, xeE-C, Auxe#, and Cuxe# imply that Buxe#.
Equivalently, in terms of greedoid language (E, &) this means that ax, affyxe &
implies afixe &.

We observe that the greedoid in Figure 8.2 does not have the interval
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property, since e.g. &, {c}, and {b, c} are feasible, and the first and third can
be augmented by d but not the second. Clearly, every greedoid of rank less
than three has the interval property.

The following exchange property characterization of interval greedoids is
often useful.

8.2.5. Proposition. A hereditary language (E, £) is an interval greedoid if and
only if it satisfies the following strong exchange property:

(L2) If o, pe ¥ and || > |B|, then o contains a subword o of length
lo/| = |at| — |B| such that o’ € &.

Here a subword of o = x,x, ... x, is a not necessarily consecutive substring
of a, i.e. a word of the form « =x;, x;, ... x; with 1 £i, <i, < ... <i, Zn
Obviously, the axiom (L2’) implies the regular exchange property (L2).

Proof. We will here prove that (L2') implies the interval property. The proof
of the converse will be postponed until section 8.8.C.

Suppose that ax, affyx e ¥. Strong exchange gives, since . is simple, that
axpye &. Since & is left hereditary, aff, axpe.#, and a second application
of strong exchange yields afixe . |

A relatively special but very important class of interval greedoids is the
class of antimatroids. Some of their special properties will be discussed in
section 8.7.

8.2.6. Definition. A greedoid (E, %) is called an antimatroid if it satisfies the
following interval property without upper bounds: if A< B, A, Be #,x€E — B,
and Auxe#, then BuxeZ. Equivalently, in terms of greedoid language,
if ax, afe ¥ and x¢f, then afxe L.

In many cases, the easiest way to recognize an antimatroid is via the
following characterization.

8.2.7. Proposition. Let # < 2 be a set system. Then the following conditions
are equivalent.

(i) (E, #) is an antimatroid.
(i) & is accessible and closed under union.
(i) FeF, and F satisfies the following exchange axiom.
(A) For X, Ye F suchthat X< Y, thereisanxe X — Y suchthat Yuoxe F.

Proof. (ii) = (iii). Suppose that # is accessible (i.e. satisfies axiom (G1)) and
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is closed under union (i.e. A, Be # implies AuBe F). Let X, Ye # such
that X< Y. Accessibility means that we can find a sequence
FI=XocX,c ... cX,=Xsuchthat X;e # and |X|=i,for 0<i< k. Let
i be the least integer for which X;& Y. Then YuX,=Yuxe#, where
xeX;—YeX-Y

(ii))=(i). Axiom (A) implies axiom (G2), and axiom (G1’) is assumed, so
& is a greedoid. Suppose that 4, B, Auxe#, AcB, and Aux%¢ B. By
axiom (A), the set B can be augmented from the set (4ux)— B = {x}, so
Buxe%. This proves the interval property without upper bounds.

(i)=>(ii). We leave this step, which is similar to the other two, as an exercise
for the reader. O

Notice that, since & is closed under union, every subset in an antimatroid
has a unique basis.

The following result expresses some of the ways in which interval greedoids
and antimatroids are related. The proof is a simple exercise with the interval
property, with and without upper bounds.

8.2.8. Proposition. Let (E, &) be a greedoid. Then

(i) (E, &) is an antimatroid if and only if it is an interval greedoid and has
a unique basis,

(i) (E, #)is an interval greedoid if and only if the restriction to each feasible
set X € F, meaning {Ye F: Y < X}, is an antimatroid.

A greedoid (E, #) is said to be full if Ee #. It follows from the preceding
result that if an antimatroid has no loops then it is full. In any case, an
antimatroid has one and only one basis, namely U#. We remark in this
connection that the wealth of examples of antimatroids, all with only one
basis, shows that greedoids cannot in general be reconstructed from or
axiomatically characterized in terms of their set of bases. On the other hand,
a greedoid is of course completely determined by its basic words.

For a general set system & < 2F such that e &, define its accessible
kernel (with some mild abuse of set notation) by

AF)={{x1, ..., x, }e F: {xy, ..., x,} € F for all 1 i<k},
or — recursively — by: Xe A(F) iff Xe&F and X = (F or there is an xe X
such that X — x e A(F). The hereditary closure of a set system % is defined as
H(&F)={Y<S E: YS X for some X e F}.

Thus, for every greedoid &, (G1) states that A(¥F) = &, and & is a matroid
precisely when H(¥)= . But we note that in general for a greedoid £,
H(%) need not be the collection of feasible sets of a greedoid.
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8.3. Examples

In this section we shall survey some major classes of greedoids. Many other
classes are known, and the reader will find new examples constructed in
nearly every paper on the subject.

8.3.A. Matroids

As was remarked before, the independent sets of a matroid form the feasible
sets of a greedoid. Much of the terminology for greedoids is adapted from
matroid theory, so that there is no translation problem. In particular, the
rank function and bases of a matroid and its associated greedoid coincide.
Matroids are clearly interval greedoids. In fact, they can be characterized as
greedoids satisfying the ‘interval property without lower bounds’: If BS C,
B, Ce# and xeE — C, then Cuxe % implies Bux € #. This is equivalent
to the statement that B< C, Ce & implies Be &, i.e. that & is hereditary.

Matroids give rise to greedoids in more than one way. For example, the
following construction produces ‘twisted matroids’. Let M =(E, 4) be a
matroid; choose an independent set A € .#. We define a simple language %, ,
by Lya=1{a, ... €E}: AN{a,, ..., a;}€ ¥ for all 1Li<k}. Here, AAB
denotes the symmetric difference (A — B)U (B — A). This language is clearly
left hereditary and the exchange axiom (L2) can be checked. For A = &f we
get the standard matroid greedoid & =%, . However, %, , depends
heavily on A, and is in general not an interval greedoid. The feasible sets of
the twisted matroid %, , are the sets whose symmetric difference with A4 is
independent. The basic words describe the ways to move from A to a basis
of E — A through a sequence of intermediate independent sets.

Some greedoids are related to matroids in the following way: the greedoid
G =(E, #) is a slimming of the matroid M =(E, .#) if G and M have the
same set of bases (which implies that # = .#). For instance, the twisted
matroid (E, %), ,) defined above is a slimming of the direct sum of the free
matroid on 4 and the restriction M — A. We will encounter another example
in section 8.3.C.

8.3.B. Antimatroids

Antimatroids are in several ways ‘opposite’ to matroids. For example, while
matroids are precisely the greedoids satisfying the interval property without
lower bounds, antimatroids are precisely those characterized by the interval
property without upper bounds. Also, whereas the matroid closure operator
is characterized by the MacLane exchange axiom, the closure operator of
antimatroids can be characterized by the opposite ‘anti-exchange’ axiom (see
section 8.7.A).
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We shall now describe several classes of antimatroids occurring ‘in nature’.
They are all easy to identify using the following criterion (Proposition 8.2.7):
a set system & < 2F is an antimatroid exactly if it is accessible and closed
under union.

ey

@

3

@

)

(6)

Let P=(E, <) be a finite partially ordered set and # the set of ideals
of E (a subset A < E is an ideal if x < ye A implies x € A). Then (E, #)
is an antimatroid, the poset greedoid of P. In this case # is closed both
under union and intersection and hence (%, <) forms a distributive
lattice. Conversely, by a theorem of G. Birkhof, every finite distributive
lattice occurs this way. The basic words of the poset greedoid are the
linear extensions of P.

Let ' =(V, E, r) be a finite rooted graph, and let V' = V — r be the set
of vertices distinct from the root r. Then the vertex search greedoid of
Tis (V', &), where & is given by & = {X < V": X Ur is the vertex set
of a connected subgraph of G}. If T is connected, the basic words of
this antimatroid correspond to the orderings in which nodes are visited
by the standard search procedures starting at r.

In the case of a rooted digraph A = (V, E, r), we again let V' be the set
of vertices distinct from the root r, and # = {X < V': X Ur is the vertex
set of a tree in A that is directed away from r}. Then (E, &%) is the vertex
search greedoid of the digraph A.

Let E be the vertex set of a tree and & the collection of complements
of subtrees. Again, (E, &) is an antimatroid, the vertex pruning greedoid
of the tree. The same construction can be repeated for the edge set of
a tree, to get the edge pruning greedoid of the tree, also an antimatroid.
Both the vertex pruning and the edge pruning greedoids of trees are
special cases of the simplicial vertex pruning greedoids of graphs. A
vertex of a graph (V, E) is simplicial if all its neighbors are pairwise
adjacent. Successive removal of simplicial vertices gives a hereditary
language (V, %) that is easily seen to be an antimatroid.

For % to be non-trivial a sufficient supply of simplicial vertices in
(V, E) and its subgraphs is needed. This is guaranteed if the graph is
chordal, meaning that no induced subgraph on k vertices is a k-cycle,
for k = 4. Chordal graphs are characterized by the property that every
induced subgraph has a simplicial vertex. It follows that the simplicial
vertex pruning greedoid of a graph is full if and only if the graph is chordal.
Our final example is crucial for the geometric interpretation of
antimatroids. Let E be a finite subset of R”, and for A < E define A4 to
be the convex hull of A4 intersected with E. We call A < E convex if
A= 4, and define # to be the family # = {X < E|E — X is convex}.
Then (E, &) is an antimatroid, the convex pruning greedoid on E. This
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example in fact generalizes in a straightforward way to oriented
matroids with an appropriate notion of convexity.

Antimatroids have a lot of additional structure, which makes them quite
special among greedoids. We will study antimatroids in greater detail in
section 8.7, and proceed here to describe more general classes of greedoids.

8.3.C. Branching Greedoids

Let A=(V, E, r) be a finite rooted directed graph. Let & be the collection
of edge sets of trees in A that contain the root and are directed away from
it (such trees are called branchings or arborescences). Then (E, #)is a greedoid,
the directed branching greedoid (or line search greedoid) on A. Every
non-empty tree in & has a leaf, which can be removed to get another tree
in &. This verifies axiom (G1). To check (G2), one observes that for two
trees X and Y in A, |X| > |Y| implies that X reaches a vertex v that Y does
not reach (| X| is the number of vertices of V — r reached by X). Now the first
arc along the path in X from r to v that reaches a vertex not reached by Y
can be added to Y.

Figure 8.3 illustrates a particular rooted digraph A and the associated
branching greedoid & . This greedoid is of rank 2 with bases {a, d}, {a, c},
{b, c}, and {b, d}. The language is & ={J, a, b, ¢, ac, ad, bc, bd, ca, cb}.

The rooted digraph in Figure 8.8a on p. 315 gives a branching greedoid
of rank 6. That greedoid has two loops and two coloops, which shows that
these greedoid concepts do not in this case have their standard graph-theoretic
meaning.

It is clear, as was also observed with the example of Figure 8.2, that an
analogous construction works for every finite rooted undirected graph
I' =(V, E, r). The construction then yields the undirected branching greedoid
(E, ), where & is the set of trees in T" that contain the root. We note that
— ignoring the root — the graph I' also gives rise to the graphic matroid.
(E, #). If T is connected, then the bases of the branching greedoid and of
the graphic matroid are the same, namely the spanning trees of I". Hence,

Figure 8.3.
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(E, #) is a slimming of (E, .#), or equivalently, the hereditary closure of #
is the graphic matroid.

The common algorithmic search procedures on a rooted graph (directed
or not) visit the nodes one at a time so that the currently visited node
(originally just r) is at each stage reached along some edge from a previously
visited node. It is clear that the basic words of the associated branching
greedoid record the sequences of edges generated by such search procedures.
Similarly, the associated vertex search greedoid (defined in section 8.3.B)
records the possible orders in which the nodes are reached.

Both directed and undirected branching greedoids are interval greedoids.
If an edge x is a legal continuation at any given stage, that means that x
leads from a visited node v to an unvisited node u. But then clearly x will
remain a legal choice at a later stage if and only if u remains unvisited. This
verifies the interval property.

For many purposes branching greedoids can serve as ‘canonical examples’
of greedoids. Being easy to represent graphically they play a role similar to
the role graphic matroids play in matroid theory. However, branching
greedoids are relatively well behaved and do not exhibit all the pathologies
that can occur. For example, the intervals in the poset (¥, <) are distributive
lattices — given any two branchings X € Y in A, the interval [X, Y] of &
corresponds to the order ideals of Y\X, ordered by ‘precedence along the
paths in Y emanating from the root’. Greedoids with the property that all
the intervals in & are distributive are called local poset greedoids. This name
comes from the fact that &% is a local poset greedoid if and only if the
restriction of & to any feasible set is a poset greedoid (‘restriction’ will be
defined in section 8.4.D as a straightforward generalization of the matroid
operation). From this it is easy to see that all local poset greedoids are interval
greedoids.

The following class of greedoids is closely related to the branching
greedoids. Let (V, E, r) be a rooted undirected graph, and let o/ be the
collection of edge sets of all connected subgraphs covering r. Then (E, <) is
a greedoid, in fact an antimatroid. An analogous construction associates an
antimatroid with every rooted directed graph.

The construction of these greedoids is part of a much more general
procedure: if (E, &) is a greedoid and &/ is the collection of unions of feasible
sets from &, then (E, &) is an antimatroid. The elements of &/ are called
the partial alphabets of (E, ). See Exercise 8.5.

8.3.D. Polymatroid Greedoids

A pair (E, f), consisting of a finite ground set and a function f: 2E—N, is
called a polymatroid if for all X, Y < E:
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(PM1) f(Z)=0;
(PM2) X cY implies f(X)< f(Y);
(PM3) f(XnY)+f(XUY)=f(X)+ f(Y)

Polymatroids are generalizations of matroids: f is the rank function of a
matroid if in addition f(X)<|X| for all X € E.

Polymatroids give rise to greedoids in the following way. Suppose that
(E, f) is a polymatroid, and let

L ={x%y .. 2 f({Xp, ..., x, ) =ifor 1Si<k}.

Then (E, &) is a greedoid, called a polymatroid greedoid. Such greedoids are
local poset greedoids (as defined in section 8.3.C), and hence they have the
interval property.

We give three examples of polymatroid greedoids that have been discussed
before:

(1) If (E, f) is a matroid, then the polymatroid greedoid is the greedoid
usually associated with this matroid (cf. section 8.3.A). In fact, the above
construction will reconstruct any greedoid % from its rank function f.

(2) Let I'=(V, E, r) be a rooted undirected graph. For X < E, let f(X) be
the number of vertices in V\r covered by X. Then it is easy to check
that (E, f) is a polymatroid. The associated polymatroid greedoid is
the undirected branching greedoid of T, since if {x, ..., x;_} is a tree
in T containing the root r, then the same is true for {x,, ..., x,} if and
only if x; covers exactly one additional vertex.

In contrast, directed branching greedoids are not in general polymatroid
greedoids.

(3) Poset greedoids are polymatroid greedoids. The corresponding rank
function measures the size f(X) of the ideal in P generated by a subset
X of P=(E, £).

8.3.E. Faigle Geometries

For this class of greedoids the ground set is assumed to be partially ordered
in a way that is suitably compatible with the greedoid structure. Both matroids
and poset greedoids belong to this class.

A Faigle geometry is a triple (E, ¢, <) where (E, ) is a greedoid language
and (E, £) a poset such that:

(F1) for xx,...x, € &, x;< x; implies i <j (that is, the ordering of every
word in % is compatible with the partial order on E);

(F2) if A, B are ideals in (E, <) with 4 € B, then every pe A that occurs in
every maximum length word in B* n . also occurs in every maximum
length word in A*n Z.
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We note that when the poset (E, <) is an antichain (meaning that x <y
implies x = y), the axiom (F1) is vacuously fulfilled, and (F2) implies that
(E, &) is a matroid. In general, if (E, &, <) is a Faigle geometry then (E, %)
is an interval greedoid. However, not every interval greedoid admits the
structure of a Faigle geometry (e.g. some branching greedoids do not).

There is a second rank function f on a Faigle geometry (E, ., <), which
is in general different from the greedoid rank function r of (E, #). This ideal
rank function f: 25N is defined by

SX)=r(I(X)), for X S E,

where I(X) denotes the ideal generated by X, ie. I(X)={yeE y<x
for some x € X}.

The ideal rank f of a Faigle geometry is a polymatroid rank function, i.e.
it satisfies axioms (PM1)-(PM 3) of section 8.3.D. The corresponding polymatroid
greedoid is also a Faigle geometry (E, ¢’, <) over the same poset and with
the same ideal rank function, and ¥ < %’. However, in general & # %',
which shows that a Faigle geometry is not uniquely determined by its ideal
rank function.

8.3.F. Retract Greedoids

A retract of a poset (E, <) is a subposet Q < E such that there is an
order-preserving map r: E—Q with r(x)=x for all xe Q. In this case r is
called a retraction of E to Q. We are going to consider retracts such that
|Ql = |E| — 1, that is, Q corresponds to the deletion of a single element x from
E. There are two cases; either x and r(x) are not comparable, or one of x
and r(x) covers the other. In the second case Q is the poset obtained from
E by deleting a meet or join irreducible element x (ie. an element with a
unique cover or a unique cocover). We will call this a monotone retract.
This situation gives rise to the following two greedoids: the retract greedoid
(E, &£) given by
L={x; x5 ... :for 1Zi<k, E—{x,, ..., x;} is a retract of
E—{xy, .., X;—1 }}
and the dismantling greedoid (E, £’) defined by
&L ={x; x5 ... x:for 1 <i<k, E—{x,, ..., x;} is a monotone retract of
E—{xy, ..., X;_1 }}.
For instance, consider the poset shown in Figure 8.4. Here, be &, ab¢ £,
and ache &. Also, cde &', ced¢ &', and ceade &¥'.
This example shows that the greedoids (E, &) and (E, #’) in general fail

to have the interval property. Also, they may have many loops. Observe that
by definition ¥’ < Z.
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Figure 8.4.

There is a straightforward generalization of retract sequences and dismantling
sequences from posets (i.e. comparability graphs) to finite digraphs, which
leads to a generalization of the corresponding greedoids. In this case, one
works with digraphs with a loop at every vertex and defines retracts as above,
using graph maps instead of order preserving maps. For monotone retracts,
the additional requirement is that every vertex is mapped to an adjacent vertex.

The following construction gives a very general framework for retract
greedoids. Let @ be a set of mappings of a finite set E into itself, which is
closed under composition and contains the identity (in other words, ® is a
submonoid of EE). Call a subset XS E a retract if X = ¢(E) for some
idempotent element ¢ € ®. Now, define a left hereditary language by

L ={x; x5 ... x%:for 1 i<k, E—{x,,..., X} is a retract}.

Then (E, &) is greedoid. Taking ® to be the monoid of order preserving
self-maps of a poset (E, <) we get the special retract greedoids that were
originally defined.

A general formulation of dismantling greedoids along similar lines is also
possible.

8.3.G. Transposition Greedoids
A greedoid (E, #)is said to have the transposition property if it satisfies the axiom

(TP) If A, Aux, Auye&F and Auxuy¢F, then AuxuBeF implies
AuyuBe %, forall BS E—~(Auxuy).

If an accessible set system has the transposition property then it is a
greedoid, but the converse does not hold. Hence, the axioms (G1) and (TP)
form an axiom system for a proper subclass that we call transposition greedoids.

The best known way to prove that a retract greedoid actually is a greedoid
is to verify (G1) and (TP). In fact, both retract greedoids and dismantling
greedoids are transposition greedoids. Examples of greedoids that lack the
transposition property can be found among the twisted matroids.
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Let us now verify (TP) for an arbitrary interval greedoid (E, %). In the
given situation 4 Uy can be augmented from the larger set AuxuUB to a
set AuyuB e #, where B < Bux and |B| =|B|. Because of the interval
property, x¢ B, i.e. B'= B. So, all interval greedoids have the transposition
property.

For later use we record the following trivial strengthening of the preceding
paragraph: property (TP) with the last words replaced by ‘for all B E — A4,
is satisfied by every interval greedoid. Note that this stronger formulation is
not possible for transposition greedoids in general.

8.3.H. Gaussian Greedoids

The Gaussian algorithm for solving systems of equations gives rise to
greedoids in the following way. Let M = (m;;) be an m x n matrix over an
arbitrary field. Perform Gaussian elimination working downward row by
row from the top and keep track of the column indices of the pivot elements.
Each possible such procedure gives rise to a sequence of column indices (for
row 1, row 2, and so on), and these sequences are the basic words of the
Gaussian elimination greedoid (E, #) of M, E={1, 2, ..., n}. Equivalently,
this greedoid can be defined directly by

F = {A S E: the submatrix M, , 4 4 is non-singular}.

Gaussian elimination greedoids are not in general transposition greedoids,
as may be checked for the matrix

o o =

1 0 1
N=|0 1 0

1 00

3 F

——

whose associated greedoid ({1, 2, 3, 4}, #) has {1}, {2}, {1, 3,4} e #, but
{1,2},{2,3,4} ¢ #.

We shall now discuss a special case of Gaussian elimination greedoids and
then generalize their construction. Suppose that I' = (V, U, E) is a bipartite
graph, EC V x U, and fix an ordering u,, u,, ..., u, of the elements of the

color class U. Now, let
F ={A < V: A can be matched to {u, u,, ..., u 4} in T'}.

Then (V, %) is a greedoid, called a medieval marriage greedoid.

Every medieval marriage greedoid is a Gaussian elimination greedoid over
a suitable field. To see this, take the U x V incidence matrix and replace the
elements that are unity, if necessary, by algebraically independent field
elements. The matrix N given above is the incidence matrix of a bipartite
graph, which shows that in general medieval marriage greedoids also lack
the transposition property.

>
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A more general class of greedoids is obtained as follows. Suppose that
M;=(E #,),i=0,1, ..., m is a sequence of matroids on the same ground
set E such that (1) if A< E is closed in M,_, then it is closed in M,, for
1 <i<m, and (2) rank M, =1, for 0 <i<m. A greedoid (E, &) of rank m is
then defined by # = {A < E: A is a basis of M|, }. Greedoids of this kind
are called Gaussian. Clearly Gaussian elimination greedoids are special cases
of Gaussian greedoids (take for M, the column matroid determined by the
first i rows of the given matrix). Notice that in a Gaussian greedoid the
matroids M, can be uniquely recovered from &, namely, M; is the hereditary
closure of the feasible sets of cardinality i. Also, every matroid M is a Gaussian
greedoid (for M; take the rank i truncation of M).

8.3.1. Relations Among Classes of Greedoids

We have discussed several cases where one class of greedoids is seen to be
a generalization or a specialization of another class. For an overview, these
containment relations between classes of greedoids are gathered in the form
of a poset diagram in Figure 8.5. (The containment of the class of matroids

Figure 8.5.
Greedoid
'rl;]‘;,lt?zg Transposition I [ Gaussian
Dismantling4| [ Interval ] I Retract] ]\r:{z?rl?:;;
Local
poset
Antimatroid ] [ Faiglfd I Polymatroid
Vertex Convex - Undirected Directed
search pruning LPosetJ | Matroid | branching branching
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in the classes of twisted matroids and Gaussian greedoids is not indicated
in the diagram.)

8.4. Structural Properties

In this section we will discuss the greedoid rank function and the closure
operator to which it gives rise. Just like matroids, greedoids have cryptomorphic
definitions in terms of rank and closure. Also, various elementary constructions
on greedoids will be defined.

8.4.A. Rank Function

Recall that the rank function of a greedoid (E, #) is defined by
HA)=max{|X|: X< A, XeF},forA< E.Clearly, # ={A< E: r(d)=|Al},
which means that the greedoid & is completely determined by its rank
function. This proves the last sentence of the following result.

8.4.1. Theorem. A function r: 25N is the rank function of a greedoid if and
only iffor all A, BS E and x, yeE:

(R1) r(4)=14};
(R2) A< B implies r(A) < r(B);
(R3) r(4) =r(Aux)=r(4uy) implies r(4) =r(AL{x, y}).

Furthermore, the greedoid with rank function r is then uniquely determined.

Let us check the necessity of these axioms. (R1) states that r is subcardinal.
This is clear from the definition of r, and in particular implies r(F) = 0. (R2)
states that r is monotone; this is equally clear by definition. (R3) essentially
codes the exchange axiom (G2) and is easily proved from it.

A greedoid rank function on E is the rank function of a matroid if
additionally it satisfies the unit increase property: r(Aux) < r(A) + 1 for every
A € E and x e E. Together with r({Z) = 0 this implies (R1), and together with
the other axioms it is sufficient to prove submodularity of the matroid rank
function:

r(AnB)+r(AuB)<r(A)+r(B), for all A, B& E.

For an example of the failure of the unit increase property and of submodularity
on a general greedoid, consider the undirected branching greedoid (E, &) of
a rooted graph I'. Let X € % be a large tree in I" that contains exactly one
edge x adjacent to the root. Then we have r(X) large, but r({x})=1 and
rX —x)=0.
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8.4.B. Closure Operator

Using the rank function, we define the (rank) closure operator o : 2E—2F of
a greedoid (E, #) by
o(A)={xeE: r(Aux)=r(4)}.

Clearly, o is increasing: A < 6(A). Furthermore, for all A S E,

r(A) =r(o(A)). 8.1)
To see this, suppose r(4) <r(o(A4)) and let X and Y be bases of 4 and o(A)
respectively. Then X can be augmented by some y€ Y so that X Uy is feasible
and of cardinality r(A4) + 1. But then r(Auy)=r(Xuvy)=r(4)+ 1, which
means that y¢ a(A4), contradicting ye Y = a(A).

As a consequence of the preceding we find that o is idempotent:

oo(A) = a(A), 8.2)
for all A< E. Namely, if xeoos(4), then r(o(A))=r(4d)Zr(Aux)
< r(6(A)ux)=r(a(A)), where the first equality is by (8.1) and the last by the
definition of the closure of 6(A4). So, x € 66(A) implies x € 6(A).

A serious shortcoming of greedoid closure is that it is not necessarily
monotone, i.e. A< B does not in general imply o(A4) < o(B). For an easy
counterexample, take the full greedoid with exactly one basic word xy. In
this greedoid, which is both a poset greedoid and a branching greedoid,
o(D) = {y}, o({x}) = {x}. The closed sets (i.e. A=o(A)) of this greedoid are
{x}, {y}, and {x, y}.

The failure of monotonicity means that greedoid closure is not a closure
operator in the usual sense (i.e. as defined in section 8.7.A). Many of the
characteristic properties of ordinary closure are absent; for instance the
intersection of two closed sets is not always closed, and the closed sets ordered
by inclusion do not form a lattice. It can be shown that greedoid closure o
is monotone only in the matroid case.

In spite of what has just been said, it turns out that greedoid closures can
be axiomatically characterized in a way that is reminiscent of matroid closure.

8.4.2. Theorem. A function o : 25—2E is the rank closure operator of a
greedoid if and only if for all A, B < E and x, y € E the following conditions hold.

(RC1) A ca(A).

(RC2) A = Bc a(A) implies o(B) = a(A).

(RC3) Suppose x¢ A, z¢o(Aux — z) for all ze AU x. Then x € 6(A U y) implies
yea(Aux).

Furthermore, the greedoid with closure o is uniquely determined.

Suppose that (E, #) is a greedoid with closure operator ¢. Now,
F ={A<E: x¢o(A—x) for all xe A}, so the greedoid can be uniquely
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reconstructed from o. Axiom (RC2), a weak form of monotonicity,
is easy to verify for o using property (8.1). Axiom (RC3) states
that if x¢ 4 and Auxe#, then xea(Auy) implies yea(4ux). This
generalizes the MacLane exchange axiom for matroid closures, where
the requirement A U xe # is replaced by x ¢ o(A4). The MacLane exchange
axiom is in general not satisfied by greedoid closure.

It turns out to be convenient to consider also the monotone closure operator
u: 2E—2F obtained from o by the following construction:

w(A) = n{a(X) A= o(X), X S E}.

It is easy to check that 4 < u(A) < 6(A4) and u(A) = w(A) for all A € E, and
that A = B implies u(A4) < u(B). So, u is a closure operator in the usual sense.
However, u does not determine &, since u=id for all full greedoids.

8.4.C. Rank and Closure Feasibility

We have seen that greedoid rank and closure lack some of the good behaviour
of their matroid counterparts. However, loosely speaking, they behave better
on certain subsets of the greedoid than on others. This motivates the
introduction of two special feasibility concepts, which are trivial for matroids,
but give useful structural information about greedoids.

Let G =(E, %) be a greedoid, and define the basis rank of A < E by

B(A)=max{|AnX|: XeF}.

Equivalently, f(A) is the maximal size of the intersection of 4 with a basis.
It is clear that B(A) = r(A), for all A < E. For matroids the equality always
holds, but this is not true for greedoids. For suppose that AS B, A¢ #,
Be #; then n(A)<|A}=p(A), since A=AnB. Hence, p(4)=r(A) for all
subsets A if and only if G is a matroid.

A set A E is called rank feasible if p(A)=r(A), that is, if |[4AnX| < r(A)
for all X e #. The collection of all rank feasible subsets is denoted by # or
R It is clear that # = &, and that for a full greedoid & = # (because then
B(A) = |A|). Also, we have seen that #; = 2E if and only if G is a matroid.
The collection % is an interesting set system associated with the greedoid
G. Many properties valid for # generalize to .

Here is a characterization of rank feasible sets.

8.4.3. Proposition. Let (E, #) be a greedoid, A< E. Then the following
conditions are equivalent:

(i) A is rank feasible;

(i) (AvuX)=rA)+|X|, for all X = E — 4;
(i) X € A = (X)), for some X € F.
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Property (ii) shows that r has the unit-increase property on rank feasible
sets. Also, it allows us to conclude that for 4, B< E:

p(Au B) +r(An B) = f(4) + (B),

which implies that on rank feasible sets, r = f is semimodular. Property (iii)
easily implies that # is an accessible set system. However, in general (E, %)
is not itself a greedoid.

In some situations it is useful to consider a stronger property than rank
feasibility: A = E is said to be closure feasible if A = a(X) implies A < u(X)
for all subsets X < E. Equivalently, 4 is closure feasible if 4 = a(X) and
X cYS E imply A < o(Y). We denote the collection of closure feasible sets
by € or €;. Here are some basic properties.

8.4.4. Proposition. Every closure feasible set is rank feasible: € < &. Furthermore,
the set system € is closed under union.

8.4.5. Proposition. The following conditions are equivalent:
(i) (E, #) is an interval greedoid,
() Fc=¢;
(i) € =4A.

Since Z is an accessible set system, it follows from Propositions 8.2.7, 8.4.4,
and 8.4.5that (E, €)= (E, #)is an antimatroid if (E, %) has the interval property.

8.4.D. Constructions
The basic matroid construction of deletion, contraction, truncation, and

direct sum generalize to greedoids in the following way.
Let G =(E, #) be a greedoid and A < E. Define

F\A={XSE— A XeF}, (8.3)

and, if A is feasible,

Fl/A={XcE—-A XUAeF}. (8.4)
It is not hard to check that the set systems obtained are in both cases
greedoids on the ground set E'=E— A. G\A=(E', #\A) is said to be
obtained from G by deletion of A, or by restrictionto E — A,and G/A = (E', #/A)
by contraction of A. Also, by a minor of (E, #) we shall mean any restriction
of a contraction, i.e. any greedoid of the form (E — (4 u A'), (#/A)\A’), where
Ae%¥ and A’ E— A.

Observe in this connection that restriction and contraction commute:
(FIANA' =(F\A)A={XSE—(AuA). XUAe F},

for AnA'=J, Ae¥ and A' S E.



306 Anders Bjorner and Giinter M. Ziegler

Thus minors can equivalently be defined as contractions of restrictions.
Minors of minors of a greedoid are again minors of the greedoid, and hence
‘being a minor of” defines a partial order on the set of isomorphism types of
greedoids. For more about this, see section 8.9.A.

Let r, ¥ and r” denote the rank functions of G, G\ 4, and G/A, respectively.
Then for all X € E — 4:

r(X)=rX) and r(X)=rXuA)—rA). 8.5

Definition (8.4) produces a greedoid only if A is feasible, since otherwise
D ¢EF/A. Tt is possible to extend the definition of contraction %#/A in the
following cases: (i) & is an arbitrary greedoid and A is rank feasible, or (ii)
& is an interval greedoid and A is an arbitrary subset. (However, the
contraction & /A is not a meaningful concept for general & and A.) In case
(i) one extends the rank formula (8.5), while in case (ii) one picks a basis B
of A, contracts by B, and then deletes A — B. It is instructive to try to visualize
the second case in terms of branching greedoids.

It is easy to formulate the ordered versions of deletion and contraction.
For instance, the contraction of a greedoid language (E, %) by the feasible
word « is defined by

Flo={BeE¥:afe ¥}, 8.6)

which is clearly again a greedoid language.
If (E, #) is a greedoid of rank r and 0 £ k <r, then the k-truncation

FO_(XeF : |X|<k} ®8.7)

is a greedoid as well.

There are two ways to define the sum of greedoids. Let G, =(E,, #,) and
G,=(E,, #,) be two greedoids on disjoint ground sets. Then their direct
sum is the greedoid G, ® G, =(E,VE,, #, B %,), where

FOF,={X,vX,: X, eZF, and X,eF,}. (8.8)
Their ordered sum is the greedoid G, ® G, =(E,VE,, #, ® #,), where
FIQF,=F, V{BuX: Bis a basis of #, Xe F,}. (89)

Clearly, G, ® G, and G, ® G, have the same family of bases. Also, the
language of feasible words of G, @G, is the shuffle product of the two
component languages.

All constructions discussed in this section take interval greedoids into
interval greedoids, and similarly for local poset greedoids. The same is true
for antimatroids, except that the k-truncation of an antimatroid is in general
only an interval greedoid. Conversely, the restriction of an interval greedoid
to any feasible set is an antimatroid (cf. Proposition 8.2.8). A special operation
for antimatroids, called trace, will be defined in section 8.7.C.

Unfortunately, the duality operation of matroid theory has no counterpart
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for greedoids. Only a weak notion of duality operation exists for general
greedoids; see section 8.6.C.

8.4.E. Connectivity

The concept of the connectivity of greedoids is modeled to generalize the
graph-theoretic connectivity of rooted graphs in the case of branching
greedoids. In this context a rooted digraph A =(V, E, r) is called connected
(or 1-connected) if there is a directed path from the root to every vertex.
More generally, A is k-connected if every vertex ve V can be reached from
the root by a directed path after removal of at most k — 1 verticesin V — {r, v}.
Equivalently, by Menger’s theorem, A is k-connected if there are k vertex-disjoint
directed paths from the root to every vertex ve V —r such that (r, v) is not
an arc in E. Similar definitions apply to rooted undirected graphs.

The digraph A is connected if and only if the associated vertex search
greedoid is full. In contrast, the connectedness of A is not encoded in the
directed branching greedoid of A.

The case of higher connectivity (k > 1) suggests the following definition.

8.4.6. Definition. Let (E, #) be a greedoid of rank r, and let Xe%#. A set
AcE— X is called free over X if for every BS A, X UB is feasible. The
greedoid (E, #) is called k-connected (1 £k <r)if for every X € # there is a
free set A over X of size min {k, r — r(X)}. Equivalently, (E, #) is k-connected
ifforevery X € # thereisa Ye # suchthat X € Y, |Y — X| = min {k, r — H(X)}
and the interval [ X, Y] of the poset (¥, <) is Boolean.

Obviously, every greedoid is 1-connected, and every k-connected greedoid
is also (k — 1)-connected for k = 2. Matroids are r-connected (i.e. maximally
connected), but this does not fully characterize matroids.

If A is free over X e #, then it is contained in the set

I'X)=E\o(X)={aeE— X: XvaeF}
of continuations of X. In antimatroids, we know (e.g. from Lemma 8.7.9) that

the free sets over X are exactly the subsets of I'(X). Thus an antimatroid is
k-connected if and only if for all X e #,

IT(0)| 2 min{k, r — nX)}.

The following result shows that (for k > 1) Definition 8.4.6 describes a
reasonable generalization of graph connectivity.

8.4.7. Proposition. Let A =(V, E, r) be a connected rooted digraph. Then the
Jollowing are equivalent for k > 1:
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(i) A is k-connected,
(ii) the branching greedoid on A is k-connected,
(iil) the vertex search greedoid on A is k-connected.

Proof. Since (ii)<>(iii) is a special case of Proposition 8.8.9, we will only
demonstrate (i)<>(iii).

If the digraph A is not k-connected, then thereisa cutset A V' =V —r
of size |4| < k that separates a vertex ve I’ — 4 from the root. Consider the
feasible set X = u{Ye F : Y< V' — A} of the vertex search greedoid (V', #).
We have 4| + HX)<r=|V’|, since v¢ X U A. But the free sets over X are
contained in I'(X)< A4, and |4| <min{k, r —r(X)}. Thus (V’, #) is not
k-connected.

Conversely, if the vertex search greedoid is not k-connected, then there is
a set Xe&F such that |[I(X) <min{k, r—r(X)}. But then
IXuT(X)|=rX)+ |0(X)| <r, so [(X) is a cut set of size less than k that
separates all vertices of V' — (X UT'(X)) from the root. O

In concluding this section, we observe that the case of undirected rooted
graphs and their associated greedoids can be reduced to the previous directed
case by a standard graph-theoretic construction: for an undirected rooted
graph I'=(V, E, r)let A=(V, E’, r) be the rooted digraph on the same vertex
set that has a pair of antiparallel arcs forevery edge of I'. Then I is k-connected
if and only if A is k-connected, and the vertex search greedoids of I' and A
coincide. The branching greedoids of I' and A differ already in the size of
their ground sets, but the associated posets (¥, <) are isomorphic. This
proves the analog of Proposition 8.4.7 for undirected graphs via the
observation that k-connectedness of a greedoid can be determined from the
unlabeled poset (#, <) alone.

8.5. Optimization on Greedoids

As mentioned in the introduction, greedoids were originally developed to
give a unified approach to the optimality of various greedy algorithms known
in combinatorial optimization. Such algorithms can be loosely characterized
as having locally optimal strategy and no backtracking.

In this section we will formulate a greedy algorithm for hereditary
languages, define compatible objective functions on such languages, and then
characterize greedoids as those languages on which the greedy algorithm is
optimal for all compatible objective functions. The well known algorithmic
characterization of matroids in terms of linear objective functions is here
viewed in a broader context.

To illustrate the results, we will discuss Kruskal’s and Prim’s algorithms
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for minimal spanning trees and Dijkstra’s shortest path algorithm as instances
of greedoid optimization.

8.5.A. The Greedy Algorithm

In the following, let (E, &) be a simple hereditary language over a finite
ground set E. We do not assume a priori that & is pure. As usual, maximal
words in % are called basic. We will be interested in the following optimization
problem.

Given an objective function @ : ¥ — R, find a basic word o that maximizes w(0).
The greedy approach to this problem is expressed by the following algorithm.

GREEDY: (1) Put ay:= & and i:=0.
(2) Given a;, choose x;, , € E such that
W) ax;4 €&
(il) o(o;x;4 )2 o(o;y), for all ye E such that o,ye &£.
(3) Put oy = ;x4 4.
(4) If the word «;, , is not basic, put i:=i+ 1 and go to (2).
(5) If o, , is basic, print a:= a;, ; and stop.

Whether GREEDY works (that is, whether the greedy solution o produced
by GREEDY actually maximizes w(a)) must obviously depend on both &
and o — they have to be ‘compatible’.

8.5.1. Definition. An objective function w: ¥ — R is compatible with & if it
satisfies the following conditions: for ax € £ such that w(ax) = w(ay) for every
aye.Z (‘x is a best choice after o),

(C1) afixye ¥ and afizy e £ imply that w(afxy) = w(xfzy) ('x is a best choice
at every later stage’), and

(C2) axfzye.? and azfixye ¥ imply that w(axfzy) = w(azfxy) (it is always
better to choose x first and z later than the other way round’).

Of course, if w is stable, in the sense that w(a) only depends on the underlying
set &, then (C2) is vacuously satisfied.
The following main theorem characterizes greedoids algorithmically.

8.5.2. Theorem. Suppose (E, £) is a simple hereditary language. Then (E, ¥)
is a greedoid if and only if GREEDY gives an optimal solution for every
compatible objective function on &£.

Proof. (1) We will show that GREEDY works on interval greedoids — the
proof for general greedoids is similar but more complicated. All examples
discussed below involve interval greedoids and are therefore covered by this proof.
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Let (E, &) be an interval greedoid, » a compatible objective function and
y a greedy solution. Choose an optimal solution é so that the common prefix
with y is of maximal length, i.e. |a] is maximal with y =y and 6 = ad’. We
claim that y=a =4.

If this is not the case, then Y =xy", & =y,y, ... y, where x #y,. Now
augment ax from f=ay, ... y,, using the strong exchange property (L2) for
interval greedoids: axy, ... 9, ... y,€ %, for some 1 < k < n. Here, ‘9,” denotes
that y, is deleted.

For 1 £i<k—1 define

Bi=ay, - YicyXYi e P oes Vo
and let

Bi=; oo Vi1 XYy - Vur
We know that B, =axy, ... § ... y,€ ¥, and augmenting ay, ... y, from
Bi:€ &, using strong exchange (L2), we get B, , , € . Hence, 8, B,, ..., BL€ L.
Now, x is a ‘best choice’ after a (since y is greedy), so conditions
(C1) and (C2) give

o)z wB;)2 ... 2wB,),
and (C1) implies
O(By) = 0@y - Vo1 XYix1 - Vn)
20y - Voo 1 VeVir1 - Yn) = @(0).
Hence, w(,) = w(d). But then 8, is an optimal basic word having a longer
common prefix ax with y than does 6. This contradicts the choice of 4.

(2) For the converse, we define generalized bottleneck functions on &: they
are the objective functions of the form w(x,x, ... x,)= min{f,(x,), ..., f,(x,)},
where the f;: E—>R (1 <i <) are functions satisfying f;(x) < f;, ,(x) for every
x€E, 1 <i<r. Hererdenotes the maximal length of a word in . Generalized
bottleneck functions are compatible with all hereditary languages, as is easily
checked.

Now, suppose that «, fe.£ and |¢| =k > m = |f|. We want to show that
there is some xed& such that fxe.%. For this, let A=dUf and define a
generalized bottleneck function @ by

0 if x¢da,

L= =100 = {1 if xeA,
(U if x¢a,

Jeas®) = = S0 = {2 if xed

Let 6 = ad’ be a basic word extending . Then @(8) = 1. Next,lety = fix,x, ... x,
be a greedy solution extending f. Such solutions clearly exist. Since GREEDY
is assumed to be optimal, we have

1 =) £ wly) £ fru+1(xy),
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which, since m+ 1<k, implies that x,eA. Now, fix, €%, since £ is
hereditary, and therefore x, € A — f S 4, since % is simple. This completes
the proof. O

8.5.B. Examples

8.5.3. Example. (Matroid optimization) An objective function w: Z—R is
called linear if it is of the form

Oxy X5 ... X,)= _Z u(x;)

for some given weight function u: E—R.

If (E, &) is a matroid then all linear objective functions are compatible
and hence can be greedily optimized. One easily checks condition (C1), and
(C2) is clear since linear objective functions are stable.

For example, if I' =(¥, E) is an undirected connected graph with weight
function u: E—R, then a minimal spanning tree (i.c. a spanning tree TS E
minimizing ) .., u(e)) will be obtained by applying Kruskal’s algorithm.
From a greedoid point of view, we apply GREEDY to the linear objective
function o(T) = — ), ule) on the graphic matroid (E, %) associated with I

8.5.4. Example. (Breadth-first-search) Let (E, £) be the branching greedoid
of a connected rooted digraph A = (¥, E, r), and assume that d: E>R™* is a
length function on the arcs. Define an objective function w: £— R by

OXy Xy .o X,) = — 2 d(r, v;),

i=1
where the v; = head(x;) are the nodes reached by the branching x, ... x,, and
d(r, v;) is the sum of the lengths of the arcs on the unique path from r to v;
inx,x, ... x,.
We have to check that  is compatible with .#: (C2) is again clear because
o is stable; the easy argument for (C1) is an instructive exercise.

Hence, the theorem implies that GREEDY, which executes Breadth-
first-search on A, finds a spanning arborescence that minimizes the sum of
the distances from the root. Such an arborescence must, in fact, also minimize
each individual distance, since, as can easily be seen, there exist spanning
arborescences that simultaneously minimize all the distances from the root
to the other vertices. This particular instance of GREEDY gives the shortest
path algorithm of Dijkstra.

It is noteworthy that the objective function —w (corresponding to
Depth-first-search) is not compatible with the branching greedoid language.
For instance, GREEDY fails to optimize — for the greedoid shown in
Figure 8.6.
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Figure 8.6.

8.5.C. Linear Objective Functions

Linear objective functions (as defined in Example 8.5.3) cannot in general be
greedily optimized over greedoids. However, for some special linear functions
and for some special greedoids the situation is better.

Let (E, #) be a greedoid, # < 2F its collection of rank feasible sets, and
u: E—R a function. The linear objective function a(x;x, ... x,) = Y 71—, u(x;)
is called #-compatible if {xeE: u(x) 2> c}e R, for all ceR, that is, if all the
level sets of u are rank feasible.

In the situation of the preceding paragraph, suppose thatc; >c,> ... > ¢,
are the values assumed by u, and let C; = {x € E: u(x) 2 ¢;}. Clearly, GREEDY
will first pick a basis of C,, then augment it to a basis of C,, and so on.
Hence, if Bis a greedy basis then |[Bn C;| =rank C,,for 1 <i<k. Since C;e &,
an arbitrary basis B’ must satisfy |B'nC;} < rank C,;,1 <i < k. It easily follows
that o(B') < (B), i.e. we have proven the following.

8.5.5. Proposition. Let (E, F) be a greedoid. Then GREEDY is optimal for
every #-compatible linear objective function.

As observed in section 8.4.C, (E, #) is a matroid if and only if # = 2%,
that is, if and only if every linear objective function is #-compatible. So
Proposition 8.5.5 again generalizes, but in a different way from Theorem
8.5.2, the fact that matroids have the property that all linear objective
functions can be greedily optimized.

However, not every greedoid with that property is a matroid, as
we shall now see.

8.5.6. Proposition. Let (E, #) be a greedoid. Then GREEDY is optimal for
every linear objective function if and only if the hereditary closure (E, #(F))
is a matroid and every set that is closed in (E, F) is also closed in (E, #(F)).

An example of a greedoid that satisfies these conditions is the undirected
branching greedoid of a connected rooted graph I = (¥, E, r), for which the
hereditary closure is the corresponding graphic matroid. Greedy optimization
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of linear objective functions over this branching greedoid is equivalent to
Prim’s algorithm for finding a minimal spanning tree in I

8.6. The Greedoid Polynomial

Every greedoid has an associated polynomial that reflects some of its
combinatorial structure. In this section we will present the basic properties
of this polynomial and also discuss the related notions of greedoid invariants
and dual complexes.

8.6.A. A Greedoid ‘Tutte’ Polynomial

Let G=(E, #) be a greedoid with n=]|E| and r=rank G. Give
the underlying set E a total ordering Q. This induces a total ordering
of the set #; of bases of G as follows: B<B if the lexicographically
first feasible permutation of B is lexicographically smaller than the
lexicographically first feasible permutation of B'.

For instance, consider the branching greedoid of the directed graph shown
in Figure 8.7. There are two bases: B, = {a, b} and B, = {a, ¢}.If Qisa<b < ¢
then B, < B,, but if Q is b <c¢ <a then B, < B,.

Now, for a basis Be & we shall say that xe E — B is externally active in
B if B<(Bux)—y, for all ye B such that (Bux)—y is a basis. Let ext,(B)
denote the set of externally active elements, and define

doat)= Y t==Ol (8.10)

Bed,;

Let us again exemplify with the small branching greedoid above:

Q extq(B,) exto(B;) Ae.a0)
a<b<c {c} %] L+t
b<c<a (%] {b} 1+t

The crucial combinatorial fact about this notion of external activity in
bases is stated in the following lemma. Recall that a subset A < E is said to
be spanning if it contains a basis.

Figure 8.7.




314 Anders Bjorner and Giinter M. Ziegler

8.6.1. Lemma. For each spanning set A there exists a unique basis B such
that B< A < Buexty(B).

The basis B with this property is the first one (in the ordering induced by
Q) that is contained in A. The partitioning of the set & of spanning sets into
Boolean intervals implies part (iii) of the following theorem, which in turn
implies part (i).

8.6.2. Theorem. Let G =(E, &) be a greedoid of rank r and cardinality n.
(i) Ag(t):= Ag () is independent of the ordering Q of E.
(i) Ag(t) is a monic polynomial of degree n—r with non-negative integer

coefficients.
(ii) If G has s; spanning sets of size j, for r <j < n, then
AL+ )=} st
i=0
(iv) Ag/e(t) if {e}eZ and e is a coloop,
Aelt) = Agre() + A (t) if {e}€F and e is not a coloop,
A, (DAg,(2) if G is the direct or ordered sum of
G, and G,.

The polynomial A4(¢) is a greedoid counterpart to the Tutte polynomial.
If G is a matroid with Tutte polynomial T;(x, y) and dual matroid G*, then
Ts(1, ) = A(t) and Ty(t, 1) = Ag-(2).

Every greedoid of positive rank must have some feasible singleton.
Therefore part (iv) of the theorem gives a recursive algorithm for computing
the polynomial 4, for any greedoid G. The algorithm will stop at the trivial
greedoids of cardinality k and rank zero, whose polynomial is ¢*. In general,
if G has k loops and G’ is obtained by deleting these loops, then A (t) = t*Ag.(t),
since G is then the direct sum of G’ and the loops. For instance, if G is of
rank one with k feasible singletons, then 4; =t""%(1 + ¢t + ... + ). Notice
(e-g. from (8.10)) that if G is full (i.e. E€e %) then A4(t) = 1.

Let us as a small example compute 4, for the branching greedoid G in
Figure 8.8a.

One sees that the arc e is a feasible coloop (i.e. it emanates from the root
and lies in every spanning arborescence). Hence, it may be contracted away
without affecting ;. Now, G/e = G, B G,, where G, is the branching greedoid
in Figure 8.7 and G, that in Figure 8.8b. Hence, 4; = (1 + t)4¢,, and deleting
the two loops in G, (i.e. the arcs going into the root) we get Ay, =t%Ag.,
where G, is the greedoid in Figure 8.8¢c. Using deletion—contraction or simple
counting, part (iv) or part (iii) of Theorem 8.6.2 quickly gives A, =2t + %
Hence, Ag(t) = (1 + Ot22t + t2) =263 + 3t* + £°.
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Figure 8.8.

G G, G

s

(@) (b) ©

We have seen that the degree of A;(t) as well as the coefficients of Ag(1 + )
have direct combinatorial meaning. Also the subdegree of Ag(f) has an
interesting interpretation in terms of a certain algorithmic property. By the
subdegree of a non-zero polynomial ¢, + ¢+ ... + ¢,t* we mean the least
integer d such that ¢, #0.

Suppose that we want to design an algorithm that for arbitrary subsets
A € E decides whether A is a spanning set in the greedoid G = (E, &). Think
of A as being represented by its incidence vector Z, (a 0—1-vector of length
n with elements equal to unity in the positions corresponding to A4), and
suppose that the algorithm can read %, by inspecting only one position at
a time. If the best such algorithm can decide whether A is spanning or not
after k inspections for all 4 < E, and if k — 1 inspections will not suffice, then
we say that k is the argument complexity of the spanning property in G.

For instance, it is easy to check that the argument complexity is 4 for the
branching greedoid in Figure 8.8c. In other words, it would be redundant
to inspect all five arcs in order to decide algorithmically whether a subset
of arcs contains a directed path from the root to every other node.

8.6.3. Proposition. The argument complexity of the spanning property in G is
n—d, where d is the subdegree of A4(t).

The result can be made more precise, since the method of proof implies
an explicit optimal algorithm that will decide whether an arbitrary subset A
is spanning after at most n — d inspections of Z,. Briefly, here is what to do.

(1) Pick a feasible singleton {e} in G and read the corresponding position
Z,of Z,.

(2) f Z, =1 and rank G > 1, put G:= G/e and go to (1).

(3) If Z,=1 and rank G =1, print ‘4 spans’ and stop.

4) If Z, =0 and e is not a coloop, put G:= G\e and go to (1).

(5) f Z,=0 and e is a coloop, print ‘A does not span’ and stop.
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There is one more characterization of the subdegree of A4(t), which for
branching greedoids takes the following form: If G is the branching greedoid
of a rooted directed graph and if d is the least number of edges that must
be removed in order to obtain a spanning and acyclic (no directed cycles)
subgraph, then d is the subdegree of i4(t).

8.6.B. Invariants and Reliability

Suppose that ¢ is a function that associates some complex number with each
greedoid G = (E, #). For instance, ¢(G) could be the number of feasible sets,
the number of bases, or the cardinality of the ground set. Such a function ¢
is called the invariant if the following axioms are satisfied.

(I1) ¢(G) = ¢(GJe) if {e} is a feasible coloop.

(12) ¢(G)=¢(G/e) + ¢(G\e) if {e} is feasible and not a coloop.

(I3) ¢(G)= P(G)P(G,) if G is the direct or ordered sum of G, and G,.
(I4) ¢(G)=¢(G,) if G, and G, are isomorphic.

(I5) ¢(G)#0 for at least one greedoid G.

Let G denote the (up to isomorphism) unique greedoid of rank zero and
cardinality n. If ¢(Gy) =2z, then ¢§(Gh)=2" For n=1 this is a direct
consequence of axiom (I3). For n =0, ¢(GJ) =1 follows from (I3) and (I5)
taken together. Notice that this together with (I1) implies that ¢(G) =1 for
every full greedoid G.

There is a close connection between invariants and the polynomial 44(¢).

8.6.4. Proposition. Every invariant ¢ isan evaluation of the greedoid polynomial.
More precisely, if (Gy) =zeC, then $(G) = i4(2) for all greedoids G.

Proof. By definition the invariant ¢ enjoys the same recursive properties as
the polynomial evaluation 44;(z). Hence, the two will coincide for all greedoids
if they coincide for greedoids of rank zero. But we have already seen that
this is the case. O

Simple examples of greedoid invariants are the number of bases (=44(1))
and the number of spanning sets (=44(2)). The following probabilistic
example is, however, more interesting,

Let G=(E, #) be a greedoid of rank r and cardinality n. Suppose that
each element of E is colored red with probability p and blue with probability
1 — p, for some real number 0 < p < 1. The coloring of each element is assumed
to be independent of the coloring of the others. Let m;(p) denote the
probability of the event that the set of blue elements is spanning in
G: ng(p) = Prob(blue spans).
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For instance, if G is the circuit matroid of a connected graph, then ng(p)
is the probability that the blue edges will connect all vertices; if G is the
branching greedoid of a directed rooted graph then n;(p) is the probability
that each node can be reached along a path of blue edges from the root; if
G is the k-truncation of a poset greedoid then ng(p) is the probability that
the order filter generated by the red elements has size at most n—k; if G is
the k-truncation of a Euclidean convex pruning greedoid then ns;(p) is the
probability that the convex hull of the red points has size at most n — k. In
examples such as these one may think of the greedoid as some abstract
stochastic system in which components may ‘fail’ independently of each other
with probability p, and the question is to assess the probability that the
system will still ‘operate’ in an appropriate sense (the ‘damage’ caused by
failed components is sufficiently limited).

To analyze the function 7 (p), define ¢,(G) = p"~"(1 — p) " (p). We claim
that ¢,(G) is an invariant. Only axiom (I12) will be verified here; verification
of the other axioms is either similar or trivial.

Suppose that {e} is feasible and not a coloop. Then Prob(blue spans) = Prob(e
is blue and blue spans) + Prob(e is red and blue spans), or equivalently,
n6(p) = (1 — p)ng(p) + Prg . (p). Multiplication of this equation by p"~"(1 — p) ™"
gives ¢,(G) = ¢,(G/e) + ¢,(G\e), so (12) is satisfied.

Since ¢, is an invariant, and clearly d)p(G(‘,) =p ! (all subsets of G} are
spanning), we conclude that ¢,(G) = ig(p~") for all greedoids G. Hence, we
have proven the following.

8.6.5. Proposition. The probability that the set of blue elements is spanning in
Gisp""(1 —pyiglp™").

For instance, using our previous calculation we conclude that the blue
arcs will reach every node of the graph in Figure 8.8a with probability
(1—p)°(1 + 3p + 2p?).

8.6.C. Duality

What parts, if any, of the matroid duality operation remain valid for
greedoids? The answer to this question will depend on what we mean by a
duality operation G— G* that sends a greedoid G = (E, #) to some structured
set system G* = (E, #*) on the same ground set. To get reasonably general
positive answers we must unfortunately give up the requirement that the
dual (E, #*)itself is a greedoid. Then there are two weak notions of greedoid
duality.

The first is the complementation construction #°={E - X : Xe #}. For
antimatroids (Proposition 8.7.3), this leads to a dual object that is a convex
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geometry (it is a greedoid if and only if the original antimatroid is a poset
greedoid). A pleasant property of this duality is that the original antimatroid
can be uniquely recovered from its dual. A definite disadvantage is that the
construction gives nothing of apparent interest for general greedoids, with
the following exception.

8.6.6. Theorem. If (E, &) is a full Gaussian greedoid, then so is also (E, #°).

The second notion of duality, and the one that we will briefly discuss here,
associates with an arbitrary greedoid a dual object that is a shellable simplicial
complex. One price paid for the generality is that the original greedoid cannot
be uniquely reconstructed from its dual. On the other hand, this duality
operation commutes with deletion and contraction in the desired way and
also generalizes some other matroid properties to arbitrary greedoids. Last
but not least, it throws additional light on the greedoid polynomial.

In the following discussion hereditary set systems will be called simplicial
complexes, and we will assume familiarity with the concepts of shellability
and shelling polynomial of simplicial complexes. These and other related
notions are defined and discussed in Chapter 7 of this book.

For a greedoid G =(E, ¥), define its dual complex G*=(E, #*) by
F*={A: A< E — Bfor some basis Be #}. So, #* is the hereditary closure
of the family of complements of the bases of G. It is therefore a pure simplicial
complex. Clearly, if Gis a matroid then G* is the dual matroid in the usual sense.

As a simplicial complex, a matroid can be characterized either by the
exchange property (by definition) or else by being sufficiently shellable (by
Theorem 7.3.4). These two properties, exchange and shellability, go different
ways in the more general picture: the former is found in all greedoids and
the latter in their duals.

8.6.7. Theorem. The dual complex G* of a greedoid G =(E, F) is shellable,
and its shelling polynomial is A4(t). Furthermore, if e€ E, then

(i) G*\e=(G/e)*, if {e} is feasible;
(i) G*/e=(G\e)*, if e is not a coloop.

The deletion and contraction operation on simplicial complexes should
be understood in the natural way: G*\e={AcE—e AeF*} and
G*le={Ac E—e AuecF*} if {e} € #* The special requirements on the
element e in (i) and (i1) ensure that in each case contraction is well defined.

Let us sketch the proof of Theorem 8.6.7 to the extent that its relevance
for the greedoid polynomial becomes clear. Start by assigning a total ordering
Q to the ground set E. As explained in the first paragraph of section 8.6.A,
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this induces a total ordering of the set # of bases of G. The first main fact
is that the corresponding ordering of the basis complements is a shelling
order. In particular, G* is shellable. The second main fact is that the restriction
of the facet E — B induced by this shelling order (as defined in section 7.2)
is E — (Buextg(B)). Consequently, 1;(t) = A o(t), as defined in (8.10), is the
shelling polynomial. Also, it follows that Lemma 8.6.1 is a special case of
Proposition 7.2.2.

8.7. Antimatroids

Antimatroids were defined in section 8.2 as greedoids that have the interval
property without upper bounds. They were characterized in Proposition 8.2.7
as accessible set systems closed under union and by a special exchange
property. Several examples were given in section 8.3.B.

In this section we shall discuss some of the special structure of antimatroids,
which makes them an exceptional class of greedoids. It turns out that
antimatroids model some combinatorial properties of the convex hull operator
in Euclidean spaces much like matroids model the combinatorial properties
of the linear span operator.

8.7.A. The Duality with Convex Geometries

A closure operator on a finite set E is an increasing, monotone, and idempotent
function 7 2E—2E. This means that for all A, B < E:

(CO1) Ac<1(A);
(CO2) A< Bimplies 7(A) < ©(B);
(CO3) t1(A) = 1(A).

Fixed sets A = t(A) are called closed, and it follows from the axioms that
the family ¢ of closed sets is preserved under intersection (i.e.
A, Be¥=An Be%). Conversely, if € <2F is a set system preserved under
intersection then 1(4)=n{Ce¥ : A< C} is a closure operator, and this
gives a one-to-one correspondence between closure operators and intersection-
invariant set systems containing E. In particular, a closure operator can be
specified by giving the family € of closed sets.

The closure operator ©(A)={x€E: r(Aux)=r(4)} of a matroid is
characterized by the additional MacLane exchange axiom:

(E) If x, y¢ 71(A) and ye1(A ux), then xe (A Uy).

Now, let E be a finite subset of R” and for subsets A < E let ((A) = Enconv(A),
where conv(A) denotes the convex hull of 4 in the usual sense of Euclidean
geometry, i.e. 1(A)={xeE: x=2la;, ;6 4,051, 1, X1, =1}. It is a very
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Figure 8.9.

interesting fact that this convex hull closure t satisfies a property opposite
to (E), which we call the anti-exchange axiom:

(AE) If x, y¢ t(A), x #y, and ye (4 ux), then x¢z(Auy).

An intuitive illustration of this axiom is given in Figure 8.9.
This leads to the following general definition.

8.7.1. Definition. A convex geometry is a pair (E, 1) where E is a finite set
and  is a closure operator on E satisfying the anti-exchange condition (AE).

To stay close to the geometric intuition it could have seemed natural to
demand that ©() = &J, and even that =({x}) = {x} for all xe E, in a convex
geometry. However, it will soon appear that from a greedoid point of view
such restrictions are unwise.

As the following characterization shows, convex geometries have several
of the well known properties of Euclidean convexity, for instance with respect
to the role of extreme points. For a general closure operator t: 25—2E a
point xe A is called an extreme point of ASE if x¢ (A — x). The set of
extreme points of A4 is denoted by ex(4). Observe that for general closures
(e.g. for matroid closures), ex(4) = ¥ is possible for sets A & ().

8.7.2. Proposition. Let t: 26— 2E be a closure operator on a finite set E. Then
the following conditions are equivalent.

(i) (E, 1) is a convex geometry.

(i) For all closed sets A = B there exists x€ B — A such that AU x is closed.

(iii) For every closed set A — E there exists x€ E — A such that AL x is closed.

(iv) All maximal chains of closed sets, 1((J)= A, A; < ... = A, =E, have
the same length k = |E — t().

(v) A =1(ex(A)), for every closed set A.

(vi) Every A<E has a unique minimal spanning subset (i.e. the family
{S = A: ©(S) = t1(A)} has an inclusion-wise least member).
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Proof. (i)=>(ii). Suppose C is a minimal closed set such that A < C < B, and
let xeC — A. Then Aux is closed. For, if ye7(4 U x) — (4 uUx), then by the
anti-exchange condition (AE) x¢t(Auy); hence Act(Auy)<C, which
contradicts the minimality of C.

(ii)<=(iii). Condition (iii) is a specialization of (ii). Suppose now that (iii)
holds, and let 4 « B be closed sets. By repeated use of (iii) we can find a
chain A=A4,cA,c ... cA,=E of closed sets A; with |4;|=|4]|+1i,
0<iZ<s=|E— A| Since BnA,=A and Bn A = B, we can find some i such
that [BnA;|=|A|+ 1. Since Bn A, = Aux is closed (being the intersection
of two closed sets), (ii) follows.

(ii) =(iv). A reformulation of (ii) is that an inclusion A = B is a covering
in the lattice of closed sets if and only if |B— A]=1, from which (iv)
immediately follows.

(iv)=(v). Let A be a closed set. One easily sees that x eex(4) if and only
if A—x is closed. Hence, assuming (iv), we have that ex(4)=u{4 —B: 4
covers B in the lattice of closed sets}. Now, if z(ex(4)) < A4, then
7(ex(4)) = B = A — x, for some x € ex(A4), which contradicts x € 7(ex(4)). Hence,
7(ex(4)) = A.

(v) = (vi). Let D =ex(z(A4)). Then, clearly, D < S for every spanning subset
S < A. Also, t©(D) = t(A), by (v).

(vi)=(i). Suppose that axiom (AE) fails, i.e. we have x, y¢1(A),
x#y, yet(dux), and xet(Auy). Then t(Adux)=t(4Auy). Let D be
the unique minimal spanning subset of 7(4ux). Then, since Aux
and Auy are spanning, we get Dc(dux)n(Auy)=A, and hence
(D) < 1(4) = 1(A U x), a contradiction. O

Here are a few examples of convex geometries (E, t).

(1) Let P=(E, <)beafinite poset,and for 4 < Edefinet(d) = {xeE: x>y
for some ye A}. The closed sets in this geometry are the order filters
(or, dual ideals) of P.

(2) Let P=(E, £) again be a finite poset and take the interval closure
tH(A)={xeE: y, £x Ly, for some y,, y,€A}.

(3) Let E be the edge set (or, vertex set) of a tree T and for A < E let 7(A4)
be the smallest subtree of T that contains A. The closed sets of this
geometry are the subtrees of T, and the extreme points of a subtree are
its leaves.

(4) Let E be the arc set of an acyclic digraph (i.e. a directed graph with
no directed cycles), and let 7(4) be the transitive closure of A< E. In
particular, if E is the set of comparability relations of a poset, then the
closed sets of this geometry can be identified with the subposets, and
the extreme points of a subposet are its covering relations.
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(5) Let E be a finite subset of R”, and for 4 € E let ©(4) = Enconv(4) be
the Euclidean convex hull closure. This example, which we already used
to motivate the anti-exchange axiom (AE), is particularly important for
providing geometric intuition.

The preceding list of examples of convex geometries shows considerable
overlap with the examples of antimatroids given in section 8.3.B. In fact, the
two concepts are completely equivalent, in the sense of the following duality.

8.7.3. Proposition. Let E be a finite set and ¥ <2E. Then (E, F) is an
antimatroid if and only if F°¢={E — X: X € #} is the family of closed sets of
a convex geometry. Hence, there is a one-to-one correspondence ¥ «—%°
between antimatroids and convex geometries on E.

Proof. Condition (iii) of Proposition 8.7.2 shows that a set system & < 2F is
the family of closed sets of a convex geometry if and only if € is closed under
intersection and for every A€ % there exists Be% such that 4 B and
|B| = |A4| + 1. This means precisely that the family of set complements is closed
under union and accessible, i.e. it is an antimatroid. O

The duality with convex geometries is very useful and illuminating for the
study of antimatroids. Examples are often easily recognized by their closure
operator, and the geometric intuition provided by the dual point of view is
most valuable. From now on we will say that a subset 4 of an antimatroid
is convex if A is closed in the dual convex geometry, i.e. if E — A is feasible.

8.7.B. Some Characterizations of Antimatroids

In this section we shall give some additional characterizations of antimatroids
both as set systems and as languages.

Let E be a finite set and let H be a mapping that associates with each
element x € E a set system H(x) = 2. This defines a left hereditary language:

Ly =1{x,x, ... x, € E¥. for all 1 £i<k there is a set Ae H(x;)
such that 4 < {x,, x,, ..., X;_ }}- (8.11)

The system H = (H(x)),..z Will be called an alternative precedence system, and
the language %y that it generates an alternative precedence language. In the
context of scheduling and searching procedures it is often natural to obtain
feasible sequences this way: an item x becomes legal once at least one
‘alternative precendence set’ has already been processed. Examples will be
discussed after this result.
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8.7.4. Proposition. Let & = E¥ be a finite simple language. Then the following
conditions are equivalent.
(i) (E, ) is an antimatroid.
(i) & is an alternative precedence language.
(i) Fe ¥ and & satisfies the following exchange axiom:
(A') for a, Be & such that &< P, there is some x €& — J such that Bx e .
(Note that (A’) is the ordered version of axiom (A) in Proposition 8.2.7.)

Proof. (i)=>(ii). Define an alternative precedence system by H(x) = {& ax € #}.
Then clearly ¥ = % . Conversely, suppose x,x, ... X, € £y. By induction on
k we may assume that x,x, ... x,_, €.%. By definition of %, there exists
some a € Z such that ax, € £ and & S {x, ..., X, _, }. Since & is closed under
union, we get that {x, ..., x,} = {xy, ..., X, _, } UdX, € . Hence, by Proposition
823, %%, ... ; €&. S0, Fyc= &.

(ii)=(iii). Suppose «, fe ¥ =%, and d¢ f, a=x,x,... x,. Let j be
minimal such that x;¢f. Then for some Ae H(x,), A< {x,, ..., x;_;} < F;
hence fx;e %),.

(iii)=>(i). This was proven in the unordered version in Proposition 8.2.7.

([l

Let us find alternative precedence systems giving rise to some of the familiar
antimatroids.

(1) Let P=(E, <)be afinite poset,and for xe E let H(x) = {{y € E: y < x}}.
Then (E, %) is the poset greedoid.

(2) Let (V', &) be the vertex search greedoid of a rooted graph (V, E, r),
V'=V—r.If xeV’ is adjacent to the root let H(x) = {J; otherwise let
H(x) consist of singletons, one for each neighbor of x. Then ¥ = %,.

(3) Let E be a finite subset of R, and let (E, ¥) be the convex pruning
greedoid. For each xeE let H(x) consist of the intersections of E — x
with closed halfspaces having x on the boundary. Then ¥ = %,.

The feasible sets of an antimatroid (E, #) ordered by inclusion form a
lattice, with lattice operations: X V Y= XuU Y, and X A Y is the unique basis
of X n Y. Lattices of this kind can be characterized in purely lattice-theoretical
terms.

A finite lattice L is said to be join-distributive (or, locally free) if for every
xe L— {1} theinterval [x, j(x)] is Boolean, where j(x) is the join of all elements
in L that cover x. Clearly, every distributive lattice is join-distributive, and
every join-distributive lattice is sesmimodular. In particular, every join-distributive
lattice is graded, i.e. there exists a rank function r: L—N satisfying r(0) = 0
and r(x) =r(y) + 1 whenever x covers y.
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8.7.5. Proposition. Let F < 2F be an accessible set system. Then the following
conditions are equivalent.

(i) (E, &) is an antimatroid.
(i) (#F, <€) is a join-distributive lattice.
(iii) (F, <) is a semimodular lattice.

Proof. (i)=>(ii). The sets that cover X € & in an antimatroid lattice (#, <)
are of the form X ux,, for some x;e E— X, 1 £i <t Since & is closed under
unions, Xu{x;, x;,, ..., x;,} €&, for all 15i, <i,< ... <i,<t. Hence,
(#, <) is join-distributive.

(ii)=(iii). Every join-distributive lattice is semimodular.

(iii) = (i). The assumption implies that cardinality is a semimodular rank
function on the lattice (#, <), i.e. X = Y is a covering only if | X|+ 1 =|Y]
and forall X, YeZ: | X A Y|+ |X v Y|Z|X|+ Y]

Suppose that X, Ye # and X & Y. Takeasaturatedchain X A Y=A,c 4, c
. cA,=X of sets 4,e#, |A;]=]X A Y| +i. Let j be maximal such that
A;< Y. Then,clearly A;=Y A A;.;,and by semimodularity | £|Y v 4;,,| —
|Y|<|A;441—1Y A 4;,,]=1 Hence, for xeAd;,; —A;€X—~Y we have
Yux=YUA;; =YV A;,,e#. Thus, axiom (A) has been verified and, by
Proposition 8.2.7, (E, &) is an antimatroid. |

Antimatroids are related to join-distributive lattices in a stronger sense
than that expressed by the previous result. The two concepts are essentially
equivalent,

8.7.6. Theorem. A finite lattice Lis join-distributive if and only if L is isomorphic
to the lattice (¥, <) of feasible sets of some antimatroid (E, F).

Proof. We shall merely sketch the construction, leaving the verification of a
crucial lemma aside.

Let Lbe a finite graded lattice and let M(L) denote the set of meet-irreducible
elements in L. The lemma we need is that L is join-distributive if and only
if the natural map T: x+—{ye M(L): y% x} embeds L into the Boolean lattice
2M(I) preserving both rank and joins.

Now, if L is a join-distributive lattice, let % := T(L)<2M®), From the
properties of T one concludes that & is accessible and closed under union,
i.e. an antimatroid, and that T gives an isomorphism L=~ (¥, <). O

This representation theorem is a natural extension of G. Birkhoff’s theorem,
which says that L is distributive if and only if L is isomorphic to the lattice
of ideals of some poset. As a direct consequence of Birkhoff’s theorem we
derive the following.
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8.7.7. Proposition. A greedoid (E, F) is a poset greedoid if and only if F is
closed under both union and intersection.

Although quite special, poset greedoids generate all other antimatroids as
homomorphic images.

8.7.8. Proposition. Let f: P—E be a function from a finite poset P to a finite
set E, and let F = { f(A) < E: Ais an ideal in P}. Then (E, &) is an antimatroid.
Furthermore, every antimatroid is induced in this way by a map from some poset.

8.7.C. Circuits

Let (E, #) be an antimatroid, and let T denote the convex closure operator

of the dual convex geometry. Recall the notions of X-free sets and extreme

points defined in sections 8.4.E and 8.7.A respectively. Also, for X e # let
={acE—X: XvacF}.

For a subset A € E, we define the trace, #: A={XnA: XeF}. Since

& A is accessible and closed under union, (E, #: A)is again an antimatroid.

8.79. Lemma. For A E, the following conditions are equivalent.
(i) #: A =24,
(i) A X) for some Xe F.
(iii) A is free over X for some X e .
(iv) A =ex(C) for some convex set C.
(v) a¢t(A—a)forall ac A.
(vi) E— A is closed (i.e. 6(E — A)=E — A).

We leave the easy verification as an exercise.

A subset A < E is called free if it satisfies the conditions in Lemma 8.7.9.
Subsets of free sets are again free. Minimal non-free sets are called circuits.
A 1-element circuit is the same thing as a loop. (Notice that this terminology
is consistent with the matroid case. If (E, &) is a matroid then the trace & : A
equals the restriction to A4; hence free (in the sense of (i)) means independent.
Notice also that for general interval greedoids the trace operation does not
necessarily produce a greedoid.)

Let C be a circuit in the antimatroid (E, &#). Then aet(C — a) for some
aeC, by condition (v). Let xe C — g, and put B= C — {a, x}. Then a, x ¢ ©(B),.
since Bua and Bux are free, and aet(Bux). Hence, by anti-exchange,
x¢t(Bua)=1(C — x).

We have shown that each circuit C has a unique element a such that
ae1(C — a). This is called the root of C.
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8.7.10. Lemma. For ae C < E, the following conditions are equivalent.
(i) C is a circuit with root a.
(ii) If B€C and xe C— B, then xet1(B)<>B=C —a.
(i) F:C=2°—{{a}}.

Proof. (i)=(ii). For Bux = C this has already been shown. If Bux # C, then
Bux is free, hence x ¢ t(B).

(ii) = (iii). Reformulate (ii) as follows: if B C then B=1(B)nC<B # C —a.
Since E — t(B)e #, this implies (iii).

(iii)=(i). Every proper subset of C is clearly free. g

Let us exemplify these definitions, using the familiar antimatroids.

(1) For a poset greedoid, the free sets are the antichains, and the circuits
are the pairs {a, b} < E such that a <b. The root of such a circuit is b,
the larger point.

(2) For the interval closure greedoid of a poset, the free sets are the unions
of two antichains, and the circuits are the triples a < b < ¢, with the
root in the middle.

(3) For the vertex pruning greedoid of a tree, the free sets are the sets of
endpoints (leaves) of subtrees, and the circuits are the triples of vertices
that lie on some path, the middle vertex being the root.

(4) For a Euclidean convex pruning greedoid on E € R", a subset A € E
is free if every point of 4 is an extreme point of the convex hull of A.
A circuit consists of the vertices of a simplex together with a point in
the relative interior of the simplex. The interior point is the root of the
circuit. So the size of a circuit is at least 3 and at most n + 2.

It is clear from these examples that the circuits of an antimatroid do not
determine the greedoid. For instance, a poset P = (E, <) and the dual poset
P*=(E, =) in general have different poset greedoids, but these greedoids
have the same circuits. However, an antimatroid is determined by its rooted

circuits (C, a), i.e. pairs such that C is a circuit with root a.

8.7.11. Proposition. Let (E, ¥) be an antimatroid and A E. Then Ae ¥ if
and only if CnA # {a}, for every rooted circuit (C, a).

Proof. The condition is necessary for a feasible set, by condition (iii) of Lemma
8.7.10. To prove sufficiency, suppose that A ¢ #, or, equivalently, that E — A
is not convex. Let xe An1(E — A), and let D = ex(t(E — A)). That is, D is the
unique minimal spanning subset of E — A (cf. Proposition 8.7.2). Since x ¢ D
and xet(D), the set DuXx is not free, and hence contains some circuit C.
Since D is free (being the set of extreme points of a convex set), we conclude
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that (C, x) is a rooted circuit. But CnA4 = {x}, since by construction
C—x<D<E—A 0

The previous result suggests that a characterization of antimatroids in
terms of rooted circuits might be possible. This is indeed so, as shown by
the following axiomatization, which has a curious resemblance to the circuit
axioms for matroids.

8.7.12. Theorem. Let € = {(C, a): ac C < E} be a family of rooted subsets of
a finite set E. Then € is the family of rooted circuits of an antimatroid if and
only if the following two conditions hold.

(CN) If(C,, a), (C;, a)€ ¥, then C, £ C,.
(CI2) If (Cy, ay), (C,, a;)€¥, a, #a,, and a, € C,NC,, then there exists
(C, a,)€¥€ such that C= C,vC, —a,.

8.8. Poset of Flats

The geometric lattice of a matroid has two different generalizations in
greedoid theory, which coincide exactly for the class of interval greedoids.
Neither of them determines the associated greedoid completely. Nevertheless,
a substantial part of the structure theory of greedoids is captured by its order
and lattice theoretic aspects.

8.8.A. Poset Representations and Flats

We will now construct the poset of flats of a greedoid as its ‘most efficient’
poset representation, define the poset of closed sets of a greedoid (which
requires a more complicated ordering than inclusion), and then study the
canonical map from the poset of flats to the poset of closed sets.

In section 8.2 we described how a greedoid (E, #) can be described by
the Hasse diagram of the poset (¥, <), in which every edge (covering relation)
X <Y is labeled by the 1-element set Y — X. From this labeled poset, the
language & can explicitly be read off: the words of ¥ are uniquely given
by the label sequences along the unrefinable chains in the poset (#, <) that
start at the least element (.

However, it is more efficient to allow larger sets of labels; often the greedoid
can be given by the Hasse diagram of a smaller poset P with least element
0, whose edges s <t are labeled by sets A(s <-f) S E of alternative labels. A
poset representation of a greedoid (E, &) is such a set-labeled poset from
which % arises (without repetitions) as the collection of words along
unrefinable chains starting at 0 that pick exactly one letter from each label
set. That is,
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L ={X1X5 ... X! X;€A(s;~, <'s;) for 1 i<k, where k=0 and
0=s,<'s; <'... <5, is a chain in P}. (8.12)
Here repetitions do not occur if and only if A(s <-t,)n A(s <'t,) = & whenever
t, #t, both cover seP.
For example, Figure 8.10 gives two poset representations of the greedoid
that we have previously described in Figure 8.2. Set brackets for the label
sets are again omitted.

Figure 8.10.

(@) (b)

How do such poset representations arise? Whenever the same set of words
can be read off above two different poset elements, these elements can be
identified, resulting in a smaller poset and a more efficient poset representation.
Now every poset element s corresponds to a set of words — the words in .
that are coded along maximal chains from 0 to s. Thus two poset elements
s, and s, can be identified if the words corresponding to s, and s, have the
same continuations. This suggests the following construction for the most
efficient (or universal) poset representation, using the contraction of greedoid
languages as defined by (8.6).

8.8.1. Definition. Let (E, ¥) be a greedoid. We define an equivalence
relation on .Z by

a~ e Lla=2L/B, (8.13)
that is, « and f are equivalent if they have the same set of continuations.
The equivalence classes [a] € £/~ with respect to this relation are the flats
of the greedoid .£. The poset of flats of the greedoid (E, &) is

®=(ZL/~, L),
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where the flats are ordered by
[o] £ [B]<>ay ~ B, for some ye Lo (8.14)

The labeled poset of flats ® is the poset ® together with the edge labeling 1
of the Hasse diagram of ® that associates to every covering relation [«] <[]
in @ the set

M[e] <[B]) = {xeE: ax ~ B}. (8.15)

The verification that < and A are well defined by (8.14) and (8.15) is
straightforward.

Since a ~ § implies |«| = |f|, the rank function on & carries over to ¥/~
with r([a]) = |a|, for all «e #. This makes @ into a graded poset of rank r;
its unique minimal element is [(J] and its unique maximal element is the
equivalence class of all basic words.

Now since words with the same support are always related (& = f implies
o ~ B), one can use the equivalence between greedoids and greedoid languages,
as described in section 8.2, to give an equivalent definition of the poset of
flats in set-theoretic terms. For this, let (E, &) be a greedoid, and for X, Ye #
define X ~ Yif #/X = #/Y. From this we get a poset of flats & = (% /~, <),
where ‘<’ is the partial order induced by inclusion, that is, [X] < [Y] if and
only if XUZ ~ Y for some Ze % /X. Note that this in particular implies
[X]Z[Y] whenever X =Y.

8.8.2. Proposition. The map given by [a] — [&] is an isomorphism of posets ® = ®.

This proposition (which, using Proposition 8.2.3, is easy to verify) shows
that there is an essentially unique concept of the poset of flats ® =~ & and of
the labeled poset of flats ®.

The labeled poset ® = (®, A) is universal as a poset representation of &,
in the sense that for every poset representation (P, 1) of &, there is a unique,
order preserving, rank preserving surjective map

f: P>®
such that for s, te P, s <'t implies that

Als <) S AS(s) <))

For example, consider again the greedoid depicted in Figure 8.2. Its labeled
poset of flats is given by Figure 8.10b. The canonical maps from the poset
representations in Figures 8.2b and 8.10a to the universal representation are
easy to see.

Here are descriptions of the poset of flats ® for some important classes of
greedoids.
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(1) In the case of matroids, @ is (isomorphic to) the geometric lattice of
flats, since for two independent sets X and Y, X ~ Y holds exactly if
X and Y have the same closure. The edge labeling of ® is then given by

M[X] < [Y]) =0o(Y) - o(X).

(2) If(E, #) is a greedoid with only one basis, then ® ~ (£, <), and 2 is
the labeling by 1-element sets discussed in section 8.2. This includes
the case of all antimatroids, so by Theorem 8.7.6 we see that the poset
of flats of an antimatroid is a join-distributive lattice.

More generally, for every greedoid (E, %) the canonical surjective
poset map f: (#, <)—®, defined by f(X)=[X], is injective on each
interval [X, Y] in &#.

(3) Let (E, #) be a branching greedoid on a rooted undirected or directed
graph, as in section 8.3.C. Clearly, two branchings X and Y are related,
X ~ Y, if and only if they reach the same set of vertices. Thus there is
a bijection between &/~ and feasible vertex sets. One sees from this
that the poset of flats of the branching greedoid is isomorphic to the
poset of feasible sets of the associated vertex search greedoid, and is
hence a join-distributive lattice.

8.8.B. Poset of Closed Sets

From the example in Figure 8.10b we can see that for greedoids without the
interval property the flats cannot be identified with closed sets — the greedoid
has four flats, but only three closed sets of rank 1. What is the structure on
the collection of closed sets? How does it relate to the poset of flats?

It is not natural to order the closed sets by inclusion — the resulting posets
have little structure and do not seem to encode relevant information. An
instructive example is the full greedoid with exactly one basic word: xy, whose
poset of flats is a 3-clement chain but whose closed sets are {x}, {y} and
{x, y}. Instead, examples such as this suggest ordering the closed sets by

A < B if B contains a basis of A.

Equivalently, we could put
AZLBif HAnB)=r(A). (8.16)
Clearly, this generalizes the matroid case. However, it turns out that for
non-interval greedoids, the relation ‘<’ defined by (8.16) is not in general
transitive. (For example, if E={a, b, ¢, d, e} and (E, #) is the greedoid
defined by # = 2F — {{a, b}, {b, c, d}}, then {a, b}, {b, ¢, d}, and {c, d, e} are
closed sets of ranks 1, 2, and 3, respectively. Here {a, b} < {b, ¢, d} and
{b,c,d} S {c, d, e}, butr({a, b} " {c, d, e}) = M) = 0 < 1 = r({a, b})) We are
therefore led to consider the transitive closure of the relation defined
by (8.16).
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8.8.3. Definition. The poset of closed sets of a greedoid is the set
€¢ = {0(A): A < E} together with the partial order for which A < B holds if
and only if there are closed sets Ay =4, A, ..., A, = B such that for all i
(1 <i=<k), A; contains a basis of 4,_,, that is, (A;~A;_,)=r(A;_)).

The poset of closed sets has reasonable combinatorial properties. It is
graded, and the poset and greedoid rank functions coincide for it. It is clear
that A < B implies 4 < B, but not conversely.

For the greedoid of Figure 8.2, whose poset of flats is given by Figure
8.10b, the poset of closed sets is drawn in Figure 8.11.

Figure 8.11.

For matroids, antimatroids, and branching greedoids, the poset of flats ®
(as constructed before) and the poset of closed sets €/ are canonically
isomorphic. This is explained by the following result.

Let (E, %) be a greedoid. If a ~ f for «, f€ &, then & ~ § by Proposition
8.8.2, from which o(&) = o(f) follows. Hence, we have a well defined map

¢:[x] —a(&)

from flats to closed sets.

8.8.4. Theorem. The map ¢: ®— €< is order preserving, rank preserving, and
surjective. Furthermore, the following conditions are equivalent:

(1) ¢ is an isomorphism of posets;
(ii) ¢ is injective;
(i) (E, &) is an interval greedoid.

The greedoid of Figure 8.2 again illustrates this: the map ¢ from ® (Figure
8.10b) to ¢¢ (Figure 8.11) is obvious. The interval property fails (e.g.
¢, dace ¥, but dc¢¥) and ¢ is not injective ([c]#[d], although
$([c]) = #([d]) = {c, d}).

Observe that in general the composite map
FoF|~=20o€
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is the closure operator ¢ on . This illustrates the divergence of the concepts
of flats and closed sets in non-interval greedoids: the closure operator
factorizes over the flats.

8.8.C. Interval Greedoids and Semimodular Lattices

Interval greedoids are intimately related to semimodular lattices both via
the poset of feasible sets (#, <) and via the poset of flats ®@. In fact, it is
reasonable to view interval greedoids as the combinatorial models for
semimodular lattices much as matroids and antimatroids are the combinatorial
models for geometic and join-distributive lattices respectively.

Here are some key facts about the lattice property and semimodularity in
posets of feasible sets.

8.8.5. Proposition. Let (E, #) be a greedoid. Then
() (E, #) is an antimatroid < (¥, <) is a semimodular lattice;
(i) (E, #) is an interval greedoid <> all closed intervals [(J, X] in (¥, =
are semimodular lattices;
(ii)) if (E, #) is an interval greedoid, then (¥, <) is a meet-semilattice.

Proof. Part (i) is from Proposition 8.7.5, and part (ii) follows from it via
Proposition 8.2.8.

For part (iii), let & denote the poset (#, <) with a maximal element 1
adjoined. To see that meets (greatest lower bounds) exist in (¥, <), it suffices
(by a standard lattice-theoretical argument) to show that any pair X, YeF
has a join X v Y (least upper bound) in #. Now, if X and Y have an upper
bound Z in (#, <), so that XL Y < ZeF, then from Propositions 8.2.7(ii)
and 8.2.8(i1) we conclude that X U Ye # and therefore X v Y=XuY If X
and Y do not have an upper bound in (#, <), then X v Y=1. O

We remark in connection with the preceding result that for non-interval
greedoids the meet operation on (%, <)may or may not exist (both cases occur).

Some of the special structure of the poset (%, <) for interval greedoids
carries over to the poset of flats ®, and to its labeled version ®.

88.6. Lemma. Let (E, #) be an interval greedoid, and ax, aye ¥ with
[ox] # [ay]. Then axy, ayxe . and [axy] = [ayx].

Proof. This is a reformulation of the transposition property for interval
greedoids, as observed in the last paragraph of section 8.3.G. O

The lemma shows that for interval greedoids, ® is a semimodular poset: if
se® is covered by two different elements ¢,, t, € ®, then there is an element
ue ® covering both ¢, and t,. More precisely, the following is true.
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8.8.7. Theorem. If (E, #) is an interval greedoid, then the poset of flats @ is
a semimodular lattice. Conversely, every finite semimodular lattice arises as the
poset of flats of some interval greedoid.

Proof. (1) To prove the lattice property, we use the following simple lemma:
a finite poset P having a least element is a lattice if, for s,, s,, t€ P, the join
8, V s, exists whenever s, and s, both cover t.

Hence, here we only have to show that in the situation of Lemma 8.8.6,
[oxy] is the only minimal upper bound for [ax] and [ay]. Assume that on
the contrary [axy]=[ayd] is a different minimal upper bound (so that
[oxy]Z [axy]), with y=c,c, ... ¢,. We will prove by induction that
axc, ... ;ye& and axyc, ...c;e &, for 0<i<k, which will lead to a
contradiction.

The case i =Oisclear. Fori > 0 we know by induction thataxc, ... ¢;_,y€ £
and axyc, ... ¢;_, €%, and hence [axc, ... ¢;_,;y] =[axyc; ... ¢;_,] = [axy].
On the other hand, for axc, ... c;e & we have [axc; ... ¢;] # [axy] by
assumption. Hence, [axc, ... ¢;_,y] # [axc, ... ¢;], and Lemma 8.8.6 implies
thataxc, ... ¢;ye &. Augmentingaxyc, ... ¢;_, fromthis yieldsaxyc, ... ¢;e &,
and the induction is complete.

We have in particular shown thataxc, ... ¢,y = axyye &. Since [axy] = [ayd]
if follows that aydye.#, which is impossible since & is a simple language.

(2) For the converse, let L be a finite semimodular lattice, and let E = J(L)
be the set of join-irreducible elements of L, that is, the set of those lattice
elements that cover exactly one element in L. We label the edges in the Hasse
diagram of L by

Ms<t)y={peE:svp=t}.

Let & be the left hereditary language defined by the poset representation
(L, A) as in (8.12). Then (E, &) is an interval greedoid, and L is isomorphic
to its poset of flats. We leave the straightforward verification to the reader.

O

Contrary to what one might expect, semimodularity of ® does not
characterize the interval greedoids. This is shown e.g. by the non-interval
greedoid with 6 basic words, xab, xba, yab, yba, xay, and yax, whose poset
of flats is a semimodular lattice (the unique non-modular semimodular lattice
of rank 3 and order 7).

8.8.8. Lemma. Let (E, F) be an interval greedoid and & = (®, 1) the labeled
poset of flats. If t,, t,e® and t; At, <'t,, thent, <t vt,and

My Aty <t )SMt, <t vi,) 8.17)
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Proof. The first claim is true in any semimodular lattice. If t; A ¢, <'t,, then
(8.17) follows directly from Lemma 8.8.6. In general, (8.17) has to be proven
by induction on rank(z,) — rank(¢, A t,), using Lemma 8.8.6 repeatedly. (]

We conclude with the following application of the results of this section.

Proof of Proposition 8.2.5 (necessity). Let (E, &) be an interval greedoid and
leta=a,a, ...a,=>bb, ... bjec L, k> I Now, a determines an unrefinable
chain0=s, <'s; < ... <s5,in®bys;=[a,a,...a,]for0<i<k Lett=[f].
Since, by Theorem 8.8.7, @ is a semimodular lattice, each step in the following
chain is an equality or a covering:

t=tvsyStvs; 2 .. 5tvs,.

Nowlet 1 <i; <i, < ... <i, <k be the sequence of those indices i; for which
tv s, <tvs,
Thus we have an unrefinable chain
t<tvs <tvs < .. <TVS, =EVS,

Clearly, m =rank(t v s;) — rank(t) = k — L

Now, a;€ A(s;; <'s;) implies by Lemma 8.8.8 thata; e At v s;,_, <t Vv s;)
for 1 £j < m. Hence, the definition of ® allows us to read off fa; a;, ... a; € %,
where o =a; a;, ... a; is a subword of «, of length |o'|=m =k — . a

7Rt 71 i

8.8.D. Poset Properties

The unlabeled poset (#, <) carries important but incomplete information
about a greedoid (E, ). We will here discuss which greedoid properties and
invariants are poset properties, that is, completely determined by the abstract
poset (¥, <) and not requiring explicit knowledge of the set system .

We have seen that (#, <) is a finite graded poset of rank r and size |#|,
with minimum element 0 = & and |#| maximal elements. The number of
unrefinable chains from 0 to some X € # is |Z|. From this it is clear that r,
| %], |48, |-Z|, and the number of basic words are poset properties.

As a contrast, |E| and |U#| are not poset properties. This follows e.g. from
the observation, made in section 8.4.E, that the branching greedoids of a
rooted graph and its associated digraph have isomorphic posets (#, <).
Thus, any greedoid property that distinguishes the two branching greedoids
cannot be a poset property. For example, although A(1) is the number of
bases, the greedoid polynomial A(t) is not a poset invariant, and neither are
the evaluations A(2) and A(0) (i.e. the number of spanning sets and the Euler
characteristic of the dual complex).

The interval property and that of being a matroid, antimatroid, poset, or
local poset greedoid are all poset properties. This follows from the following
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information, which was gathered in earlier sections:
(E, %) (Z, =
interval greedoid <> all intervals are semimodular lattices
local poset greedoid <> all intervals are distributive lattices
matroid <> all intervals are Boolean lattices
antimatroid <> semimodular lattice
poset greedoid <> distributive lattice

Next we note that k-connectivity is a poset property by definition. In fact,
we can define a ranked poset P of rank r with minimal element 0 to be
k-connected if for every X e P there is an element Y > X in P such that the
interval [X, Y] of P is a Boolean lattice of rank min{k, r —(X)}. With this,
a greedoid (E, &) is k-connected if and only if the poset (¥, <) of feasible
sets is k-connected.

8.8.9. Proposition. For a k-connected greedoid (E, &), the poset ® of flats is
also k-connected. If (E, &) is an interval greedoid, then the converse is also true.

Proof. The first part follows from the remark, made near the end of section
8.8.A, that every restriction of the natural map (#, <)—® to an interval is
injective. The second part follows from Lemma 8.8.8. O

Observe that this proposition implies in particular the equivalence (ii) <>(iii)
of Proposition 8.4.7, since the poset of flats of a branching greedoid equals
the poset of feasible sets of the associated vertex search greedoid.

8.9. Further Topics
8.9.A. Excluded Minor Characterizations

For each of the main classes of greedoids arising among the examples, there
is a representation problem: how do we recognize whether an abstractly
given greedoid is isomorphic to some greedoid in that class? This problem
is in most cases unsolved. For instance, no effective way is known for telling
whether a given antimatroid can be represented as the convex pruning
greedoid of a point set in R”.

There are two main ways of characterizing a class of greedoids, either by
structural conditions or by excluded minors. The following are examples of
structural characterizations: Let G = (E, %) be a greedoid. Then

(1) Gis an interval greedoid if and only if X, Y € Z implies X U Ye &, for
all X, Y, Ze #;

(2) G is a local poset greedoid if and only if X, Y= Z implies XU Y,
XnYeF, forall X, Y, Ze#.
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These statements are merely reformulations of information from Propositions
8.2.7, 8.2.8, and 8.7.7. The following result is more substantial.

8.9.1. Theorem. G is a directed branching greedoid if and only if G is a local
poset greedoid and a(X)no(Y)S o(XuY)ca(X)ua(Y), for all X, YeZF.

Hereditary classes of greedoids, i.e. classes closed under taking minors, can
be specified by listing the minimal non-members. (Here ‘minimal’ is to be
understood as referring to the partial ordering of isomorphism classes of
greedoids induced by the relation ‘is a minor of’, as discussed in section
8.4.D.) These minimal non-members are the excluded minors of the hereditary
class, and clearly a greedoid is a member of the class precisely when none
of its minors is among the excluded ones. Examples of hereditary classes are
interval greedoids, local poset greedoids, directed and undirected branching
greedoids, polymatroid greedoids, antimatroids, and matroids.

There is no a priori reason to expect the list of excluded minors for a
hereditary class to be finite or effectively describable. For the classes that
were mentioned the following can be said.

Let E = {a, b} and &F =25 — {{b}}, F' = 2F — {{a, b}}. Clearly, G = (E, ¥)
is not a matroid and G’ = (E, #’) is not an antimatroid, so they are among
the excluded minors for these classes. In fact, they are the only excluded minors.

8.9.2. Proposition.
(i) A greedoid is a matroid if and only if it has no minor isomorphic to G.
(i) A greedoid is an antimatroid if and only if it has no minor isomorphic to G'.
(iil) The classes of interval greedoids, directed branching greedoids, undirected
branching greedoids, local poset greedoids, and polymatroid greedoids
cannot be characterized by a finite set of excluded minors.

Proof. (i) In a greedoid that is not a matroid there are feasible sets having
non-feasible subsets. Pick one such feasible set X of minimal cardinality.
Then for some ae X the subset X — a is non-feasible, and accessibility gives
that X —b is feasible for some beX. The choice of X implies that
Y=X —{a, b} is feasible. Now, restriction to X and contraction by Y
produces a minor isomorphic to G.

(ii) The lack of minors of type G’ is equivalent to the following property:
if X, Yand XnY are feasible and |X|=|Y|=|XnY|+1, then XUY is
feasible. This implies that the poset of feasible sets is a semimodular lattice,
which by Proposition 8.7.5 implies that the greedoid is an antimatroid.

@iii) For k=1, 2, ..., let « be a simple word of length k not containing the
letters x and y. Let G, denote the full greedoid with exactly two basic words:
xay and yox. The following facts are easy to verify: (1) G, lacks the interval
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property; (2) every proper minor of G, is a branching greedoid (both directed
and undirected). It follows that G, is a minimal non-member for each of the
five hereditary classes, and hence that(G,), > , is aninfinite list of excluded minors.

O

In spite of what has just been shown in turns out that undirected branching
greedoids and local poset greedoids can be characterized by finite sets of
excluded minors. The requirement for this is that attention must be restricted
to the class of interval greedoids only.

Let E = {x, y, z} and define greedoids G;=(E, &%), i=1, 2, 3, 4, by (with
some obvious simplifications of set notation)

F =221z},

F,=25—{z, xz, yz},

Fy =251z, yz, xyz},

F,=2F —{xyz}.
In Figure 8.12 these greedoids G,~G, are represented as a vertex pruning of
atree, a poset, a directed branching greedoid, and a graphic matroid, respectively.

Figure 8.12.
z
x z X
oO—O0—=0 z X y
X y
y z
G G G, G,

8.9.3. Theorem. Let G be an interval greedoid. Then
(i) Gisalocal poset greedoid if and only if G has no minor isomorphic to G ,.
(1) G is an undirected branching greedoid if and only if G has no minor
isomorphic to G,, G,, G3, or G,.

8.9.B. Diameter of the Basis Graph

Let (E, #) be a greedoid of rank r, and £ its set of bases. Two bases X, Y
are adjacent if they differ in exactly one element and their intersection is
feasible, thatis, | X Y| =|X|— 1 and X n Ye #. By definition, the basis graph
of (E, #) has vertex set 4, and two bases are joined by an edge whenever
they are adjacent.

We ask under which conditions the basis graph of a greedoid is connected
and what can be said about the diameter of basis graphs.

For matroids, the feasibility condition X n Ye # is always true. Then the
exchange axiom (G2) produces a sequence of adjacent bases between X and
Y, which shows that the basis graph of a matroid is always connected and
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Figure 8.13.
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has diameter at most r. On the other hand, the distance between any two
disjoint bases of a matroid is exactly r.

Questions of the connectedness and the diameter for basis graphs of general
greedoids are less trivial. For example the digraph of Figure 8.13a has a
branching greedoid (Figure 8.13b) with disconnected basis graph; the
intersection of its two bases is not feasible. The branching greedoid of the
digraph in Figure 8.3a has rank r = 2, whereas its basis graph is a path of
length 3; here the diameter of the basis graph is larger than the rank.

In general, the following can be said.

8.9.4. Theorem. Let (E, #) be a 2-connected greedoid of rank r.
(i) The basis graph of (E, F) is connected.
(i) The diameter of the basis graph is at most 2" — 1. This bound is sharp.
(iii) If (E, &) is a branching greedoid of rank r > 0, then the diameter of the
basis graph is at most r*> —r + 1. The bound is best-possible.

Note that the branching greedoid of Figure 8.3 is 2-connected and serves
as an extremal example for the case r =2. In fact, this case can be used to
prove connectedness of the basis graph, and the bound in (ii) on its diameter,
by induction on r. Sharpness of the bound is then established by an explicit
construction.

To prove (iii), one has to exploit the surjective map of section 8.8.A from
the branching greedoid # to its poset of flats @, corresponding to the vertex
search greedoid of the graph. The poset ® — a ssmimodular, coatomic lattice
— has special properties that can be lifted back to # and used there to
construct paths in the basis graph of £#.

In general, higher connectivity of a greedoid decreases the possible diameter
of its basis graph, although most arguments for k-connected greedoids with
k = 3 require the interval property.

8.9.5. Proposition. Let (E, ) be a k-connected interval greedoid of rank r,
where 2 < k <r. Then the diameter of its basis graph is at most 2" **1-k —1.
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This bound is not sharp in general. However, for k =2 it reduces to the
sharp bound of Theorem 8.9.4(ii). For k =r it states that the diameter of the
basis graph of an r-connected interval greedoid is at most 2r — 1. This bound
is sharp, even for branching greedoids. It is, however, still higher than the
bound r for matroids.

8.9.C. Non-simple Greedoids: Chip Firing Games and Coxeter Groups

The way in which a greedoid is defined in section 8.2 requires that all feasible
words are simple (i.e. have no letter occurring more than once). If this
requirement is dropped, one gets a more general notion of greedoids, and
such non-simple greedoids arise naturally in some examples.

Let E be a finite alphabet and ¥ < E* a finite language. Consider these
axioms (the notation is explained in section 8.2):

(L1) if o= By and a €., then fe.¥,;

(L2) if a, Be & with |a| > |f], then a contains a letter x such that fx € .&;

(L2) if o, fe ¥ with |a|>|f], then « contains a subword o of length
lo/| =|a| — |B] such that fo’ € .Z.

In this section only (and in Exercises 8.36-8.38) we shall use the following
definitions: (E, #) is a greedoid if it satisfies (L1) and (L2), and a strong
greedoid if it satisfies (L1) and (L2'). Thus, what was called a ‘greedoid’ and
an ‘interval greedoid’ in section 8.2 would be called respectively a ‘simple
greedoid’ and a ‘simple strong greedoid’ here.

Much of the theory of simple greedoids, as developed in previous sections,
breaks down for non-simple greedoids. This is to a large extent due to the
lack of an unordered, or set-theoretic, version. However, some parts of the
theory that rely only on the ordered, or language-theoretic, version, survive
the generalization. In particular, each greedoid (E, .¥) has a poset of flats ®
(and a labelled poset of flats ®), defined exactly as in Definition 8.8.1.

A proper subclass of greedoids, for which there is an unordered version,
is given by the following definition: a finite language (E, .%) is a polygreedoid
if it satisfies (L1) and

(L2") If o, e 2, |2| > |Bl, then there is some letter x, occurring more times
in o than in f, such that fixe ..

Clearly, all simple greedoids are polygreedoids. Also, the polygreedoids
for which all permutations of a feasible word are feasible are equivalent to
the ‘integral polymatroids’ of J. Edmonds.

The two exchange axioms (L2) and (L2") are logically independent. Any
simple greedoid without the interval property satisfies (L2”) but not (L2').
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Conversely, an example will be given after Proposition 8.9.7 of a greedoid
that satisfies (L2') but not (L2").

Define the support & of a word « as the multiset of letters in «. For example,
if « = loophole then & = {e, h, 1%, 0, p}. The support of a language % is the
multiset system 2 = {@: v £}.

In general, a greedoid & cannot be uniquely recovered from its support
2, but this is the case if £ is a polygreedoid. The multiset systems that are
the supports of polygreedoids can be characterized by accessibility and a
suitable exchange axiom, and this permits an equivalent unordered formulation;
see Exercise 8.37 for the precise statement (which extends Proposition 8.2.3).
Because of this special property, polygreedoids occupy a middle ground
between simple greedoids and general greedoids, and several facts from simple
greedoid theory have straightforward extensions to polygreedoids.

Let us look at two situations where non-simple greedoids arise.

Suppose that we have a finite connected rooted graph (V, E, r) and an
integer k > 0. This gives rise to the following chip firing game.

Think of the graph as drawn on a desk top. We have k chips that during
the game are placed on and moved around among the vertices. By a chip
configuration we mean a multiset A: V—N, |4| = k, which denotes that A(v)
chips are lying on vertex v.

When the game starts all k chips lie in a pile on the root vertex r (other
initial positions work equally well). At this time or any later time a legal
move consists in firing a legal vertex. By this is meant the following. For a
given chip configuration A, a vertex v is legal if A(v) = deg(v), i.e. if there are
at least as many chips on v as there are neighbors. To fire v then means to
remove deg(v) chips from v and distribute them along the adjacent edges to
v’s neighbors, one to each. The game will terminate when a chip configuration
is reached that permits no further legal move.

For instance, consider the graph in Figure 8.14, and let k =4. If b is the
root, the game will terminate after 2 moves. If g is the root the game will
terminate after 6 moves. Finally, if ¢ or d is the root the game will go on for
ever, no matter how it is played.

The chip firing game determines a language ¥ < V* of legal firing
sequences: XX, ... x,€% if x; is a legal vertex in the chip configuration

Figure 8.14.
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obtained after firing x, x,, ..., X;_;, for | i < k. This language is hereditary
(i.e. satisfies (L1)), and in general not simple. For instance, if b is the root of
the graph in Figure 8.14 and k = 6, then babcdbaae & but babch¢ &.

Assume from now on that the chip firing game terminates for some sequence
of legal moves.

8.9.6. Proposition. The chip firing language (V, &) is a strong polygreedoid.
Its poset of flats is isomorphic to the poset of chip configurations.

It is easy to verify axiom (L2"), and an approach to axiom (L2') is suggested
in Exercise 8.38. The poset of chip configurations consists of the legal
configurations (those which can occur in a game) ordered as follows: 4 £ B
if and only if some sequence of legal moves transforms A4 into B.

The preceding result contains some combinatorial information about the
chip firing game that is not a priori evident. For instance, one sees that every
maximal sequence of legal moves has the same length, and also that there
is a unique final chip configuration to which all such sequences lead.

The other example where non-simple greedoids arise comes from group
theory. Let W be a group, S a generating subset, and assume that all elements
in S are of order 2 (i.. s~ ! = s for all s S). Then every group element we W
can be expressed as a product w=s;s, ... 5, s;€8, and we call such an
expression reduced if k is minimal, i.e. if w cannot be obtained as the product
of a shorter sequence of generators. The reduced expressions can be thought
of as words in the alphabet S, and the collection of all reduced expressions
for all group elements forms a language ¥ < S*. The language of reduced
expressions (S, .£) has the following strong heredity property: ifa = 8y, a € &,
then, B, y€.Z. In particular, it satisfies axiom (L1).

The pair (W, S)is called a Coxeter group if all relations among the generators
are implied by pairwise relations of the form (st)y™®" =e, s, t€ S. Examples
of finite Coxeter groups are the symmetry groups of regular convex polytopes
and the Weyl groups of simple complex Lie groups. In fact, every finite
Coxeter group is of either of these types or a direct product of such.

The set W of group elements in a Coxeter group has a well known partial
ordering, called weak order (or weak Bruhat order), which can be defined as
follows: for u, we W, u < w if some reduced expression for u (u =35, ... s;) can
be extended to a reduced expression for w (w=s, ... s; ... s, i < k). The weak
ordering of W is a graded lattice, if W is finite.

The symmetric group X, of all permutations of {1, 2, ..., n}, together with
the generating set of all adjacent transpositions S = {(i, i+ 1): 1 £i<n—1},
is a Coxeter group. For example, if n=3 and S = {a, b} one sees that the
language of reduced expressions is & = {(¥, a, b, ab, ba, aba, bab}, and the
weak order is the hexagon lattice.
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8.9.7. Proposition. The language of reduced expressions (S, &) of a finite
Coxeter group (W, S) is a strong greedoid. Its poset of flats is isomorphic to
the weak ordering of W.

Coxeter group languages are not in general polygreedoids. For example,
in the language of £, given above, ‘ba’ can be augmented from ‘aba’ only by
‘b’, which occurs exactly once in both words.

The Coxeter group greedoids have an interesting geometric interpretation.
In fact, they could be defined geometrically with no reference to group theory.
We will sketch this geometric picture in one tangible special case only.

Let (W, S) be the symmetry group of the three-dimensional cube C. This
is a Coxeter group of order 48, |S| =3, and its language (S, %) of reduced
expressions is of rank 9 with 42 basic words. Let A be the barycentric
subdivision of C’s boundary. Then A consists of 48 triangles, and we pick
one of these as a root; see Figure 8.15 where the root triangle is shaded.

Figure 8.15.
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Consider now all walks from the root triangle T,, by which we mean
sequences of triangles (Ty,, T, ..., T;) such that T,_, and T, are adjacent (share
an edge) for 1 <i < k. If the edges of A are labeled by a, b, and ¢ as in Figure
8.15, then there is an obvious one-to-one correspondence between the walks
from T, and the set $* of all words in the alphabet S = {a, b, c}. For instance,
the walk indicated in the figure corresponds to the word ‘acabc’.

Call a walk (T, Ty, ..., T;) geodesic if no shorter walk from T, to T, exists.
The geodesic language &' < S* consists of all words that correspond to
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geodesic walks from 7. It is clear by symmetry that %’ does not depend on
the choice of T;.

The basic fact now is that &’ is isomorphic to %, i.e. the Coxeter group
greedoid of the cube group is the same thing as the geodesic language of the
subdivided cube. Similarly, the greedoid of any finite Coxeter group can be
obtained as the geodesic language of a simplicial sphere, which in the case
of polytopal groups is the subdivision of the boundary of the corresponding
regular polytope.

The examples we have discussed in this section show that even when the
alphabet E is finite it makes sense to consider infinite greedoids ¥ < E*. A
non-terminating chip firing game played on a finite graph, and also an infinite
Coxeter group (W, S) with finite S (e.g. an affine Weyl group or the symmetry
group of a sufficiently regular tesselation of R?), gives rise to such an infinite
non-simple greedoid.

8.10. Notes and Comments

Section 8.1

Greedoids were introduced by Korte & Lovasz (1981) and their basic
properties were developed in Korte & Lovasz (1983, 1984a). The theory has
since then been extensively developed by its creators and others. A book-length
exposition will appear in Korte, Lovasz & Schrader (1991).

There had been some earlier attempts to develop order dependent versions
of matroids, by Dunstan, Ingleton & Welsh (1972) and by Faigle (1979, 1980),
but the more comprehensive work of Korte & Lovasz seems originally to
have been independent of these antecedents. In Korte & Lovasz (1985a)
Faigle’s structures are shown to correspond to a certain class of interval
greedoids (cf. section 8.3.E).

This chapter was written in 1986-7, and it covers most of the basic
properties of greedoids known at that time. The forthcoming monograph by
Korte, Lovasz & Schrader (1991) will presumably be more comprehensive.

Section 8.2
Most of the material here is from the early papers of Korte & Lovasz (1981,
1984a). However, Proposition 8.2.5 (due to Bjérner and Lovasz) is from
Bjorner (1985), and Proposition 8.2.7 is from Bjorner (1985) and Korte &
Lovasz (1984b). Interval greedoids without loops were studied under the
name selectors in Crapo (1984); see also Korte & Lovasz (1985c).
Antimatroids have been written about under several names: alternative
precedence structure (APS) greedoids, upper interval greedoids, anti-exchange
greedoids, shelling structures, and locally free selectors. Of these, the name
shelling structure is very unfortunate, since shelling has a precise and well
established meaning in combinatorics that finds use also in greedoid theory
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(cf. section 8.6.C). To add to the confusion, in some papers convex geometries
(the dual objects to antimatroids) are called ‘antimatroids’.

While on the subject of names, it could be mentioned that the suitability
of the word greedoid itself has been heatedly debated. If already the name
matroid is ‘ineffably cacophonic’, as was claimed by Crapo & Rota (1970),
then greedoid is undoubtedly much worse. Alternative names which have
been proposed for related structures include exchange language (Bjorner,
1985), selector (Crapo, 1984), and exchange system (Brylawski & Dieter, 1988).
However, the name greedoid is distinctive and catchy, albeit slightly frivolous,
and there is no doubt that it is here to stay.

Section 8.3

Section 8.3.A4: Twisted matroids were defined in Bjérner (1985), and slimmed
matroids were defined in Korte & Lovasz (1984c) where also several
procedures for ‘simming’ a matroid were discussed. A notion of ‘trimmed’
matroids, equivalent to the notion of ‘meet’ defined in Exercise 8.11, appears
in Korte & Lovasz (1985b, 1989b).

Section 8.3.B: These standard examples of antimatroids and many others are
described in e.g. Bjorner (1985), Edelman & Jamison (1985), and Korte &
Lovasz (1984a, 1984b). See also the comments for section 8.7.

Sections 8.3.C and 8.3.D: Branching greedoids originate in Korte & Lovasz
(1981, 1984a); polymatroid greedoids and local poset greedoids in Korte &
Lovasz (1985b).

Section 8.3.E: Faigle geometries were defined by Faigle (1979, 1980). The
connection with greedoids was studied in Korte & Lovasz (1985a).

Sections 8.3.F and 8.3.G: For retract greedoids, see Crapo (1984) and Korte
& Lovasz (1985c, 1986a). Transposition greedoids and dismantling greedoids
were defined in Korte & Lovasz (1986a). The original example of dismantling
sequences is due to Duffus & Rival (1978).

Section 8.3.H: Gaussian greedoids are due to Goecke (1986, 1988). The concept
was rediscovered by Serganova, Bagotskaya, Levit & Losev (1988). Axiomatic
as well as algorithmic characterizations of this class of greedoids are known;
see Goecke (1986, 1988) and Exercise 8.34. Medieval marriage greedoids were
defined in Korte & Lovasz (1986a). The name was coined by J. Edmonds in
reference to some generic ‘medieval’ king, in whose opinion a sequence of
suitors is feasible if and only if they will marry his daughters in decreasing
order of age.
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Section 8.3.I: Figure 8.5 is adapted from information in Korte & Lovasz
(1985¢, 1986a).

Several examples of greedoids are known which have not been discussed
here. For instance, Korte & Lovasz (1984a, 1986a) have described several
other classes of greedoids arising in graph theory: ear decomposition
greedoids, blossom greedoids (Edmonds’ matching algorithm), perfect
elimination greedoids, series—parallel reduction greedoids, etc. Goecke, Korte
& Lovasz (1989) provide an extensive survey of examples.

Section 8.4
All material in sections 8.4.A-8.4.D comes from Korte & Lovasz (1983),
except that Theorem 8.4.1 was proven in Korte & Lovasz (1984b). An
alternative closure operation, called kernel closure, which is idempotent,
monotone for interval greedoids, but not in general increasing, is defined
and studied in Schmidt (1985a); sece Exercise 8.9.

Two-connectivity in greedoids was defined and studied in Korte & Lovasz
(1985d), k-connectivity in Bjorner, Korte & Lovasz (1985). The connectivity
properties of branching greedoids are studied in more detail in Ziegler (1988).

Section 8.5

The material in sections 8.5.A and 8.5.B is from Korte & Lovasz (1981,
1984a); see also Goecke, Korte & Lovasz (1989). It should be said that there
exist optimal discrete algorithms that are of a greedy nature, but which do
not come from an underlying greedoid structure. For instance, no greedoid
can be discerned behind the greedy algorithm for knapsack problems of
Magazine, Nemhauser & Trotter (1975), also treated in Hu & Lenard (1976).

The algorithms of Dijkstra, Kruskal, and Prim are discussed in every book
on combinatorial optimization; see Tarjan (1983) and the interesting historical
discussion in Graham & Hell (1985). Korte & Lovasz (1981, 1984a) show
that some machine scheduling algorithms of Lawler also fit into the greedoid
framework — the question is of optimizing some generalized bottleneck
function over a poset greedoid.

The fact that Depth-first-search is not compatible with branching greedoids
was pointed out by Korte & Lovasz (1981, 1984a). They remark that the
problem is NP-hard, since it includes the problem of finding a Hamiltonian path.

The results about linear objective functions in section 8.5.C are from Korte
& Lovasz (1984c). The optimization of linear objective functions over
greedoids is also discussed in Brylawski (1991), Faigle (1985), Goecke (1986,
1988), Goecke, Korte & Lovasz (1989), Goetschel (1986), and Serganova,
Bagotskaya, Levit & Losev (1988). In connection with linear objective
functions Gaussian greedoids have special properties; see the cited papers by
Brylawski and by Goecke, and also Exercise 8.34.
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Bagotskaya, Levit & Losev (1988, 1990a) define structures called ‘fibroids’,
designed to incorporate some optimization features of dynamic programming.
Fibroids contain Gaussian greedoids as a special case. Optimization over
(W, P)-matroids (see the remarks below for section 8.9) is discussed in
Zelevinsky & Serganova (1989). See also the work of Bouchet (1987).

Section 8.6

The material in this section is from sections 5-6 of Bjorner, Korte & Lovasz
(1985). From a matroid-theoretic point of view sections 8.6.A and 8.6.B extend
parts of the theory of Tutte polynomials and Tutte-Grothendieck invariants
to all greedoids. For these topics see Chapter 6 and section 7.3 of this book.

A general discussion of the concept of argument complexity can be found
in Chapter 8 of Bollobas (1978). The d = 0 case of Proposition 8.6.3 appears
in Bjorner, Korte & Lovasz (1985).

There is a large literature on the reliability analysis of stochastic networks
and other systems. See Colbourn (1987) for more information and references
in this area.

The lack of a fully-fledged duality operation on the class of all greedoids
has been noticed by several authors. It appears that it is only when the
demand for total symmetry between primal and dual is abandoned that some
interesting remnants of duality in greedoids can be discerned. Interesting
axiomatic discussions of duality (for matroids and some other set systems)
appear in Kung (1983) and in Bland & Dietrich (1987, 1988).

A 2-variable greedoid ‘Tutte’ polynomial, defined by the corank-nullity
formula

folt, )= Y #®-r-ra),
A<E
has been studied by Gordon & McMahon (1989); see also Gordon & Traldi
(1989), Chaudhuri & Gordon (1991), and Gordon (1990). Its relationship to
the polynomial studied here is Ag(f)=f5(0, t — 1), as can be seen from
Theorem 8.6.2(iii).

Section 8.7
Convex geometries were independently discovered by Edelman (1980) and
Jamison (1982), and later studied by them jointly. Edelman & Jamison (1985)
gives a good overview of their work on convex geometries, and all section
8.7A is from that paper except the duality with antimatroids (Proposition
8.7.3), which was first observed by Bjorner (1985). All examples of antimatroids
that have been mentioned in the text were originally known to Edelman and
Jamison as examples of convex geometries. The example of convex hull
closurein R” (and hence, dually, convex pruning antimatroids) was generalized
to oriented matroids in Edelman (1982).

We have included only a limited number of references for antimatroids
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90(mainly those taking a greedoid point of view). See Edelman & Jamison
(1985) and Edelman (1986) for more extensive bibliographies (stressing the
convex geometry or lattice-theoretic point of view).

Theorem 8.7.6 showing the equivalence of antimatroids and join-distributivity
is due to Edelman (1980), in a dual version for convex geometries. The result
was rediscovered by Crapo (1984) using another terminology. The charac-
terization of antimatroids as alternative precedence languages is due to Korte
& Lovasz (1984a, b). The characterization by exchange axiom (A) as well as
by semimodularity of % is from Bjorner (1985). Proposition 8.7.7 is from
Korte & Lovasz (1985b), and Proposition 8.7.8 from Korte & Lovasz (1986b);
see also Edelman & Saks (1986). For Birkhoff’s theorem, see Birkhoff (1967).

All of section 8.7.C is from Korte & Lovasz (1984b), except for Theorem
8.7.12 which is due to Dietrich (1987).

Section 8.8

The concept of poset representations of greedoids, the definition of the poset
of flats, and basic properties of ® and ® are from Bjorner (1985). The poset
of closed sets was first defined for interval greedoids (as in Exercise 8.26) by
Korte & Lovasz (1983), and then in general (as in Definition 8.8.3) by Bjorner,
Korte & Lovasz (1985). The relationship between flats and closed sets
(Theorem 8.8.4), and also Proposition 8.8.5, is from Bjorner, Korte & Lovasz
(1985).

A notion of a ‘lattice of flats’ for selectors was defined by Crapo (1984);
this can be shown to be equivalent to our poset of flats ® for the case of
interval greedoids. Theorem 8.8.7 (in terms of selectors) is due to Crapo
(1984). The lattice-theoretic lemma used in our proofis from Bjorner, Edelman
& Ziegler (1990). A different proof for the lattice property (but not
semimodularity), using the poset of closed sets, was given in Korte & Lovasz
(1983).

Poset properties were first studied in Ziegler (1988), from where Proposition
8.8.9 is taken.

Section 8.9

The excluded minor characterizations of local poset greedoids and undirected
branching greedoids (Theorem 8.9.3) are due to Korte & Lovasz (1985b) and
Schmidt (1985a, 1988), respectively. See also Goecke & Schrader (1990) for
a shorter proof. The characterization of directed branching greedoids in
Theorem 8.9.1 appears in Schmidt (1985b).

The minor poset of isomorphism classes has long been studied for matroids
and particularly for graphs. From work of N. Robertson and P. Seymour it
is known that infinite antichains do not exist in the minor poset of all graphs.
However, infinite antichains do exist in the minor poset of all matroids; see
White (1986), p. 155. Also, infinite antichains of branching greedoids exist
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(cf. Exercise 8.27).

The basis graph of a greedoid was introduced in Korte & Lovasz (1985d),
where it was shown that a 2-connected greedoid has a connected basis graph.
Basis graphs of matroids had earlier been studied by Maurer (1973). The
bounds on the diameter for greedoids (Theorems 8.9.4 and 8.9.5) are due to
Ziegler (1988). A higher-dimensional analog of the basis graph, the basis
polyhedron, was investigated by Bjorner, Korte & Lovasz (1985), and it was
shown that a k-connected greedoid has a (topologically) (k — 2)-connected
basis polyhedron.

Non-simple greedoids were first studied in Bjérner (1985), and this was
mainly motivated by the example of Coxeter group greedoids. See Bjorner
(1984, 1985) for more information about Coxeter groups and their weak
partial ordering, and for references to the extensive literature about these
topics. The greedoids of graph chip firing games were discovered by Bjorner,
Lovasz & Shor (1988). The greedoid rank (length of the game) in terms of
the size of the graph has been studied by Tardos (1988) and Eriksson (1989).
Polygreedoids appeared in Bjorner (1985); for integral polymatroids see e.g.
White (1987), p. 181. Faigle (1985) also discusses non-simple greedoids.

A different connection between greedoids and Coxeter groups was discovered
by Gel'fand & Serganova (1987a, b). For each finite Coxeter group (W, S)
and each subset P of the generating set S, they define a class of subsets of
the family of left cosets WF =W/(P), the members of which they call
(W, P)-matroids. The definition involves a certain minimality condition in
terms of Bruhat order on W’. For the symmetric group W=ZX, and
P={Gi+1):1<i<n—1, i#k}, the (W, P)-matroids are precisely the
ordinary matroids of rank k given by their bases (as sets). The characterization
of matroids obtained this way is equivalent to that of Gale (1968): for every
ordering of the ground set there is a point-wise minimal basis. For
P={( i+ 1):k + 1 <i<n-— 1} the(W, P)}-matroids are the Gaussian greedoids
of rank k given by their basic words. Taking W to be the symmetry group
of a cube and for a certain choice of P, the (W, P)-matroids coincide with
the symmetric matroids of Bouchet (1987). (For those who undertake to read
the papers of Gel'fand and Serganova, let us point out that part (b) of Theorem
2 in (1987a) and the definition of Bruhat order given there are incorrectly
stated.) Many details about (W, P)-matroids can also be found in Zelevinsky
& Serganova (1989).

Exercises

The following propositions, theorems, and lemmas which were stated without
proof or with incomplete proof in the text, make suitable exercises: 8.2.3,
8.2.7,8.28, 8.4.1-84.5, 8.5.6, 8.6.1-8.6.3, 8.7.8, 8.7.9, 8.8.2, 8.8.4, and 8.9.6.
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Show thata setsystem (E, #)is a greedoid if and only if it satisfies the two axioms:

(G1") JeF and for all X, YeF such that Y < X there is an xe X — Y such
that X —xe#.

(B) For any subset 4 < E all maximal feasible subsets of 4 have the same

cardinality.

(Korte & Lovasz, 1986a) Let # < 2E, and consider the following axiom.

(G2") If AcE, x,y,ze E— A such that 4ux, Auy, Aduxuze#, and
Auxuy¢F, then Auyuze F.

Show that the axioms (G1) and (G2”) together define greedoids.

Prove the following sharpening of the strong exchange property (L2') of

Proposition 8.2.5 for interval greedoids (E, .£):

leta, fe L, a=x,X, ... X,,and |a| — |B| = k > 0;among all strings (i}, i,, ..., i)
such that fx; x;, ... x; € &, the lexicographically first one satisfies i, < i, <
<y

(Korte & Lovasz, 1984a) Let E be finite and £ < 2F a system of non-empty sets

such that [4]|=|B| and |4 — B|=1 imply AnBe 2, for all 4, Be #.

(a) Show that (E, 2E — 2) is a greedoid (called a paving greedoid).

(b) Show that (E, 2 — 2) in general lacks the transposition property.

(Crapo, 1984; Korte & Lovasz, 1985c) Let (E, #) be a greedoid and

o ={uF : F < F}. Show that

(a) (E, &) is an antimatroid,

(b) ¥ c o =&, if (E, #) is an interval greedoid,

(c) both inclusions in part (ii) can be strict.

Let I'=(V, E, r) be a finite, connected undirected graph with root re V. Let

(E, #,) be the branching greedoid on I, and (V' —r, #,) the vertex search greedoid.

(a) The join irreducibles (elements covering exactly one element) in the poset
(#,, <) are the paths in T starting at r. Hence, the join irreducibles form
an order ideal in #,.

(b) The join irreducibles in (%, <) are the induced paths (i.e. without chords)
in T, starting at r.

(c) The meet irreducibles (elements covered by exactly one element) in (%, <)
correspond to the bridges in I'.

(d) The meet irreducibles in (¥#,, =) of corank at least 2 correspond to cut
vertices in I'; those of corank 1 correspond to non-cut-vertices.

(Korte & Lovasz, 1983) Show that the rank closure operator ¢ of a greedoid

G is monotone only if G is a matroid.

(Schmidt, 1985a, b)

(a) Prove that directed and undirected branching greedoids satisfy
a(X)n(Y)S (X UY), for X, Ye F.

(b) Show also that 6(X U Y) < 6(X) U a(Y) holds for directed branching greedoids,
but not in general for undirected branching greedoids.

(Schmidt, 1985a, b) The closure operator for greedoids, which is given by

a(4) = U{X € E: HAU X) = HA)},

has some shortcomings (cf. section 8.4.B). As an alternative, the kernel closure
operator A: 2E—2E, defined by
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M) =u{XeF: (AuX)=rA)},
has been proposed. Define the kernel of a subset A < E by
ker(A)=u{XeZ: X < A}.
(a) Give a graph-theoretic description of a(4), A(A), and ker(A) for a set A in
a branching greedoid. Exemplify with a branching greedoid that A = A(A)

may fail.
(b) Show that the operators g, A, ker: 28— 2F satisfy the relations:
Ao =ker g =4,
ol =0 ker=o.
(c) Deduce that
A2 = (ie. A is idempotent),
Agh =14,
oo =o0.
(d) There is a canonical bijection between g-closed sets and A-closed sets, and
HA(A)) =nro(A) =rA), forall ACE.
(¢) In an interval greedoid
B(A(A))=r(A4), forall ASE.

(f) The kernel closure operator 4 is monotone if and only if (E, #) is an interval
greedoid.

(g) For o-closed sets A, Be¥¢, A < B implies A(4) = A(B). The converse holds
for interval greedoids, but fails in general.

(Korte & Lovasz, 1983) Show that the monotone closure operator u of full

greedoid (E, &) satisfies u(A)= A, for all A< E.

(Korte & Lovasz, 1989b) Let (E, .#) and (E, /) be respectively a matroid and

an antimatroid on the same ground set E, with closure operators ¢, and a,,.

Define a language (E, &) by

L ={x,X; ... X, €E* x;¢0,(0,({x},....x;_,}) forall 1 i<k}

(a) Show that (E, &) is an interval greedoid. The corresponding set system,
denoted by (E, # A &), is called the meet of (E, #) and (E, ).

(b) Verify that AnA S M NS =M.

(c) Show that (E, # n.o/)is not a greedoid in general, but that if it is a greedoid,
then (E, # N)=(E, M d*)=(E, # N\ 4*) for the antimatroid &/* =
{(VF " F clnd}.

(d) Show that if (E, .#) is any matroid, and (E, <) is a poset greedoid, then
(E, # A ) is a Faigle geometry.

() Show that every directed branching greedoid arises as a meet.

(f) Show that every polymatroid greedoid arises as a meet.

(Korte & Lovasz, 1983) For a greedoid (E, %), let A,, ..., A,< E. A feasible

system of representatives for {A,, ..., A,} in (E, #) is a set Xe F for which

there is a bijection ¢: X—{A4,, ..., 4,} with xe ¢(x) for all xe X.

Suppose that (E, #) is an interval greedoid and A4, ..., 4, are rank feasible.
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Show that {4, ..., 4,} has a feasible system of representatives if and only if
A, v ... VA, )2k,

forall1<i, < ... <i=n

Let K = R" be a convex body, and E < R" — K a finite set. Let & < 2F consist

of those subsets A that are disjoint from the convex hull of K U(E — A).

(a) Prove that (E, #) is an antimatroid.

(b) Prove that the class of such antimatroids is hereditary (i.e. closed under
taking minors).

(Bjorner, Korte & Lovasz, 1985) Say that a greedoid (E, %) is weakly k-connected

if HE — A)=r(E) for all A< E with |4]| <k.

(a) Show that an undirected branching greedoid (or graphic matroid) is weakly
k-connected if and only if the underlying graph is k-edge-connected.

(b) Show that the number of bases in a weakly k-connected greedoid of rank

, k+r—1
r is at least .
r

(Korte & Lovasz, 1989b) Let (E, #) be a greedoid and A a closure feasible
subset of E. Show that(E, #')isa full greedoid, but not in general an antimatroid, for

F'=F U{B<E: o(B)2 A}.

As a special case, conclude that every greedoid is a truncation of a full greedoid.
Let (E, #) be a greedoid of rank r. Show that (E, #) is the r-truncation
of an antimatroid if and only if for all X, Ye%, |XUY|[<r implies
XuYe#. In this case, construct the smallest and the largest antimatroid
on E whose r-truncation is (E, ).

(Bjorner, Korte & Lovasz, 1985) Let (E, &) be an interval greedoid. Show that
(@) (E, #) is a matroid if and only if {x} e # for all xe UF;

(b) if Ae #, then the free sets over A are the independent sets of a matroid.
(Korte & Lovasz, 1986a) Show that an accessible set system with the transposition
property (TP) of section 8.3.G is a greedoid.

(Korte & Lovasz, 1983; Goecke, 1986) Prove that a greedoid (E, #) has the
interval property if and only if #/X, = #/X, for all subsets 4 = E and all bases
X, and X, of A.

One might have hoped for the following weak form of greedoid duality: if # < 2
is the set of bases of a greedoid then {E — B: Be &} is the set of bases of some
other greedoid, not necessarily unique. Show that this is false.

Let 7:25-2F be a closure operator on a finite set E. Show that t satisfies the
anti-exchange condition if and only if every closed set other than () has at
least one extreme point.

(Korte & Lovasz, 1984b) Let E be a finite set, and for each xe E let H(x) = 25~
be some set system. Define a left hereditary language

LH=1{xx, . xeE}:forall 1Si<kand all AeH(x;), AL {X; 15 ...» X4 }}-

(a) Show that (E, ") is an antimatroid.

(b) Show that every antimatroid arises in this way.

(c) Suppose that (E, %) is an alternative precedence language determined by
some system K. For each K(x) describe H(x) so that ¥# = %,.
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For a full antimatroid (E, %), let A consist of those subsets of E that are free

and convex. Show that

(@) A is a simplicial complex,

(b) Y(—1)¥,=0, where f; is the number of sets in A of cardinality i,

(c) A is contractible (in the topological sense).

(d) Let h be the maximum cardinality of a set in A. Show that h is the Helly
number of (E, %), meaning that h is the least integer such that, for any family
of convex sets, if each subfamily of size h has non-empty intersection then
the whole family has non-empty intersection.

(Part (b) is an unpublished theorem of J. Lawrence; see Edelman & Jamison (1985).
The proof of Theorem 7.4 in Bjorner, Korte & Lovasz (1985) can be adapted to prove
the contractibility of A. Part (d) is due to A. Hoffman and R. Jamison; see Edelman
& Jamison (1985).)

8.24.

8.25.

8.26.

8.27.

8.28.

8.29.

8.30.

(a) Show that the greedoid polynomial of the branching greedoid of a rooted
connected graph is independent of the root.
(b) Show that the analogous statement for the branching greedoid of a strongly
connected digraph is false.
(Bjorner, 1985) Show that the poset representations of a greedoid form a lattice
whenthey are ordered by (P,, 4,) =(P,, 4,)ifand only if there is a rank-preserving
poset map f: P,— P, satisfying 1,(x <'y) = 1,(f(x) < f(y)) for x, ye P, and
x <-y. Show that every such map is necessarily surjective. Identify the universal
representation (poset of flats) in terms of this lattice.
(Korte & Lovasz, 1983) According to Theorems 8.8.4 and 8.8.7, the poset of
closed sets (€7, <) of an interval greedoid is a semimodular lattice. Show that
its meet operation is given by
AANB=c(ANnB), A, Be¥’.
Construct an infinite sequence of branching greedoids G,, i =1, 2, ..., such that
G, is not a minor of G, for all i #.
Define a graph over the set & of bases of a greedoid G by letting (B,, B,) be
an edge when |B, — B,| =1, B,, B,€%. (This graph contains the basis graph
as a subgraph.) Prove the bounds
r—|AnB|<d(4, By<r—rANB),
for the graph distance d(A4, B) between two bases 4 and B, where r =rank G.
In particular, the diameter of the graph is at most r.
Define the basic word graph of a greedoid (E, #) as follows. The vertices are
the basic words, and two basic words are adjacent if the corresponding maximal
chains in the poset (¥, <) differ in exactly one element (equivalently, if one
arises from the other by exchanging two consecutive letters or by exchanging
the last letter).
(a) (Korte & Lovasz, 1985d) Show that the basic word graph is connected if
(E, &) is 2-connected.
(b) If (E, &) is an antimatroid of rank r, show that the basic word graph is

connected and has diameter at most (;) This bound is best-possible.

(Korte & Lovasz, 1984b) Show that convex pruning greedoids have the following
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8.32.

8.33.

8.34.
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property, not shared by general antimatroids: if (4uUx, x) and (Auy, y) are

rooted circuits, then there exists a unique subset A’ < 4 such that (4"uxuUy, )

is a rooted circuit.

For an antimatroid (E, %), let ¢ be the minimum and C the maximum size of

a circuit.

(a) (Bjorner, Korte & Lovasz, 1985) Show that (E, %) is k-connected if and
onlyif Czk+1.

(b) (Bjorner & Lovasz, 1987) Show that C —1 is the Carathéodory number of
(E, %), i.e. the least integer such that if x lies in the convex hull of 4 < E,
then there is some subset 4’ < A of size at most C — 1 such that x lies in
the convex hull of 4",

(Korte & Lovasz, 1984c) Let (E, #) be a greedoid. Given a linear objective

function, the worst-out greedy algorithm starts with the complete ground set E

and at each step eliminates the worst possible element so that the remaining

set is still spanning (contains a basis). Show that every linear objective function
can be optimized over (E, %) by the worst-out greedy algorithm if and only if
the hereditary closure (E, #(%)) is a matroid.

(a) For an interval greedoid, show that every #-compatible linear objective
function is compatible in the sense of Definition 8.5.1.

(b) Give an example of a non-interval greedoid and a linear function that is
AR-compatible but not compatible.

(Serganova, Bagotskaya, Levit & Losev, 1988) Let % < 2F be an accessible set

system. Show that the following are equivalent.

(a) (E, #) is a Gaussian greedoid.

(b) For any linear objective function the greedy algorithm constructs a sequence
of sets A;e#, i=1,..,r, such that A, is optimal in the class
Fi={XeF:|X|=i}forali=1,..,r=max{|X|: XeF}.

©) For/X, Ye#, |X|=|Y|+1, there is an x€X — Y such that Yuxe#
and X —xeF.

(d) For X, Ye Z, |X|>Y], there is a subset 4 = X — Y, |4] =|X| —|Y|, such
that YUAe# and X — AeF.

Further‘more, show that the condition |X| =|Y| + 1 in (c) cannot be relaxed to

1X]> Y.

(The equivalence of (a), (b), and (c) is proved in the cited source. The same authors
have subsequently proved (personal communication) the equivalence of (c) and (d),
two versions of what they call the ‘fork axiom’. The equivalence of (a) and (b) was
also observed by Brylawski (1991).)

8.35.

Does there exist a non-Gaussian greedoid (E, %) for which #(F)), the hereditary
closure of the feasible i-sets, is a matroid, for i =0, 1, ..., r =rank (#)?

The remaining three exercises concern non-simple greedoids (section 8.9.C).

8.36.

(Bjorner, 1985, extending Korte and Lovasz, 1984a)

(a) Show that the greedy algorithm will optimize any compatible objective
function w: ¥—R over a polygreedoid (E, %).

(b) Show that the greedy algorithm will optimize any generalized bottleneck
function (defined in the proof of Theorem 8.5.2) over a greedoid, whether
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simple or not.

8.37. (Bjorner, 1985; extending Korte & Lovasz, 1984a) For multisets 4, B: E—N
define inclusion A < B by A(e) < Ble) for all e E, and cardinality |A| =Y, .z Ale).
Identify elements ee E with their characteristic functions x,: E—{0, 1}. For a
finite non-empty multiset system & < NE, E finite, consider the following axioms.

(P1) Forall Ae #, A # (J, there exists B < A such that |B| = |4| — 1 and Be #.

(P2) If A, BeZ and |A4]| > |B|, then there exists an element ec E such that
A(e)> B(e) and B+ ec #.

Prove the following.

(a) If(E, #)is a polygreedoid, then the support & satisfies axioms (P1) and (P2).

(b) If (E, #) is a multiset system satisfying (P1) and (P2) then the language

LF)={x,%5 ... € E* X, X eF for 1Si<k}

is a polygreedoid. .
(c) These operations are mutually inverse: (%) = ¥ and L (F) = Z.
8.38. A finite language ¥ < E*, not necessarily simple, is called an A-language if it
is hereditary (axiom (L1)) and satisfies the following axiom.
(L2") If &, ax, af e & and the letter x does not occur in f, then axf, afxe &
and axfye & if and only if afixye &, for all ye E*.
Prove the following (cf. section 8.9.C).
(a) Every A-language is a strong greedoid.
(b) Every graph chip firing language is an A-language.
(c) A simple A-language is the same thing as an antimatroid.
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