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Fractional Arboricity and Matroid Methods

The material in this chapter is motivated by two notions of the density of a graph. The arboricity
and the maximum average degree of a graph G measure the concentration of edges in the “thickest”
part of the graph.

5.1 Arboricity and maximum average degree

Suppose we wish to decompose the edges of a graph G into acyclic subsets, i.e., if G = (V,E) we
want to find E1, E2, . . . , Ek ⊆ E so that (1) each of the subgraphs (V,Ei) is acyclic and (2) E =
E1 ∪ E2 ∪ · · · ∪ Ek. The smallest size of such a decomposition is called the arboricity (or edge-
arboricity) of G and is denoted Υ(G). If G is connected, the arboricity is also the minimum
number of spanning trees of G that include all edges of G.

One can think of arboricity as being a variant of the edge chromatic number. We are asked
to paint the edges of G with as few colors as possible. In the case of edge chromatic number, we
do not want to have two edges of the same color incident with a common vertex. In the case of
arboricity, we do not want to have a monochromatic cycle.

There is an obvious lower bound on Υ(G). Since G has ε(G) edges and each spanning acyclic
subgraph has at most ν(G) − 1 edges we have Υ(G) ≥ ε(G)/(ν(G) − 1). Moreover, since Υ is an

integer, we have Υ(G) ≥
⌈

ε(G)
ν(G)−1

⌉
.

This bound is not very accurate if the graph is highly “unbalanced”; for example, consider the
graph G consisting of a K9 with a very long tail attached—say 100 additional vertices. We have

ν(G) = 109, ε(G) = 136, and therefore Υ(G) ≥
⌈
136
108

⌉
= 2. The actual value of Υ(G) is larger since

we clearly cannot cover the edges of K9 with two trees; indeed, the arboricity of a graph is at least
as large as the arboricity of any of its subgraphs. Thus we have

Υ(G) ≥ max

⌈
ε(H)

ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices. Indeed, this improved lower
bound gives the correct value.

Theorem 5.1.1

Υ(G) = max

⌈
ε(H)

ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices.

The proof of this theorem of Nash-Williams [137, 138] is presented in §5.4 below.
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