

Available online at www.sciencedirect.com

Journal of Combinatorial Theory _{Series B}

Journal of Combinatorial Theory, Series B 94 (2005) 1-29

www.elsevier.com/locate/jctb

Connected rigidity matroids and unique realizations of graphs

Bill Jackson^{a, 1}, Tibor Jordán^{b, 2}

^aSchool of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England, UK

^bDepartment of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

Received 16 April 2003 Available online 21 December 2004

Abstract

A *d*-dimensional *framework* is a straight line realization of a graph *G* in \mathbb{R}^d . We shall only consider *generic* frameworks, in which the co-ordinates of all the vertices of *G* are algebraically independent. Two frameworks for *G* are *equivalent* if corresponding edges in the two frameworks have the same length. A framework is a *unique realization* of *G* in \mathbb{R}^d if every equivalent framework can be obtained from it by an isometry of \mathbb{R}^d . Bruce Hendrickson proved that if *G* has a unique realization in \mathbb{R}^d then *G* is (d+1)-connected and redundantly rigid. He conjectured that every realization of a (d+1)-connected and redundantly rigid graph in \mathbb{R}^d is unique. This conjecture is true for d = 1 but was disproved by Robert Connelly for $d \ge 3$. We resolve the remaining open case by showing that Hendrickson's conjecture is true for d = 2. As a corollary we deduce that every realization of a 6-connected graph as a two-dimensional generic framework is a unique realization. Our proof is based on a new inductive characterization of 3-connected graphs whose rigidity matroid is connected.

1. Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. A *d*-dimensional *framework* is a pair (G, p), where G = (V, E) is a graph and p is a map

0095-8956/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2004.11.002

E-mail addresses: B.Jackson@qmul.ac.uk (B. Jackson), jordan@cs.elte.hu (T. Jordán).

¹ Supported by the Royal Society/Hungarian Academy of Sciences Exchange Programme.

² Supported by the MTA-ELTE Egerváry Research Group on Combinatorial Optimization, and the Hungarian Scientific Research Fund grant No. F034930, T037547, and FKFP grant No. 0143/2001.