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ROTA’S BASIS CONJECTURE FOR PAVING MATROIDS∗

JIM GEELEN† AND PETER J. HUMPHRIES‡

Abstract. Rota conjectured that, given n disjoint bases of a rank-n matroid M , there are n
disjoint transversals of these bases that are all bases of M . We prove a stronger statement for the
class of paving matroids.
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1. Introduction. We prove the following theorem.
Theorem 1.1. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) such
that Ai is a basis of Mi for each i ∈ {1, . . . , n}.

A paving matroid M is a matroid in which each circuit has size r(M) or r(M)+1,
where r(M) is the rank of M . Theorem 1.1 implies Rota’s basis conjecture for paving
matroids.

Conjecture 1.2 (Rota (see [6])). Given n disjoint bases B1, . . . , Bn in a rank-n
matroid M , there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) that are all
bases of M .

For n = 2, Conjecture 1.2 follows immediately from basis exchange in matroids.
Chan [2] proved the conjecture for n = 3. Wild [9] proved a stronger conjecture for
the class of strongly base-orderable matroids, while more recently a slightly weaker
result was proved for a general matroid (Ponomarenko [8]). Further partial results
may be found in [1], [3], [4], [5], and [9].

Theorem 1.1 fails for both n = 2 and matroids in general. When n = 2, if we take
B(M1) = {{e, f}, {e, g}, {f, h}, {g, h}} and B(M2) = {{e, f}, {e, h}, {f, g}, {g, h}},
then {e, f}, {g, h} is the only pair of disjoint bases. In the second instance, if rM1(E−
B1) = 0, then there are no M1-independent transversals of (B1, . . . , Bn).

The remainder of this paper is taken up with the proof of the theorem. In sec-
tion 2, we prove that Theorem 1.1 holds when n = 3. This result is used, in section 3,
as the base case of an inductive proof of Theorem 1.1. The induction argument is
surprisingly straightforward and can be read independently of section 2.

2. The case n = 3. For basic concepts in matroid theory, the reader is referred
to Oxley [7]. We follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily be
interested in rank-2 flats, or lines. In the proof of Theorem 2.1, we make frequent use
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