
Chapter 44

Submodular functions and
polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970b] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all subsets T,U of S. Similarly, f is called supermodular if −f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f
is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.

A set function f on S is called nondecreasing if f(T ) ≤ f(U) whenever
T ⊆ U ⊆ S, and nonincreasing if f(T ) ≥ f(U) whenever T ⊆ U ⊆ S.

As usual, denote for each function w : S → R and for each subset U of S,

(44.2) w(U) :=
∑

s∈U

w(s).

So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(∅) = 0 may
be obtained in this way. (More generally, each modular set function f on S
satisfies f(U) = w(U) + γ (for U ⊆ S), for some unique function w : S → R
and some unique real number γ.)

In a sense, submodularity is the discrete analogue of convexity. If we
define, for any f : P(S) → R and any x ∈ S, a function δfx : P(S) → R
by: δfx(T ) := f(T ∪ {x})− f(T ), then f is submodular if and only if δfx is
nonincreasing for each x ∈ S.

In other words:


