
Chapter 41

Matroid intersection

Edmonds discovered that matroids have even more algorithmic power than
just that of the greedy method. He showed that there exist efficient algo-
rithms also for intersections of matroids. That is, a maximum-weight com-
mon independent set in two matroids can be found in strongly polynomial
time. Edmonds also found good min-max characterizations for matroid
intersection.
Matroid intersection yields a motivation for studying matroids: we may
apply it to two matroids from different classes of examples of matroids,
and thus we obtain methods that exceed the bounds of any particular
class.
We should note here that if M1 = (S, I1) and M2 = (S, I2) are matroids,
then (S, I1 ∩ I2) need not be a matroid. (An example with |S| = 3 is easy
to construct.)
Moreover, the problem of finding a maximum-size common independent
set in three matroids is NP-complete (as finding a Hamiltonian circuit in
a directed graph is a special case; also, finding a common transversal of
three partitions is a special case).

41.1. Matroid intersection theorem

Let M1 = (S, I1) and M2 = (S, I2) be two matroids, on the same set S.
Consider the collection I1∩I2 of common independent sets. The pair (S, I1∩
I2) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two
proofs — one based on linear programming duality and total unimodularity
(see the proof of Theorem 41.12 below), and one reducing it to the matroid
union theorem (see Corollary 42.1a and the remark thereafter). We give the
direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let M1 = (S, I1) and M2 =
(S, I2) be matroids, with rank functions r1 and r2, respectively. Then the
maximum size of a set in I1 ∩ I2 is equal to

(41.1) min
U⊆S

(r1(U) + r2(S \ U)).


