## Chapter 39

## Matroids

This chapter gives the basic definitions, examples, and properties of matroids. We use the shorthand notation

$$X + y := X \cup \{y\} \text{ and } X - y := X \setminus \{y\}.$$

## 39.1. Matroids

A pair  $(S, \mathcal{I})$  is called a *matroid* if S is a finite set and  $\mathcal{I}$  is a nonempty collection of subsets of S satisfying:

(39.1) (i) if  $I \in \mathcal{I}$  and  $J \subseteq I$ , then  $J \in \mathcal{I}$ , (ii) if  $I, J \in \mathcal{I}$  and |I| < |J|, then  $I + z \in \mathcal{I}$  for some  $z \in J \setminus I$ .

(These axioms are given by Whitney [1935].)

Given a matroid  $M = (S, \mathcal{I})$ , a subset I of S is called *independent* if I belongs to  $\mathcal{I}$ , and *dependent* otherwise. For  $U \subseteq S$ , a subset B of U is called a *base* of U if B is an inclusionwise maximal independent subset of U. That is,  $B \in \mathcal{I}$  and there is no  $Z \in \mathcal{I}$  with  $B \subset Z \subseteq U$ .

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii) is equivalent to:

(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the *rank* of U, denoted by  $r_M(U)$ . If the matroid is clear from the context, we write r(U) for  $r_M(U)$ .

A set is called simply a *base* if it is a base of S. The common size of all bases is called the *rank* of the matroid. A subset of S is called *spanning* if it contains a base as a subset. So bases are just the inclusionwise minimal spanning sets, and also just the independent spanning sets. A *circuit* of a matroid is an inclusionwise minimal dependent set. A *loop* is an element s such that  $\{s\}$  is a circuit. Two elements s, t of S are called *parallel* if  $\{s, t\}$  is a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an ostensibly weaker system, which will be useful in proofs: