
Chapter 39

Matroids

This chapter gives the basic definitions, examples, and properties of ma-
troids. We use the shorthand notation

X + y := X ∪ {y} and X − y := X \ {y}.

39.1. Matroids

A pair (S, I) is called a matroid if S is a finite set and I is a nonempty
collection of subsets of S satisfying:

(39.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J \ I.

(These axioms are given by Whitney [1935].)
Given a matroid M = (S, I), a subset I of S is called independent if I

belongs to I, and dependent otherwise. For U ⊆ S, a subset B of U is called
a base of U if B is an inclusionwise maximal independent subset of U . That
is, B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii)
is equivalent to:

(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the rank of U ,
denoted by rM (U). If the matroid is clear from the context, we write r(U)
for rM (U).

A set is called simply a base if it is a base of S. The common size of all
bases is called the rank of the matroid. A subset of S is called spanning if
it contains a base as a subset. So bases are just the inclusionwise minimal
spanning sets, and also just the independent spanning sets. A circuit of a
matroid is an inclusionwise minimal dependent set. A loop is an element s
such that {s} is a circuit. Two elements s, t of S are called parallel if {s, t} is
a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an
ostensibly weaker system, which will be useful in proofs:
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ABSTRACT 

We give, in terms of totally unimodular matrices, a short and easy proof of Tutte’s 
characterization of regular matroids. 

1. INTRODUCTION 

We give a short and easy proof of the following well-known result of 
Tutte (1958, 1965, 1971): 

TU-ITE'S THEOREM. Let A be a {O,l}-matrix. Then the following are 
equivalent: 

(i) A has a totally u&nodular signing, 
(ii) A cannot be transfomted to 

by applying (repeatedly) the following operations: 

(1) 

deleting rows or columns, 
permuting rows or columns, 
taking the transposed matrix, 
pivoting over GF(2). 
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Short proofs of two theorems are given: (i) Whitney's 2-isomorphism theorem characterizing all 
graphs with the same cycle matroid, and (ii) Tutte's excluded minor characterization of those 
binary matroids that are graphic. Graph connectivity plays an important role in both proofs. 

1. Introduction 

Familiarity with graph and matroid theory is assumed; see [1] and [10]. Where 
G is a graph with S ~ E(G), G[S] denotes the subgraph induced by S. A partition 
{S, T} of E(G) is a k-separation of G, for k a positive integer, if Isl>  k <~ITI and 
IV(G[S]) N V(G[T])I<~ k, A graph is n-connected, for n a positive integer, if it has 
no k-separation for k < n; a 2-connected graph is nonseparable. 

Let G be a nonseparable graph with 2-separation {S, T} and let V(G[S])fq 
V(G[T]) = {x, y}. Let G'  be the graph obtained from G by interchanging in G[S] 
the incidences of the edges at x and y. Then G'  is obtained from G by reversing 
G[S]. A graph obtainable from G by a sequence of reversals is 2-isomorphic to 

G. 
Let M(G) denote the cycle matroid of G. Whitney [12] proved the following 

result. 

(1.1) Let G and G' be nonseparable graphs. Then M(G) = M(G') if and only if G 
and G' are 2-isomorphic. 

Let K5 and /(3,3 denote the Kuratowski graphs and let F7 denote the Fano 
matroid. Denote the dual of a matroid M by M*. 

Tutte [8] proved the following result. 

(1.2) Let M be a binary matroid. Then M is graphic if and only if M has no F7, 

F~7, M*(Ks) or M*(K3,3) minor. 

The purpose of this paper is to provide new short proofs of (1.1) and (1.2). It is 
hoped the present proofs will be more accessible and will provide additional 
insight into the results. Graph connectivity plays an important role in both proofs. 

The paper is outlined as follows: (1.1) is proved in Section 2, some preliminary 
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Oriented Matroids - From Matroids and Digraphs

to Polyhedral Theory
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These notes are intended for participants of the MAA Shortcourse on Ma-
troid Theory January 2011 in New Orleans. Therefore our intention is not to
give an introduction into the theory of oriented matroids from scratch (as in
[9]), but to recapture how they arise from matroids. Therefore, we assume basic
knowledge of matroid theory.

For a gentle introduction into the theory of oriented matroids we recom-
mend [1], the standard reference is [2].

1 Directed Planar Graphs and their Duals

1.1 Introduction

A graph G = (V,E), where V is a finite set (of vertices) and E ⊆
(
V
2

)
∪ V is a

finite set of edges (one- or two-element subsets of the vertices), may be considered
as a symmetric, binary relation. If we drop the symmetry requirement we arrive
at digraphs.

So, the difference between graphs and digraphs is that the arcs have an
orientation from one end vertex to the other. The purpose of this section is to
give an idea how we can save at least some of the orientation information to
matroids, where we do no longer have vertices.

A main concern should be that the orientation is somewhat compatible with
duality. Thus maybe we should start with a planar graph and its dual.

1.2 An example

Consider the following orientation of the dodekahedron (see Figure 1). How to
choose the direction for the dual arcs? Here we have chosen the orientation such
that the dual arc has the right-of-way, i.e. the primal arc points from the left to
the right.

Figure 3 illustrates that directed circuits give rise to directed cuts and vice
versa.

It seems that the orientation of the graph can be encoded as partitions of
the circuits and partitions of the cuts into forward and backward arcs. If we

1



6 ORIENTED MATROIDS

Jürgen Richter-Gebert and Günter M. Ziegler

INTRODUCTION

The theory of oriented matroids provides a broad setting in which to model, de-
scribe, and analyze combinatorial properties of geometric configurations. Mathe-
matical objects of study that appear to be disjoint and independent, such as point
and vector configurations, arrangements of hyperplanes, convex polytopes, directed
graphs, and linear programs find a common generalization in the language of ori-
ented matroids.

The oriented matroid of a finite set of points P extracts relative position and
orientation information from the configuration; for example, it can be given by a
list of signs that encodes the orientations of all the bases of P . In the passage
from a concrete point configuration to its oriented matroid, metrical information
is lost, but many structural properties of P have their counterparts at the—purely
combinatorial—level of the oriented matroid. (In computational geometry, the
oriented matroid data of an unlabelled point configuration are sometimes called
the order type.) From the oriented matroid of a configuration of points, one can
compute not only that face lattice of the convex hull, but also the set of all its
triangulations and subdivisions (cf. Chapter 16).

We first introduce oriented matroids in the context of several models and mo-
tivations (Section 6.1). Then we present some equivalent axiomatizations (Section
6.2). Finally, we discuss concepts that play central roles in the theory of oriented
matroids (Section 6.3), among them duality, realizability, the study of simplicial
cells, and the treatment of convexity.

6.1 MODELS AND MOTIVATIONS

This section discusses geometric examples that are usually treated on the level of
concrete coordinates, but where an “oriented matroid point of view” gives deeper
insight. We also present these examples as standard models that provide intuition
for the behavior of general oriented matroids.

6.1.1 ORIENTED BASES OF VECTOR CONFIGURATIONS

GLOSSARY

Vector configuration X: A matrix X = (x1, . . . , xn) ∈ (Rd)n, usually assumed
to have full rank d.
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Chapter 40

The greedy algorithm and the
independent set polytope

We now pass to algorithmic and polyhedral aspects of matroids. We show
that the greedy algorithm characterizes matroids and that it implies a
characterization of the independent set polytope (the convex hull of the
incidence vectors of the independent sets).
Algorithmic and polyhedral aspects of the intersection of two matroids will
be studied in Chapter 41.

40.1. The greedy algorithm

Let I be a nonempty collection of subsets of a finite set S closed under
taking subsets. For any weight function w : S → R we want to find a set I
in I maximizing w(I). The greedy algorithm consists of setting I := ∅, and
next repeatedly choosing y ∈ S \ I with I ∪ {y} ∈ I and with w(y) as large
as possible. We stop if no such y exists.

For general collections I of this kind this need not lead to an optimum
solution. Indeed, matroids are precisely the structures where it always works,
as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and
Edmonds [1971] (sufficiency)):

Theorem 40.1. Let I be a nonempty collection of subsets of a set S, closed
under taking subsets. Then the pair (S, I) is a matroid if and only if for each
weight function w : S → R+, the greedy algorithm leads to a set I in I of
maximum weight w(I).

Proof. Necessity. Let (S, I) be a matroid and let w : S → R+ be any weight
function on S. Call an independent set I good if it is contained in a maximum-
weight base. It suffices to show that if I is good, and y is an element in S \ I
with I + y ∈ I and with w(y) as large as possible, then I + y is good.

As I is good, there exists a maximum-weight base B ⊇ I. If y ∈ B, then
I + y is good again. If y �∈ B, then there exists a base B′ containing I + y
and contained in B + y. So B′ = B − z + y for some z ∈ B \ I. As w(y) is
chosen maximum and as I + z ∈ I since I + z ⊆ B, we know w(y) ≥ w(z).



Chapter 41

Matroid intersection

Edmonds discovered that matroids have even more algorithmic power than
just that of the greedy method. He showed that there exist efficient algo-
rithms also for intersections of matroids. That is, a maximum-weight com-
mon independent set in two matroids can be found in strongly polynomial
time. Edmonds also found good min-max characterizations for matroid
intersection.
Matroid intersection yields a motivation for studying matroids: we may
apply it to two matroids from different classes of examples of matroids,
and thus we obtain methods that exceed the bounds of any particular
class.
We should note here that if M1 = (S, I1) and M2 = (S, I2) are matroids,
then (S, I1 ∩ I2) need not be a matroid. (An example with |S| = 3 is easy
to construct.)
Moreover, the problem of finding a maximum-size common independent
set in three matroids is NP-complete (as finding a Hamiltonian circuit in
a directed graph is a special case; also, finding a common transversal of
three partitions is a special case).

41.1. Matroid intersection theorem

Let M1 = (S, I1) and M2 = (S, I2) be two matroids, on the same set S.
Consider the collection I1∩I2 of common independent sets. The pair (S, I1∩
I2) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two
proofs — one based on linear programming duality and total unimodularity
(see the proof of Theorem 41.12 below), and one reducing it to the matroid
union theorem (see Corollary 42.1a and the remark thereafter). We give the
direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let M1 = (S, I1) and M2 =
(S, I2) be matroids, with rank functions r1 and r2, respectively. Then the
maximum size of a set in I1 ∩ I2 is equal to

(41.1) min
U⊆S

(r1(U) + r2(S \ U)).



Chapter 44

Submodular functions and
polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970b] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all subsets T,U of S. Similarly, f is called supermodular if −f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f
is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.

A set function f on S is called nondecreasing if f(T ) ≤ f(U) whenever
T ⊆ U ⊆ S, and nonincreasing if f(T ) ≥ f(U) whenever T ⊆ U ⊆ S.

As usual, denote for each function w : S → R and for each subset U of S,

(44.2) w(U) :=
∑

s∈U

w(s).

So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(∅) = 0 may
be obtained in this way. (More generally, each modular set function f on S
satisfies f(U) = w(U) + γ (for U ⊆ S), for some unique function w : S → R
and some unique real number γ.)

In a sense, submodularity is the discrete analogue of convexity. If we
define, for any f : P(S) → R and any x ∈ S, a function δfx : P(S) → R
by: δfx(T ) := f(T ∪ {x})− f(T ), then f is submodular if and only if δfx is
nonincreasing for each x ∈ S.

In other words:



Chapter 45

Submodular function
minimization

This chapter describes a strongly polynomial-time algorithm to find the
minimum value of a submodular function. It suffices that the submodular
function is given by a value giving oracle.
One application of submodular function minimization is optimizing over
the intersection of two polymatroids. This will be discussed in Chapter 47.

45.1. Submodular function minimization

It was shown by Grötschel, Lovász, and Schrijver [1981] that the minimum
value of a rational-valued submodular set function f on S can be found in
polynomial time, if f is given by a value giving oracle and an upper bound
B is given on the numerators and denominators of the values of f . The
running time is bounded by a polynomial in |S| and logB. This algorithm
is based on the ellipsoid method: we can assume that f(∅) = 0 (by resetting
f(U) := f(U)− f(∅) for all U ⊆ S); then with the greedy algorithm, we can
optimize over EPf in polynomial time (Corollary 44.3b), hence the separation
problem for EPf is solvable in polynomial time, hence also the separation
problem for

(45.1) P := EPf ∩ {x | x ≤ 0},
and therefore also the optimization problem for P . Now the maximum value
of x(S) over P is equal to the minimum value of f (by (44.8), (44.9), and
(44.34)).

Having a polynomial-time method to find the minimum value of a sub-
modular function, we can turn it into a polynomial-time method to find a
subset T of S minimizing f(T ): For each s ∈ S, we can determine if the
minimum value of f over all subsets of S is equal to the minimum value of f
over subsets of S \{s}. If so, we reset S := S \{s}. Doing this for all elements
of S, we are left with a set T minimizing f over all subsets of (the original)
S.

Grötschel, Lovász, and Schrijver [1988] showed that this algorithm can be
turned into a strongly polynomial-time method. Cunningham [1985b] gave a
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a b s t r a c t

We provide a new characterization of convex geometries via a multivariate version of
an identity that was originally proved, in a special case arising from the k-SAT problem,
by Maneva, Mossel and Wainwright. We thus highlight the connection between various
characterizations of convex geometries and a family of removal processes studied in the
literature on random structures.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This article studies a general class of procedures in which the elements of a set are removed one at a time according to a
given rule.We refer to such a procedure as a removal process. If every elementwhich is removable at some stage of the process
remains removable at any later stage, we call this a pruning process. The subsets that one can reach through a pruning process
have the elegant combinatorial structure of a convex geometry. Our first goal is to highlight the role of convex geometries in
the literature on random structures, where many pruning processes have been studied without exploiting their connection
to these objects. Our second contribution is a proof that a generalization of a polynomial identity, first obtained for a specific
removal process in [17], provides a new characterization of pruning processes and of convex geometries. To prove this result
we also show how a convex geometry is equivalent to a particular kind of interval partition of the Boolean lattice.
Two equivalent families of combinatorial objects, known as convex geometries and antimatroids, were defined in the 1980s

[8,11]. The fact that these objects can be characterized via pruning processes has been known since then. Some examples
of pruning processes considered at that time are the removal of vertices of the convex hull of a set of points in Rn, the
removal of the leaves of a tree, and the removal of minimal elements of a poset. More recently various pruning processes
have been studied in the literature on random structures, and referred to also as peeling, stripping, whitening, coarsening,
identifying, etc. A typical example is the removal of vertices of degree less than k in the process of finding the k-core of a
random (hyper)graph.
In [17], a surprising identity was proved to hold for a particular removal process which arises in the context of the k-

SAT problem. In this paper, we answer the question posed by Mossel [23] of characterizing the combinatorial structures
that satisfy (the multivariate version of) that identity: they are precisely the convex geometries or equivalently the pruning
processes. That is the content of our main result, Theorem 3.1 and Corollary 3.2. It says that any pruning process has the
following two properties, and that in fact either of these two properties characterizes pruning processes among removal
processes.

E-mail addresses: federico@math.sfsu.edu (F. Ardila), enmaneva@us.ibm.com (E. Maneva).
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ROTA’S BASIS CONJECTURE FOR PAVING MATROIDS∗

JIM GEELEN† AND PETER J. HUMPHRIES‡

Abstract. Rota conjectured that, given n disjoint bases of a rank-n matroid M , there are n
disjoint transversals of these bases that are all bases of M . We prove a stronger statement for the
class of paving matroids.

Key words. Rota’s basis conjecture, paving matroids

AMS subject classification. 05B35

DOI. 10.1137/060655596

1. Introduction. We prove the following theorem.
Theorem 1.1. Let B1, . . . , Bn be disjoint sets of size n ≥ 3, and let M1, . . . ,Mn

be rank-n paving matroids on
⋃

i Bi such that Bi is a basis of Mi for each i ∈
{1, . . . , n}. Then there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) such
that Ai is a basis of Mi for each i ∈ {1, . . . , n}.

A paving matroid M is a matroid in which each circuit has size r(M) or r(M)+1,
where r(M) is the rank of M . Theorem 1.1 implies Rota’s basis conjecture for paving
matroids.

Conjecture 1.2 (Rota (see [6])). Given n disjoint bases B1, . . . , Bn in a rank-n
matroid M , there exist n disjoint transversals A1, . . . , An of (B1, . . . , Bn) that are all
bases of M .

For n = 2, Conjecture 1.2 follows immediately from basis exchange in matroids.
Chan [2] proved the conjecture for n = 3. Wild [9] proved a stronger conjecture for
the class of strongly base-orderable matroids, while more recently a slightly weaker
result was proved for a general matroid (Ponomarenko [8]). Further partial results
may be found in [1], [3], [4], [5], and [9].

Theorem 1.1 fails for both n = 2 and matroids in general. When n = 2, if we take
B(M1) = {{e, f}, {e, g}, {f, h}, {g, h}} and B(M2) = {{e, f}, {e, h}, {f, g}, {g, h}},
then {e, f}, {g, h} is the only pair of disjoint bases. In the second instance, if rM1(E−
B1) = 0, then there are no M1-independent transversals of (B1, . . . , Bn).

The remainder of this paper is taken up with the proof of the theorem. In sec-
tion 2, we prove that Theorem 1.1 holds when n = 3. This result is used, in section 3,
as the base case of an inductive proof of Theorem 1.1. The induction argument is
surprisingly straightforward and can be read independently of section 2.

2. The case n = 3. For basic concepts in matroid theory, the reader is referred
to Oxley [7]. We follow the same notation as Oxley throughout this paper.

A closed set in a matroid is commonly known as a flat. We will primarily be
interested in rank-2 flats, or lines. In the proof of Theorem 2.1, we make frequent use

∗Received by the editors March 29, 2006; accepted for publication (in revised form) June 19, 2006;
published electronically December 15, 2006. This research was partially supported by grants from
the Natural Sciences and Engineering Research Council of Canada and the New Zealand Marsden
Fund.

http://www.siam.org/journals/sidma/20-4/65559.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada

N2L 3G1.
‡Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
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Halfway to Rota’s basis conjecture

Matija Bucić∗ Matthew Kwan† Alexey Pokrovskiy‡ Benny Sudakov§

Abstract

In 1989, Rota made the following conjecture. Given n bases B1, . . . , Bn in an n-dimensional
vector space V , one can always find n disjoint bases of V , each containing exactly one element
from each Bi (we call such bases transversal bases). Rota’s basis conjecture remains wide open
despite its apparent simplicity and the efforts of many researchers (for example, the conjecture
was recently the subject of the collaborative “Polymath” project). In this paper we prove that
one can always find (1/2− o(1))n disjoint transversal bases, improving on the previous best
bound of Ω(n/ logn). Our results also apply to the more general setting of matroids.

1 Introduction

Given bases B1, . . . , Bn in an n-dimensional vector space V , a transversal basis is a basis of V
containing a single distinguished vector from each of B1, . . . , Bn. Two transversal bases are said to
be disjoint if their distinguished vectors from Bi are distinct, for each i (here “distinguished” means
that two copies of the same vector appearing in two Bis are considered distinct). In 1989, Rota
conjectured (see [23, Conjecture 4]) that for any vector space V over a characteristic-zero field, and
any choice of B1, . . . , Bn, one can always find n pairwise disjoint transversal bases.

Despite the apparent simplicity of this conjecture, it remains wide open, and has surprising
connections to apparently unrelated subjects. Specifically, it was discovered by Huang and Rota [23]
that there are implications between Rota’s basis conjecture, the Alon–Tarsi conjecture [2] concerning
enumeration of even and odd Latin squares, and a certain conjecture concerning the supersymmetric
bracket algebra.

Rota also observed that an analogous conjecture could be made in the much more general setting
of matroids, which are objects that abstract the combinatorial properties of linear independence in
vector spaces. Specifically, a finite matroid M = (E,I) consists of a finite ground set E (whose
elements may be thought of as vectors in a vector space), and a collection I of subsets of E, called
independent sets. The defining properties of a matroid are that:

• the empty set is independent (that is, ∅ ∈ I);

• subsets of independent sets are independent (that is, if A′ ⊆ A ⊆ E and A ∈ I , then A′ ∈ I);

• if A and B are independent sets, and |A| > |B|, then an independent set can be constructed
by adding an element of A to B (that is, there is a ∈ A\B such that B ∪ {a} ∈ I). This final
property is called the augmentation property.

∗Department of Mathematics, ETH, Zürich, Switzerland. Email: matija.bucic@math.ethz.ch.
†Department of Mathematics, Stanford University, Stanford, CA 94305. Email: mattkwan@stanford.edu. Research

supported in part by SNSF project 178493.
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Dr.Alexey.Pokrovskiy@gmail.com.
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Abstract

A d-dimensionalframeworkis a straight line realization of a graphG in Rd . We shall only consider
genericframeworks, in which the co-ordinates of all the vertices ofG are algebraically independent.
Two frameworks forG areequivalentif corresponding edges in the two frameworks have the same
length. A framework is aunique realizationof G in Rd if every equivalent framework can be obtained
from it by an isometry ofRd . Bruce Hendrickson proved that ifGhas a unique realization inRd thenG
is(d+1)-connected and redundantly rigid. He conjectured that every realization of a(d+1)-connected
and redundantly rigid graph inRd is unique. This conjecture is true ford = 1 but was disproved
by Robert Connelly ford�3. We resolve the remaining open case by showing that Hendrickson’s
conjecture is true ford = 2. As a corollary we deduce that every realization of a 6-connected graph as
a two-dimensional generic framework is a unique realization. Our proof is based on a new inductive
characterization of 3-connected graphs whose rigidity matroid is connected.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. Ad-
dimensionalframeworkis a pair(G, p), whereG = (V ,E) is a graph andp is a map
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5

Fractional Arboricity and Matroid Methods

The material in this chapter is motivated by two notions of the density of a graph. The arboricity
and the maximum average degree of a graph G measure the concentration of edges in the “thickest”
part of the graph.

5.1 Arboricity and maximum average degree

Suppose we wish to decompose the edges of a graph G into acyclic subsets, i.e., if G = (V,E) we
want to find E1, E2, . . . , Ek ⊆ E so that (1) each of the subgraphs (V,Ei) is acyclic and (2) E =
E1 ∪ E2 ∪ · · · ∪ Ek. The smallest size of such a decomposition is called the arboricity (or edge-
arboricity) of G and is denoted Υ(G). If G is connected, the arboricity is also the minimum
number of spanning trees of G that include all edges of G.

One can think of arboricity as being a variant of the edge chromatic number. We are asked
to paint the edges of G with as few colors as possible. In the case of edge chromatic number, we
do not want to have two edges of the same color incident with a common vertex. In the case of
arboricity, we do not want to have a monochromatic cycle.

There is an obvious lower bound on Υ(G). Since G has ε(G) edges and each spanning acyclic
subgraph has at most ν(G) − 1 edges we have Υ(G) ≥ ε(G)/(ν(G) − 1). Moreover, since Υ is an

integer, we have Υ(G) ≥
⌈

ε(G)
ν(G)−1

⌉
.

This bound is not very accurate if the graph is highly “unbalanced”; for example, consider the
graph G consisting of a K9 with a very long tail attached—say 100 additional vertices. We have

ν(G) = 109, ε(G) = 136, and therefore Υ(G) ≥
⌈
136
108

⌉
= 2. The actual value of Υ(G) is larger since

we clearly cannot cover the edges of K9 with two trees; indeed, the arboricity of a graph is at least
as large as the arboricity of any of its subgraphs. Thus we have

Υ(G) ≥ max

⌈
ε(H)

ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices. Indeed, this improved lower
bound gives the correct value.

Theorem 5.1.1

Υ(G) = max

⌈
ε(H)

ν(H)− 1

⌉

where the maximum is over all subgraphs of H with at least 2 vertices.

The proof of this theorem of Nash-Williams [137, 138] is presented in §5.4 below.
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