
CHAPTER 6

Square Tilings

We can also represent planar graphs by squares, rather then circles, in the
plane. There are in fact two quite different ways of doing this: the squares can
correspond to the edges, a classic result [Brooks et al. 1940], or the squares can
correspond to the nodes, a more recent result [Schramm 1993].

6.1. Electric current through a rectangle

The classical paper [Brooks et al. 1940] used a physical model of electrical cur-
rents to show how to relate square tilings to planar graphs. The ultimate goal was
to construct tilings of a square with squares whose edge-lengths are all different.
This will not be our concern (but see Exercise 6.2); we will allow squares of the
same size and also the domain to be tiled can be any rectangle, not necessarily a
square.

Consider a tiling T of a rectangle R with a finite number of squares, whose
sides are parallel to the coordinate axes. We can associate a planar map with this
tiling as follows. Let us call a maximal horizontal segment composed of edges of
the squares a long edge. Represent every long edge by a single node. Each square
“connects” two horizontal segments, and we can represent it by an edge connecting
the two corresponding nodes, directed top-down. We get a directed graph GT

(Figure 6.1), with a single source s (representing the upper edge of the rectangle)
and a single sink t (representing the lower edge).

It is easy to see that graph GT is planar: it can be obtained by first consid-
ering the midpoints of the horizontal edges of the squares, connecting two of them
horizontally if they are neighbors along a long edge, and vertically if they belong
to opposite edges of the same square. This graph is clearly planar, and contracting
the horizontal edges, we get GT .

A little attention must be paid to points where four squares meet; we call these
points 4-fold corners. Suppose that squares A,B,C,D share a corner p, where
A is the upper left, and B,C,D follow counterclockwise. In this case, we may
consider the lower edges of A and B to belong to a single long edge, or to belong
to different long edges. In the latter case, we may or may not imagine that there
is an infinitesimally small square sitting at p, which may “connect” A with C or
B with D (Figure 6.2). What this means is that we have to declare if the four
edges of GT corresponding to A, B, C and D are adjacent to the same node,
two nonadjacent nodes, or two adjacent nodes. We can orient this horizontal edge
arbitrarily. Deciding between these four possibilities will be called “resolving” the
4-fold corner p.

If we assign the edge length of each square to the corresponding edge, we get a
flow f from s to t: If a node v represents a segment I, then the total flow into v is
the sum of edge lengths of squares attached to I from the top, while the total flow
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Figure 6.1. Constructing a graph with a harmonic function from
a tiling of a rectangle by squares.

Figure 6.2. Possible resolutions of four squares meeting at a point.

out of v is the sum of edge length of squares attached to I from the bottom. Both
of these sums are equal to the length of I.

Let h(v) denote the distance of node v from the upper edge of R. Since the
edge-length of a square is also the difference between the y-coordinates of its upper
and lower edges, the function h is harmonic:

h(i) =
1

deg(i)

∑

j∈N(i)

h(j)

for every node different from s and t (Figure 6.1).
It is not hard to see that this construction can be reversed.

Theorem 6.1. For every connected planar map G with two specified nodes s and
t on the unbounded country, there is a unique tiling T of a rectangle such that
(resolving the 4-fold corners appropriately) G ∼= GT .

Proof. Consider the harmonic function f : V → R with f(s) = 0 and f(t) = 1
(obtained, say, as the 1-dimensional rubber band embedding with s and t nailed; in
Figure 6.3, this is the vertical coordinate of each node). We assign a square to each
edge uv with f(v) > f(u), of side length f(v)−f(u). This square will be placed
so that its lower edge is at height f(u), and its upper edge, at height f(v). To
find the horizontal position of these squares, we start from node s: we line up the
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Figure 6.3. A planar graph and the tiling generated from it.

squares corresponding to the edges incident with s along the bottom line, in the
order as these edges emanate from s. We go through the nodes in the increasing
order of the values of f . Getting to a node v, those edges entering v from below
have squares assigned to them whose top edges are at height f(v), and these edges
form a segment Iv of length

|Iv| =
∑

u∈N(v)
f(u)<f(v)

(
f(v)−f(u)

)
.

Since by the harmonic property of f we also have

|Iv| =
∑

u∈N(v)
f(u)≥f(v)

(
f(u)−f(v)

)
,

so we can line up the squares corresponding to edges exiting v upwards, along Iv,
in the order given by the embedding in the plane. When we get to t, we have filled
up the rectangle. �

Figure 6.4. The dodecahedron graph, its rubber band embedding
on the line (horizontally distorted to show the structure), and a
square tiling generated from it.
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6.2. Tangency graphs of square tilings

Let R be a rectangle in the plane, and consider a tiling of R by squares. Let us
add four further squares attached to each edge of R from the outside, sharing the
edge with R. We want to look at the tangency graph of this family of squares.

Since the squares do not have a smooth boundary, the conclusion of Exercise
5.8 does not apply, and the tangency graph of the squares may not be planar. Let
us try to draw the tangency graph in the plane by representing each square by its
center and connecting the centers of touching squares by a straight line segment.
Similarly as in the preceding section, we get into trouble when four squares share
a vertex. In this case we can specify arbitrarily one diametrically opposite pair
as “infinitesimally overlapping”, and connect the centers of these two square but
not the other two centers. We call this a resolved tangency graph of the family of
squares.

Every resolved tangency graph is planar, and it is easy to see that it has exactly
one country that is a quadrilateral (namely, the unbounded country), and its other
countries are triangles; briefly, it is a triangulation of a quadrilateral (Figure 6.5).
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Figure 6.5. The resolved tangency graph of a tiling of a rectangle
by squares. The numbers indicate the edge lengths of the squares.

Under some connectivity conditions, this fact has the following converse
[Schramm 1993].

Theorem 6.2. Every planar map in which the unbounded country is a quadrilat-
eral, all other countries are triangles, and is not separated by a 3-cycle or 4-cycle,
can be represented as a resolved tangency graph of a square tiling of a rectangle.

Schramm proved a more general theorem, in which separating cycles were al-
lowed; the prize to pay was that degenerate squares with edge-length 0 had to be
allowed. It is easy to see that a separating triangle forces everything inside it to
degenerate in this sense, and so we do not loose anything interesting by excluding
these. Separating 4-cycles may or may not force degeneracy (Figure 6.6), and it
does not seem easy to tell when they do.
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degenerate

square

Figure 6.6. A separating 4-cycle that causes degeneracy and one
that does not.

Before proving Theorem 6.2, let us make a detour to a well-known game. The
following folklore fact is easy to prove:

Proposition 6.3. Let G be a planar map in which the unbounded country is a
quadrilateral abcd and all other countries are triangles. Let us 2-color the nodes
with black and white, so that a and c are black and b and d are white. Then either
there is an all-black a-c path, or an all-white b-d path, but not both.

Proof. From the planarity of G it is immediate that if an all-black a-c path
exists, then it separates b and d, and so it excludes an all-white b-d path. To prove
that one of these paths exists, let us start a walk through the map, avoiding the
nodes. We enter through the edge ab, so that we have a black node to the left
and a white node to the right, and leave through another edge that has differently
colored endpoints (clearly again black on the left and white on the right). Going
on similarly, we maintain that we cross only edges having a black endnode to our
left and a white endnode to our right. It is easy to see that we never return to
a triangle which we left earlier, and so we must return to the unbounded country
through one of the edges bc or ad: Exiting through cd is impossible, since then we
would have the wrong colors on our left and right (Figure 6.7, left).

Suppose (say) that we exit through bc; then the black-black edges of those
triangles that we cross form a walk from a to c, which contains a black a-c path. �

Figure 6.7. Left: Walking through a 2-colored triangulation of a
square. Right: The game of Hex as a special case of the situation
in Proposition 6.3.

The reader familiar with basic algebraic topology will notice that the proof
above is very similar to one of the (algorithmic) proofs of Sperner’s Lemma. In fact
it would be easy to derive Proposition 6.3 from Sperner’s Lemma.
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A special case of this proposition is the fact that in every game of Hex, one or
the other player wins, but not both (Figure 6.7, right).

Proof of Theorem 6.2. Let G be the planar map with unbounded country
abcd. It will be convenient to set V ′ = V \{a, b, c, d}. Recall that V ′(P ) denotes
the set of inner nodes of the path P . For a path P and two nodes u and v on
the path, let us denote by P (u, v) the subpath of P consisting of all nodes strictly
between u and v. Later on we will also need the notation P [u, v) for the subpath
formed by the nodes between u and v, with u included but not v, and P [u, v] for
the subpath with both included.

We consider the node-path and node-cut polyhedra, where a and c are the spe-
cial nodes and b and d are deleted, or vice versa (see Appendix C.2.1). Proposition
6.3 implies that the a-c node-cut polyhedron of G\{b, d} is the same as the b-d
node-path polyhedron of G\{a, c}, and vice versa. Another way of saying this is
that the b-d node-path polyhedron of G\{a, c} is the blocker of the a-c node-path
polyhedron of G\{b, d}.

Let P be the set of a–c paths in G\{b, d} and Q, the set of b–d paths in
G\{a, c}. The a-c node-cut polyhedron is described by the linear constraints

xu ≥ 0 (u ∈ V ′)(6.1)

x
(
V ′(P )

)
≥ 1 (P ∈ P).(6.2)

Consider the solution x of (6.1)–(6.2) minimizing the objective function
∑

u x
2
u,

and let R2 be the minimum value. By Proposition C.2, y = (1/R2)x minimizes the
same objective function over the blocker (which is the b-d node-path polyhedron
of G\{a, c}), and the optimum value is 1/R2. Let us rescale the optimizers to get
z = 1

R
x = Ry. Then we have

z
(
V ′(P )

)
≥

1

R
(P ∈ P)(6.3)

z
(
V ′(Q)

)
≥ R (Q ∈ Q)(6.4)

∑

u∈V ′

z2u = 1.(6.5)

It will be convenient to define za = zb = zc = zd = 0.
We assign the length ẑij = 1

2 (zi+zj) to every edge ij. Using this, we can
define (as usual) the length ẑ(P ) of path as the sum of lengths of its edges, and
the distance dz(u, v) of two nodes as the minimum length of any path connecting
them. Inequalities (6.3) and (6.4) say that dz(a, c) ≥ 1/R and dz(b, d) ≥ R, and
the minimality of x and y implies that we have equality here. It is easy to see that
dz(i, j) = ẑij for every edge ij, so the edge is a shortest path between its endpoints.

We know that y is in the a-c node-path polyhedron, and it is a minimal vector
in there, so it is in the a-c node-path polytope, and it can be written as a convex
combination of indicator vectors ✶P of sets V ′(P ), where P is an a–c path. It
follows that z can be written as

(6.6) z =
∑

P∈P

λP✶P ,
∑

P

λP = R, λP ≥ 0.

Similarly, we have a decomposition

(6.7) z =
∑

Q∈Q

µQ✶Q,
∑

Q

µQ =
1

R
, µQ ≥ 0.
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Let P ′ = {P ∈ P : λP > 0}, and define Q′ analogously. Obviously, a node
u ∈ V ′ has zu > 0 if and only if it is contained in one of the paths in P ′, which
must then be equivalent to be contained in one of the paths in Q′ (we’ll prove later
that all nodes have zu > 0).

From conditions (6.3)-(6.5) we can derive some simple but powerful properties
of the paths in P ′ andQ′. It is trivial from the topology ofG that |V (P )∩V (Q)| ≥ 1
for P ∈ P ′ and Q ∈ Q′. On the other hand, (6.5) implies that

1 =
∑

u∈V ′

z2u =
(∑

P

λP✶P

)T(∑

Q

µQ✶Q

)
=

∑

P,Q

λPµQ|V (P )∩V (Q)|

≥
∑

P,Q

λPµQ =
(∑

P

λP

)(∑

Q

µQ

)
= 1.

We must have equality here, which implies that

(6.8) |V (P )∩V (Q)| = 1 (P ∈ P ′, Q ∈ Q′).

For any path Q ∈ Q′, we have

(6.9) ẑ(Q) = zT✶Q =
∑

P∈P′

λP✶
T

P✶Q =
∑

P∈P′

λP |V
′(P )∩V ′(Q)| =

∑

P∈P′

λP = R.

Similarly, for every P ∈ P ′, we have

(6.10) ẑ(P ) =
1

R
.

So the paths in P ′ and Q′ are shortest paths with respect to the metric dz. It
follows that they are chordless, and also for every path P ∈ P ′ and u, v ∈ V (P ), the
subpath P [u, v] is a shortest path between its endpoints. We get by the same kind
of argument that the common nodes of any two paths P, P ′ ∈ P ′ are encountered
by the two paths in the same order.

A consequence of (6.9) is that a b-d path Q satisfies ẑ(Q) = R (so it is a shortest
b-d path) if and only if |V (P )∩V (Q)| = 1 for every P ∈ P ′.

We say that a P ′ ∈ P ′ is to the right of P ∈ P ′, if every node of P ′ is either
a common point of P and P ′, or is separated from b by P . Clearly this defines a
partial ordering of P ′. In this case we say that P and P ′ do not cross. We can
similarly define noncrossing paths in Q′, and a partial ordering.

We continue with two somewhat more elaborate properties of the paths in P ′

and Q′. The first of these arguments could be omitted at the cost of making the
arguments later less transparent. However, under the name of “uncrossing”, this
method is a standard and powerful step in many proofs in graph theory, and it is
worth describing.

Claim 1.We can choose the decompositions in (6.6) and (6.7) so that the families
P ′ and Q′ are pairwise non-crossing.

In other words, “to the right” defines a total order on P ′. Similarly, we get a
total order on Q′.

To prove the Claim, let P, P ′ ∈ P ′ be a pair of paths that are crossing. Using
that their common nodes are in the same order along both, we can construct two
other a-c paths P0 and P ′

0, consisting of the common nodes and those nodes of
each path that are to the left (resp. to the right) of the other path (Figure 6.8,
left). Clearly ẑ(P )+ ẑ(P ′) = ẑ(P0)+ ẑ(P ′

0), and since P and P ′ satisfy (6.3) with
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equality, so do P0 and P ′
0. Let ε = min{λP , λP ′}, and let us decrease λP and λP ′

by ε and increase λP0 and λP ′
0
by ε. This gives another decomposition in (6.6). So

one of P and P ′ (say, P ′) drops out of P ′, and P0 and P ′
0 enter it (they may have

been there already, in which case only their weight increases).
This describes the main step, but we want to repeat this procedure to get rid

of all crossings; to this end, we have to justify that we are making progress. This
is not quite obvious, since we have replaced two paths by (possibly) three, creating
new crossings with the other paths. Looking more carefully, we see that

(a) the remaining path P and the new paths P0 and P ′
0 are mutually noncross-

ing, and

(b) if a further path in P ′ crosses either one of P0 and P ′
0, then it crosses at

least one of P and P ′; and if it crosses both P0 and P ′
0, then it crosses both P and

P ′.

From these observations it follows that the sum
∑

P1,P2∈P′ crossing

λP1λP2

decreases at the above operation, and so if we start with a decomposition minimizing
this sum, then the family P ′ will consist of non-crossing paths. We argue for Q′

similarly. This proves the Claim.
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Figure 6.8. Left: uncrossing two paths. Right: every node has
positive weight.

Let u ∈ V ′. Every path in P ′ either goes through u or it separates u from
exactly one of b or d in the topology of the plane. Let P−

u , Pu and P+
u denote the

sets of paths in P ′ separating u from b, passing through u, and separating u from d,
respectively. Clearly the sets P−

u , Pu and P+
u form intervals in the ordering of P ′.

We define the partition Q′ = Q−
u ∪Qu∪Q+

u analogously: the paths in Q− separate
u from a etc. If Q ∈ Q′ is any path through u, then it is easy to tell which paths
in P ′ separate u from b: exactly those whose unique common node with Q lies on
the subpath Q[b, u).

Clearly λ(Pu) = µ(Qu) = zu. We can express the distance of a node u ∈ V ′

with zu > 0 from b as

(6.11) dz(b, u) =
zu
2
+λ(P−

u ).
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Indeed, choosing any Q ∈ Qu, a path P ∈ P ′ belongs to P−
u if and only if it

intersects Q(b, u), and such paths contribute λP to zv for a single node v on Q(b, u).

Claim 2. Every node i ∈ V ′ satisfies zi > 0.

Suppose that there are nodes with zi = 0, and let H be a connected component
of the subgraph induced by these nodes. There are no separating 3- and 4-cycles
by the hypothesis of the theorem, hence H has at least five neighbors in V \V (H).
Each neighbor v of H has weight zv > 0, and so it is contained in a path Pv ∈ P ′

as well as in a path Qv ∈ Q′. The path Pv is disjoint from H and separates H
either from b or from d, and similarly, the path Qv separates H from either a or
c. Thus there are two neighbors u and v of H so that both Pu and Pv separate H
from (say) b, and both Qu and Qv separate h from (say) a. We choose the same
path for Pu and Pv if possible, and similarly for Qu and Qv, but (6.8) implies that
we cannot succeed in both cases. So we may assume that Qu 6= Qv.

The rest of the argument consists of analyzing the topology around H. If
Pu = Pv, then we may assume that u comes before v along the path Pu. The path
Qv separates u from a, so Pu meets Qv before u, and then meets it again at v,
contradicting (6.8).

Suppose that Pu 6= Pv. Then, as before, it follows that Pu[a, u) meets Qv.
Since Pu and Qv have only one intersection point, it follows that Qv is disjoint
from Pu[u, c]. Similarly, Pv is disjoint from Qu[u, d].

The paths Pu and Qu cross each other at u and split the interior of abcd into
four open parts (Figure 6.8, right). The subgraph H is contained in the part T
incident with the edge cd, and since v is a neighbor of H and not on the paths Pu

and Qu, it must also be in T . Now the path Pv[a, v] must enter T through a node
of Pu(u, c], since it is disjoint from Qu[u, d]. Similarly, the path Qv[b, v] must enter
T though Qu(u, d]. But then Pv[a, v] and Qv[b, v] must have an intersection point
outside T , different from v, contradicting (6.8).

After all this preparation, we can describe the squares representing G. We
start with the rectangle R with one vertex at (0, 0) and the opposite vertex at
(R, 1/R). Every node u ∈ V ′ will be represented by a square Su centered at
pu = (dz(a, u), dz(b, u))

T and having edge length zu. We represent node a by the
square Sa of side length R attached to the top of R. We represent b, c and d
similarly by squares attached to the other edges of R.

Claim 3. Let i, j ∈ V . If i and j are adjacent, then Si and Sj are tangent. If i
and j are nonadjacent, then Si and Sj are either disjoint or tangent along a single
vertex.

The Claim is easily checked when i and/or j belong to {a, b, c, d}, so suppose
that i, j ∈ V ′.

First, let ij ∈ E(P ), where (say) P ∈ P ′. Assume that P encounters i before
j. Then dz(a, j) = dz(a, i)+ ẑij (since P is a shortest path). On the other hand,
let (say) dz(b, j) ≥ dz(b, i), and let Q ∈ Q′ go through i and Q′ ∈ Q′ go through
j. Then Q′′ = Q[b, i]∪{ij}∪Q′[j, d] is a b-d path, and since Q′′ intersects P in at
least two nodes, it is not a shortest b-d path. Thus z(Q′′) > R, which implies that

dz(b, i) = ẑ(Q[b, i]) > R− ẑ(Q′[j, d])− ẑij = ẑ(Q′[b, j])− ẑij = dz(b, j)− ẑij .

So |dz(b, j)−dz(b, i)| < ẑij . This proves that the squares Si and Sj are tangent
along horizontal edges.
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Second, let ij ∈ E(G), and assume that ij is an not an edge of any path in
P ′∪Q′. It is clear that Pi∩Pj = ∅, since for any path in P ′ passing through both
i and j, the edge ij would be a chord. Since Pi and Pj are intervals in the ordering
of P ′, it follows that (say) Pi is completely to the left of Pj . Since i and j are
adjacent, no path in P ′ can separate i and j, and hence ∩P−

j = P−
i ∪Pi. Applying

(6.11) for both i and j, we see that

dz(b, j)−dz(b, i) =
zj
2
−

zi
2
+λ(P−

j )−λ(P−
i ) =

zj
2
−

zi
2
+λ(Pi)(6.12)

=
1

2
(zi+zj).

Finally, assume that i and j are nonadjacent nodes. If there is a path Q ∈ Q′

going through both i and j, encountering (say) i before j, then

dz(b, j) = dz(b, i)+dz(i, j) > dz(b, i)+
zi+zj

2

and hence Si and Sj are disjoint. We conclude similarly is there is a path in P ′

through both i and j. We are left with the case when Pi∩Pj = Qi∩Qj = ∅. As
in the previous proof, we may assume that Pi is completely to the left of Pj , but
we can only conclude that ∩P−

j ⊆ P−
i ∪Pi, and so the computation in (6.12) gives

an inequality only: dz(b, j)−dz(b, i) ≥ 1
2 (zi+zj). Similarly, |dz(a, j)−dz(a, i)| ≥

1
2 (zi+zj). If strict inequality holds in both directions, then Si and Sj are disjoint;
if equality holds in both cases, then Si and Sj have a vertex in common. This
proves Claim 3.

Consider G as drawn in the plane so that node i is at the center pi of the
square Si, and every edge ij is a straight segment connecting pi and pj . This gives
a planar embedding of G. Indeed, we know from Claim 3 that every edge ij is
covered by the squares Si and Sj . This implies that edges do not cross, except
possibly in the degenerate case when four squares Si, Sj , Sk, Sl share a vertex (in
this clockwise order around the vertex), and ik, jl ∈ E. Since the squares Si and
Sj are touching along their vertical edges, we have ij ∈ E. Similarly, jk, kl, li ∈ E,
and hence i, j, k, l form a complete 4-graph. But this is impossible in a triangulation
of a quadrilateral that has no separating triangles.

Next, we argue that the squares Si (i ∈ V \{a, b, c, d}) tile the rectangle R =
[0, R]× [0, 1/R]. It is easy to see that all these squares are contained in the rectangle
R, and they are non-overlapping by Claim 3. The total area covered by the squares
is

∑
i∈V ′ z2i = 1, which is just the area of R, so they must cover R.
Finally, we show that an appropriately resolved tangency graph of the squares

Si is equal to G. By the above, it contains G (where for edges of type (iii), the
4-corner is resolved so as to get the edge of G). Since G is a triangulation of the
outside quadrilateral, the containment cannot be proper, so G is the whole tangency
graph. �

Exercise 6.1. Figure out how to resolve the common points of four squares in
the tiling in Figure 6.2 in order to get the dodecahedron graph.

Exercise 6.2. Verify that the graph in Figure 6.9 gives rise to a tiling of a square
by different size squares. (This construction provides the minimum number of
different squares tiling a square.)

Exercise 6.3. Prove that if G is a resolved tangency graph of a square tiling of
a rectangle, then every triangle in G is a country.
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Figure 6.9. Tiling a square with the smallest number of different squares.

Exercise 6.4. Construct a resolved tangency graph of a square tiling of a rec-
tangle that contains a quadrilateral with a further node in its interior.

Exercise 6.5. Let G be a maximal planar graph with at least 4 nodes, with
unbounded country abc. Let us 2-color the nodes different from a, b and c with
black and white. Prove that either there is a black node connected by black paths
to each of a, b and c, or there is a white node connected by white paths to each
of a, b and c, but not both.


