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264 Probability makes counting (sometimes) easy

Triangle-free graphs with high chromatic number

Here is a sequence of triangle-free graphs G3, G4, . . . with

χ(Gn) = n.

Start with G3 = C5, the 5-cycle; thus χ(G3) = 3. Suppose we have

already constructed Gn on the vertex set V . The new graph Gn+1 has

the vertex set V ∪ V ′ ∪ {z}, where the vertices v′ ∈ V ′ correspond

bijectively to v ∈ V , and z is a single other vertex. The edges of

Gn+1 fall into 3 classes: First, we take all edges of Gn; secondly

every vertex v′ is joined to precisely the neighbors of v in Gn; thirdly

z is joined to all v′ ∈ V ′. Hence from G3 = C5 we obtain as G4 the

so-called Mycielski graph.

Clearly, Gn+1 is again triangle-free. To prove χ(Gn+1) = n + 1 we

use induction on n. Take any n-coloring of Gn and consider a color

class C. There must exist a vertex v ∈ C which is adjacent to at

least one vertex of every other color class; otherwise we could dis-

tribute the vertices of C onto the n − 1 other color classes, resulting

in χ(Gn) ≤ n − 1. But now it is clear that v′ (the vertex in V ′ cor-

responding to v) must receive the same color as v in this n-coloring.

So, all n colors appear in V ′, and we need a new color for z.

Theorem 3. For every k ≥ 2, there exists a graph G with chromatic

number χ(G) > k and girth γ(G) > k.

The strategy is similar to that of the previous proofs: We consider a cer-

tain probability space on graphs and go on to show that the probability for

χ(G) ≤ k is smaller than 1

2
, and similarly the probability for γ(G) ≤ k

is smaller than 1

2
. Consequently, there must exist a graph with the desired

properties.

G3:

G4:

Constructing the Mycielski graph

� Proof. Let V = {v1, v2, . . . , vn} be the vertex set, and p a fixed num-

ber between 0 and 1, to be carefully chosen later. Our probability space

G(n, p) consists of all graphs on V where the individual edges appear with

probability p, independently of each other. In other words, we are talking

about a Bernoulli experiment where we throw in each edge with proba-

bility p. As an example, the probability Prob(Kn) for the complete graph

is Prob(Kn) = p(n

2
). In general, we have Prob(H) = pm(1 − p)(

n

2
)−m if

the graph H on V has precisely m edges.

Let us first look at the chromatic number χ(G). By α = α(G) we denote

the independence number, that is, the size of a largest independent set in G.

Since in a coloring with χ = χ(G) colors all color classes are independent

(and hence of size ≤ α), we infer χα ≥ n. Therefore if α is small as

compared to n, then χ must be large, which is what we want.

Suppose 2 ≤ r ≤ n. The probability that a fixed r-set in V is independent
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An even better Density Increment Theorem and its

application to Hadwiger’s Conjecture

Luke Postle∗

September 4, 2020

Dedicated to the memory of Robin Thomas

Abstract

In 1943, Hadwiger conjectured that every graph with noKt minor is (t−1)-colorable
for every t ≥ 1. In the 1980s, Kostochka and Thomason independently proved that
every graph with no Kt minor has average degree O(t

√
log t) and hence is O(t

√
log t)-

colorable. Recently, Norin, Song and the author showed that every graph with no Kt

minor is O(t(log t)β)-colorable for every β > 1/4, making the first improvement on
the order of magnitude of the O(t

√
log t) bound. More recently, the author showed

that every graph with no Kt minor is O(t(log t)β)-colorable for every β > 0; more

specifically, they are t · 2O((log log t)2/3)-colorable. In combination with that work, we
show in this paper that every graph with no Kt minor is O(t(log log t)6)-colorable.

1 Introduction

All graphs in this paper are finite and simple. Given graphs H and G, we say that G has an
H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting
edges. We denote the complete graph on t vertices by Kt.

In 1943 Hadwiger made the following famous conjecture.

Conjecture 1.1 (Hadwiger’s conjecture [Had43]). For every integer t ≥ 1, every graph with

no Kt minor is (t− 1)-colorable.

Hadwiger’s conjecture is widely considered among the most important problems in graph
theory and has motivated numerous developments in graph coloring and graph minor theory.
For an overview of major progress on Hadwiger’s conjecture, we refer the reader to [NPS19],
and to the recent survey by Seymour [Sey16] for further background.

The following is a natural weakening of Hadwiger’s conjecture, which has been considered
by several researchers.

∗Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.
Email: lpostle@uwaterloo.ca. Canada Research Chair in Graph Theory. Partially supported by NSERC
under Discovery Grant No. 2019-04304, the Ontario Early Researcher Awards program and the Canada
Research Chairs program.
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Hadwiger’s conjecture

Paul Seymour∗

Abstract

This is a survey of Hadwiger’s conjecture from 1943, that for all t ≥ 0, every

graph either can be t-coloured, or has a subgraph that can be contracted to the com-

plete graph on t + 1 vertices. This is a tremendous strengthening of the four-colour

theorem, and is probably the most famous open problem in graph theory.

1 Introduction

The four-colour conjecture (or theorem as it became in 1976), that every planar

graph is 4-colourable, was the central open problem in graph theory for a hundred

years; and its proof is still not satisfying, requiring as it does the extensive use of a

computer. (Let us call it the 4CT.) We would very much like to know the “real” rea-

son the 4CT is true; what exactly is it about planarity that implies that four colours

suffice? Its statement is so simple and appealing that the massive case analysis of

the computer proof surely cannot be the book proof.

So there have been attempts to pare down its hypotheses to a minimum core, in

the hope of hitting the essentials; to throw away planarity, and impose some weaker

condition that still works, and perhaps works with greater transparency so we can

comprehend it. This programme has not yet been successful, but it has given rise to

some beautiful problems.

Of these, the most far-reaching is Hadwiger’s conjecture. (One notable other at-

tempt is Tutte’s 1966 conjecture [78] that every 2-edge-connected graph containing

no subdivision of the Petersen graph admits a “nowhere-zero 4-flow”, but that is

P. Seymour

Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA

e-mail: pds@math.princeton.edu

∗ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-1265563.
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An Update on the
Four-Color Theorem
Robin Thomas

848 NOTICES OF THE AMS VOLUME 45, NUMBER 7

E
very planar map of connected countries

can be colored using four colors in such

a way that countries with a common

boundary segment (not just a point) re-

ceive different colors. It is amazing that

such a simply stated result resisted proof for one

and a quarter centuries, and even today it is not

yet fully understood. In this article I concentrate

on recent developments: equivalent formulations,

a new proof, and progress on some generalizations.

Brief History

The Four-Color Problem dates back to 1852 when

Francis Guthrie, while trying to color the map of

the counties of England, noticed that four colors

sufficed. He asked his brother Frederick if it was

true that any map can be colored using four col-

ors in such a way that adjacent regions (i.e., those

sharing a common boundary segment, not just a

point) receive different colors. Frederick Guthrie

then communicated the conjecture to DeMorgan.

The first printed reference is by Cayley in 1878.

A year later the first “proof” by Kempe ap-

peared; its incorrectness was pointed out by Hea-

wood eleven years later. Another failed proof was

published by Tait in 1880; a gap in the argument

was pointed out by Petersen in 1891. Both failed

proofs did have some value, though. Kempe proved

the five-color theorem (Theorem 2 below) and 

discovered what became known as Kempe chains,

and Tait found an equivalent formulation of the

Four-Color Theorem in terms of edge 3-coloring,

stated here as Theorem 3.

The next major contribution came in 1913 from

G. D. Birkhoff, whose work allowed Franklin to

prove in 1922 that the four-color conjecture is

true for maps with at most twenty-five regions. The

same method was used by other mathematicians

to make progress on the four-color problem. Im-

portant here is the work by Heesch, who developed

the two main ingredients needed for the ultimate

proof—“reducibility” and “discharging”. While the

concept of reducibility was studied by other re-

searchers as well, the idea of discharging, crucial

for the unavoidability part of the proof, is due to

Heesch, and he also conjectured that a suitable de-

velopment of this method would solve the Four-

Color Problem. This was confirmed by Appel and

Haken (abbreviated A&H) when they published

their proof of the Four-Color Theorem in two 1977

papers, the second one joint with Koch. An ex-

panded version of the proof was later reprinted in

[1].

Let me state the result precisely. Rather than try-

ing to define maps, countries, and their boundaries,

it is easier to restate Guthrie’s 1852 conjecture

using planar duality. For each country we select a

capital (an arbitrary point inside that country) and

join the capitals of every pair of neighboring coun-

tries. Thus we arrive at the notion of a plane graph,

which is formally defined as follows.

A graph G consists of a finite set V (G), the set

of vertices of G , a finite set E(G) , the set of edges

Robin Thomas is professor of mathematics at  the Geor-

gia Institute of Technology. His e-mail address is

thomas@math.gatech.edu.

Partially supported by the NSF under grant No. DMS-

9623031 and by the ONR under grant No. N00014-93-1-

0325.
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After a brief historical account, a few simple structural theorems about plane graphs

useful for coloring are stated, and two simple applications of discharging are given.

Afterwards, the following types of proper colorings of plane graphs are discussed, both in

their classical and choosability (list coloring) versions: simultaneous colorings of vertices,

edges, and faces (in all possible combinations, including total coloring), edge-coloring,

cyclic coloring (all vertices in any small face have different colors), 3-coloring, acyclic

coloring (no 2-colored cycles), oriented coloring (homomorphism of directed graphs to

small tournaments), a special case of circular coloring (the colors are points of a small

cycle, and the colors of any two adjacent vertices must be nearly opposite on this cycle),

2-distance coloring (no 2-colored paths on three vertices), and star coloring (no 2-colored

paths on four vertices). The only improper coloring discussed is injective coloring (any two

vertices having a common neighbor should have distinct colors).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Coloring in a broad sense is a decomposition of a discrete object into simpler sub-objects. Due to its generality, this
notion arises in various branches of discrete mathematics and has important applications. For example, one of the most
natural models in the frequency assignment problem in mobile phoning is L(p, q)-labeling. The vertices of a planar graph
(sources) should be colored (get frequencies assigned) so that the colors (integer frequencies) of vertices at distance 1 differ
by at least p, while those at distance 2 differ by at least q. Sometimes, the set of available frequencies can vary from one
source to another; this corresponds to ‘‘list L(p, q)-labeling’’.

The theory of plane graph coloring has a long history, extending back to the middle of the 19th century, inspired by the
famous Four Color Problem (4CP), which asked if every plane map is 4-colorable. Now it is a broad area of research, with
hundreds of contributors and thousands of contributions, and so is covered in this survey only partially.

The development of this area goes hand in hand with the study of the structure of plane graphs. Sometimes a new
structural fact about plane graphs that is useful for coloring takes its place also in the structural theory; more often, it is
not of independent interest and just serves as a tool for solving a specific coloring problem. Until several decades ago, the
only coloring problem of broad interest was the 4CP, solved in 1976 by Appel and Haken [12] (see Theorem 1.1 below).
Accordingly, the study of plane graphs from a structural viewpoint was for a long time almost exclusively concerned with
plane triangulations ofminimumdegree 5. Since the 1960s, a rapidly growingnumber of interesting graph coloring problems
on the plane have appeared (see Jensen and Toft’s monograph [118]), and this advanced the study of the structure of plane
graphs in general.

1.1. Reducible configurations, discharging, and the 4CP

The basic elements of a plane map are its vertices, edges, and faces. An edge is a closed Jordan curve; its end-points are
vertices. A loop joins a vertex to itself; two vertices may be joined by several multiple edges. No edge can have an internal

E-mail address: brdnoleg@math.nsc.ru.

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.disc.2012.11.011
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Planar 4-critical graphs with four triangles

Oleg V. Borodin ∗ Zdeněk Dvořák † Alexandr V. Kostochka ‡

Bernard Lidický § Matthew Yancey ¶

October 30, 2018

Abstract

By the Grünbaum-Aksenov Theorem (extending Grötzsch’s Theorem) every planar
graph with at most three triangles is 3-colorable. However, there are infinitely many
planar 4-critical graphs with exactly four triangles. We describe all such graphs. This
answers a question of Erdős from 1990.

1 Introduction

The classical Grötzsch’s Theorem [14] says that every planar triangle-free graph is 3-colorable.
The following refinement of it is known as the Grünbaum-Aksenov Theorem (the original
proof of Grünbaum [15] was incorrect, and Aksenov [1] fixed the proof).

Theorem 1 ([1, 7, 15]). Let G be a planar graph containing at most three triangles. Then

G is 3-colorable.

The example of the complete 4-vertex graph K4 shows that “three” in Theorem 1 cannot
be replaced by “four”. But maybe there are not many plane 4-critical graphs with exactly
four triangles (Pl4-graphs, for short)?

∗Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk 630090, Russia. E-mail:
brdnoleg@math.nsc.ru. Research of this author is supported in part by grants 12-01-0044. and 12-01-00631
of the Russian Foundation for Basic Research.

†Computer Science Institute of Charles University, Prague, Czech Republic. E-mail:
rakdver@iuuk.mff.cuni.cz. Supported the Center of Excellence – Inst. for Theor. Comp. Sci.,
Prague (project P202/12/G061 of Czech Science Foundation), and by project LH12095 (New combinatorial
algorithms - decompositions, parameterization, efficient solutions) of Czech Ministry of Education.

‡University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Sobolev Institute of Mathemat-
ics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in
part by NSF grant DMS-0965587.

§University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail: lidicky@illinois.edu
¶University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. E-mail: yancey1@illinois.edu.

Research of this author is supported by National Science Foundation grant DMS 08-38434 “EMSW21-MCTP:
Research Experience for Graduate Students.”

1

a
rX

iv
:1

3
0

6
.1

4
7

7
v

1
  

[m
a
th

.C
O

] 
 6

 J
u

n
 2

0
1

3

06



Journal of Combinatorial Theory, Series B 101 (2011) 403–414

Contents lists available at ScienceDirect

Journal of Combinatorial Theory,
Series B

www.elsevier.com/locate/jctb

On two generalizations of the Alon–Tarsi polynomial

method

Dan Hefetz

Institute of Theoretical Computer Science, ETH Zurich, CH-8092, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:

Received 11 November 2009

Available online 12 January 2011

Keywords:

Polynomial method

Combinatorial Nullstellensatz

List coloring

Uniquely colorable graphs

In a seminal paper (Alon and Tarsi, 1992 [6]), Alon and Tarsi have

introduced an algebraic technique for proving upper bounds on the

choice number of graphs (and thus, in particular, upper bounds on

their chromatic number). The upper bound on the choice number

of G obtained via their method, was later coined the Alon–Tarsi

number of G and was denoted by AT(G) (see e.g. Jensen and Toft

(1995) [20]). They have provided a combinatorial interpretation

of this parameter in terms of the eulerian subdigraphs of an

appropriate orientation of G . Their characterization can be restated

as follows. Let D be an orientation of G . Assign a weight ωD(H)

to every subdigraph H of D: if H ⊆ D is eulerian, then ωD (H) =

(−1)e(H), otherwise ωD(H) = 0. Alon and Tarsi proved that

AT(G) � k if and only if there exists an orientation D of G in

which the out-degree of every vertex is strictly less than k, and

moreover
�

H⊆D ωD (H) �= 0. Shortly afterwards (Alon, 1993 [3]),

for the special case of line graphs of d-regular d-edge-colorable

graphs, Alon gave another interpretation of AT(G), this time in

terms of the signed d-colorings of the line graph. In this paper we

generalize both results. The first characterization is generalized by

showing that there is an infinite family of weight functions (which

includes the one considered by Alon and Tarsi), each of which

can be used to characterize AT(G). The second characterization

is generalized to all graphs (in fact the result is even more

general—in particular it applies to hypergraphs). We then use the

second generalization to prove that χ(G) = ch(G) = AT(G) holds

for certain families of graphs G . Some of these results generalize

certain known choosability results.

 2011 Elsevier Inc. All rights reserved.

E-mail address: dan.hefetz@inf.ethz.ch.

0095-8956/$ – see front matter  2011 Elsevier Inc. All rights reserved.
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3 Topological lower bounds for the chromatic number:

A hierarchy

Jiř́ı Matoušek
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November 12, 2003

Abstract

This paper is a study of “topological” lower bounds for the chromatic number of a
graph. Such a lower bound was first introduced by Lovász in 1978, in his famous proof
of the Kneser conjecture via Algebraic Topology. This conjecture stated that the Kneser

graph KGm,n, the graph with all k-element subsets of {1, 2, . . . , n} as vertices and all pairs
of disjoint sets as edges, has chromatic number n−2k+2. Several other proofs have since
been published (by Bárány, Schrijver, Dol’nikov, Sarkaria, Kř́ıž, Greene, and others), all of
them based on some version of the Borsuk–Ulam theorem, but otherwise quite different.
Each can be extended to yield some lower bound on the chromatic number of an arbitrary
graph. (Indeed, we observe that every finite graph may be represented as a generalized
Kneser graph, to which the above bounds apply.)

We show that these bounds are almost linearly ordered by strength, the strongest
one being essentially Lovász’ original bound in terms of a neighborhood complex. We
also present and compare various definitions of a box complex of a graph (developing
ideas of Alon, Frankl, and Lovász and of Kř́ıž). A suitable box complex is equivalent
to Lovász’ complex, but the construction is simpler and functorial, mapping graphs with
homomorphisms to Z2-spaces with Z2-maps.

1 Introduction

Graph coloring is a classical combinatorial topic: For a given (finite) graph G, determine how
to distribute a minimal number of colors to the vertices in such a way that adjacent vertices
get different colors. The minimum number of colors is χ(G), the chromatic number of the
graph. The graph coloring problem has numerous important practical motivations; among
the more recent ones, we mention that it appears as a (simplified) model for the frequency
assignment problem in mobile communication (cf. Borndörfer et. al. [6] and Eisenblätter et
al. [13]).

The most famous graph coloring problem is, of course, the Four Color Problem, asking
whether every planar graph can be colored by four colors, which was answered positively
by Haken and Appell 1977 and re-solved by Robertson, Sanders, Seymour & Thomas [30].
Even for planar graphs, though, determining 3-colorability is already algorithmically difficult
(NP-hard), and beyond the range of planar graphs, the gaps between the upper and the lower
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Duality,

Nowhere-Zero Flows,

Colorings and Cycle Covers �

J. Ne�set�ril �

Dept. of Appl. Math.,

Charles University,

Prague,
Czech Republic

A. Raspaud �

LaBRI,

Universit�e Bordeaux I,

33405 Talence Cedex,
France

July 21, 1999

��������

Nowhere-Zero Flows Problems, Coloring problems, Cycle cover problems lie in the core

of graph theory. The strong relationship between them is the duality. Several important

(and beautiful) conjectures are still open and this a very active �eld of study. We presente

this subject with the enlightening notion of duality.

1 Introduction

This paper was written for the traditional Spring School of the Combinatorial Seminar at
Charles University which was held in April 1999 in Borov�a Lada and in Finsterau. In 1999
this school was organized jointly with Humboldt Universitaet Berlin, Universitaet Bonn and
Universit�e Bordeaux I. Teachers from these schools took part in the meeting. The text tries to
provide a study text for (undergraduate) students and it should serve as a background for the
discussions and lectures at Spring School.

Some additional material and some complementary information can be found in the following
articles:

[19] F. Jaeger. Flows and Generalized Coloring Theorems in Graphs. J.Combin. Theory Ser.
B 26 (1979),pp. 205-216.

[22] F. Jaeger. Nowhere zero-
ow Problems. Selected topics in Graph Theory 3 Academic
Press, London 1988, 71{95.

�Written for the Spring School in Borov�a Lada / Finsterau 1999, supported by EU-Socrates grant #50334-
IC-1-97-1-CZ-ERASMUS-IP-1 and GA�CR GACR 201/99/0242

ye-mail:nesetri@kam.ms.mff.cuni.cz
ze-mail:raspaud@labri.u-bordeaux.fr
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Circle graphs are quadratically χ-bounded

James Davies∗ and Rose McCarty†

Abstract

We prove that the chromatic number of a circle graph with clique num-

ber ω is at most 7ω2.

1 Introduction

We prove the following result.

Theorem 1. The chromatic number of a circle graph with clique number ω is at

most 7ω2.

We prove Theorem 1 as a consequence of the following.

Theorem 2. The vertex set of a circle graph with clique number ω can be parti-

tioned into 7ω sets, each of which induces a permutation graph.

Theorem 2 implies Theorem 1 since permutation graphs are perfect (see [3]).
A class of graphs is χ-bounded if the chromatic number of each graph in the

class is bounded above by some fixed function of its clique number. Such a func-
tion is called a χ-bounding function for the class. If a polynomial χ-bounding
function exists, then the class is polynomially χ-bounded. (See Scott and Sey-
mour [10] for a survey of χ-boundedness.)

Gyárfás [4] proved that the class of circle graphs is χ-bounded. Kostochka and
Kratochv́ıl [8] showed that there exists a χ-bounding function of order 2ω for the
class of polygon circle graphs, which includes all circle graphs. (A polygon circle

graph is the intersection graph of a finite set of polygons inscribed in the unit
circle.) We further improve on these results by showing that the class of circle
graphs is polynomially χ-bounded. Using a result of Krawczyk and Walczak [9],
we obtain the following corollary.

∗Department of Combinatorics and Optimization, University of Waterloo, Waterloo,

Canada. E-mail: jgdavies@uwaterloo.ca.
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo,

Canada. E-mail: rose.mccarty@uwaterloo.ca.
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Graph Isomorphism, Color Refinement,

and Compactness

V. Arvind, Johannes Köbler, Gaurav Rattan, Oleg Verbitsky

Abstract

Color refinement is a classical technique to show that two given graphs G
and H are non-isomorphic; it is very efficient, even if incomplete in general.
We call a graph G amenable to color refinement if this algorithm succeeds in
distinguishing G from any non-isomorphic graphH. Babai, Erdős, and Selkow
(1982) proved that almost all graphs G are amenable. We here determine the
exact range of applicability of color refinement by showing that the class of
all amenable graphs is recognizable in time O((n+m) log n), where n and m

denote the number of vertices and the number of edges in the input graph.
Furthermore, we prove that amenable graphs are compact in the sense

of Tinhofer (1991), that is, their polytopes of fractional automorphisms are
integral. The concept of compactness was introduced in order to identify the
class of graphs G for which isomorphism G ∼= H can be decided by computing
an extreme point of the polytope of fractional isomorphisms from G to H

and checking if this point is integral. Our result implies that this linear
programming approach to isomorphism testing has the applicability range at
least as large as the combinatorial approach based on color refinement.

1 Introduction

The well-known color refinement (or naive vertex classification) algorithm begins
with a uniform coloring of the vertices of two graphs G and H and refines it step by
step so that, if two vertices have equal colors but differently colored neighborhoods
(with the multiplicities of colors counted), then these vertices get new different col-
ors in the next refinement step. The algorithm terminates as soon as no further
refinement is possible and concludes that G and H are non-isomorphic if the multi-
sets of colors occurring in these graphs are different. If this happens, the conclusion
is correct. However, color refinement cannot sometimes distinguish non-isomorphic
graphs. The simplest example is given by any two non-isomorphic regular graphs
of the same degree with the same number of vertices. We say that color refinement
applies to a graph G if it succeeds in distinguishing G from any non-isomorphic H .
The most obvious class of graphs to which color refinement is applicable is formed
by unigraphs. Those are the graphs which are determined up to isomorphism by
their degree sequences; see, e.g., [4, 24]. Another class where color refinement works

1
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COLOURINGS OF (m,n)-COLOURED MIXED GRAPHS

GARY MACGILLIVRAY, SHAHLA NASSERASR, FEIRAN YANG

Abstract. A mixed graph is, informally, an object obtained from a simple undirected graph by
choosing an orientation for a subset of its edges. A mixed graph is (m,n)-coloured if each edge
is assigned one of m ≥ 0 colours, and each arc is assigned one of n ≥ 0 colours. Oriented graphs
are (0, 1)-coloured mixed graphs, and 2-edge-coloured graphs are (2, 0)-coloured mixed graphs. We
show that results of Sopena for vertex colourings of oriented graphs, and of Kostochka, Sopena and
Zhu for vertex colourings oriented graphs and 2-edge-coloured graphs, are special cases of results
about vertex colourings of (m,n)-coloured mixed graphs. Both of these can be regarded as a version
of Brooks’ Theorem.

1. Introduction

There are parallels between vertex colourings of oriented graphs and vertex colourings of 2-edge-
coloured graphs: statements that hold for one family often also hold for the other with more or
less the same proof. For examples see [1, 2, 6, 7, 8, 11, 12]. On the other hand, Sen [12] gives
examples where results that hold for oriented graphs do not hold for 2-edge-coloured graphs. For
example, the maximum value of the oriented chromatic number of an orientation of P5 is 3, while
there are 2-colourings of P5 that have chromatic number 4. Thus it is unlikely that there is a direct
translation of results for graphs in one of these families to graphs in the other one.

A connection between oriented graphs and 2-edge-coloured graphs arises through the (m,n)-
coloured mixed graphs introduced by Nešeťril and Raspaud [10], of which both are special cases.
Theorems that hold for (m,n)-coloured mixed graphs hold for subfamilies, and methods which
prove such results can be applied to subfamilies. Conversely, if a statement holds for both 2-edge-
coloured graphs and oriented graphs with essentially the same proof, then there is some evidence
that these may be special cases of a general theorem for (m,n)-coloured mixed graphs. For example,
results in [1, 11] are shown to hold for (m,n)-mixed graphs in [10]. An ongoing project is to find
generalizations to (m,n)-coloured of theorems common to 2-edge-coloured graphs and oriented
graphs.

In this paper we consider vertex colourings of (m,n)-coloured mixed graphs and bounds for the
(m,n)-coloured mixed chromatic number, χ(G,m, n). Definitions and terminology appear in the
next section. In the subsequent sections we extend results which can be considered as versions
of Brooks’ Theorem to (m,n)-coloured mixed graphs. Sopena [13] proved constructively that the
oriented chromatic number of an oriented graph with maximum degree Δ ≥ 2 satisfies χo ≤ (2Δ−

1)22Δ−2. In Section 3 we extend this statement to (m,n)-coloured mixed graphs by using similar
methods to prove constructively that the (m,n)-coloured mixed chromatic number of an (m,n)-
coloured mixed graph G with maximum degree Δ ≥ 2 satisfies χ(G,m, n) ≤ (2Δ−1)(m+2n)2Δ−2 .
Kostochka, Sopena and Zhu [8] use the probabilistic method to give a better bound. They show that
the oriented chromatic number of an oriented graph with maximum degreeΔ satisfies χo ≤ Δ22Δ+1,
and the corresponding statement holds for the number of colours needed for a vertex-colouring of
a 2-edge-coloured graph. In Section 4 we extend this statement to (m,n)-coloured mixed graphs
by using similar methods to show that χ(G,m, n) ≤ Δ2(m+ 2n)Δ+1.

1
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IMPROVED BOUNDS FOR CENTERED COLORINGS

MICHAŁ DĘBSKI, STEFAN FELSNER, PIOTR MICEK, AND FELIX SCHRÖDER

Abstract. A vertex coloring φ of a graph G is p-centered if for every connected
subgraph H of G either φ uses more than p colors on H or there is a color that
appears exactly once on H. Centered colorings form one of the families of parameters
that allow to capture notions of sparsity of graphs: A class of graphs has bounded
expansion if and only if there is a function f such that for every p � 1, every graph in
the class admits a p-centered coloring using at most f(p) colors.

In this paper, we give upper bounds for the maximum number of colors needed in
a p-centered coloring of graphs from several widely studied graph classes. We show
that: (1) planar graphs admit p-centered colorings with O(p3 log p) colors where the
previous bound was O(p19); (2) bounded degree graphs admit p-centered colorings
with O(p) colors while it was conjectured that they may require exponential number of
colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered
colorings with a polynomial in p number of colors. All these upper bounds imply
polynomial algorithms for computing the colorings. Prior to this work there were no
non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t

that require
�

p+t

t

�

colors in any p-centered coloring. This bound matches the upper
bound; (5) there are planar graphs that require Ω(p2 log p) colors in any p-centered
coloring. We also give asymptotically tight bounds for outerplanar graphs and planar
graphs of treewidth 3. We prove our results with various proof techniques. The upper
bound for planar graphs involves an application of a recent structure theorem while the
upper bound for bounded degree graphs comes from the entropy compression method.
We lift the result for bounded degree graphs to graphs avoiding a fixed topological
minor using the Grohe-Marx structure theorem.

1. Introduction

Structural graph theory has expanded beyond the study of classes of graphs that ex-
clude a fixed minor. One of the driving forces was, and is, to develop efficient algorithms
for computationally hard problems for graphs that are ’structurally sparse’. Nešetřil and
Ossona de Mendez introduced concepts of classes of graphs with bounded expansion [15]

(M. Dębski) Faculty of Informatics, Masaryk University, Brno, Czech Republic

(M. Dębski) Faculty of Mathematics and Information Sciences, Warsaw University of
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Complexity of Coloring Graphs
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Abstract. We give a complete characterization of parameter graphs H

for which the problem of coloring H–free graphs is polynomial and for
which it is NP–complete. We further initiate a study of this problem for
two forbidden subgraphs.

1 Preliminaries and Overview of Results

Graph coloring belongs to the most important and applied graph problems. It
also belongs to the first identified NP–complete problems. Many classes of graphs
were shown to allow polynomial-time solution (e.g., interval graphs, chordal
graphs, etc.). In this paper we aim at classifying the computational complexity
of this problem when restricted to graphs that do not contain certain forbidden
induced subgraphs. Related results appear in [8], where 3-colorability is studied.
We consider, on the other hand, the coloring problem with the number of colors
being part of the input. For one forbidden subgraph we obtain a complete charac-
terization of the complexity, which performs the polynomial-time/NP–complete
dichotomy. First results in the direction of two forbidden subgraphs are gathered
in the last section, but a complete characterization is not yet at hand.

We consider finite simple undirected graphs. We say that a graph G is H–

free, where H is another graph, if G does not contain an induced subgraph

⋆ This author acknowledges further partial support of Czech research grant GAUK
158/1999.

⋆⋆ Research supported in part by the Hungarian Scientific Research Fund, grants OTKA
T–026575 and T-032969, and Czech Grant GAČR 201/99/0242 (DIMATIA).

† Project LN00A056 supported by The Ministry of Education of Czech Republic
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