
ar
X

iv
:1

90
5.

11
57

8v
1 

 [
m

at
h.

C
O

] 
 2

8 
M

ay
 2

01
9 Circle graphs are quadratically χ-bounded

James Davies∗ and Rose McCarty†

Abstract

We prove that the chromatic number of a circle graph with clique num-

ber ω is at most 7ω2.

1 Introduction

We prove the following result.

Theorem 1. The chromatic number of a circle graph with clique number ω is at

most 7ω2.

We prove Theorem 1 as a consequence of the following.

Theorem 2. The vertex set of a circle graph with clique number ω can be parti-

tioned into 7ω sets, each of which induces a permutation graph.

Theorem 2 implies Theorem 1 since permutation graphs are perfect (see [3]).
A class of graphs is χ-bounded if the chromatic number of each graph in the

class is bounded above by some fixed function of its clique number. Such a func-
tion is called a χ-bounding function for the class. If a polynomial χ-bounding
function exists, then the class is polynomially χ-bounded. (See Scott and Sey-
mour [10] for a survey of χ-boundedness.)

Gyárfás [4] proved that the class of circle graphs is χ-bounded. Kostochka and
Kratochv́ıl [8] showed that there exists a χ-bounding function of order 2ω for the
class of polygon circle graphs, which includes all circle graphs. (A polygon circle

graph is the intersection graph of a finite set of polygons inscribed in the unit
circle.) We further improve on these results by showing that the class of circle
graphs is polynomially χ-bounded. Using a result of Krawczyk and Walczak [9],
we obtain the following corollary.
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Corollary 3. The chromatic number of a polygon circle graph with clique number

ω is at most 7ω4.

In fact, the result of Krawczyk and Walczak applies to the more general class of
interval filament graphs. An interval filament graph is the intersection graph of
a finite set of continuous non-negative functions which are defined on a closed
interval and map the ends of the interval to zero.

Kostochka [6,7] showed that every χ-bounding function for the class of circle
graphs is Ω(ω log ω). It would be interesting to close the gap and determine the
precise asymptotic growth rate of the optimal χ-bounding function. Tight bounds
are known for triangle-free circle graphs; the maximum chromatic number of a
triangle-free circle graph is five, with the upper bound due to Kostochka [6] and
the lower bound due to Ageev [1].

Our proof approach is partially motivated by a Turán-type theorem for cir-
cle graphs of Capoyleas and Pach [2] and the proof of Kim, Kwon, Oum, and
Sivaraman [5] that the closure of a hereditary, polynomially χ-bounded class un-
der 1-joins is also polynomially χ-bounded. Despite this motivation, our proof is
self-contained other than the fact that permutation graphs are perfect.

2 Preliminaries

For a, b ∈ R with a < b, we write (a, b) for the open interval on the real line. An
interval system is a finite set of open subintervals of (0, 1) so that no two distinct
intervals share an end and no interval has 0 or 1 as an end. The overlap graph

G(I) of an interval system I is the graph with vertex set I so that two vertices
are adjacent if they overlap as intervals; two intervals overlap if they intersect
and neither is contained in the other. A graph is a circle graph if it is isomorphic
to the overlap graph of an interval system. (Equivalently, circle graphs are the
intersection graphs of chords on a circle.)

A pillar of an interval system I is a point in (0, 1) that is not the end of any
interval in I. A graph is a permutation graph if it is isomorphic to the overlap
graph of an interval system so that there exists a pillar that is contained in every
interval. It will be important later that the disjoint union of permutation graphs
is also a permutation graph.

Let I be an interval system. We would like to colour I with few colours so
that each colour induces a permutation graph in G(I). For any pillar p of I,
the set of all intervals in I that contain p induces a permutation graph. We will
choose a finite set P of pillars of I and assign each interval of I to one pillar
in P that is contained in it. An interval may contain several pillars in P , so,
to disambiguate the process, we take a total ordering (P,≺) of P and assign an
interval to the first pillar in P under the given ordering. (Note that P is a set
of real numbers, but our ordering (P,≺) will typically not be the linear ordering
given by the reals.)
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For this assignment process to work, each interval in I must contain a pillar in
P . However, we may require arbitrarily many pillars in order to hit each interval.
Fortunately, the disjoint union of permutation graphs is a permutation graph. So
we overcome the problem by colouring P and then colouring each interval with
the colour of the pillar it is assigned to. In doing this, one needs to be careful
that the monochromatic components remain permutation graphs. To this end,
we insist that no two overlapping intervals in I are assigned to distinct pillars of
the same colour.

Let P be a finite set of pillars of I and let (P,≺) be a total ordering of P .
We say an interval I ∈ I is assigned to a pillar p ∈ P with respect to (P,≺) if I
contains p and all other pillars in P ∩I occur later under (P,≺). If the ordering is
clear, we will just say that I is assigned to p. Notice that each interval in I that
contains a pillar in P is assigned to exactly one pillar. If additionally c : P → Z

+

is a colouring of P , we write φ(P,≺,c) for the partial, improper colouring of I where
an interval in I that is assigned to a pillar p is given the colour c(p).

A pillar assignment of an interval system I is a tuple (P,≺, c) so that P is
a finite set of pillars, (P,≺) is a total ordering, and c : P → Z

+ is a colouring
satisfying the following:

(1) if I1, I2 ∈ I overlap and are assigned to pillars p1, p2 ∈ P with c(p1) = c(p2),
then p1 = p2.

A pillar assignment (P,≺, c) is complete if every interval in I contains a pillar in
P . So for a complete pillar assignment (P,≺, c), the function φ(P,≺,c) colours all
intervals in I. Here is the first main observation.

Lemma 4. For every interval system I, pillar assignment (P,≺, c) of I, and

k ∈ N, the graph G({I ∈ I : φ(P,≺,c)(I) = k}) is a permutation graph.

Proof. Let I ′ ⊆ I so that G(I ′) is a connected component of G({I ∈ I :
φ(P,≺,c)(I) = k}). By the definition of a pillar assignment, there exists p ∈ P

so that every interval in I ′ contains p. Thus G(I ′) is a permutation graph. The
lemma follows since the disjoint union of permutation graphs is a permutation
graph.

In the next section, we will prove that every interval system whose overlap
graph has clique number ω has a complete pillar assignment using at most ω +
2⌈2 log2(ω)⌉ + 8 colours. By Lemma 4 and since ω + 2⌈2 log2(ω)⌉ + 8 ≤ 7ω for
ω ≥ 2, this implies Theorem 2. (Note that Theorem 2 is trivially true for ω = 1).
Next we will prove a lemma that roughly says that not too many pillars can affect
each other, but first we need some more definitions.

For a finite set P ⊂ (0, 1), a segment of P is an open interval with ends in
P ∪{0, 1} that contains no point in P . So there is a unique partition of (0, 1) \P
into |P |+ 1 segments.
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Now, let I be an interval system and let P be a finite set of pillars of I.
Notice that each end of an interval in I is contained in a segment of P . When
the interval system is clear, for pillars p1 < p2, we say that the P -degree of (p1, p2)
is the number of sets {S1, S2} so that

(1) S1 is a segment of P that is disjoint from (p1, p2),

(2) S2 is a segment of P ∪ {p1, p2} that is contained in (p1, p2), and

(3) there exists an interval in I with one end in S1 and one end in S2.

We happen to only apply this definition when either p1, p2 ∈ P or (p1, p2) is
contained in a segment of P . We denote the P -degree of (p1, p2) by dP (p1, p2). If
J = (p1, p2) we will write dP (J) for dP (p1, p2). Our next lemma can be seen as a
permutation graph version of a theorem of Capoyleas and Pach [2].

Lemma 5. Let I be an interval system whose overlap graph has clique number

ω. Let P be a finite set of pillars of I, and let p1, p2 ∈ P with p1 < p2. Then

dP (p1, p2) ≤ ω|P |.

Proof. We proceed by induction on |I|+ |P |. If |I| = 0, then dP (p1, p2) = 0, and
the lemma holds. By induction, we may assume that all intervals in I overlap with
(p1, p2), as we can delete all other intervals from I without changing dP (p1, p2).

Claim 5.1. The graph G(I) is a permutation graph.

Proof. For each i ∈ {1, 2}, define Ii as the set of all intervals in I that contain
pi. Then I is the disjoint union of I1 and I2. Let a be the largest end of an
interval in I1, subject to satisfying a < p1. Let b be the largest end of an interval
in I2. Now fix some ǫ > 0 so that 1− ǫa > b. Then {(d, 1− ǫc) : (c, d) ∈ I1} ∪ I2

is an interval system with overlap graph isomorphic G(I) so that every interval
contains p2.

By the claim, G(I) is perfect and so has a proper colouring using ω colours.
If ω ≥ 2, then the lemma holds by induction, applying the lemma separately to
the intervals of each colour. So we may assume that ω = 1.

If |P | = 2, then dP (p1, p2) ≤ 2 = ω|P |, and the lemma holds. Then by
induction, we may assume that each segment of P contributes at least two to
dP (p1, p2). Let S1 and S2 be the two segments of P having p1 as an end. For
each i ∈ {1, 2}, there is an interval Ii ∈ I that has an end in Si and no end in
S3−i. Then I1 and I2 overlap, a contradiction to the fact that ω = 1.

Lemma 5 is the only way we will use the clique number of the overlap graph.
Let I be an interval system whose overlap graph has clique number ω. We will
choose a pillar assignment (P,≺, c) using at most ω + 2⌈2 log2(ω)⌉ + 8 colours
so that φ(P,≺,c) colours as many intervals in I as possible, subject to satisfying
an additional property. The additional property will be similar to saying that
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every segment of P has P -degree at most ω + ⌈2 log2(ω)⌉+ 8. However we need
a different notion which incorporates the ordering of the pillars. We give this
definition next.

Let I be an interval system, let P be a finite set of pillars of I, and let (P,≺)
be a total ordering of P . For an open subinterval J of (0, 1) that is contained in a
segment of P , the (P,≺)-degree of J , denoted d(P,≺)(J), is the number of pillars
p ∈ P so that there exists an interval in I with an end in J that is assigned to
p with respect to (P,≺). If J = (p1, p2) we will write d(P,≺)(p1, p2) for d(P,≺)(J).
Observe that d(P,≺)(J) ≤ dP (J) since two intervals in I with ends in the same
two segments of P are assigned to the same pillar with respect to (P,≺). We say
that the maximum degree of (P,≺) is the maximum (P,≺)-degree of a segment
of P . We now prove one final lemma.

Lemma 6. Let I be an interval system, let k ∈ Z
+, and let P ∗ be a set of at

most 2k − 1 pillars of I. Then there exist a total ordering (P ∗,≺∗) of P ∗ and a

colouring c∗ : P ∗ → {1, 2, . . . , k} so that (P ∗,≺∗, c∗) is a pillar assignment and

the maximum degree of (P ∗,≺∗) is at most k.

Proof. This is trivially true for k = 1. We will argue by induction on k. Choose
p ∈ P ∗ such that the intervals (0, p) and (p, 1) each contain at most 2k−1 − 1
pillars in P ∗. Let P1 ⊂ P ∗ be the set of pillars less than p and P2 ⊂ P ∗ the set
of pillars greater than p.

By induction, for each i ∈ {1, 2}, there is a total ordering (Pi,≺i) of Pi and
colouring ci : Pi → {1, 2, . . . , k − 1} so that (Pi,≺i, ci) is a pillar assignment and
the maximum degree of (Pi,≺i) is at most k − 1. Let ≺∗ be the total ordering
of P ∗ obtained from ≺1 ∪ ≺2 by adding p first. Let c∗ be the colouring of P ∗

that extends c1 and c2 and has c∗(p) = k. Then any two pillars p1 ∈ P1 and
p2 ∈ P2 are separated by the preceding pillar p, which is the only pillar of colour
k. It follows that (P ∗,≺∗, c∗) is a pillar assignment and the maximum degree of
(P ∗,≺∗) is most k.

3 Main result

In this section we prove the following, which implies Theorem 2.

Proposition 7. Every interval system I whose overlap graph has clique number

ω has a complete pillar assignment using at most ω + 2⌈2 log2(ω)⌉+ 8 colours.

Proof. The proposition is trivially true if ω ≤ 1. So fix an interval system I
whose overlap graph has clique number ω ≥ 2. Throughout the proof, all colours
are in {1, 2, . . . , ω+2⌈2 log2(ω)⌉+8}. Choose a pillar assignment (P,≺, c) using
these colours so that the maximum degree of (P,≺) is at most ω+⌈2 log2(ω)⌉+8.
Subject to this, choose (P,≺, c) so that φ(P,≺,c) colours as many intervals in I
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as possible. Such a pillar assignment exists. Suppose, for a contradiction, that
(P,≺, c) is not complete.

Thus, there is an interval I ∈ I that is contained in some segment S = (p−, p+)
of P . Let P1 denote the set of all p ∈ P so that there exists an interval in I with
an end in S that is assigned to p. So |P1| = d(P,≺)(S).

Claim 7.1. There exists a set P ∗ ⊂ S of at most ω2 − 1 pillars of I so that

I contains a pillar in P ∗ and the P1-degree of each segment of P ∪ P ∗ that is

contained in S is at most ω + 8.

Proof. Choose pillars p− = p∗0 < p∗1 < . . . < p∗t+1 = p+ so that dP1
(p∗0, p

∗

1) =
. . . = dP1

(p∗t−1, p
∗

t ) = ω + 8 and 1 ≤ dP1
(p∗t , p

∗

t+1) ≤ ω + 8. Let P ∗

1 = {p∗i : i ∈
{1, 2, . . . , t}}. Let p1 be the largest pillar in P1 that is at most p−, as ordered by
the real line. Similarly, let p2 be the smallest pillar in P1 that is at least p+, as
ordered by the real line. Then by Lemma 5,

|P ∗

1 |(ω + 8) < dP1∪P
∗

1
(p1, p2)

≤ ω(|P1|+ |P ∗

1 |)

≤ ω(ω + ⌈2 log2(ω)⌉+ 8 + |P ∗

1 |).

It follows then, since ω ≥ 2, that |P ∗

1 | < ω2 − 1. Then the claim holds with
P ∗ = P ∗

1 ∪ {p∗}, where p∗ is any pillar contained in I.

Let P ∗ be a set of pillars as in the claim. By Lemma 6, there exist a total
ordering (P ∗,≺∗) of P ∗ and a colouring c∗ of P ∗ using at most ⌈log2(ω

2)⌉ =
⌈2 log2(ω)⌉ colours so that (P ∗,≺∗, c∗) is a pillar assignment and the maximum
degree of (P ∗,≺∗) is at most ⌈2 log2(ω)⌉. Choose the colours so that no pillar in
P1 is the same colour as a pillar in P ∗. Then (P ∪ P ∗,≺ ∪ ≺∗, c ∪ c∗) is a pillar
assignment using at most ω + 2⌈2 log2(ω)⌉+ 8 colours.

We claim that the maximum degree of (P ∪ P ∗,≺ ∪ ≺∗) is at most ω +
⌈2 log2(ω)⌉+ 8. Let S∗ be a segment of P ∪ P ∗. If S∗ is disjoint from S, then no
interval in I with one end in S∗ and one end in S is assigned to a pillar in P ∗

with respect to (P ∪P ∗,≺ ∪ ≺∗). So in this case the (P ∪P ∗,≺ ∪ ≺∗)-degree of
S∗ equals the (P,≺)-degree of S∗, which is at most ω + ⌈2 log2(ω)⌉+ 8.

Now suppose that S∗ is contained in S. Let (P1,≺1) denote the restriction
of (P,≺) to P1. Observe that d(P,≺)(S

∗) ≤ d(P1,≺1)(S
∗) by the definition of P1.

Then the (P ∪ P ∗,≺ ∪ ≺∗)-degree of S∗ is at most

d(P,≺)(S
∗) + d(P ∗,≺∗)(S

∗) ≤ d(P1,≺1)(S
∗) + d(P ∗,≺∗)(S

∗)

≤ dP1
(S∗) + d(P ∗,≺∗)(S

∗)

≤ ω + ⌈2 log2(ω)⌉+ 8.

This shows a contradiction to the choice of (P,≺, c) and completes the proof.
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We remark that the constants on the smaller order terms in Proposition 7
can be slightly improved for ω sufficiently large. However it seems that new ideas
would be needed to find a pillar assignment using (1−ǫ)ω colours for a fixed ǫ > 0
and ω sufficiently large. It would be interesting to know, at least asymptotically,
the smallest number of sets needed to partition the vertex set of any circle graph
with clique number ω into permutation graphs.
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