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Abstract

The dichromatic number of a graph G is the maximum integer k such that there exists an orientation
of the edges of G such that for every partition of the vertices into fewer than k parts, at least one
of the parts must contain a directed cycle under this orientation. In 1979, Erdős and Neumann-
Lara conjectured that if the dichromatic number of a graph is bounded, so is its chromatic number.
We make the first significant progress on this conjecture by proving a fractional version of the
conjecture. While our result uses a stronger assumption about the fractional chromatic number, it
also gives a much stronger conclusion: if the fractional chromatic number of a graph is at least t ,
then the fractional version of the dichromatic number of the graph is at least 1

4 t/ log2(2et2). This
bound is best possible up to a small constant factor. Several related results of independent interest
are given.

2010 Mathematics Subject Classification: 05C15

1. Introduction

For an undirected graph G, the chromatic number χ(G) is the minimum number
of independent sets whose union is V (G). For a directed graph (digraph) D, the
analogue of independent sets are acyclic vertex sets, where we call a vertex set
acyclic if it does not contain a directed cycle. Then, the chromatic number χ(D)
of D is the minimum number of acyclic vertex sets whose union is V (G) (see
[2, 10]). The dichromatic number of an undirected graph G, denoted by Eχ(G), is
the maximum chromatic number over all its orientations [4, 10].
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B. Mohar and H. Wu 2

In the late 1970s, Erdős and Neumann-Lara [4] posed the following conjecture:

CONJECTURE 1.1 (Erdős and Neumann-Lara [4]). For every integer k, there
exists an integer fk , such that if χ(G) > fk , then Eχ(G) > k.

Clearly, f1 = 1 and f2 = 3. But it is still an open question whether f3 exists.
Let I(G) be the family of all independent vertex sets of G. For v ∈ V (G),

let I(G, v) be the subfamily of all those independent sets that contain v. For
each independent set I , consider a nonnegative real variable x I . Let χ f (G) be the
minimum value of

∑
I∈I(G) x I subject to∑
I∈I(G,v)

x I > 1 for each vertex v,

x I > 0 for every I ∈ I(G).
(1)

It is easy to see that in any optimal solution of this linear program, we have x I 6
1 for every I ∈ I(G). If we request that the values x I are integers 0 or 1, we
obtain an integer program, whose optimal solution is the chromatic number χ(G).
By this correspondence, we call χ f (G) the fractional chromatic number of the
graph G.

The dual of this linear program computes the fractional clique number ω f (G),
a relaxation to the rationals of the integer concept of the clique number. That is, a
weighting w : V → R+ of the vertex set V = V (G) into the set of nonnegative
real numbers such that the total weight assigned to any independent set is at most
1, and the valuew(V ) =∑v∈V w(v) is maximum possible under these conditions.

We can also define the relaxation to the rationals of the integer concept of
the independence number. For every weighting w : V → R+ of the vertices of
G, for which the total weight is w(V ) = ∑

v∈V w(v) = |V |, we consider the
maximum weight w(I ) over all independent sets I ∈ I(G). The minimum of
this quantity, taken over all weightings w, is denoted by α f (G) and called the
fractional independence number of G.

By linear programing duality, we have the following lemma (see, for
example [6]).

LEMMA 1.2. χ f (G) = ω f (G).

Analogously, we define the fractional chromatic number χ f (D) of a digraph
D by using acyclic vertex sets playing the role of I(G). The maximum of
χ f (D) taken over all orientations D of an undirected graph G is the fractional
dichromatic number Eχ f (G) of G.

The main result of this paper is the following fractional version of the Erdős
and Neumann-Lara conjecture.
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Dichromatic and fractional chromatic number 3

THEOREM 1.3. If χ f (G) > t , then

Eχ f (G) >
t

4 log(2et2)
.

The logarithms used in Theorem 1.3 and throughout the rest of the paper are
always taken with respect to base 2. Note that, when compared with Conjecture
1.1, this result uses the stronger assumption that the fractional chromatic number
is large, but it also gives a stronger conclusion.

The proof of Theorem 1.3 occupies the whole of Section 2.
Erdős and Neumann-Lara proved [4] that c1(n/ log n) 6 Eχ(Kn) 6 c2(n/ log n)

for some constants 0 < c1 < c2. For large n, c1 ∼ 1
2 and c2 ∼ 1. This implies that

the bound of Theorem 1.3 is best possible up to the multiplicative factor of 8.
Theorem 1.3 implies the validity of Conjecture 1.1 for graphs whose chromatic

number is bounded in terms of their fractional chromatic number. It is therefore
natural to ask if some graphs with bounded fractional chromatic number might
provide counterexamples to the conjecture of Erdős and Neumann-Lara. In
Section 3, we treat such examples, in particular Kneser graphs with bounded
fractional chromatic number. Let us observe that every graph with fractional
chromatic number q has a homomorphism to a Kneser graph whose fractional
chromatic number is also q . In view of our main Theorem 1.3, Kneser graphs
with bounded fractional chromatic number are really the critical examples, for
which the Erdős and Neumann-Lara conjecture should be tested first. We show
that Kneser graphs have large dichromatic number as long as their chromatic
number is large enough; see Theorem 3.5. The lower bound given by the theorem
is surprisingly large and thus gives a firm support toward Conjecture 1.1.

Previous work. Dichromatic number was formally introduced by Neumann-
Lara in 1982 [10], but its first appearance can be found in a paper by Erdős [4] in
1979, where he discusses several results and conjectures proposed by himself and
Neumann-Lara. The notion of digraph coloring (for the chromatic and circular
chromatic number) by using acyclic sets as color classes was rediscovered by
Mohar [9] and studied in a follow-up paper by Bokal et al. [2]. A few years
later, it became clear that this notion of the chromatic number, when restricted
to tournaments, is closely related to the Erdős–Hajnal conjecture [3]; see, for
example [1].

As pointed out by Erdős in [4], ‘It is surprisingly difficult to determine Eχ(G)
even for the simplest graphs,’ it is thus not surprising that no real progress
concerning the problems of him and Neumann-Lara in [4] has been made until
today.
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B. Mohar and H. Wu 4

2. Principal and sparse vertex sets

This section is devoted to the proof of Theorem 1.3. We let V = V (G) and
n = |V |. We can assume that χ f (G) = t and that t > 4 log(2et2), which implies
that t > 56. Since ω f (G) = χ f (G), there exists a weight function w : V → R+,
such that w(V ) = t , and for any I ∈ I(G), w(I ) 6 1. Here and in the sequel we
write w(A) =∑v∈A w(v) for any vertex set A ⊆ V , and call this value the weight
of A.

From now on we fix w and assume that the vertices of V (G) are listed as
v1, . . . , vn in the nonincreasing order of their weights, that is w(vi+1) 6 w(vi) for
i = 1, . . . , n−1. For any subset X of V , we also rank the elements in X according
to the ordering of V , and we denote by Xk the subset of the first k elements in X .
In particular, Vk = {v1, . . . , vk}. We extend this notion to all positive real numbers
by setting Xs := Xbsc.

For s ∈ R+, a nonempty subset X of a vertex set Y is said to be s-principal
in Y if X ⊆ Ys|X |. That is, if X has size m, then all elements of X are within the
first bsmc vertices in Y . On the other hand, a subset X of Y is s-sparse in Y if
X contains no s-principal subset in Y . When the hosting set Y for s-principal or
s-sparse is not specified, by default it is V .

The following property is clear from the definition of sparse sets.

CLAIM 1. Any subset of an s-sparse set in Y is also s-sparse in Y .

CLAIM 2. X is an s-sparse subset in Y if and only if |Yk ∩ X | < k/s for
1 6 k 6 |Y |. In particular, if X is s-sparse in Y , then |X | < |Y |/s.

Proof. It is clear that X is s-sparse if and only if for each r = 1, . . . , |X |, |Ysr ∩
X | < r . If |Yk ∩ X | < k/s for every k, then this holds also for k = bsrc, implying
that |Ysr ∩ X | < bsrc/s 6 r . Conversely, if |Ysr ∩ X | < r , then |Ysr ∩ X | 6 r − 1.
Let s(r − 1) < k 6 sr . Then |Yk ∩ X | 6 |Ysr ∩ X | 6 r − 1 < k/s.

The next claim about the total weight of an s-sparse set will be essential for us.

CLAIM 3. If X is an s-sparse subset of Y , then w(X) 6 (1/s) w(Y ).

Proof. Let y1, . . . , yr be the nonincreasing order of the elements of Y with
r = |Y |, and let x1, . . . , xm be the ordering of X with m = |X |. Since X is an
s-sparse subset of Y , we have xi 6∈ Ysi . Hence for 1 6 i 6 m, w(xi) 6 w(y j)

if 1 6 j 6 si . Moreover, since xi ∈ Y \ Ysi , we also have w(xi) 6 w(y j) for
j = dsie.
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Dichromatic and fractional chromatic number 5

For a real parameter z ∈ (0, |Y |], define f (z) = w(ydze). Then f (z) > w(x1)

for 0 < z 6 s, f (z) > w(x2) for s < z 6 2s, . . . , f (z) > w(xm) for (m − 1)s <
z 6 ms. Therefore,

s w(X) = s
m∑

i=1

w(xi) 6
∫ sm

0
f (z) dz 6

dsme∑
j=1

w(y j) 6 w(Y ),

as required.

The average degree of a graph G, denoted by d̄(G), equals (1/n)
∑

v∈V (G) d(v)=
2e(G)/n, where e(G) denotes the number of edges in G. When A is a vertex
set of G, the average degree of A, denoted by d̄(A), means the average degree
d̄(G[A]) of the corresponding induced subgraph of G.

The following lemmas will be instrumental in proving Theorem 1.3.

LEMMA 2.1. Suppose that χ f (G) > t . Let d = 2 log(et2) and suppose that
t > 2(d + 1). Then there exists an orientation of the edges of G such that every
t-principal set of G with average degree at least d contains a directed cycle.

LEMMA 2.2. Let d = 2 log(et2) and suppose that t > 2(d + 1). If A is a vertex
set with weight more than 2d + 4 such that each independent subset of A has
weight at most 1, then A contains a t-principal subset whose average degree is at
least d.

Our main result, Theorem 1.3, easily follows from Lemmas 2.1 and 2.2.

Proof of Theorem 1.3. Let d be as in Lemmas 2.1 and 2.2. We may assume that
t > 4 log(2et2)= 2d+4. By our assumption on the weight function of G being the
one that gives the fractional independence number of G, there is no independent
set with weight more than 1. Hence by Lemma 2.2, every vertex set with weight
more than 2d + 4 contains a t-principal set with average degree at least d . By
Lemma 2.1, there exists an orientation D, such that every t-principal set with
average degree at least d is cyclic. Hence every vertex set with weight more than
2d + 4 is cyclic. Since the total weight for V (G) is t , and every acyclic set in
D has weight at most 2d + 4, we must have χ f (D) > t/(2d + 4). Therefore
Eχ f (G) > t/(2d + 4), which is the same as the bound in the theorem.

First we give a proof of Lemma 2.2.

Proof of Lemma 2.2. Suppose A is a vertex set whose weight is more than 2d+4
and suppose that A contains no t-principal subsets with average degree at least
d . For a vertex v ∈ A, let d>(v) be the number of neighbors of v in G[A] that
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B. Mohar and H. Wu 6

appear before v in the ordering v1, . . . , vn . We have e(Ai)=
∑

v∈Ai
d>(v) for each

i = 1, . . . , |A|. Let L = {v ∈ A : d>(v) > d}, and assume L = {vi1, . . . , vil },
where l = |L|. Then e(Vi j ∩ A) > d j for 1 6 j 6 l. In particular, if |Vi j ∩ A| 6 2 j ,
then the average degree d̄(Vi j ∩ A) will be at least d . Since A does not contain
any t-principal set with average degree at least d , the set Vi j ∩ A would not be
t-principal in this case. Thus, we have one of the following:

(1) |Vi j ∩ A| > 2 j ; or

(2) |Vi j | > t |Vi j ∩ A|.
Let L1 = {vi j ∈ L : |Vi j ∩ A| > 2 j}, and let L2 = {vi j ∈ L : |Vi j | > t |Vi j ∩ A|}.
Then L = L1 ∪ L2. If vi j ∈ L1, then it is not among the first 2 j elements of A.
As the j th element in L1 does not appear before vi j , the j th element of L1 is not
among the first 2 j elements of A. Therefore, L1 is a 2-sparse subset of A. By
Claim 3, w(L1) 6

1
2w(A).

For each vi j ∈ L2, we have |Vi j ∩ A| < (1/t)|Vi j |. As |Vi j ∩ L2| 6 |Vi j ∩ A| <
(1/t)|Vi j |, we see by Claim 2 that L2 is a t-sparse subset of V . By Claim 3,
w(L2) 6 (1/t)w(V ) = 1.

Let S = A \ L = {v ∈ A : d>(v) < d}. Then we have w(S) > w(A)−w(L1)−
w(L2) > w(A)/2− 1. Also, G[S] is a bdc-degenerate graph, hence S is bd + 1c-
colorable. Therefore, there is at least one independent set with weight at least

w(S)
bd + 1c >

w(A)/2− 1
d + 1

> 1.

In the last inequality we used the fact that w(A) > 2d + 4. This completes the
proof.

In the rest of this section, we are going to use probabilistic method to prove
Lemma 2.1, that there exists an orientation such that no t-principal set of G with
average degree at least d is acyclic. We will need the following lemma about
acyclic orientations.

LEMMA 2.3. The number of acyclic orientations of G is at most∏
v∈V (G)

(dG(v)+ 1).

Proof. Let v1, . . . , vn be the vertices of G. For any orientation D of G,
we consider its out-degree sequence (d+D(v1), d+D(v2), . . . , d+D(vn)). Since
d+D(v) 6 dG(v), there are at most

∏
v∈V (G)(dG(v) + 1) different out-degree

sequences. On the other hand, for any out-degree sequence corresponding to
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Dichromatic and fractional chromatic number 7

some acyclic orientation, we can determine the orientation inductively, starting
from that there is a vertex with out-degree 0, and all the edges incident to it
are oriented toward it. So given different acyclic orientations, it is easy to see
that their out-degree sequence cannot be the same. Therefore, there are at most∏

v∈V (G)(dG(v)+ 1) acyclic orientations.

We pick an orientation of the graph G among all the 2e(G) orientations uniformly
at random. Then for each edge, the probability for each direction we pick is 1/2,
and it is mutually independent from the orientation of other edges. We have the
following corollary of Lemma 2.3.

COROLLARY 2.4. The probability that a random orientation of G is acyclic is
less than 2−e(G)(1−2α), where α = log(d̄(G)+ 1)/d̄(G).

Proof. Let f (x) = ln(x+1). Since f ′(x) = 1/(x+1) and f ′′(x) = −1/(x+1)2

< 0, we see that f (x) is concave for x > −1. Therefore,
∑

v∈V (G) ln(dG(v)+1) 6
n ln(d̄(G)+ 1). That is∏

v∈V (G)

(dG(v)+ 1) 6 (d̄(G)+ 1)n = 2αnd̄(G) = 22αe(G).

Since there are 2e(G) different orientations of G, among which at most (d̄(G)+1)n

are acyclic, the probability that a random orientation of G is acyclic is at most
22αe(G) 2−e(G) = 2−e(G)(1−2α).

We are going to use the following fact.

FACT 1.
(btkc

k

)
< (et)k .

Proof. By Stirling’s formula, k! > √2πk(k/e)k > (k/e)k . Therefore, we have(btkc
k

)
6

tk(tk − 1) · · · (tk − k + 1)
k! <

(tk)k(
k
e

)k = (et)k .

Now we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let A be a t-principal vertex set of cardinality k and with
average degree at least d . By Corollary 2.4 applied to the graph G[A], the
probability that a random orientation of G is acyclic on A is small:

Pr(A is acyclic) 6 2−e(G[A])(1−2α) = 2−kd̄(A)(1−2α)/2, (2)
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B. Mohar and H. Wu 8

where α = log(d̄(A) + 1)/d̄(A). Since d̄(A) > d , we also have the following
inequality:

1
2 kd̄(A)(1− 2α) > 1

2 kd − k log(d + 1). (3)

As a t-principal set, A is a k-set contained in Vkt . Thus, there are at most
(btkc

k

)
t-

principal sets with k elements. By (2) and (3), the probability that some t-principal
k-set with average degree at least d is acyclic is at most

2−kd/2+k log(d+1)

(btkc
k

)
< 2−kd/2+k log(d+1)(et)k

= (2−d/2+log(d+1) et)k

=
(

d + 1
t

)k

6 2−k .

Here we used the facts that d = 2 log(et2) and t > 2(d + 1). Therefore, the
probability that some t-principal set with average degree at least d is acyclic is at
most

n∑
k=1

Pr(∃ an acyclic t-principal k-set A with d̄(A) > d) <
n∑

k=1

2−k < 1.

This implies that there exists an orientation such that no t-principal sets of G with
average degree at least d is acyclic.

In the last summation in the above proof, we could also use the fact that A needs
to have average degree at least d , hence k = |A| > d + 1. Then the probability is
less than 2−d(1/2+1/4+· · · ) = 2−d = e−2t−4. This shows that most orientations
give the conclusion of the lemma.

3. Blow-ups and Kneser graphs

Theorem 1.3 raises the question of whether the real condition in Conjecture 1.1
should be about the fractional chromatic number instead of the usual chromatic
number. It also shows that any possible infinite family of graphs providing
a counterexample to the conjecture would have bounded fractional chromatic
number (and arbitrarily large chromatic number). Any graph G with χ f (G) 6 q
has a homomorphism into a Kneser graph K (n, k)with n/k 6 q (see, for example,
[6]), and thus it is natural to check the validity of the Erdős and Neumann-Lara
conjecture for Kneser graphs. We do this in this section. The results may be of
independent interest because of the tools involved in the proofs.
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Dichromatic and fractional chromatic number 9

Given a graph H , the blow-up of H with power m, denoted by H (m), is the
graph obtained from H by replacing each vertex by an independent set of size m
(called the blow-up of the vertex), and for each edge xy in H , the two blow-ups
of x and y form a complete bipartite graph Km,m . The subgraph of H (m) replacing
an edge of H is isomorphic to Km,m and will be referred to as the blow-up of that
edge.

LEMMA 3.1. Let k be a positive integer and let H be a graph with χ(H) > k.
If there is an orientation D of H (m), such that in the blow-up of any edge, no
subgraph isomorphic to Kdm/ke,dm/ke is acyclic, then χ(D) > k.

Proof. Suppose that D is an orientation of H (m) with the stated property, and
that D is k-colorable. We are going to define a k-coloring of H as follows. For
each vertex x of H , let X be the blow-up of x . There is a color c = c(x) that is
used for at least dm/ke vertices of X in the k-coloring of D. Consider an edge
xy ∈ E(H). If c(x) = c(y), let A be the set of vertices in the blow-up of x
having color c(x), and let B be the set of vertices in the blow-up of y colored
c(y). Then |A|, |B| > dm/ke. By assumption, A ∪ B is not acyclic in D. This
contradicts the fact that all vertices in A ∪ B receive the same color. We conclude
that c(x) 6= c(y). This shows that the function c : V (H)→ [k] is a k-coloring of
H . This contradiction completes the proof.

LEMMA 3.2. If 2+ 2 log m 6 dm/ke, and χ(H) > k, then Eχ(H (m)) > k.

Proof. Let r = dm/ke. By Lemma 3.1, it suffices to prove that for m > 4k log(ke),
there is an orientation of H (m), such that no copy of Kr,r in the blow-up of any
edge is acyclic. It suffices to show that the blow-up of each edge of H has such
an orientation, and we will prove that a random orientation will have this property
with positive probability.

Let us now consider a random orientation of the blow-up K ∼= Km,m of a fixed
edge of H . As there are (2r)! permutations of the vertices of Kr,r , and each acyclic
orientation corresponds to at least one such permutation, the probability that a
copy of Kr,r in K is acyclic is at most (2r)!/2r2 . As there are

(m
r

)2 copies of Kr,r

in K , the probability that some copy of Kr,r is acyclic is at most

(2r)! 2−r2

(
m
r

)2

=
(

2r
r

)(
m!

(m − r)!
)2

2−r2
6

(
2r
r

)
m2r 2−r2

< 2−r2+2r m2r .

The value on the right-hand side of this inequality is at most 1 if 2+ 2 log m 6 r .
Thus, there is at least one orientation for K , such that no copy of Kr,r in K is
acyclic. This completes the proof.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.28
Downloaded from https://www.cambridge.org/core. IP address: 192.162.144.162, on 27 Oct 2020 at 21:23:18, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.28
https://www.cambridge.org/core


B. Mohar and H. Wu 10

A Kneser graph, denoted by K G(n, k), is a graph whose vertices correspond
to the k-element subsets of a set with n elements, and two vertices are adjacent
if their corresponding sets are disjoint. In 1978, Lovász [8] proved that the
chromatic number of K G(n, k) is n − 2k + 2, which was conjectured by Kneser
in 1955. It is also known that the fractional chromatic number of K G(n, k) is n/k.
Thus, Kneser graphs provide examples of graphs, whose fractional chromatic
number can be bounded, while their chromatic number would be arbitrarily
large.

THEOREM 3.3. Let n, k, t , and x be nonnegative integers such that 0 < k < n
and x < kt. The Kneser graph K G(nt, kt − x) contains the blow-up of K G(n,
k) with power

(k(t−1)
x

)
as a subgraph. Furthermore, when x < t , it contains the

blow-up of K G(n, k) with power
(kt

x

)
, and when x = t , it contains the blow-up of

K G(n, k) with power
(kt

x

)− k.

Proof. Let G = K G(nt, kt−x) and H = K G(n, k). We can consider the vertices
of G as the (kt − x)-subsets of [n] × [t], and the vertices of H as the k-subsets of
[n]. Given a vertex A ∈ V (G), let f (A) = {a ∈ [n] : (a, b) ∈ A for some b ∈ [t]};
that is, f is the projection from [n] × [t] to [n].

Notice that for two vertices A and B of G, if f (A)∩ f (B) = ∅, then A∩B = ∅.
In particular, if | f (A)| = | f (B)| = k and f (A) and f (B) are adjacent in H , then
A and B are adjacent in G. For every vertex X ∈ V (H), X is a k-set. If f (A) = X
for some vertex in G, then A is a (kt − x)-subset of X × [t].

If x < t , then for every (kt − x)-subset A of X × [t], we have f (A) = X . So
there are

(kt
x

)
vertices in G that map to X by f . This shows that G contains a

blow-up of H with power
(kt

x

)
.

If x = t , among the (kt− x)-subsets of X×[t], only k of them have f (A) 6= X ,
and each misses one element of X . Therefore, G contains a blow-up of H with
power

(kt
x

)− k.
In general, we can consider those (kt − x)-subsets of X × [t], which contain

all the elements in X × {1}. There are
(k(t−1)

x

)
such subsets, and each of them is

mapped to X by f . Therefore, G contains a blow-up of H with power
(k(t−1)

x

)
.

Erdős and Neumann-Lara (see [4]) proved that

Eχ(Kn) >
n

2 log(n)
. (4)

This result can be extended to blow-ups of complete graphs as follows.
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THEOREM 3.4. Eχ(K (k)
n ) > min{nk/4 log(nk), n/2}.

Proof. Let G = K (k)
n , and let t = max{d4 log(nk)e, 2k}. It suffices to show that

there is an orientation of G such that every vertex set of size t has a directed cycle.
Let A ⊆ V (G) be a set of size t . As G is a balanced complete n-partite graph

and each part has size k, each vertex in A has at least t − k neighbors in A.
Therefore, G[A] has at least t (t − k)/2 edges. Among all orientations of G[A], at
most t ! of them are acyclic. Thus, Pr(A is acyclic) 6 t ! 2−t (t−k)/2. There are

(nk
t

)
such set. It follows that with a random orientation of G we have the following:

Pr(∃A : |A| = t and A is acyclic) 6
(

nk
t

)
t ! 2−t (t−k)/2

< (nk2−(t−k)/2)t . (5)

Since t = max{d4 log(nk)e, 2k}, we have t − k > 2 log(nk). Therefore,
nk2−(t−k)/2 6 1. This implies that the value on the right-hand side of (5) is
at most 1. Consequently, there is at least one orientation D of G such that any
set of size t has a directed cycle. Therefore, in a proper coloring of D, each
color class has size at most t − 1. Hence Eχ(K (k)

n ) > χ(D) > nk/(t − 1) >
min{(nk/4 log(nk)), n/2}.

THEOREM 3.5. For any positive integers n, k with n > 2k, we have

Eχ(K G(n, k)) >
⌊

n − 2k + 2
8 log(n/k)

⌋
.

Proof. Let G = K G(n, k). Observe that Eχ(G) = 1 only when the graph is a
forest. In our case this happens only when n = 2k, and the inequality holds in this
case. Let z = bχ(G)/8 log(χ f (G))c = b(n − 2k + 2)/8 log(n/k)c. We just need
to consider the case when z > 2. Hence, we may assume χ(G) = n−2k+2 > 16.
For k 6 3, G contains the complete graph on bn/kc vertices. By using (4), it is
easy to see that the theorem holds in this case. Thus, we may assume that k > 4.

Let H1 = K G(bn/2kc, 1) = Kbn/2kc. Theorem 3.3 with t = 2k and x = k
implies that K G(2kbn/2kc, 2k − k) contains the blow-up of H1 with power

(2k
k

)
.

Since n > 2kbn/2kc =: n′, G contains K G(n′, k), and hence also the blow-up of
H1 with power

(2k
k

)
. By Theorem 3.4, we have

Eχ(G) > min
{

1
2

⌊
n
2k

⌋
,

(2k
k

)b n
2k c

4 log
((2k

k

)b n
2k c
)}. (6)

Suppose first that k 6 2 log(n/k). If the minimum in (6) is attained with the
first term, then we have Eχ(G) > 1

2bn/2kc > (n − 2k + 1)/4k. Since Eχ(G) is an
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integer, we conclude that Eχ(G) > (n − 2k + 2)/4k > (n − 2k + 2)/8 log(n/k)
> z as claimed. If the minimum is attained with the second term, then noting that(2k

k

)
> 4k, we see that

Eχ(G) > 4kb n
2k c

4 log
(
4kb n

2k c
) > n

4 log(2n)
= n

4 log(n/k)+ 4 log(k/2)

>
n

8 log(n/k)
> z.

Suppose now that k > 2 log(n/k), that is n < k2k/2. To simplify notation, we
also set r := bk/2c. We will distinguish two cases.

Suppose first that n > 4k. The result is clear if z 6 2. Otherwise, z > 3 and
we have n − 2k + 2 > 24 log(n/k) > 48. This contradicts the assumption that
n < k2k/2 if k 6 6. If k = 7, then n > 60 and hence n/k > 8. In particular,
G contains K7 as a subgraph. Since Eχ(K7) = 3 [11], we may assume that z > 4;
otherwise the theorem is proved. However, if z > 4 and n/k > 8, then n−2k+2 >
32 log(n/k) > 96. Again, this contradicts the assumption that n < k2k/2. We need
to do one more special case, when k = 9. In this case, we conclude as above, first
that n > 64, next that G contains K7 and that we may assume that z > 4. This
implies that n > 16 + 32 log(n/9). The smallest n for which this inequality is
satisfied is 128. Therefore, G contains the complete graph K14 as a subgraph. It
is known [11] that Eχ(K11) = 4, thus we may assume henceforth that z > 5. In
this case, the inequality for z becomes n > 16 + 40 log(n/9). The smallest n for
which this is satisfied is 193. Thus, 193 6 n 6 203 = bk2k/2c. In this case we
may use (6) which shows that Eχ(G) > 5. The assumption that z > 6 now gives a
contradiction to the fact that n 6 203.

From now on we may assume that either k = 8 or k > 10. Let H2 = K G(bn/3c,
r). By Theorem 3.3 with t = 3 and x = r (when k is even) or x = r − 1 (when k
is odd), we conclude that G contains a blow-up of H2 with power m = (2r

x

)
.

Our goal here is to apply Lemma 3.2, so we need to argue that 2 + 2 log m 6
dm/ze. We can estimate z as follows:

z 6
n

8 log(n/k)
<

k2k/2

8 log
(

2k/2k
k

) = 2k/2−2.

Thus, it suffices to see that

2+ 2 log m 6 dm/b2k/2−2ce. (7)

Inequality (7) can be proved by induction on k as follows. First of all, the
inequality holds for k = 8 and k = 11 (base cases), which the reader can easily
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verify. Next, we observe that when we increase k by 2, the left-hand side increases
by at most 4. On the other hand, the right-hand side increases by more than 4 when
k > 8.

This shows that we can apply Lemma 3.2 when k = 8 or k > 10. We do this
for every n such that 4k 6 n < k2k/2. Since χ(H2) = bn/3c − 2bk/2c + 2 >
(n − 2k + 2)/16 > χ(G)/8 log(n/k) > z, we have by Lemma 3.2 that Eχ(G) > z.

For the remaining subcase, we assume that n < 4k. Let H3 = K G(bn/2c, r+2).
By Theorem 3.3 with t = 2 (and x = k − 2r + 4 > 4), we see that G contains a
blow-up of H3 with power

(r+2
4

)
. Observe that

z =
⌊

n − 2k + 2
8 log(n/k)

⌋
6

⌊
4k − 2k + 2
8 log(4k/k)

⌋
=
⌊

k + 1
8

⌋
.

By induction on k, we easily prove the following:

2+ 2 log
(

r + 2
4

)
6

⌈ (r+2
4

)
b k+1

8 c
⌉
6

⌈(r+2
4

)
z

⌉
.

This shows that we can apply Lemma 3.2. Recall that n − 2k + 2 > 16. Then,
χ(H3) = bn/2c − 2r − 2 > b(n − 2k + 2)/8 log(n/k)c = z. By Lemma 3.2, we
conclude that Eχ(G) > z.

Let n = 2k + z − 2 with k � z, and let G = K G(n, k). Then χ(G) = z and
χ f (G) = n/k < 2+ z/k. By Theorem 3.5, Eχ(G) > z/8 log(n/k) > z/16. Thus,
we have the following result.

COROLLARY 3.6. For any ε > 0 and any integer t , there is a graph G with
χ f (G) < 2+ ε and Eχ(G) > t .

So Eχ(G) is lower bounded by a function of χ f (G) but not upper bounded by a
function of χ f (G).

Acknowledgements

B. Mohar was supported in part by an NSERC Discovery Grant (Canada), by
the Canada Research Chair program, and by the Research Grant P1–0297 of
ARRS (Slovenia). H. Wu was supported in part by the Thousands Talent (for
Youth) Plan (China). This work was done while H. Wu was a PIMS Postdoctoral
Fellow at the Department of Mathematics, Simon Fraser University, Burnaby,
B.C.

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2016.28
Downloaded from https://www.cambridge.org/core. IP address: 192.162.144.162, on 27 Oct 2020 at 21:23:18, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2016.28
https://www.cambridge.org/core


B. Mohar and H. Wu 14

References

[1] E. Berger, K. Choromanski, M. Chudnovsky, J. Fox, M. Loebl, A. Scott, P. Seymour and
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