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In a seminal paper (Alon and Tarsi, 1992 [6]), Alon and Tarsi have
introduced an algebraic technique for proving upper bounds on the
choice number of graphs (and thus, in particular, upper bounds on
their chromatic number). The upper bound on the choice number
of G obtained via their method, was later coined the Alon–Tarsi
number of G and was denoted by AT(G) (see e.g. Jensen and Toft
(1995) [20]). They have provided a combinatorial interpretation
of this parameter in terms of the eulerian subdigraphs of an
appropriate orientation of G . Their characterization can be restated
as follows. Let D be an orientation of G . Assign a weight ωD(H)

to every subdigraph H of D: if H ⊆ D is eulerian, then ωD (H) =
(−1)e(H), otherwise ωD(H) = 0. Alon and Tarsi proved that
AT(G) � k if and only if there exists an orientation D of G in
which the out-degree of every vertex is strictly less than k, and
moreover

∑
H⊆D ωD (H) �= 0. Shortly afterwards (Alon, 1993 [3]),

for the special case of line graphs of d-regular d-edge-colorable
graphs, Alon gave another interpretation of AT(G), this time in
terms of the signed d-colorings of the line graph. In this paper we
generalize both results. The first characterization is generalized by
showing that there is an infinite family of weight functions (which
includes the one considered by Alon and Tarsi), each of which
can be used to characterize AT(G). The second characterization
is generalized to all graphs (in fact the result is even more
general—in particular it applies to hypergraphs). We then use the
second generalization to prove that χ(G) = ch(G) = AT(G) holds
for certain families of graphs G . Some of these results generalize
certain known choosability results.
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1. Introduction

Let G = (V , E) be a graph and let k be a positive integer. A proper k-coloring of G is a mapping
c : V → {0,1, . . . ,k − 1} such that c(u) �= c(v) whenever (u, v) ∈ E . The smallest integer k for which
G admits a proper k-coloring is called the chromatic number of G and is denoted by χ(G). A proper
list coloring of G from lists {L(u): u ∈ V } is a mapping f : V → ⋃

u∈V L(u) such that f (u) �= f (v)

whenever (u, v) ∈ E and f (u) ∈ L(u) for every u ∈ V . The smallest integer k for which G admits a
proper list coloring from any set of lists {L(u): u ∈ V } such that |L(u)| � k for every u ∈ V , is called
the choice number of G and is denoted by ch(G). The choice number was introduced by Vizing [38]
and independently by Erdős et al. [12].

Clearly, by definition, ch(G) � χ(G) for every graph G; however the converse inequality does not
hold in general. Indeed, it was proved in [12] that ch(Kn,n) = (1 + o(1)) log2 n and so, in general, the
choice number of a graph cannot be bounded from above by any function of its chromatic number.
A graph which satisfies ch(G) = χ(G) is called chromatic-choosable. A lot of effort has been invested
in proving that certain graph families are chromatic-choosable, and, in particular, many conjectures
hypothesizing sufficient conditions for a graph to be chromatic-choosable were made. Probably, the
most famous of these is the following (see e.g. [20]):

Conjecture 1.1 (List Edge Coloring Conjecture). Every line graph is chromatic-choosable.

Despite many efforts by various researchers (e.g. [15,21] to name just a few), Conjecture 1.1 is still
open.

1.1. The Alon–Tarsi polynomial method

Let G = (V , E) be an undirected multi-graph with vertex set {1, . . . ,n}. The graph polynomial of G
is defined by

P G(x1, x2, . . . , xn) =
∏

1�i< j�n
(i, j)∈E

(xi − x j).

If E = ∅, then we define P G ≡ 1.
This polynomial was introduced by Petersen [26] more than a century ago. It has been extensively

studied since by various researchers (see e.g. [7,23,24,34]).
It is clear that the graph polynomial encodes information about its proper colorings. Indeed,

a graph G is k-colorable if and only if there exists an n-tuple (a1,a2, . . . ,an) ∈ {0,1, . . . ,k − 1}n

such that P G(a1,a2, . . . ,an) �= 0. Similarly, G is k-choosable if and only if for every family of sets
{Si ⊆ R: 1 � i � n}, each of size at least k, there exists an n-tuple (a1,a2, . . . ,an) ∈ S1 × S2 × · · · × Sn

such that P G(a1,a2, . . . ,an) �= 0.
The following theorem gives a sufficient condition for the existence of such an n-tuple.

Theorem 1.2 (Combinatorial Nullstellensatz). (See [4].) Let F be an arbitrary field, and let f = f (x1, . . . , xn)

be a polynomial in F[x1, . . . , xn]. Suppose that the degree deg( f ) of f is
∑n

i=1 ti , where each ti is a non-

negative integer, and suppose that the coefficient of
∏n

i=1 xti
i in f is non-zero. Then, if S1, . . . , Sn are subsets

of F with |Si | > ti , then there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that f (s1, . . . , sn) �= 0.

We are now ready to define the main concept of this paper.

Definition 1.3. Let G = (V , E) be a multi-graph with vertex set V = {v1, . . . , vn} and let f : V → N
+ .

We say that G is Alon–Tarsi f -choosable, or f -AT for brevity, if there exists a monomial c
∏n

i=1 xti
i in

the expansion of P G such that c �= 0 (say, in R) and ti � f (i) − 1 for every 1 � i � n. If f (i) = k for
every 1 � i � n, then we say that G is Alon–Tarsi k-choosable, or k-AT for brevity. The smallest integer
k for which G is Alon–Tarsi k-choosable, denoted by AT(G), is called the Alon–Tarsi number of G .
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It is clear from this definition (by using Theorem 1.2 and the fact that P G is a homogeneous
polynomial) that AT(G) � ch(G) for every graph G . The converse inequality, however, does not hold in
general. Indeed, as was previously indicated, ch(Kn,n) = (1 + o(1)) log2 n. On the other hand, it is clear
from the definition that AT(Kn,n) � n/2 (in fact, using different terminology, it was proved in [6] that
AT(Kn,n) = �n/2	 + 1). In fact, it is known that Alon–Tarsi choosability entails paintability (also known
as online choosability) which can already be stronger than choosability (see e.g. [30,31,41]).

In theory, Theorem 1.2 can be applied to many (not necessarily coloring related) combinatorial
problems; however, proving that some appropriate monomial does not vanish, is often extremely
hard. It is therefore convenient to give the coefficient of the monomial in question a combinatorial
interpretation. The following interpretation of Alon–Tarsi choosability was given in [6]. Let G = (V , E)

be an undirected graph with vertex set V = {v1, . . . , vn} and let D = (V , 
E) be an orientation of G . Let

d = (d1, . . . ,dn) denote the vector of out-degrees of the vertices of D; that is, di is the out-degree of
vi in D for every 1 � i � n. Let EE(D) (respectively EO(D)) denote the set of all eulerian subdigraphs
of D (a digraph is eulerian if the out-degree of every vertex equals its in-degree; connectivity is not
required—in particular, the empty graph is considered to be an even eulerian subdigraph of D) with
an even (respectively odd) number of edges.

Theorem 1.4. (See [6].) Let G = (V , E) be an undirected graph with vertex set V = {v1, . . . , vn}. Let D be an
orientation of G in which the out-degree of vi is di for every 1 � i � n. Let f : {1, . . . ,n} → N be the function
satisfying f (i) = di + 1 for every 1 � i � n. Then, G is f -AT if and only if |EE(D)| �= |EO(D)|.

Several successful applications of Theorem 1.4 appear in the literature. In particular, it was used
in [6] to prove that AT(G) � 3 whenever G is a planar bipartite graph, and in [13] to prove that
AT(G) � 3 whenever G = (V , E1 ∪ E2) is a graph on 3n vertices such that E1 ∩ E2 = ∅, G1 :=
(V , E1) ∼= C3n , and G2 := (V , E2) is a triangle factor (proving in particular a conjecture of Erdős as-
serting that G is 3-colorable).

Given a directed graph D = (V , E), a vertex u ∈ V and a set A ⊆ E , let d+
A (u) = |A ∩{(u, v): v ∈ V }|

and let d−
A (u) = |A ∩ {(v, u): v ∈ V }|. Our first result is a generalization of Theorem 1.4:

Theorem 1.5. Let G = (V , E) be an undirected graph with vertex set V = {v1, . . . , vn}. Let D be an orientation
of G in which the out-degree of vi is di for every 1 � i � n. Let f : {1, . . . ,n} → N be the function satisfying
f (i) = di + 1 for every 1 � i � n. For every 1 � i � n and every 1 � j � di let ui

j be an arbitrary real number.

Then, G is f -AT if and only if
∑

A⊆E (−1)|A| ∏n
i=1

∏di
j=1((d

+
A (vi) − d−

A (vi)) − ui
j) �= 0.

Note that Theorem 1.4 is a special case of Theorem 1.5, obtained by setting ui
j = j for every

1 � i � n and every 1 � j � di . Indeed, if A ⊆ E does not span a eulerian subdigraph of D , then
there must exist some 1 � i � n for which d+

A (vi) �= d−
A (vi). Since the sum of out-degrees is equal to

the sum of in-degrees in every digraph, it follows that there must exist some 1 � k � n for which
1 � d+

A (vk) − d−
A (vk) � dk . Hence

n∏
i=1

di∏
j=1

((
d+

A (vi) − d−
A (vi)

) − ui
j

) = 0.

If on the other hand A ⊆ E does span a eulerian subdigraph of D , then

(−1)|A|
n∏

i=1

di∏
j=1

((
d+

A (vi) − d−
A (vi)

) − ui
j

) = (−1)|A|+m
n∏

i=1

(di)!.

It follows that

∑
A⊆E

(−1)|A|
n∏

i=1

di∏
j=1

((
d+

A (vi) − d−
A (vi)

) − ui
j

) = (−1)m(∣∣EE(D)
∣∣ − ∣∣EO(D)

∣∣) ·
n∏

i=1

(di)!.
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Note that, though Theorem 1.5 generalizes Theorem 1.4, our proof of the former is very different
from the proof of the latter given by Alon and Tarsi in [6].

Let G be a graph with vertex set {v1, . . . , vn} and let c be a proper coloring of G with colors
{0,1, . . . ,d − 1}. We define the sign of c, denoted sign(c), to be 1 if P G(c(v1), . . . , c(vn)) > 0 and −1
otherwise. In [3], Alon gave the following interpretation of AT(G):

Theorem 1.6. Let H be a d-regular d-edge-colorable multi-graph and let G be the line graph of H. Let Cd denote
the set of proper colorings of G with colors {0,1, . . . ,d − 1}. Then, AT(G) � d if and only if

∑
c∈Cd

sign(c) �= 0.

Remark. The definition of sign(c) given in [3] is different from the one preceding Theorem 1.6 above.
However, it is not hard to see that both definitions are in fact equivalent (up to reversing all signs).

Theorem 1.6 was used in [11] to prove that AT(G) = ch(G) = χ(G) whenever G is the line graph
of a planar d-regular d-edge-colorable multi-graph, thus proving a special case of Conjecture 1.1.

Our next result is a generalization of Theorem 1.6 (which is itself a generalization of results
from [6,19,33]) from certain line graphs to all graphs.

Theorem 1.7. Let G = (V , E) be a graph, where V = {1,2, . . . ,n} and |E| = m, and let f : V → N
+

be a function satisfying
∑

u∈V f (u) = m + n. Let C f denote the set of all proper colorings c : V →
{0,1, . . . ,max{ f (i) − 1: 1 � i � n}} of G. Then, G is f -AT if and only if

∑
c∈C f

(−1)
∑n

i=1 c(i)
n∏

i=1

(
f (i) − 1

c(i)

)
P G

(
c(1), . . . , c(n)

) �= 0.

In order to see that Theorem 1.7 is indeed a generalization of Theorem 1.6, note that if G =
({1, . . . ,n}, E) is the line graph of a d-regular d-edge-colorable multi-graph and c1, c2 : V (G) →
{0,1, . . . ,d − 1} are two proper colorings, then

(−1)
∑n

i=1 c1(i)
n∏

i=1

(
d − 1

c1(i)

)∣∣P G
(
c1(1), . . . , c1(n)

)∣∣

= (−1)
∑n

i=1 c2(i)
n∏

i=1

(
d − 1

c2(i)

)∣∣P G
(
c2(1), . . . , c2(n)

)∣∣.
Note that since ch(G) � AT(G) for every graph G , it follows by Theorem 1.7 that one can sometimes

upper bound the choice number of G by using only information on the proper colorings of G .
We will give two proofs of Theorem 1.7. Both proofs are very different from Alon’s proof of Theo-

rem 1.6 in [3]. The second proof will in fact entail a stronger result which we will discuss further in
Section 4.

We will also prove some corollaries of Theorem 1.7.
An easy way to apply Theorem 1.7 is to find lists L(u) of the appropriate sizes, from which G =

(V , E) admits a unique coloring (that is, a unique mapping f : V → ⋃
u∈V L(u) such that f (u) �= f (v)

whenever (u, v) ∈ E and f (u) ∈ L(u) for every u ∈ V ). One such example is Kn with lists {{0, . . . ,

i − 1}: 1 � i � n}. This idea was explored in [2]. Of course one cannot expect to always find such lists.
A slightly more common scenario is when the graph itself is uniquely colorable. A graph G is called
uniquely k-colorable if there is exactly one proper vertex k-coloring of G up to permutations of the
color classes. Uniquely colorable graphs have been studied extensively and were shown to have many
interesting properties (see e.g. [16,10,9]).

It is well known (see e.g. [37,40]) that a uniquely k-colorable graph on n vertices must have at
least (k − 1)n − (k

2

)
edges. Moreover, there exist graphs that attain this minimum and they form a

rich and interesting class (see e.g. [37,1,14,22,40]). Using Theorem 1.7 we can easily determine their
Alon–Tarsi number.
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Theorem 1.8. Let G = (V , E) be a uniquely k-colorable graph with n vertices and m edges. If m = (k − 1)n −(k
2

)
, then AT(G) = k.

Note that if G is uniquely k-colorable, then χ(G) = k. It follows that χ(G) = ch(G) = AT(G) when-
ever G = (V , E) is uniquely k-colorable and |E| = (k − 1)|V | − (k

2

)
.

Another family of uniquely k-colorable graphs whose Alon–Tarsi number we can determine is pre-
sented in the following theorem.

Theorem 1.9. Let G = (V , E) be a uniquely k-colorable graph with n vertices and m edges. Let A1, . . . , Ak
denote the color classes in the unique k-coloring of G. Let ro (respectively re) denote the number of parts Ai
of odd (respectively even) size. Let po (respectively pe) denote the number of pairs {(i, j): 1 � i < j � k} for
which both |Ai | and |A j| are odd (respectively even) and e(Ai, A j) is odd. If m � max{(n − ro)(k − 1) +(ro

2

) − pe, (n − re)(k − 1) + (re
2

) − po}, then AT(G) = k.

While Theorem 1.9 might seem somewhat technical, it generalizes certain known results:

Corollary 1.10. (See [27].) Let C p
n denote the pth power of the n-cycle, that is, the vertices of C p

n are the ele-
ments of the cyclic group Zn, and (i, j) ∈ E(C p

n ) if and only if 1 � (i − j) mod n � p or 1 � ( j − i) mod n � p.
If (p + 1)|n, then AT(C p

n ) = χ(C p
n ) = p + 1.

Note that for the special case of Cn−1
2n one obtains the following classical result:

Corollary 1.11. (See [12].) AT(K2∗n) = n, where K2∗n is the complete multi-partite graph with n parts, each of
size 2.

1.2. Preliminaries

Our graph-theoretic notation is standard and follows that of [39]. In particular, we use the fol-
lowing. For a graph G , let V (G) and E(G) denote its sets of vertices and edges respectively; and let
v(G) = |V (G)| and e(G) = |E(G)|. The minimum degree of G is denoted by δ(G). For disjoint sets
A, B ⊆ V (G), let EG(A, B) denote the set of edges of G with one endpoint in A and one endpoint
in B , and let eG(A, B) = |EG(A, B)|. Sometimes, if there is no risk of confusion, we discard the sub-
script G in the above notation. Let D = (V ′, E ′) be a directed graph. For an arc (u, v) ∈ E ′ we say that
u is its tail and v is its head. Let A ⊆ E ′ and let v ∈ V ′ . We denote by d+

A (v) the number of arcs e ∈ A
such that v is the tail of e. Similarly, we denote by d−

A (v) the number of arcs e ∈ A such that v is the
head of e. We refer to d+

A (v) as the out-degree of v in A and to d−
A (v) as the in-degree of v in A. Let

N denote the set of natural numbers and let N
+ := N \ {0}. Let R denote the field of real numbers.

Let f , f ′ : X → R be two functions. We write f � f ′ if f (x) � f ′(x) holds for every x ∈ X .
We mention here, without a proof, some simple observations regarding Alon–Tarsi choosability.

Observation 1.12. Let G = (V , E) be a multi-graph with n vertices and m edges, then:

1. P G is homogeneous of degree m;
2. AT(G) � 1 + �m(G)	, where m(G) := max{ e(H)

v(H)
: ∅ �= H ⊆ G} is the maximum density of G;

3. If C1, . . . , Cr are the connected components of G, then P G = ∏r
i=1 PCi and, in particular, AT(G) =

max{AT(Ci): 1 � i � r};
4. If H is a subgraph of G, then AT(H) � AT(G) (note that, unlike with colorability or choosability, a strict

inequality can occur even when H is obtained from G by replacing some parallel edges with a single edge).
5. Let f , f ′ : V → N

+ be two functions satisfying f ′ � f . If G is f -AT, then it is also f ′-AT.
6. AT(G) � col(G) + 1, where col(G) = max{δ(H): H ⊆ G} is the coloring number of G (also known as the

degeneracy of G).
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Remark. In light of part 3. of Observation 1.12, henceforth we will consider only connected multi-
graphs.

The rest of the paper is organized as follows: in Section 2 we prove Theorems 1.5 and 1.7. In
Section 3 we prove Theorems 1.8 and 1.9, as well as Corollary 1.10. Finally, in Section 4 we discuss
some generalizations and present some open problems.

2. Generalizing the polynomial method

In the course of our proofs we will use the following well-known results:

Theorem 2.1 (Ryser’s Formula). (See [29].) Let A = (ai, j) be an n ×n matrix, then the permanent of A is given
by the formula

Per(A) = (−1)n
∑

S⊆{1,2,...,n}
(−1)|S|

n∏
i=1

(∑
j∈S

ai, j

)
.

Lemma 2.2. (See Scheim [33].) If P (x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] is of degree at most s1 + s2 + · · · + sn,
where n is a positive integer and s1, s2, . . . , sn are non-negative integers, then

(
∂

∂x1

)s1( ∂

∂x2

)s2

· · ·
(

∂

∂xn

)sn

P (x1, x2, . . . , xn)

=
s1∑

x1=0

. . .

sn∑
xn=0

(−1)s1+x1

(
s1

x1

)
· · · (−1)sn+xn

(
sn

xn

)
P (x1, x2, . . . , xn).

Proof of Theorem 1.5. By Definition 1.3 it suffices to prove that the coefficient of
∏n

i=1 xdi
i in the

expansion of P G(x1, . . . , xn) is non-zero if and only if

∑
A⊆E

(−1)|A|
n∏

i=1

di∏
j=1

((
d+

A (vi) − d−
A (vi)

) − ui
j

) �= 0.

Let E = {e1, . . . , em}. Let A = AD = (ai, j)m×n denote the oriented incidence matrix of D , that is, for
every 1 � i � m and 1 � j � n we have ai, j = 1 if j is the tail of ei , ai, j = −1 if j is the head of ei ,
and ai, j = 0 otherwise. It is easy to see that |P G(x1, . . . , xn)| = |∏m

i=1(
∑n

j=1 ai, j x j)|. Let B = (bi, j)m×m

be the matrix obtained from A by repeating A’s jth column exactly d j times for every 1 � j � n, that

is, for every 1 � p � n and every 1 � q � dp , the (
∑p−1

i=1 di + q)th column of B is equal to the pth

column of A. It is not hard to see (cf. Claim 1 in [5]) that the coefficient of
∏n

i=1 xdi
i in the expansion

of P G(x1, . . . , xn) does not vanish if and only if Per(B) �= 0. Finally, let C = (ci, j)(m+1)×(m+1) be the
matrix satisfying ci, j = bi, j for every 1 � i, j � m, ci,m+1 = 0 for every 1 � i � m, cm+1,m+1 = 1, and

cm+1, j = −up
q whenever 1 � j = ∑p−1

i=1 di + q � m for some 1 � p � n and 1 � q � dp . Expanding
the permanent of C using its (m + 1)st column, it is clear that Per(C) = Per(B). It follows that the
coefficient of

∏n
i=1 xdi

i in the expansion of P G(x1, . . . , xn) does not vanish if and only if Per(C) �= 0. In
order to compute the permanent of C we will use Ryser’s formula (Theorem 2.1) and the simple fact
that a matrix and its transpose have the same permanent:

(−1)m+1Per(C) = (−1)m+1Per
(
C T )

=
∑

S⊆{1,...,m+1}
(−1)|S|

m+1∏
k=1

(∑
r∈S

cr,k

)



D. Hefetz / Journal of Combinatorial Theory, Series B 101 (2011) 403–414 409
=
∑

S⊆{1,...,m+1}
m+1∈S

(−1)|S|
m∏

k=1

(∑
r∈S

cr,k

)
· 1 +

∑
S⊆{1,...,m}

(−1)|S|
m∏

k=1

(∑
r∈S

cr,k

)
· 0

=
∑
A⊆E

(−1)|A|
n∏

i=1

di∏
j=1

((
d+

A (vi) − d−
A (vi)

) − ui
j

)
. �

First proof of Theorem 1.7. This proof is similar in spirit to the proof of Theorem 1.5. Let D be the
orientation of G with no decreasing arcs, that is, (i, j) ∈ E is directed from i to j in D if and only if
i < j. Let A denote the oriented incidence matrix of D . Let B = (bi, j) denote the m × m matrix which
is obtained from A by repeating A’s jth column exactly f ( j)− 1 times for every 1 � j � n. By Ryser’s
formula we have:

(−1)mPer(B) =
∑

S⊆{1,...,m}
(−1)|S|

m∏
r=1

(∑
k∈S

br,k

)
.

Consider an arbitrary fixed set S ⊆ {1, . . . ,m}. Each i ∈ S corresponds to some column of B , which in
turn corresponds to a column of A and thus to a vertex of G . Let cS : V → N be the mapping which
assigns to every vertex j ∈ V the number of elements i ∈ S such that the ith column of B corresponds
to j. Note that 0 � cS( j) � f ( j) − 1 holds for every j ∈ V and for every S ⊆ {1, . . . ,m}. Let E =
{e1, . . . , em}, and for every 1 � r � m let ir denote the tail of er (in D) and let jr denote the head of er .
Let S ⊆ {1, . . . ,m} be such that cS is not a proper coloring of G . Let e� ∈ E be some edge such that
cS(i�) = cS( j�). It follows that

∑
k∈S b�,k = cS(i�)− cS ( j�) = 0 and thus (−1)|S| ∏m

r=1(
∑

k∈S br,k) = 0. If
on the other hand S ⊆ {1, . . . ,m} is such that cS is a proper coloring of G , then

(−1)|S|
m∏

r=1

(∑
k∈S

br,k

)
= (−1)|S|

m∏
r=1

(
cS(ir) − cS( jr)

)

= (−1)
∑n

i=1 cS (i) P G
(
cS(1), . . . , cS(n)

)
.

Since every coloring cS is obtained from exactly
∏n

i=1

( f (i)−1
cS (i)

)
different sets S ⊆ {1, . . . ,m} (as every

choice of exactly c(i) columns of B which corresponds to i ∈ V , for every 1 � i � n, yields the same
coloring), it follows that

∑
S⊆{1,...,m}

(−1)|S|
m∏

r=1

(∑
k∈S

br,k

)
=

∑
c

(−1)
∑n

i=1 c(i)
n∏

i=1

(
f (i) − 1

c(i)

)
P G

(
c(1), . . . , c(n)

)
,

where the second sum extends over all proper colorings c of G in which 0 � c(i) � f (i) − 1 holds for
every 1 � i � n. Finally, since

( f (i)−1
c(i)

) = 0 whenever c(i) > f (i) − 1, it follows that

(−1)mPer(B) =
∑
c∈C f

(−1)
∑n

i=1 c(i)
n∏

i=1

(
f (i) − 1

c(i)

)
P G

(
c(1), . . . , c(n)

)
.

As in the proof of Theorem 1.5, it follows that the coefficient of
∏n

i=1 x f (i)−1
i in the expansion of

P G(x1, . . . , xn) does not vanish if and only if

∑
c∈C f

(−1)
∑n

i=1 c(i)
n∏

i=1

(
f (i) − 1

c(i)

)
P G

(
c(1), . . . , c(n)

) �= 0.

The result now follows from Definition 1.3. �
Second proof of Theorem 1.7. We will prove the following more general theorem:
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Theorem 2.3. Let P ∈ R[x1, . . . , xn] be a polynomial of degree m. Let f : {1, . . . ,n} → N
+ be a function

satisfying
∑n

i=1 f (i) = m + n. Let NZ(P ) := {(z1, . . . , zn) ∈ {0, . . . , f (1) − 1} × · · · × {0, . . . , f (n) − 1}:
P (z1, . . . , zn) �= 0} denote the set of non-zeros of P in {0, . . . , f (1) − 1} × · · · × {0, . . . , f (n) − 1}. If

∑
(z1,...,zn)∈NZ(P )

(−1)
∑n

i=1 zi

n∏
i=1

(
f (i) − 1

zi

)
P (z1, . . . , zn) �= 0,

then, for every S1, . . . , Sn ⊆ R, where |Si | � f (i) for every 1 � i � n, there exists (s1, . . . , sn) ∈ S1 × · · · × Sn

such that P (s1, . . . , sn) �= 0.

Theorem 1.7 is the special case of Theorem 2.3 obtained by taking P = P G (the “only if” part
of Theorem 1.7 follows directly from the definition of Alon–Tarsi choosability). Indeed, NZ(P G) are
exactly the proper colorings of G (observe that

( f (i)−1
c(i)

) = 0 whenever c(i) > f (i) − 1). Other special
cases of Theorem 2.3 will be discussed in Section 4.

Theorem 2.3 is a fairly straightforward corollary of Theorem 1.2 and of Lemma 2.2.

Proof of Theorem 2.3. By Theorem 1.2 it suffices to prove that c f �= 0, where c f is the coefficient of∏n
i=1 x f (i)−1

i in the expansion of P (x1, . . . , xn). However, by Lemma 2.2 we have

c f

n∏
i=1

(
f (i) − 1

)! =
f (1)−1∑
x1=0

. . .

f (n)−1∑
xn=0

(−1)m(−1)
∑n

i=1 xi

n∏
i=1

(
f (i) − 1

xi

)
P (x1, x2, . . . , xn).

Thus, in order to prove that c f �= 0, it suffices to show that

f (1)−1∑
x1=0

. . .

f (n)−1∑
xn=0

(−1)
∑n

i=1 xi

n∏
i=1

(
f (i) − 1

xi

)
P (x1, x2, . . . , xn) �= 0.

By the definition of NZ(P ), we have P (x1, . . . , xn) = 0 whenever (x1, . . . , xn) ∈ {0, . . . , f (1)− 1}× · · ·×
{0, . . . , f (n) − 1} \ NZ(P ). It follows that this last expression equals

∑
(x1,...,xn)∈NZ(P )

(−1)
∑n

i=1 xi

n∏
i=1

(
f (i) − 1

xi

)
P (x1, x2, . . . , xn).

This concludes the proof of the theorem as this last expression was assumed to be non-zero. �
3. Uniquely colorable graphs

Proof of Theorem 1.8. Clearly, AT(G) � χ(G) = k. Let A0, A1, . . . , Ak−1 be the color classes of the
unique k-coloring of G . Arbitrarily choose a vertex vi ∈ Ai for every 0 � i � k − 1. Assign the list
L(vi) = {0, . . . , i} to vi for every 0 � i � k − 1 and the list L(u) = {0, . . . ,k − 1} to every vertex u ∈
V \ {v0, . . . , vk−1}. It is easy to see that

∑
u∈V |L(u)| = m + n and that the only proper coloring of G

from these lists is the one assigning the color i to every vertex of Ai for 0 � i � k − 1. The theorem
now readily follows from Theorem 1.7. �
Remark. One class to which Theorem 1.8 applies, is that of uniquely 4-colorable planar graphs. How-
ever, for such graphs, the inequality AT(G) � 4 follows immediately since they are 3-degenerate [14].
On the other hand, as was partly indicated in the Introduction, for every k � 3 there are infinitely
many uniquely k-colorable graphs with the minimum possible number of edges which are not (k−1)-
degenerate (see e.g. [37,1,14,22,40]).
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Proof of Theorem 1.9. Clearly, AT(G) � χ(G) = k. Assume without loss of generality that (n − ro)(k −
1)+ (ro

2

)− pe � (n − re)(k − 1)+ (re
2

)− po , and let r = ro and p = pe . Assume without loss of generality
that A1, . . . , Ar are the odd parts. For every r + 1 � i < j � k for which e(Ai, A j) is odd, add an
arbitrary edge (allowing parallel edges) between Ai and A j ; denote the resulting multi-graph by G ′ .
By our assumption we will add exactly p such edges; let m′ = m + p denote the number of edges
in G ′ . For every 1 � i � r, let ui be an arbitrary vertex of Ai . Assign the list L(ui) = {0, . . . , i − 1} to
ui for every 1 � i � r and the list L(u) = {0, . . . ,k − 1} to every vertex u ∈ V \ {u1, . . . , ur}. It is easy
to see that

∑
u∈V |L(u)| � m′ +n. Add s := ∑

u∈V |L(u)| − (m′ +n) arbitrary edges between A1 and A2
(allowing parallel edges); denote the resulting multi-graph by G ′′ . Note that

∑
u∈V |L(u)| = e(G ′′) + n.

Moreover, for any r + 1 � i < j � k there is an even number of edges between Ai and A j . Indeed,
this holds in G ′ by construction. If r � 1, then this holds trivially in G ′′ . If r = 0, then n is even,
m′ is even, and

∑
u∈V |L(u)| = kn is even. It follows that, in this case, s is even as well. It is evident

that c : V → {0, . . . ,k − 1} assigning color i − 1 to every vertex of Ai for every 1 � i � k, is a proper
coloring of G ′′ from the lists {L(u): u ∈ V }. Moreover, it is clear that any proper coloring c′ of G ′′
from these lists is sign preserving, that is

(−1)
∑n

i=1 c′(i)sign
(

P G
(
c′(1), . . . , c′(n)

)) = (−1)
∑n

i=1 c(i)sign
(

P G
(
c(1), . . . , c(n)

))
.

It follows by Theorem 1.7 and Observation 1.12 that AT(G) � AT(G ′) � AT(G ′′) � k. �
Proof of Corollary 1.10. It is easy to see that if (p + 1)|n, then C p

n is uniquely (p + 1)-colorable and
that all color classes in this unique coloring are of the same size n/(p + 1). Moreover, the number of
edges between any two color classes is even, as every vertex of C p

n has exactly 2 neighbors from every
color class (other than its own). The result now follows from Theorem 1.9, as clearly e(C p

n ) = pn. �
Remark. Prowse and Woodall [27] have determined AT(C p

n ) for every n and p and not only when
(p + 1)|n. However, their proof of this special case is also quite involved.

4. Concluding remarks and open problems

More special cases of Theorem 2.3. This theorem demonstrates how the use of the Combinatorial
Nullstellensatz (Theorem 1.2) together with Scheim’s Lemma (Lemma 2.2) can provide a general
framework for transforming certain labeling problems into their “list coloring version”. That is, un-
der appropriate circumstances, one can substitute a labeling of some object with elements from
{0,1, . . . ,d1} × · · · × {0,1, . . . ,dn} that satisfies some property P , with a labeling of the same ob-
ject which also satisfies P but uses the elements of S1 × · · · × Sn , where, for every 1 � i � n, Si is an
arbitrary set of size di + 1. This idea was already used in [17]. One can think of many such examples.
We mention two of them here:

Alon–Tarsi choosability of hypergraphs. The notion of list coloring easily extends to hypergraphs;
however, very little is known about choice numbers of hypergraphs.

Ramamurthi and West [28] have extended the Alon–Tarsi polynomial method to k-uniform hy-
pergraphs, where k is prime. Their definition of the hypergraph polynomial is as follows. Let k be
a prime, let ω be a primitive kth root of unity, and let H = (V , E) be a k-uniform hypergraph,
where V = {1,2, . . . ,n}. With every vertex i ∈ V associate a variable xi . For an edge e = {i0, . . . , ik−1}
of H, where i0 < · · · < ik−1, define Pe = ∑k−1

j=0 ω j xi j . The hypergraph polynomial of H is defined
by P H(x1, . . . , xn) = ∏

e∈E Pe . As was indicated in [28], H is r-colorable if and only if there exists
an n-tuple (a1, . . . ,an) ∈ {0, . . . , r − 1}n such that P H(a1, . . . ,an) �= 0. Using this definition, one can
easily generalize Definition 1.3 to k-uniform hypergraphs, where k is prime. However, as observed
in [25], in order to upper bound AT(H), it suffices to associate H with any polynomial Q H such that,
if Q H(c(1), . . . , c(n)) �= 0, then c is a proper coloring of H. Using this observation we can obtain a
theorem which applies to any (not necessarily uniform) hypergraph.
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Theorem 4.1. Let H = (V , E) be any hypergraph, where V = {1,2, . . . ,n} and |E| = m. Let f : V → N
+ be a

function satisfying
∑

u∈V f (u) = m + n. Let Q = Q H, f (x1, . . . , xn) be any polynomial of degree m such that
Q (c(1), . . . , c(n)) = 0 whenever (c(1), . . . , c(n)) ∈ {0, . . . , f (1)−1}×· · ·×{0, . . . , f (n)−1} is not a proper
coloring of H. Let NZ(Q ) denote the set of non-zeros of Q in {0, . . . , f (1) − 1} × · · · × {0, . . . , f (n) − 1}. If

∑
(c1,...,cn)∈NZ(Q )

(−1)
∑n

i=1 ci

n∏
i=1

(
f (i) − 1

ci

)
Q (c1, . . . , cn) �= 0,

then H is f -AT.

We demonstrate the convenience of choosing a polynomial, by proving that AT(F7) � 3, where F7
is the Fano plane (it is instructive to compare this proof with the one given in [28]). Let

F7 = ({1,2, . . . ,7},{{1,2,4}, {1,3,6}, {1,5,7}, {2,3,5}, {3,4,7}, {2,6,7}, {4,5,6}}),
and let

Q F7 = (x2 − x4)(x1 + x3 − 2x6)(x1 + x5 − 2x7)(x2 + x3 − 2x5)(x3 − x4)

× (x2 + x6 − 2x7)(x4 + x5 − 2x6).

It is easy to see that if Q F7(c(1), . . . , c(7)) �= 0, then c is a proper coloring of F7 (though the
converse does not hold). Define f : {1,2, . . . ,7} → N

+ by f (1) = 3, f (3) = 1 and f (i) = 2 for every
i ∈ {1,2, . . . ,7}\ {1,3}. Note that

∑7
i=1 f (i) = 14 = e(F7)+ v(F7). It is easy to see that the only proper

(with respect to Q F7 and f ) coloring of F7 is the one defined by c(1) = 2, c(2) = c(3) = c(6) = 0, and
c(4) = c(5) = c(7) = 1. It follows by Theorem 4.1 that F7 is f -AT; in particular AT(F7) � 3.

Ramamurthi and West [28] have noted that it would be interesting to use the “extended Alon–Tarsi
polynomial method” to determine the choice number of an infinite family of hypergraphs for which
the choice number is not yet known. Using Theorem 1.2, it was recently proved in [32] that, if H is
a k-partite k-uniform hypergraph, then AT(H) � 1 +�m(H)	, where m(H) := max{ e(F )

v(F )
: ∅ �= F ⊆ H}.

We are hoping that Theorem 4.1 will prove useful in obtaining additional results of this nature.

T -list coloring. Let ∅ �= T ⊆ N be a set. A T -coloring of a graph G = (V , E) with k colors is a mapping
c : V → {0,1, . . . ,k − 1} such that |c(u) − c(v)| /∈ T whenever (u, v) ∈ E . Given a graph G = (V , E),
a set T as above and a family L = {L(u) ⊆ N: u ∈ V }, an L-list T -coloring of G is a T -coloring c of
G such that c(u) ∈ L(u) for every u ∈ V . A graph is said to be T -k-choosable if it admits an L-list
T -coloring whenever the family L contains only sets of size at least k. Note that when T = {0}, the
notion of T -coloring reduces to that of coloring and the notion of T -list coloring reduces to that of list
coloring. T -colorings and T -list colorings were extensively studied in [35,36]. In [8], a simple variation
of Theorem 1.4 was used to prove (among other things) that even cycles are T -2|T |-choosable for
every set T which contains 0. We will show how this result can be obtained using Theorem 2.3
instead. Let T ⊆ N be an arbitrary set of size �, where 0 ∈ T . Let V (C2n) = {1, . . . ,2n}. Associate a
variable xi with every 1 � i � 2n. Let

Q C2n,T (x1, . . . , x2n) =
∏

(i, j)∈E(C2n)
i< j

(xi − x j)
∏

t∈T \{0}
(xi − x j − t)(xi − x j + t).

It is evident that if for every family {Si ⊆ N: 1 � i � 2n}, each of size 2�, there exists a vector
(a1, . . . ,a2n) ∈ S1 × · · · × S2n such that Q C2n,T (a1, . . . ,a2n) �= 0, then C2n is T –2�-choosable. By The-
orem 1.2, it suffices to prove that the coefficient of

∏2n
i=1 x2�−1

i in the expansion of Q C2n,T does not

vanish. Note that for any set S := {s1, . . . , s2�−1} ⊆ N, the coefficient of
∏2n

i=1 x2�−1
i in the expansion

of

P S :=
∏

(i, j)∈E(C2n)
i< j

2�−1∏
k=1

(xi − x j − sk)
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is the same as that coefficient in the expansion of Q C2n,T . Using Theorem 2.3 with the polynomial P S ,
obtained by setting si = i for every 1 � i � 2� − 1, we conclude that it suffices to prove that

∑
(z1,...,z2n)∈NZ(P S )

(−1)
∑2n

i=1 zi

2n∏
i=1

(
2� − 1

zi

)
P S(z1, . . . , z2n) �= 0,

where it is understood that NZ(P S ) ⊆ {0,1, . . . ,2� − 1}2n . It is easy to see that NZ(P S ) = {(a, . . . ,a):
0 � a � 2� − 1}. Hence

∑
(z1,...,z2n)∈NZ(P S )

(−1)
∑2n

i=1 zi

2n∏
i=1

(
2� − 1

zi

)
P S(z1, . . . , z2n)

=
2�−1∑
a=1

(−1)2na
2n∏

i=1

(
2� − 1

a

)[−(2� − 1)!]2n

�= 0,

and the claim follows.

Alon–Tarsi choosability vs. regular choosability. As was noted in the Introduction, there are graphs
G for which AT(G) > ch(G). Moreover, AT(G) has certain distinct features, such as being sensitive to
the addition of parallel edges. It is therefore interesting to study the Alon–Tarsi number of a graph
as a separate graph invariant. For example, analogously to a classical result from [12], it is easy to
characterize the graphs G which satisfy AT(G) � 2 (these are exactly the graphs whose core is an even
cycle or a single vertex). On the other hand, it would be interesting to prove Alon–Tarsi strengthenings
of known results regarding choosability. Corollary 1.11 is one such example. In [18], an Alon–Tarsi
strengthening of Brooks’ Theorem was proved, that is, AT(G) � �(G) holds for any graph G which is
not an odd cycle or a complete graph. Since ch(G) � AT(G) � col(G) + 1 holds for every graph G (see
part 6. of Observation 1.12), it follows that 5 � max{AT(G): G is planar} � 6. It would be interesting
to decide which of the two bounds is the correct answer.

Scheim’s Lemma. Lemma 2.2 is also useful in its own right. For example it easily entails Ry-
ser’s formula (Theorem 2.1). Indeed, let A = (ai, j) be an n × n matrix. It is well known (see e.g.
Claim 1 in [5]) that the permanent of A is exactly the coefficient of

∏n
i=1 xi in the expansion of

P A(x1, . . . , xn) := ∏n
i=1(

∑n
j=1 ai, j x j). However, by Scheim’s Lemma, this coefficient is precisely

(
∂

∂x1

)(
∂

∂x2

)
· · ·

(
∂

∂xn

)
P A(x1, x2, . . . , xn)

=
1∑

x1=0

. . .

1∑
xn=0

(−1)1+x1

(
1

x1

)
· · · (−1)1+xn

(
1

xn

)
P A(x1, x2, . . . , xn)

= (−1)n
∑

S⊆{1,2,...,n}
(−1)|S|

n∏
i=1

(∑
j∈S

ai, j

)
.

It would be interesting to obtain additional corollaries of this lemma.
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