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Abstract

In 1943, Hadwiger conjectured that every graph with noKt minor is (t−1)-colorable
for every t ≥ 1. In the 1980s, Kostochka and Thomason independently proved that
every graph with no Kt minor has average degree O(t

√
log t) and hence is O(t

√
log t)-

colorable. Recently, Norin, Song and the author showed that every graph with no Kt

minor is O(t(log t)β)-colorable for every β > 1/4, making the first improvement on
the order of magnitude of the O(t

√
log t) bound. More recently, the author showed

that every graph with no Kt minor is O(t(log t)β)-colorable for every β > 0; more

specifically, they are t · 2O((log log t)2/3)-colorable. In combination with that work, we
show in this paper that every graph with no Kt minor is O(t(log log t)6)-colorable.

1 Introduction

All graphs in this paper are finite and simple. Given graphs H and G, we say that G has an
H minor if a graph isomorphic to H can be obtained from a subgraph of G by contracting
edges. We denote the complete graph on t vertices by Kt.

In 1943 Hadwiger made the following famous conjecture.

Conjecture 1.1 (Hadwiger’s conjecture [Had43]). For every integer t ≥ 1, every graph with
no Kt minor is (t− 1)-colorable.

Hadwiger’s conjecture is widely considered among the most important problems in graph
theory and has motivated numerous developments in graph coloring and graph minor theory.
For an overview of major progress on Hadwiger’s conjecture, we refer the reader to [NPS19],
and to the recent survey by Seymour [Sey16] for further background.

The following is a natural weakening of Hadwiger’s conjecture, which has been considered
by several researchers.
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Conjecture 1.2 (Linear Hadwiger’s conjecture [RS98, Kaw07, KM07]). There exists a con-
stant C > 0 such that for every integer t ≥ 1, every graph with no Kt minor is Ct-colorable.

For many decades, the best general bound on the number of colors needed to properly
color every graph with no Kt minor had been O(t

√
log t), a result obtained independently

by Kostochka [Kos82, Kos84] and Thomason [Tho84] in the 1980s. The results of [Kos82,
Kos84, Tho84] bound the “degeneracy” of graphs with no Kt minor. Recall that a graph G
is d-degenerate if every non-empty subgraph of G contains a vertex of degree at most d. A
standard inductive argument shows that every d-degenerate graph is (d+1)-colorable. Thus
the following bound on the degeneracy of graphs with no Kt minor gives a corresponding
bound on their chromatic number and even their list chromatic number.

Theorem 1.3 ([Kos82, Kos84, Tho84]). Every graph with no Kt minor is O(t
√
log t)-

degenerate.

Very recently, Norin, Song and the author [NPS19] improved this with the following
theorem.

Theorem 1.4 ([NPS19]). For every β > 1
4
, every graph with no Kt minor is O(t(log t)β)-

colorable.

In [NS19b], Norin and Song extended Theorem 1.4 to odd minors. In [NP20], Norin and
the author extended Theorem 1.4 to list coloring. Even more recently, the author in [Pos20]
further improved the bound in Theorem 1.4 as follows.

Theorem 1.5. Every graph with no Kt minor is t · 2O((log log t)2/3)-colorable. Hence for every
β > 0, every graph with no Kt minor is O(t(log t)β)-colorable.

The main result of this paper is the following.

Theorem 1.6. Every graph with no Kt minor is O(t(log log t)6)-colorable.

1.1 A better density increment theorem

The key to the improvement is a nearly optimal density increment theorem as follows.

Theorem 1.7. There exists a constant C = C1.7 > 0 such that the following holds. Let
G be a graph with d(G) ≥ C, and let D > 0 be a constant. Let s = D/d(G) and let
g1.7(s) := C(1 + log s)6. Then G contains at least one of the following:

(i) a minor J with d(J) ≥ D, or

(ii) a subgraph H with v(H) ≤ g1.7(s) · D2

d(G)
and d(H) ≥ d(G)

g1.7(s)
.

In [NS19a], Norin and Song had proved Theorem 1.7 with g(s) = sα for any α >
log(2)

log(3/2)
− 1 ≈ .7095. Using that result, they showed that every graph with no Kt mi-

nor is O(t(log t)0.354)-colorable. Shortly thereafter, in [Pos19], the author improved this to
g(s) = so(1). That result was then combined in [NPS19] with the earlier work to yield The-
orem 1.4. The function g(s) in [NPS19] was not explicitly found. It is not hard to derive

an explicit function of g(s) = 2O((log s)2/3+1) from Lemma 2.5 in [NPS19]. The main result of
this paper is the new bound listed above.
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1.2 Proof of Theorem 1.6

We need the following theorem proved in [Pos20].

Theorem 1.8 (Theorem 2.2 in [Pos20]). Every graph with no Kt minor has chromatic
number at most

O
(

t ·
(

g1.7

(

3.2 ·
√

log t
)

+ (log log t)2
))

.

Theorem 1.6 follows immediately from Theorems 1.7 and 1.8.

1.3 Outline of Paper

In Section 2, we introduce our more technical main theorem, Theorem 2.1, and derive The-
orem 1.7 from it. In Section 3, we outline the proof of Theorem 2.1 while reviewing some
preliminary definitions; namely, Theorem 2.1 follows from two other main theorems, Theo-
rems 3.6 and 3.7. In Section 4, we prove Theorem 3.6 which shows that a very unbalanced
bipartite graph of high minimum degree has either a small, dense subgraph or an (ℓ + 1)-
bounded minor with density almost ℓ times the original. In Section 5, we prove Theorem 3.7
which shows that a graph of high density has either a small, dense subgraph, or a very
unbalanced bipartite graph of high density, or a k-bounded minor with density almost k. As
mentioned above, we combine in Section 3 these results to prove Theorem 2.1 by choosing k
and ℓ appropriately. Finally in Section 6, we discuss impediments to improving the bound
in Theorem 1.6.

1.4 Notation

We use largely standard graph-theoretical notation. We denote by v(G) and e(G) the number
of vertices and edges of a graph G, respectively, and denote by d(G) = e(G)/v(G) the density
of a non-empty graph G. We use χ(G) to denote the chromatic number of G, and κ(G) to
denote the (vertex) connectivity of G. The degree of a vertex v in a graph G is denoted
by degG(v) or simply by deg(v) if there is no danger of confusion. We denote by G[X ]
the subgraph of G induced by a set X ⊆ V (G). For F ⊆ E(G), we denote by G/F the
minor of G obtained by contracting the edges of F . If A and B are disjoint subsets of
V (G), then we let G(A,B) denote the bipartite subgraph with V (G(A,B)) = A ∪ B and
E(G(A,B)) = {uv ∈ E(G) : u ∈ A, v ∈ B}.

2 Outline of Proof of Density Increment Theorem

Recall that our goal in this paper is to prove Theorem 1.7. In fact, we prove the following
more technical theorem which is an improvement over similar theorems in [NPS19, Pos19].

Theorem 2.1. Let k ≥ 100 be an integer. Let G be a graph with d = d(G) ≥ k2. Then G
contains at least one of the following:

(i) a subgraph H with v(H) ≤ 12 · k4 · d and d(H) ≥ d
24k6

, or

(ii) an m-bounded minor G′ with d(G′) ≥ m ·
(

1− 16
m

)

· d for some integer m ∈ [k
6
, k].

3



The proof of Theorem 2.1 occupies Sections 3, 4 and 5. Now we are ready to derive
Theorem 1.7 from Theorem 2.1. We restate Theorem 1.7 for convenience.

Theorem 1.7. There exists a constant C = C1.7 > 0 such that the following holds. Let
G be a graph with d(G) ≥ C, and let D > 0 be a constant. Let s = D/d(G) and let
g1.7(s) := C(1 + log s)6. Then G contains at least one of the following:

(i) a minor J with d(J) ≥ D, or

(ii) a subgraph H with v(H) ≤ g1.7(s) · D2

d(G)
and d(H) ≥ d(G)

g1.7(s)
.

Proof of Theorem 1.7. Let C1.7 = 29·5 = 245. We proceed by induction on s. If s ≤ 1, then
J = G is a minor of G with d(J) = d(G) ≥ s · d(G) = D and (i) holds as desired. So we may
assume that s > 1. Hence D ≥ d ≥ C1.7.

If g1.7(s) ≥ d, then let H = uv where uv ∈ E(G) and (ii) holds as desired since
D ≥ C1.7 ≥ 2. So we may assume that d ≥ g1.7(s).

Let k = 1
2
· (C1.7)

1

6 · (1 + log s) = 28 · (1 + log s). Since log s ≥ 0, we have that

k ≥ 28 = 256 > 100 > e3.

Since d ≥ g1.7(s) ≥ (2k)6, we find that

d ≥ k2.

We apply Theorem 2.1 to G with this k. Note that d ≥ k2 as needed.
First suppose that Theorem 2.1(i) holds. That is, there exists a subgraph H with v(H) ≤

12 · k3 · d and d(H) ≥ d2

24k5
. Note that

12 · k4 ≤ 24 · k6 ≤ (2k)6 ≤ C1.7(1 + log s)6 = g1.7(s).

Hence

v(H) ≤ 12 · k4 · d ≤ g1.7(s) · d ≤ g1.7(s) ·
D2

d(G)

since s ≥ 1 and furthermore

d(H) ≥ d

24k6
≥ d

g1.7(s)
.

But then (ii) holds as desired.
So we may assume that Theorem 2.1(ii) holds. That is, there exists an m-bounded minor

G′ of G with

d(G′) ≥ m ·
(

1− 16

m

)

· d

for some integer m ∈ [k
6
, k]. Let d′ = d(G′) and s′ = D/d′. Note that since k ≥ 6 · 32, we

have that m ≥ k
6
≥ 32. Hence

d′ ≥ m ·
(

1− 16

m

)

· d ≥ m

2
· d > d,
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and reciprocally

s′ ≤ s

m ·
(

1− 16
m

) ≤ 2s

m
< s.

Since s′ < s, we have by induction that at least one of (i) or (ii) holds for G′.
First suppose that (i) holds for G′. That is, there exists a minor J of G′ with d(J) ≥ D.

But then J is also a minor of G and (i) holds for G as desired.
So we may assume that (ii) holds for G′. That is, there exists a subgraph H ′ of G′ with

v(H ′) ≤ g1.7(s
′) · D

2

d′

and

d(H ′) ≥ d′

g1.7(s
′)
.

But then H ′ corresponds to a subgraph H of G with v(H) ≤ m · v(H ′) and e(H) ≥ e(H ′).
Now

v(H) ≤ ℓ · v(H ′) ≤ m · g1.7(s′) ·
D2

d′
≤

(

g1.7(s
′)

1− 16
m

)

· D
2

d
.

Similarly

d(H) =
e(H)

v(H)
≥ e(H ′)

ℓ · v(H ′)
=

d(H ′)

m
≥ d′

m · g1.7(s′)
≥

(

1− 16
m

g1.7(s
′)

)

· d.

Note that

m ≥ k

6
≥ 16(1 + log s).

Hence
1

1− 16
m

≤ 1 +
32

m
≤ 1 +

2

1 + log s
,

where the first inequality follows since 16
m

≤ 1
2
as m ≥ k

6
≥ 32. On the other hand,

log(ℓ) = log(k) ≥ log(e3) ≥ 3,

since k ≥ e3. Hence

log s′ ≤ log

(

2s

ℓ

)

≤ log(s) + 1− log(ℓ) ≤ log(s)− 2.

Thus
g1.7(s

′)

g1.7(s)
≤ (1 + log s′)6

(1 + log s)6
≤ 1 + log s′

1 + log s
≤ 1 + log(s)− 2

1 + log s
= 1− 2

1 + log s
.

We now have that

g1.7(s
′)

1− 16
m

≤
(

1− 2

1 + log s

)(

1 +
2

1 + log s

)

g1.7(s) ≤ g1.7(s).
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Hence

v(H) ≤ g1.7(s) ·
D2

d
,

and

d(H) ≥ d

g1.7(s)
,

and (ii) holds as desired.

3 Outline of the Proof of our Density Increment The-

orem

In this section we introduce additional definitions used in the proof of Theorem 2.1, and
outline its proof.

Definition 3.1. Let G be a graph, and let K, d ≥ 1, ε ∈ (0, 1) be real. We say that

• a vertex of G is (K, d)-small in G if degG(v) ≤ Kd and (K, d)-big otherwise;

• two vertices of G are (ε, d)-mates if they have at least εd common neighbors;

• G is (K, ε1, ε2, d)-unmated if every (K, d)-small vertex in G have strictly fewer than
ε1d (ε2, d)-mates.

Here is a useful proposition and corollary.

Proposition 3.2. For all K, d ≥ 1, ε1, ε2 ∈ (0, 1) and every graph G at least one of the
following holds:

(i) there exists a subgraph H of G with v(H) ≤ 3Kd and e(H) ≥ ε1 · ε2 · d2

2
, or

(ii) G is (K, ε1, ε2, d)-unmated.

Proof. Assume that G is not (K, ε1, ε2, d)-unmated. Then there exists v ∈ V (G) with at
least ε1d (ε2, d)-mates. Let v1, . . . , v⌈ε1d⌉ be distinct (ε2, d)-mates of v. Let H = G[N(v) ∪
{v, v1, . . . , v⌈ε1d⌉}]. Then v(H) ≤ 1 + Kd + ⌈ε1d⌉ ≤ 3Kd and e(H) ≥ ε1 · ε2 · d2

2
. Thus (i)

holds, as desired.

Corollary 3.3. Let K0, k, d ≥ 1, ε1, ε2 ∈ (0, 1), and let G′ be a k-bounded minor of a graph
G. Then at least one of the following holds:

(i) there exists a subgraph H of G with v(H) ≤ 3kK0d and e(H) ≥ ε1 · ε2 · d2

2
, or

(ii) G′ is (K0, ε1, ε2, d)-unmated.

Proof. Assume that G′ is not (K0, ε1, ε2, d)-unmated. By Proposition 3.2 applied to G′,
there exists a subgraph H ′ of G′ with v(H ′) ≤ 3K0d and e(H ′) ≥ ε1 · ε2 · d2

2
. Since H ′ is a

k-bounded minor of G, it corresponds to a subgraph H of G with v(H) ≤ k · v(H ′) ≤ 3kK0d
and e(H) ≥ e(H ′) ≥ ε1 · ε2 · d2

2
.
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Definition 3.4. Let F be a non-empty forest in a graph G. Let K, k, d, s ≥ 1 be real and
let ε2, c ∈ (0, 1). We say F is

• (K, d)-small if every vertex in V (F ) is (K, d)-small in G,

• (ε2, d)-mate-free if no two distinct vertices in any component of F are (ε2, d)-mates in
G, and

• (c, d)-clean if e(G)− e(G/F ) ≤ c · d · v(F ),

Definition 3.5. Let ℓ ≥ 1 be an integer. An ℓ-star is a star with ℓ leaves. An ℓ−-star is a
star with at least one but at most ℓ leaves. Let G be a graph and let (A,B) be a partition
of V (G). Let ℓ ≥ 1 be an integer. We say a forest F is an ℓ−-star-matching from B to A if
for every component T of F , then T is an ℓ−-star, the center of T is in B and the leaves of T
are in A. Similarly we define ℓ-star-matching, ℓ-claw-matching and ℓ−-claw-matching from
B to A as above if every component of F is an ℓ-star (resp. ℓ-claw and ℓ−-claw) instead of
an ℓ−-star.

The proof of Theorem 2.1 is based on the following two theorems.

Theorem 3.6. Let K, ℓ ≥ 2 be integers with K ≥ ℓ(ℓ+1), and let ε1,0 ∈
(

0, 1
ℓ

]

, ε2,0 ∈
(

0, 1
ℓ2

]

and d0 ≥ 1/ε2,0 be real. Let G = (A,B) be a bipartite graph such that |A| ≥ ℓ|B| and every
vertex in A has at least d0 neighbors in B. Then there exists at least one of the following:

(i) a subgraph H of G with v(H) ≤ 4Kd0 and e(H) ≥ ε1,0 · ε2,0 · d20/2.

(ii) a subgraph H of G with v(H) ≤ 4ℓKd0 and e(H) ≥ ε21,0 · d20/2.

(iii) an (ℓ+ 1)-bounded minor H of G with d(H) ≥ ℓ2

ℓ+1

(

1− 2ε1,0 − 2ℓε2,0 − ℓ
K

)

d0.

Theorem 3.7. Let K ≥ k ≥ 100 be integers with K ≥ 4 · k2. Let ℓ =
⌈

k
6

⌉

. Let ε1 ∈ (0, 1
6
)

and ε2 ∈ (0, 1
k
]. Let G be a graph with d = d(G) ≥ k

min{ε1,ε2}
. Then there exists at least one

of the following:

(i) a subgraph H of G with v(H) ≤ 3k2Kd and e(H) ≥ ε1 · ε2 · d2

2
, or

(ii) a bipartite subgraph H = (X, Y ) of G with |X| ≥ ℓ|Y | such that every vertex in X has
at least (1− 6ε1)d neighbors in Y , or

(iii) a k-bounded minor G′ of G with d(G′) ≥ k ·
(

1− 16
k

)

· d.

We prove Theorem 3.6 in Section 4 and Theorem 3.7 in Section 5. We finish this section
by deriving Theorem 2.1, which we restate for convenience, from Theorems 3.6 and 3.7.

Theorem 2.1. Let k ≥ 100 be an integer. Let G be a graph with d = d(G) ≥ k2. Then G
contains at least one of the following:

(i) a subgraph H with v(H) ≤ 12 · k4 · d and d(H) ≥ d
24k6

, or

(ii) an m-bounded minor G′ with d(G′) ≥ m ·
(

1− 16
m

)

· d for some integer m ∈ [k
6
, k].
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Proof of Theorem 2.1. We apply Theorem 3.7 to G with K = 4 · k2 and ε1 =
1
k
and ε2 =

1
k
.

First suppose Theorem 3.7(i) holds. That is, G contains a subgraph H with v(H) ≤ 3k2Kd =
12k4d and e(H) ≥ ε1 · ε2 · d2

2
= d2

2k
. But then d(H) ≥ d2

24k6
and (i) holds as desired.

Next suppose Theorem 3.7(iii) holds. That is, there exists a k-bounded minor G′ with
d(G′) ≥ k ·

(

1− 16
k

)

· d. But then (ii) holds for G with m = k.
So we may assume that Theorem 3.7(ii) holds, that is there exists a bipartite subgraph

H = (X, Y ) with |X| ≥ ℓ|Y | such that every vertex in X has at least (1 − 6ε1)d neighbors
in Y . We next apply Theorem 3.6to H with d0 = (1 − 6ε1)d, ε1,0 = 1

ℓ
and ε2,0 = 1

ℓ2
. Note

that d0 ≥ d/2 since k ≥ 12 and hence d0 ≥ k2 ≥ 1
ε2,0

as needed.

First suppose Theorem 3.6(i) holds for H . That is, there exists a subgraph H0 of H with

v(H0) ≤ 4K · d0 and e(H0) ≥ ε1,0 · ε2,0 · d2
0

2
. Note then that

v(H0) ≤ 16 · k2 · d ≤ 12 · k3 · d,
since k ≥ 2, and

e(H0) ≥ (1− 6ε1)
2 · d2

2ℓ3
≥ 12d2

k3
,

since ℓ ≤ k/5 and 6ε1 ≤ 1/2 as k ≥ 100. But then

d(H0) ≥
d2

k5
,

and (i) holds as desired.
Next suppose Theorem 3.6(ii) holds for H . That is, there exists a subgraph H0 of H with

v(H0) ≤ 4ℓK · d0 and e(H0) ≥ ε21,0
d2
0

2
. Note then that

v(H0) ≤ 16 · k3 · d ≤ 16 · k3 · d,
and

e(H0) ≥ (1− 6ε1)
2 · d2

2ℓ2
≥ 8d2

k3
,

since ℓ ≤ k/5 and 6ε1 ≤ 1/3 as k ≥ 100. But then

d(H0) ≥
d2

2k5
,

and (i) holds as desired.
So we may assume that Theorem 3.6(iii) holds. That is, H contains an (ℓ+ 1)-bounded

minor H0 with

d(H0) ≥
ℓ2

ℓ+ 1

(

1− 2ε1,0 − 2ℓε2,0 −
ℓ

K

)

d0

≥ (ℓ+ 1) ·
(

1− 2

ℓ+ 1

)(

1− 5

ℓ

)

· (1− 6ε1) · d

≥ (ℓ+ 1) ·
(

1− 8

ℓ+ 1

)

·
(

1− 6

k

)

· d,

≥ ℓ ·
(

1− 10

ℓ+ 1

)

· d,
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since ℓ = ⌈k
6
⌉. Hence (ii) holds with G′ = H0 and m = ℓ+ 1, as desired.

4 Dense Minors in Unbalanced Bipartite Graphs

In this section, we prove Theorem 3.6. The proof is nearly identical to that of the author
in Theorem 3.4 as presented in [Pos19]. To prove Theorem 3.6, we need the following three
lemmas, Lemmas 4.1, 4.2, and 4.3, from there. We include their proofs for completeness.

Lemma 4.1. Let ℓ ≥ 1, dB > dA ≥ 0 be integers. Let G be a graph and let (A,B) be a
partition of V (G) with |A| ≥ ℓ|B| and B is independent. If every vertex in A has at least dB
neighbors in B and at most dA neighbors in A, then G contains an ℓ-claw-matching F from
B to A such that every vertex in V (F ) ∩ A has at most dA neighbors in B \ V (F ).

Proof. Let F0 be an ℓ−-claw-matching from B to A such that |V (F0) ∩ A| is maximized.
Assume first that V (F0)∩A = A. Note that |V (F0)∩A| ≤ ℓ·|V (F0)∩B|. Then V (F0)∩B = B
because |V (F0) ∩ A| = |A| ≥ ℓ|B|. Hence V (F0) = V (G) and F = F0 is as desired. So we
may assume that A \ V (F0) 6= ∅.

Let u ∈ A\V (F0). By the maximality of F0, NG(u)∩B ⊆ V (F0)∩B. For each v ∈ V (G)
with v 6= u, we say that a path P from u to v is a (u, v)-F0-alternating path if

• P is a path in G(A,B), and

• every internal vertex of P has degree exactly one in F0 ∩ P (that is - informally - that
every other edge of P is in F0), and

• there does not exist a triangle of G containing an edge of F0 and an edge of P −E(F0).

Let Bu be the set of all vertices v ∈ B such that there exists a (u, v)-F0-alternating path.
Then Bu 6= ∅ as dB > dA.

Claim 4.1.1. For all v ∈ Bu, we have v ∈ V (F0) and the component of F0 containing v has
exactly ℓ edges.

Proof. Let v ∈ Bu. Then there exists a (u, v)-F0-alternating path P . Let F ′
0 = F0△P . Since

P is a path in G(A,B), we have E(F ′
0) ⊆ E(G(A,B)). It follows that v ∈ V (F0) and the

component of F0 containing v has exactly ℓ edges, else F ′
0 is an ℓ−-claw-matching from B to

A with |V (F ′
0) ∩A| > |V (F0) ∩ A|, contrary to the choice of F0.

Let F be the subgraph of F0 consisting of all the components T of F0 such that T contains
a vertex in Bu. By Claim 4.1.1, F is an ℓ-claw-matching from B to A. It remains to show
that every vertex in V (F ) ∩ A has at most dA neighbors in B \ V (F ). Let w ∈ V (F ) ∩ A
and let x be a neighbor of w in B \ V (F ). Then there exists v ∈ Bu such that vw ∈ E(F ).
By the definition of Bu, there exists a (u, v)-F0-alternating path P . Then w /∈ V (P ). Let
P ′ = P +vw+wx. Then P ′ is a path in G(A,B) from u to x such that every other edge is in
F . Note that P + vw is a (u, w)-F0-alternating path. By the maximality of F0, x ∈ V (F0).
By the choice of F , x /∈ Bu. Thus P ′ is not a (u, x)-F0-alternating path. It follows that x
is the center of a star T in F0 \ V (F ) such that wx is contained in a triangle wxz, where
z ∈ A ∩ V (T ). Since w has at most dA neighbors in A, we see that w has at most dA
neighbors in B \ V (F ), as desired.
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We now apply Lemma 4.1 to obtain a mate-free ℓ-claw-matching in a dense unbalanced
bipartite graph assuming that the graph itself is unmated.

Lemma 4.2. Let K ≥ ℓ ≥ 1 and d0 ≥ 1 be integers, and let ε1,0, ε2,0 ∈ (0, 1) be real. Let
G = (A,B) be a bipartite graph such that |A| ≥ ℓ|B| and every vertex in A has at least
d0 neighbors in B. If G is (K, ε1,0, ε2,0, d0)-unmated, then G contains an (ε2,0, d0)-mate-free
ℓ-claw-matching F from B to A such that every vertex in V (F ) ∩ A has at most ε1,0 · d0
neighbors in B \ V (F ).

Proof. Since K ≥ 1 and G is (K, ε1,0, ε2,0, d0)-unmated, we see that every vertex of A is
(K, d0)-small, and has at most ε1,0 · d0 many (ε2,0, d0)-mates in G. Let G′ be obtained from
G by adding all possible edges uv, where u, v ∈ A are (ε2,0, d0)-mates in G. Then in G′, every
vertex of A has at least dB = d0 neighbors in B and at most dA = ε1,0 · d0 < dB neighbors in
A. By Lemma 4.1, G′ contains an ℓ-claw-matching F from B to A such that every vertex in
V (F ) ∩A has at most dA neighbors in B \ V (F ). It remains to show that every component
T of F is (ε2,0, d0)-mate-free.

Let x, y ∈ V (T ) be distinct. We may assume that x ∈ A. Assume first that y ∈ B. Then
xy ∈ E(G), and so x and y are not (ε2,0, d0)-mates in G, because G is bipartite. So we may
assume that y ∈ A. Since T is an ℓ-claw in G′, we see that xy /∈ E(G′). By the choice of G′,
x and y are not (ε2,0, d0)-mates in G, as desired.

Next we clean the ℓ-claw-matching obtained from Lemma 4.2. To do this, we have to
remove components whose centers are big in G[V (F )] and then switch edges as necessary.

Lemma 4.3. Let K ≥ ℓ ≥ 1 be integers. Let ε′1,0, ε
′
2,0 ∈ (0, 1), and let d′0 ≥ 1

ε′
2,0

be an integer.

Let G = (A,B) be a bipartite graph such that |A| = ℓ|B| and every vertex in A has exactly
d′0 neighbors in B. Suppose G is (K, ε′1,0, ε

′
2,0, d

′
0)-unmated, and has an (ε′2,0, d

′
0)-mate-free

ℓ-claw-matching F1 from B to A with V (F1) = V (G). Then G contains at least one of the
following:

(i) a subgraph H of G with v(H) ≤ (ℓ+ 1)(K + 1)d′0 and e(H) ≥ (ε′1,0)
2 · (d′0)2/2, or

(ii) a (K, d′0)-small, (ε2,0, d
′
0)-mate-free, (ε′1,0 + ℓ · ε′2,0, d′0)-clean ℓ-claw-matching F from B

to A such that v(F ) ≥ v(G)
(

1− ℓ
K

)

.

Proof. Suppose not. Since G is bipartite and K ≥ 1, we see that every vertex in A is
(K, d′0)-small in G. Note that e(G) = d′0|A| = d′0ℓ · |B|. Hence the number of (K, d′0)-big

vertices in G is at most ℓ
K
|B| ≤ ℓ

K
· v(G)

ℓ+1
. Let F ∗ be the subgraph of F1 consisting of all the

components T of F1 such that each T contains only (K, d′0)-small vertices of G. Then F ∗ is
a (K, d′0)-small, (ε′2,0, d

′
0)-mate-free ℓ-claw-matching from B to A in G and

v(F ∗) ≥ v(G)−
(

ℓ

K(ℓ + 1)
· v(G)

)

(ℓ+ 1) = v(G)

(

1− ℓ

K

)

.

Given distinct components T1, T2 of an ℓ-claw-matching F from B to A and edges u1v1 ∈
E(T1) and u2v2 ∈ E(T2) with v1, v2 ∈ B, we say that {u1v1, u2v2} is a bad pair of F if
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E(G(V (T1), V (T2)) = {u1v2, u2v1}. We say the bad pair is mated if there exists w1 ∈
T1, w2 ∈ T2 that are (ε′2,0, d

′
0)-mates and unmated otherwise.

Now let F be an (ε′2,0, d
′
0)-mate-free ℓ-claw-matching from B to A with V (F ) = V (F ∗)

such that F has the minimum number of bad pairs. Then F is (K, d′0)-small.
We now upper bound how many unmated bad pairs of F containing a given edge of F .

Claim 4.3.1. If uv ∈ E(F ), then uv is in at most ε′1,0d
′
0 unmated bad pairs of F .

Proof. Suppose not. Let b = ⌈ε′1,0d′0⌉. Thus there exist b unmated bad pairs of F , {(uv, uivi)}bi=1,
where u1v1 ∈ E(T1), u2v2 ∈ E(T2), . . . , ubvb ∈ E(Tb), and T1, T2, . . . , Tb are distinct compo-
nents of F \ V (T ). We may further assume without loss of generality that v, v1, . . . , vb ∈ B.
For each such i, let T ′

i be obtained from T by deleting u and adding the edge vui, and let
T ′′
i be obtained from Ti by deleting ui and adding the edge viu. Let F ′

i be obtained from
F \ V (T ∪ Ti) by adding T ′

i and T ′′
i .

Since {uv, uivi} is an unmated bad pair of F for each i ∈ [b], we have that F ′
i is an

(ε′2,0, d
′
0)-mate-free ℓ-claw-matching from A to B with V (F ′

i ) = V (F ) = V (F ∗) for all i ∈ [b].
Let X be the union of the vertex sets of all components of F \ V (T ) containing a neighbor
of u or v. Then |X| ≤ (ℓ+1)(K +1)d′0. Let H = G[X ]. It follows from the choice of F that
for every i ∈ [b] there are at least b bad pairs of F ′

i , which are not bad pairs of F . Each such
pair must contain one of the edges vui and viu. It follows that degH(vi)+degH(ui) ≥ b, and
consequently e(H) ≥ b2/2 ≥ (ε′1,0)

2 · (d′0)2/2. Hence (i) holds, a contradiction.

Let T be a component of F . Since G is (K, ε′1,0, ε
′
2,0, d

′
0)-unmated, every vertex in V (F )

has at most ε′1,0d
′
0 (ε′2,0, d

′
0)-mates in G. Hence there are most (ℓ+ 1)ε′1,0d

′
0 mated bad pairs

of F containing an edge of T . Yet by Claim 4.3.1, it follows that there are at most ℓε′1,0d
′
0

unmated bad pairs of F containing an edge of T . Combining these facts, we find that there
are at most 2(ℓ+ 1)ε′1,0d

′
0 bad pairs of F containing an edge of T .

It follows that there are at most 2(ℓ + 1)ε′1,0d
′
0 · v(F )

ℓ+1
· 1
2
= ε′1,0d

′
0 · v(F ) bad pairs of F

in total. Note that every pair of edges of G that become parallel in G/E(F ) corresponds
to a bad pair or a common neighbor of two leaves of some component in F . Note also that
e(F ) ≤ ℓ

ℓ+1
· v(F ). Since F is (ε′2,0, d

′
0)-mate-free, it follows that

e(G)− e(G/E(F )) ≤ e(F ) +

(

ℓ

2

)

ε′2,0d
′
0 ·

v(F )

ℓ + 1
+ ε′1,0d

′
0 · v(F )

≤ ℓ

ℓ+ 1
· v(F ) +

ℓ

2
· ε′2,0d′0 · v(F ) + ε′1,0d

′
0 · v(F )

≤ (ℓ · ε′2,0 + ε′1,0)d
′
0 · v(F ),

since ℓ ≥ 1, ε′2,0d
′
0 ≥ 1 and e(F ) ≤ v(F ). Hence F is (ε′1,0 + ℓ · ε′2,0, d′0)-clean and (ii) holds,

a contradiction.

We finish this section by proving Theorem 3.6, which we restate below for convenience.
The bound in outcome (ii) has been improved over the previous version in [Pos19] namely
by a factor of 2 to be nearly optimal. This is accomplished by adding the assumption that
K ≥ ℓ(ℓ+ 1).
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Theorem 3.6. Let K, ℓ ≥ 2 be integers with K ≥ ℓ(ℓ+1), and let ε1,0 ∈
(

0, 1
ℓ

]

, ε2,0 ∈
(

0, 1
ℓ2

]

and d0 ≥ 1/ε2,0 be real. Let G = (A,B) be a bipartite graph such that |A| ≥ ℓ|B| and every
vertex in A has at least d0 neighbors in B. Then there exists at least one of the following:

(i) a subgraph H of G with v(H) ≤ 4Kd0 and e(H) ≥ ε1,0 · ε2,0 · d20/2.

(ii) a subgraph H of G with v(H) ≤ 4ℓKd0 and e(H) ≥ ε21,0 · d20/2.

(iii) an (ℓ+ 1)-bounded minor H of G with d(H) ≥ ℓ2

ℓ+1

(

1− 2ε1,0 − 2ℓε2,0 − ℓ
K

)

d0.

Proof of Theorem 3.6. Note we may assume without loss of generality that every vertex in
A has exactly d0 neighbors in B. Assume first that G is not (K, ε1,0, ε2,0, d0)-unmated.
By Proposition 3.2(i), there exists a subgraph H of G with v(H) ≤ 3Kd0 and e(H) ≥
ε1,0 · ε2,0 · d20/2. Hence (i) holds as desired.

Assume next that G is (K, ε1,0, ε2,0, d0)-unmated. By Lemma 4.2, G contains an (ε2,0, d0)-
mate-free ℓ-claw-matching F1 from B to A such that every vertex in V (F1) ∩A has at most

ε1,0d0 neighbors in B \V (F1). Let d
′
0 = ⌈d0(1− ε1,0)⌉ and for each i ∈ {1, 2}, let ε′i,0 = εi,0d0

d′
0

.

Then for each i ∈ {1, 2}, we have that ε′i,0 ∈ (0, 1) and d′0ε
′
i,0 = d0εi,0 ≥ 1. Let G′ be obtained

from G with V (G′) = V (F1) and E(F1) ⊆ E(G′) such that every vertex in V (F1) ∩ A has
exactly d′0 neighbors in V (F1) ∩ B in G′. Since G is (K, ε1,0, ε2,0, d0)-unmated, we see that
G′ is (K, ε′1,0, ε

′
2,0, d

′
0)-unmated. Furthermore, F1 is an (ε′2,0, d

′
0)-mate-free ℓ-claw-matching in

G′ from V (F1) ∩ B to V (F1) ∩ A where V (F1) = V (G′). By Lemma 4.3 applied to G′ with
parameters K, ℓ, ε′1,0, ε

′
2,0, d

′
0, at least one of Lemma 4.3(i) or (ii) holds for G′.

First suppose that Lemma 4.3(i) holds for G′. That is, G′ has a subgraph H with
v(H) ≤ (ℓ + 1)(K + 1)d′0 and e(H) ≥ ε′1,0 · ε′2,0 · (d′0)2/2. Since K ≥ ℓ ≥ 1, we find that
v(H) ≤ 4ℓKd0. Since d

′
0ε

′
i,0 = d0εi,0 for each i ∈ {1, 2}, we find that e(H) ≤ ε1,0 ·ε2,0 ·(d0)2/2.

But then (ii) holds for G as desired.
So we may assume that Lemma 4.3(ii) holds for G′. That is, there exists a (K, d1)-small,

(ε′2,0, d
′
0)-mate-free (ε′1,0 + ℓ · ε′2,0, d′0)-clean ℓ-claw-matching F from V (F1) ∩B to V (F1) ∩A

in G′ such that v(F ) ≥ v(G′)
(

1− ℓ
K

)

. Now let H = (G′/E(F )) \ (A \ V (F )). Note that

|A \ V (F )| = ℓ|B \ V (F )| and hence |B \ V (F )| ≤ v(G′)
K

. But then H is an (ℓ+ 1)-bounded
minor of G with

v(H) ≤
(

1

ℓ+ 1
+

1

K

)

· v(G′) ≤ 1

ℓ
· v(G′),

because K ≥ ℓ(ℓ+ 1). Since F is (ε′1,0 + ℓ · ε′2,0, d′0)-clean and

e(G′((A ∩ V (G′)) \ V (F ), B)) ≤ d′0 · |(A ∩ V (G′)) \ V (F )| ≤ d′0 ·
ℓ

K
· v(G′),
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we have that

e(H) ≥ e(G′)− (ε′1,0 + ℓ · ε′2,0)d′0 · v(F )− d0 ·
ℓ

K
· v(G′)

≥ d′0 ·
ℓ

ℓ+ 1
· v(G′)− (ε′1,0 + ℓ · ε′2,0)d′0 · v(G′)− d0

ℓ

K
· v(G′)

≥
(

d0 · (1− ε1,0) ·
ℓ

ℓ+ 1
− (ε1,0 + ℓ · ε2,0) · d0 −

ℓ

K
· d0

)

· v(G′)

≥ ℓ

ℓ + 1
·
(

1− 2ε1,0 − 2ℓε2,0 −
ℓ

K

)

d0 · v(G′),

where we use the fact that ℓ ≥ 1. Hence

d(H) =
e(H)

v(H)
≥ ℓ2

ℓ+ 1
·
(

1− 2ε1,0 − 2ℓε2,0 −
ℓ

K

)

· d0,

and (iii) holds, as desired.

5 Dense Minors in General Graphs

In this section we prove Theorem 3.7, which we restate for convenience.

Theorem 3.7. Let K ≥ k ≥ 100 be integers with K ≥ 4 · k2. Let ℓ =
⌈

k
6

⌉

. Let ε1 ∈ (0, 1
6
)

and ε2 ∈ (0, 1
k
]. Let G be a graph with d = d(G) ≥ k

min{ε1,ε2}
. Then there exists at least one

of the following:

(i) a subgraph H of G with v(H) ≤ 3k2Kd and e(H) ≥ ε1 · ε2 · d2

2
, or

(ii) a bipartite subgraph H = (X, Y ) of G with |X| ≥ ℓ|Y | such that every vertex in X has
at least (1− 6ε1)d neighbors in Y , or

(iii) a k-bounded minor G′ of G with d(G′) ≥ k ·
(

1− 16
k

)

· d.
Proof of Theorem 3.7. Suppose not. Let G be a counterexample with v(G) minimized. Thus
we may assume that d(H) < d(G) for every proper subgraph H of G, and hence δ(G) ≥ d.
Since (i) does not hold for G, we have by Proposition 3.2 with K0 = K that G is (K, ε1, ε2, d)-
unmated.

Let A denote the set of all (K, d)-small vertices of G, and let B = V (G) \A be the set of
(K, d)-big vertices. Then K · d · |B| ≤ 2e(G) = 2d · v(G). Hence |B| ≤ 2

K
· v(G) ≤ 1

2·k2
· v(G)

since K ≥ 4k2. Then

|A| ≥
(

1− 1

2k

)

· v(G) ≥ 4ℓ

K
· v(G) ≥ 2ℓ|B|,

as k ≥ 27. Since G is (K, ε1, ε2, d)-unmated, we see that every vertex in A has fewer than
ε1d (ε2, d)-mates in G.

Let c = 4ε2. Let F be a (K, d)-small, (c, d)-clean, star forest F where every component
of F has size exactly k, and subject to that, v(F ) is maximized. Note that V (F ) ⊆ A as F
is (K, d)-small.
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Claim 5.0.1. Every k-bounded minor of G is (Kk, ε1, ε2, d)-unmated.

Proof. Let G′ be a k-bounded minor of G. By Corollary 3.3 applied to G and G′ with K0 =
Kk, it follows that either G has a subgraph H with v(H) ≤ 3k2Kd and e(H) ≥ k · ε1 · ε2 · d

2

2
,

or G′ is (Kk, ε1, ε2, d)-unmated. In the first case, (i) holds, a contradiction. Hence G′ is
(Kk, ε1, ε2, d)-unmated.

Claim 5.0.2. If F0 is a star forest in G and v ∈ V (G) \ V (F0) has at least 2ε1d neighbors
in A \ V (F0), then there exists a k-star T in A \ V (F0) with center v such that

e(G/E(F0))− e(G/(E(F0) ∪ E(T ))) ≤ 2k · ε2 · d.

Proof. Suppose not. Let S be a star in A \ V (F0) with center v such that

e(G/E(F0))− e(G/(E(F0) ∪ E(S))) ≤ 2v(S) · ε2 · d,

and subject to that, v(S) is maximized. Since the claim does not hold, we have that v(S) < k.
Note that S exists since S = {v} satisfies the conditions above. Let G′ = G/(E(F0)∪E(S)).
Note that G′ is a k-bounded minor of G. Hence by Claim 5.0.1 G is (Kk, ε1, ε2, d)-unmated.

Let vS be the vertex of G′ corresponding to S. Since S ⊆ A and every vertex in A is
(K, d)-small, it follows that degG′(vS) ≤ kKd and hence vS is (Kk, d)-small in G′. Since G is
(Kk, ε1, ε2, d)-unmated, we have that vS has at most ε1 · d (ε2, d)-mates in G′. Since d ≥ k

ε1
,

we have that ε1d ≥ k > v(S). Since v has at least 2ε1d neighbors in A \ V (F0), we find that
there exists a neighbor u of v in A \ (V (F0) ∪ V (S)) such that u is not a (ε2, d)-mate of vS
in G′.

Let S ′ = S + uv. Note that S ′ is a star with center v and v(S ′) > v(S). Since u is not a
(ε2, d)-mate of vS in G′, we have that

e(G/(E(F0) ∪ E(S)))− e(G/(E(F0) ∪ E(S ′))) ≤ 1 + ε2 · d ≤ 2ε2 · d,

since ε2d ≥ 1. But then

e(G/E(F0))− e(G/(E(F0) ∪ E(S ′))) ≤ 2v(S) · ε2 · d+ 2ε2 · d = 2v(S ′) · ε2 · d,

contradicting the maximality of S.

Let G0 = G/E(F ). Then G0 is a k-bounded minor of G. Let A′ = A \ V (F ).

Claim 5.0.3. If T is a component of F , then there exists at most one vertex of T with at
least 3ε1d neighbors in A′.

Proof. Suppose not. That is, there exists distinct u1, u2 ∈ V (T ) such that |NG(ui) ∩ A′| ≥
3ε1d. Let F0 = F \ V (T ). Note that since E(F0) ⊆ E(F ), we have that

e(G/e(F0)) ≥ e(G/E(F )).

Since F is (c, d)-clean, we find that

e(G)− e(G/E(F0)) ≤ e(G)− e(G/E(F )) ≤ c · d · v(F ).
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Since u1 has at least 3ε1d neighbors in A′, we have by Claim 5.0.2 that there exists a k-star
T1 in A \ V (F0) with center u1 such that

e(G/E(F0))− e(G/(E(F0) ∪ E(T1))) ≤ 2k · ε2 · d.

Let F1 = F0 + T1. As u2 has at least 3ε1d neighbors in A′, we find that u2 has at least
2ε1d neighbors in A′ \ V (T1) since ε1d ≥ 1. Hence by Claim 5.0.2 that there exists a k-star
T2 in A \ V (F1) with center u2 such that

e(G/E(F1))− e(G/(E(F1) ∪ E(T2))) ≤ 2k · ε2 · d.

Let F2 = F1 + T2. Note that v(F2) = v(F0) + 2k = v(F ) + k. Yet

e(G/E(F ))− e(G/E(F2)) ≤ 4k · ε2 · d = k · c · d,

and hence F2 is also (c, d)-clean. But F2 is a star forest where every component has size
exactly k and F2 is also (K, d)-small, contradicting the maximality of F .

Claim 5.0.4. If v ∈ A′, then v has at most 2ε1d neighbors in A′ in G.

Proof. Suppose not. Hence v has at least 2ε1d neighbors in A′ in G. By Claim 5.0.2 that
there exists a k-star T in A \ V (F0) with center v such that

e(G/E(F ))− e(G/(E(F ) ∪ E(T ))) ≤ 2k · ε2 · d ≤ k · c · d.

Let F ′ = F+T . Then F ′ is a (K, d)-small star forest where every component has size exactly
k. Moreover, v(F ′) = v(F ) + k. Since F is (c, d)-clean, we find that

e(G)− e(G/E(F )) ≤ c · d · v(F ).

Hence
e(G)− e(G/E(F ′)) ≤ c · d · v(F ) + k · c · d = v(F ′) · c · d,

and so F ′ is (c, d)-clean, contradicting the maximality of F .

Let C be the set of vertices in F with at least 3kε1d neighbors in A′. By Claim 5.0.3,
every component of F has at most one vertex in C. Hence |C| ≤ 1

k
· v(G).

Claim 5.0.5. |A′| ≤ v(G)
2
.

Proof. Suppose not. Let A1 = {v ∈ A′, |N(v)∩ (B ∪C)| ≥ (1− 6ε1)d} and let A2 = A′ \A1.
First suppose that |A1| ≥

(

1
3
+ 2

k

)

· v(G). Since |B ∪ C| ≤ 2
k
· v(G), we have that |A| ≥

(

k
6
+ 1

)

· v(G) ≥ ℓ|B| and hence (ii) holds, a contradiction.
So we may assume that |A1| ≤

(

1
3
+ 2

k

)

v(G). By Claim 5.0.4, every vertex in A′ has at
most 3ε1d neighbors in A′. Since δ(G) ≥ d, it follows that every vertex in A2 has at least
3ε1d neighbors in V (F ) \ C. Hence

e(G(A2, V (F ) \ C)) ≥ 3ε1d · |A2|.
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Yet by definition of C, we find that

e(G(A2, V (F ) \ C)) ≤ 3ε1d · |C|.

Hence |A2| ≤ |C| ≤ 1
k
· v(G). Since k ≥ 18, we find that

|A′| = |A1|+ |A2| ≤
(

1

3
+

3

k

)

· v(G) ≤ v(G)

2
.

Note that by Claim 5.0.5, we have that

|A′ ∪B ∪ C| ≤ 3

4
· v(G),

since k ≥ 8. Hence F is nonempty. In addition, we find that G[A′ ∪ B ∪ C] is a proper
subgraph of G. So by the minimality of G, we have that

e(G[A′ ∪B ∪ C]) ≤ d · |A′ ∪B ∪ C| ≤
(

2

k
v(G) + |A′|

)

d ≤ 3

4
· d · v(G),

since k ≥ 8. Moreover by Claim 5.0.4, we have that

e(G(A′, V (F ) \ C)) ≤ 3ε1d · |C| ≤ 3ε1
k

· d · v(G).

Let a′ = |A′|
v(G)

. Hence

e(G)− e(G \ A′) ≤
(

2 + 3ε1
k

+ a′
)

· d · v(G).

Let G′ = G0 \ A′. Since F is (c, d)-clean, we have that

e(G)− e(G0) ≤ c · d · v(F ) ≤ 2ε2 · d · v(G).

Hence
e(G \ A′)− e(G′) ≤ 2ε2 · d · v(G),

and so

e(G)− e(G′) ≤
(

2 + 3ε1
k

+ 2ε2 + a′
)

· d · v(G).

Yet

v(G′) = |B|+ |C| ≤ 1

k2
· v(G) +

v(G)− |A′|
k

=
v(G)

k

(

k + 1

k
− a′

)

.

Thus

d(G′) ≥ e(G)−
(

2+3ε1
k

+ 2ε2 + a′
)

· d · v(G)
v(G)
k

(

k+1
k

− a′
)

= k · d · 1−
(

2+3ε1
k

+ 2ε2
)

− a′

k+1
k

− a′
.
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Let c1 = 1− (2+3ε1
k

) and c2 =
k+1
k
. Since ε1 ≤ 1 and k ≥ 10, we find that c2 > c1 >

1
2
> 0

and hence the function c1−a′

c2−a′
is decreasing in a′ for a′ ∈ [0, c1). Since a′ ≤ 1

2
, it follows that

d(G′) ≥ k · d · 1−
(

2+3ε1
k

+ 2ε2
)

− 1
2

k+1
k

− 1
2

= k · d · 1− 2
(

2+3ε1
k

+ 2ε2
)

k+2
k

= k · d ·
(

1− 2

(

2 + 3ε1
k

+ 2ε2

))

·
(

1− 2

k + 2

)

≤ k · d ·
(

1− 16

k

)

,

since ε1 ≤ 1 and ε2 ≤ 1
k
. But now (iii) holds, a contradiction.

6 Concluding Remarks

The main obstacle now to improving the bound in Theorem 1.6 using this approach is remains
improving the function g(s) = O((1 + log s)6) in Theorem 1.7. The author has now made
various attempts to optimize this value, successively improving the constant until this new
value of 6. We note that the bipartite case only requires an exponent of 5. Further bottlenecks
beyond improving g(s) exist for certain better bounds. For a bound of O(t(log log t)2), there
is a bottleneck in Theorem 1.8 caused by a division into two cases, the inseparable and
separable cases. This bottleneck can be overcome by a more technical handling of the two
cases together. Beyond that point, Hadwiger’s conjecture seems to become quite difficult
as there would then be two new distinct bottlenecks: the O(t log log t) factor from the use
of recursion in the separable case; and the O(t log log t) bound for the chromatic number of
small graphs with no Kt minor which is used in the inseparable case.
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