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For each integer # > 7, we exhibit graphs of chromatic number z that contain
no subdivided K, as a subgraph. However, we show that a graph with chromatic
number 4 contains as a subgraph a subdivided X, in which each triangle of the K,
is subdivided to form an odd cycle.

1. INTRODUCTION

In this paper, unless otherwise stated, we follow the notation of [4]. A
subdivided K, is a graph obtained by replacing edges {x, ¥} of the complete
graph K, with x — y paths. We refer to the vertices where such paths meet
as nodes of the subdivided K, . A node has degree n — 1.

‘The Hajos conjecture asserts that a graph with chromatic number # has a
subdivided K, as a subgraph.

For n =1 and 2 this is trivial, and for n = 3, it is clear, because a 3-
chromatic graph contains an odd cycle, which is a subdivided K, . The case
n = 4 of the conjecture was proved by Dirac [1].

2. COUNTEREXAMPLES

Let 2(G), the subdivision number of a graph G, denote the largest integer n
such that G contains a subdividison of K, as a subgraph. The Hajds conjec-
ture asserts that 2(G) = x(G). Let I(G), the line graph of G, be the graph
with vertices V(I(G)) = E(G), where e, ¢ € E(G) are adjacent in L(G)
whenever ¢ and ¢ are incident at a vertex of G.

Let ,G denote the multigraph obtained by replacing each edge {x, y} of G
with & edges joining x and y.

We first consider the case where G i§ an odd cycle.

PropPOSITION 1. Forallk > 1, if n = 2, then

2(LGConsn) =2k + 1.
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Proof. Ameong any 2k -+ 2 vertices of L{;Cy,q), at least two will be
separated from each other by a cutset of 2k vertices. Hence, no subdivision of
Koo 1s contained in L(;,Capar)-

On the other hand, the 2n edges of ;C,,,, incident with a given vertex
form a clique K, in the line graph. This K,, 1s contained in subdivided X, ;s
in L{,Cs,.y). This determines the subdivision number.

ProPOSITION 2. For all positive k and n,
X(L(Cans1)) = 2k + [k[n.]

Proof. Observe that L(C3, 4) has (2n -~ 1)k vertices, and at most 7 lie in
a given color class. Hence, y(L(,C,,.1) = @n + Dk/n. While equality may
be verified, we shall not need it as we show below that L(,C,, ) is a counter-
example to Hajés’ conjecture.

THEOREM 1. For any integer n = 2, if G = L(3,Conyy), then

2n
1nf 2(G)x(G) = T
Proof. Immediate, from Propositions 1 and 2.
A class 2 graph G is defined to be a graph having line-chromatic number
¥ (Gy = 4(G) + 1. Such a graph is critical if the removal of any edge
decreases y'(G). Trivially, ¥'(G) == yv(L(G)).

Conjecture. For any critical class 2 graph G, there is a natural number &
such that if & > N then

2(LGGY) < (LGO)).

In other words, we conjecture that L(,G) is a counterexample to Hajés’
conjecture. The Petersen graph G is a noneritical class 2 graph for which such
an integer N does not exist. Jakobsen [5] surveys some recent results concern-
ing multigraphs G with y'(G) significantly larger than 4(G). The graphs
»G discussed above are such multigraphs.

More counterexamples may be formed as follows: if v, , v, are nonadjacent
vertices in L(,Cs), then Z(L(,Cs) — {vy , v2}) = 2k and y(L(,Cy) — {01, va}) =
{(5k — 1)/2]. Thus, Hajés’ conjecture fails for L(;Cs) — {v, , v5}, Which has
chromatic number 7, and subdivision number 6. If the Hajos conjecture
fails for G, then since X(G + v) = 2(G) + 1 and X(G +v) = x(G) + 1,
the conjecture fails for G 4 v. Therefore, for any # == 7, there is a graph of
chromatic number n for which Hajés’ conjecture is false. The conjecture
remains unsettled for n = 5 and 6.
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Hajos’ construction (see [3]), in which two n-critical graphs G and H
{(n-critical in the sense that the removal of an edge lowers the chromatic
number to n — 1) are combined to form a single larger n-critical graph, is
useful for creating even more counterexamples to his conjecture. Define
an p-critical graph to be n-minimal if it has no proper subgraph that is a sub-
division of an n-critical graph. Hajés’ conjecture is that K, is the only n-
minimal graph. Let G and H be two r-critical graph, where Gy, G, ,..., Gy
are the n-minimal graphs, subdivisions of which are subgraphs of G, and
where H, , H, ..., H; are the n-minimal graphs, subdivisions of which are
subgraphs of H. Then G;, G, ,..., Gy, Hy,..., H; are precisely the graphs
which appear, subdivided, as subgraphs of the n-critical graph obtained
from G and H when they are combined by Hajés’ construction. It follows
that for any finite set of n-minimal graphs, by repeated application of Hajos’
construction, one can construct infinitely many z-critical graphs containing
as subgraphs subdivisions of these, and no other, n-minimal graphs.

In [9], Tutte surveys some of the major problems on the chromatic number,
including Hajés® conjecture, and he discusses their interrelation. We know
of no counterexamples to the weaker conjecture of Hadwiger [2].

3. A STRONGER RESULT FOR n = 4

The case n = 3 of Hajos’ conjecture can be strengthened to assert that the
subdivided K, must be an odd cycle. This is the well-known characterization
of graphs G with chromatic number y(G) = 3. Thus, it is natural to ask if a
similar strengthening of the conjecture is valid for any n > 4.

Toft [8] has conjectured that any 4-chromatic graph has a subdivided K,
in which each of the six edges of the K is subdivided to form a path of odd
length. This is stronger than our theorem below. He asks other similar
questions in [8], also. Zeidl [10] showed that any vertex of a 4-chromatic
graph lies in some subdivided K, that contains an odd circuit. Indeed, Ore [6]
showed that to merely find a subdivided K, in a graph G one only requires
that 3(G) = 3, and so it is not surprising that the stronger hypothesis y(G) > 4
gives stronger conclusions.

An oddly subdivided K, is a subdivided K, in which each triangle of the
K, is subdivided to form an odd cycle.

It is easy to verify that if three of the four triangles in a K, are subdivided
to form odd cycles, then the fourth triangle is also subdivided to form an
odd cycle.

THEOREM 2. A graph with chromatic number 4 contains an oddly subdivided
K4 -
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Proof. We assume that the graph G is 4-critical, i.e., y{{G — €) =3 for
any edge e in the 4-chromatic graph G. Also, we assume that G is a 4-critical
counterexample to the theorem with the minimum possible number of poinds.

It is known (see, e.g., [4], p. 141) that a 4-critical graph G must be 2-con-
nected. If there are two vertices, x and y, whose removal disconnects G,
then they are not adjacent, and G — {x, y} has two components G, and G,
such that x and y have the same color in any 3-coloring of G — G, , and x and
v have different colors in a 3-coloring of G — G, . Let G’ denote the graph
obtained by adding the edge {x, y} to G — G, . Thus, y(G") = 4, and since
we have assumed that G is the smallest counterexample, G' has an oddly
subdivided K, . Hence, G + {x, y} has this same oddly subdivided K, as a
subgraph in (G — G,) + {x, ¥}. We only need to consider the case where the
edge {x, y} € E(GV\E(G) is part of this subdivided K, . Since both vertices of
attachment (x and y) of G; to G — G, have the same color in a 3-coloring of
G — G, , we see that if G, is bipartite, then y(G) = 3. Hence, G, has an odd
cycle C. By a generalization of Menger’s Theorem, there are disjoint paths
P, and Py, from a, b € V(C) to x and to y, respectively. The edge {x, y} of the
oddly subdivided X, may be replaced by an odd x — y path in G — G, con-
taining P, , P, , and the appropriate a — b path in C. Hence, if G is not
3-connected, then G contains an oddly subdivided X .

Throughout the remainder of the proof, which we divide into three cases,
we assume that G is 3-connected.

Case I. Every vertex of G lies in two or more triangles, and there is a pair
of triangles that share an edge.

Suppose that G contains a wheel as a subgraph. If the wheel has the form
C, + x, n odd, then G = C, - x, since (C, -+~ x) = 4 and & is 4-critical.
But then G contains an oddly subdivided K, . If the wheel has the form C, + x,
n even, then we claim that G is not 4-critical. Since G is 4-critical, (G — ¢) =
3, for any edge e € C,, . In this 3-coloring of G — ¢, the colors assigned to
C, — e alternate between the two colors not used on x. Hence the ends of ¢
have different colors, and so y(G) = 3, a contradiction that shows that # is
not even. Toft [7] credits this observation that » cannot be even to M.
Simonovits.

Hence no subgraph of G is a wheel. Let P be a maximum path such that
each vertex of P is adjacent to a vertex x of G. Denote the vertices of P by
Vo s V4 seees Y - Since two triangles of G share an edge and since P is maximum,
n>=2.

By the condition of Case 1, y, lies in a second triangle {v, w, y,}, where
possibly v = y; . Since G has no wheel,

{1), W} N {J’2 serey yn} == @a

and since P is maximum, x ¢ {v, w}.
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If y, ¢ {v, w}, then we have triangles {v, w, yo}, {x, Yo , ¥}, and {x, ¥, , ya}
for distinct v, w, X, ¥, 1, ¥s . A complete subgraph in a 4-critical graph
cannot be a cutset (see e.g., [2], p. 141, Corollary 12.24), and so there is a
{v, w} — y, path in G — {x, y,, ¥.}. Such a path can be extended to form an
odd y, — y, path P'in G — {x, y,}. The union of the path P’ and the triangles
{x, ¥o, y1y and {x, y; , Vo) forms the desired oddly subdivided X .

If, however, y; = v, then each vertex of the path w, y, , x, », is adjacent to
v, and since P is a maximum path whose vertices are all adjacent to the same
vertex, n == 3. Thus, we have triangles {w, y, , ¥1}, {X, Y1, Vo), and {x, o, ¥5}»
for distinct w, x, ¥y , Y1, Vo » Vs - We can proceed as in the previous paragraph
to construct a {w, y,} — y; path (and hence an odd y; — y, path) in G —
{X, ¥1 , ¥a}, thus forming an oddly subdivided K, in G.

Case II. Every vertex of G lies in two or more triangles, but no two
triangles share an edge.

Suppose first that for any odd cycle C and any vertex x € V(G\V(C), x is
adjacent to a vertex of C. Let {a, b, ¢} and {c, d, e} be two triangles with a
common vertex ¢. There is a second triangle {e, f, g} at e. If fe{a, b} or
g €{a, b}, then {e, 1, g} overlaps another triangle in an edge (for instance, if
f = a, then {e, £, g} and {e, f, c} share the edge {e, f}), contrary to the condi-
tion of Case II. Hence, {f, g} N {a, b} = =. We have assumed that for an
odd cycle C ={a, b, ¢} and a vertex f (or g), f (resp., g) is adjacent to a
vertex of C. Since no two triangles share an edge, {/, ¢}, {g, ¢} ¢ E(G), and
we cannot have both {a, f}, {a, g} € E(G) nor both {b, f}, {b, g} € E(G), for
the same reason. Thus, either {a, f}, {b, g} € E(G) or {a, g}, {b, f} € E(G).
Without loss of generality, assume that {g, f}, {6, g} € E(G). Then an oddly
subdivided K; is formed by the cycle C = {a, b, ¢} and the even arcs (c, d, e),
(a, f, e), and (b, g, ¢).

Next, suppose that C is an odd cycle and x € V(G), such that x is adjacent
to no vertex of C. Then two triangles {v, w, x} and {x, y, z} containing x
share no vertex with C. Since G is 3-connected, there are three disjoint paths.
from Cto {v, w, x, ¥, z}.

Subcase IIA. Two of these disjoint paths terminate at v and w, respec-
tively. (This is equivalent to the case where two paths terminate at y and z.)
Let a, b € V(C), where a is the start of the C-v path P,, and b is the start of
the C-w path P,,, . There are two a-b paths in C: one is odd and one is even.
We choose the one which, together with P,, and Py, , forms an even v-w
path P,, through part of C.

If {v, w, x} were a cutset, then G would not be 4-critical, since a three-
point cutset in a 4-critical graph cannot form a complete subgraph (see,
e.g., [4], p. 141, Corollary 12.24). Hence, there is a path P in G — {v, w, x}
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from a vertex u of P,,, — {v, w} to either y or z (to z, say). Thus, we have an
oddly subdivided K, , with nodes u, v, w, x, formed by the cycle {v, w, x},
the paths along P, from v and w to u, and the x-u path along P and with the
edge {x, z} or the path (x, ¥, z). The choice of the edge {x, z} or the path
{x, v, z) is determined by the requirement that the two cycles of the sub-
divided K, that share the path P must be odd.

Subcase IIB. There are three disjoint paths P,,, P, and P,, from the
odd cycle C to the overlapping triangles {v, w, x}, {x, v, z}, where the ends of
each path are denoted by its two subscripts. (After appropriate relabelling,
any three disjoint paths from C to the two triangles are either an instance of
Subcase IIA or of subcase I11B.)

We form an oddly subdivided K, with nodes 4, b, ¢, and x. We use the odd
cycle C, the paths P, , Py, , P,, , and either edges ({v, x} or {y, x}) or paths
({v, w, x) or (, z, x)), such that the lengths of the corresponding subdivided
triangles are odd.

Case IIJ. There is a vertex x lying in at most one triangle. If x lies in 2
triangle, denote one of its remaining two vertices by w. Denote each of the
remaining vertices adjacent in G to x by v, , vy ,..., v, , where {; , w, x} is the
triangle, if a triangle containing x exists. Of course, {v; , vs ,..., v} are pairwise
nonadjacent.

Define G, to be the graph obtained from G by deleting x and identifying
all vertices {v; , vy ,..., v} as a single vertex v. If ¥(G,) < 3, then there is a
3-coloring of G — x in which the vertices adjacent to x in & are colored in at
most 2 colors ({vy ,..., v,} € V(G) are assigned the color of ve ¥{(G,), and
w € V{G) is assigned the color of w € V(G,)), and so y(G) = 3, a contradiction.
Thus wW(G,) = 4.

Since x(G,) > 4 and since the theorem is assumed to be true for graphs
smaller than G, G, contains an oddly subdivided X, , say H. If v ¢ V{(H), then
H is an oddly subdivided K, of G. Therefore, suppose ve V{H)in G, .

In H, vis adjacent to either two or three other vertices. Denote the neighbor-
hood Ng(v) of v in H by {z;, z;} or by {z;, z; , 2.}, accordingly.

If all vertices of Ny(v) are adjacent in G to the same vertex vy, € {v; ,..., v},
then H is a subgraph of G, with v, in place of v.

If all vertices (z; , z; , and possibly z,) of Ny{(v) are adjacent in G to different
vertices v , v; , Uy € {0y ,..., Uy}, TESpectively, then we replace the edges {v, z;},
{v, z;}, {v, z} of H in G, by paths (x, v;, z,), (x, v;, z;), and (x, vy, zy),
which, together with the remaining edges of H, form a larger oddly sub-
divided K, in G. (Of course, when Ny(v) = {z;, z;}, the references in the
previous sentence to edges and paths containing z; are deleted.)

Finally, if two vertices z;, z; € Ng(v) are adjacent to v, € {9y ,..., v}, and
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if z;, € Ny(p) is adjacent to vy, vy, , then an oddly subdivided K, is formed in
G by the edges of H together with a path (v, , x, v,) in G in place of the vertex
ve V(G,y).

Since an oddly subdivided X, was formed in each case, the theorem is
proved. ’
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