
Probability makes counting

(sometimes) easy

Chapter 40

Just as we started this book with the first papers of Paul Erdős in num-
ber theory, we close it by discussing what will possibly be considered his
most lasting legacy — the introduction, together with Alfred Rényi, of the
probabilistic method. Stated in the simplest way it says:

If, in a given set of objects, the probability that an object does not

have a certain property is less than 1, then there must exist an object

with this property.

Thus we have an existence result. It may be (and often is) very difficult to
find this object, but we know that it exists. We present here three examples
(of increasing sophistication) of this probabilistic method due to Erdős, and
end with a particularly elegant recent application.

As a warm-up, consider a family F of subsets Ai, all of size d ≥ 2, of a
finite ground-set X . We say that F is 2-colorable if there exists a coloring
of X with two colors such that in every set Ai both colors appear. It is
immediate that not every family can be colored in this way. As an example,
take all subsets of size d of a (2d − 1)-set X . Then no matter how we
2-color X , there must be d elements which are colored alike. On the other
hand, it is equally clear that every subfamily of a 2-colorable family of
d-sets is itself 2-colorable. Hence we are interested in the smallest number
m = m(d) for which a family with m sets exists which is not 2-colorable.
Phrased differently, m(d) is the largest number which guarantees that
every family with less than m(d) sets is 2-colorable. A 2-colored family of 3-sets

Theorem 1. Every family of at most 2d−1 d-sets is 2-colorable, that is,

m(d) > 2d−1.

� Proof. Suppose F is a family of d-sets with at most 2d−1 sets. Color X
randomly with two colors, all colorings being equally likely. For each set
A ∈ F let EA be the event that all elements of A are colored alike. Since
there are precisely two such colorings, we have

Prob(EA) = (1
2 )

d−1
,

and hence with m = |F| ≤ 2d−1 (note that the events EA are not disjoint)

Prob(
⋃

A∈F

EA) <
∑

A∈F

Prob(EA) = m (1
2 )

d−1
≤ 1.

We conclude that there exists some 2-coloring of X without a unicolored
d-set from F , and this is just our condition of 2-colorability. �
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An upper bound for m(d), roughly equal to d22d, was also established by
Erdős, again using the probabilistic method, this time taking random sets
and a fixed coloring. As for exact values, only the first two m(2) = 3,
m(3) = 7 are known. Of course, m(2) = 3 is realized by the graph K3,
while the Fano configuration yields m(3) ≤ 7. Here F consists of the seven

1

45
7

2

3

6

3-sets of the figure (including the circle set {4, 5, 6}). The reader may find
it fun to show that F needs 3 colors. To prove that all families of six 3-sets
are 2-colorable, and hence m(3) = 7, requires a little more care.

Our next example is the classic in the field — Ramsey numbers. Consider
the complete graph KN on N vertices. We say that KN has property (m, n)
if, no matter how we color the edges of KN red and blue, there is always a
complete subgraph on m vertices with all edges colored red or a complete
subgraph on n vertices with all edges colored blue. It is clear that if KN

has property (m, n), then so does every Ks with s ≥ N . So, as in the first
example, we ask for the smallest number N (if it exists) with this property
— and this is the Ramsey number R(m, n).

As a start, we certainly have R(m, 2) = m because either all of the edges
of Km are red or there is a blue edge, resulting in a blue K2. By symmetry,
we have R(2, n) = n. Now, suppose R(m − 1, n) and R(m, n − 1) exist.
We then prove that R(m, n) exists and that

R(m, n) ≤ R(m − 1, n) + R(m, n − 1). (1)

Suppose N = R(m − 1, n) + R(m, n − 1), and consider an arbitrary red-
blue coloring of KN . For a vertex v, let A be the set of vertices joined to v
by a red edge, and B the vertices joined by a blue edge.

v

A

B

red
edges

blue
edges

Since |A| + |B| = N − 1, we find that either |A| ≥ R(m − 1, n) or
|B| ≥ R(m, n − 1). Suppose |A| ≥ R(m − 1, n), the other case being
analogous. Then by the definition of R(m−1, n), there either exists in A a
subset A

R
of size m− 1 all of whose edges are colored red which together

with v yields a red Km, or there is a subset A
B

of size n with all edges
colored blue. We infer that KN satisfies the (m, n)-property and Claim (1)
follows.

Combining (1) with the starting values R(m, 2) = m and R(2, n) = n, we
obtain from the familiar recursion for binomial coefficients

R(m, n) ≤

(

m + n − 2

m − 1

)

, (2)

and, in particular

R(k, k) ≤

(

2k − 2

k − 1

)

=

(

2k − 3

k − 1

)

+

(

2k − 3

k − 2

)

≤ 22k−3.

Now what we are really interested in is a lower bound for R(k, k). This
amounts to proving for an as-large-as-possible N < R(k, k) that there
exists a coloring of the edges such that no red or blue Kk results. And this
is where the probabilistic method comes into play.
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Theorem 2. For all k ≥ 2, the following lower bound holds for the Ramsey

numbers:

R(k, k) ≥ 2
k
2 .

� Proof. We have R(2, 2) = 2. From (2) we know R(3, 3) ≤ 6, and the
pentagon colored as in the figure shows R(3, 3) = 6.

blue

red

Now let us assume k ≥ 4. Suppose N < 2
k
2 , and consider all red-blue

colorings, where we color each edge independently red or blue with proba-

bility 1
2 . Thus all colorings are equally likely with probability 2−(N

2 ). Let A
be a set of vertices of size k. The probability of the event A

R
that the edges

in A are all colored red is then 2−(k

2). Hence it follows that the probability
p

R
for some k-set to be colored all red is bounded by

p
R

= Prob
(

⋃

|A|=k

A
R

)

≤
∑

|A|=k

Prob(A
R

) =

(

N

k

)

2−(k

2).

Now with N < 2
k
2 and k ≥ 4, using

(

N
k

)

≤ Nk

2k−1 for k ≥ 2 (see page 12),
we have

(

N

k

)

2−(k

2) ≤
Nk

2k−1
2−(k

2) < 2
k2

2
−(k

2)−k+1 = 2−
k
2
+1 ≤

1

2
.

Hence p
R

< 1
2 , and by symmetry p

B
< 1

2 for the probability of some
k vertices with all edges between them colored blue. We conclude that
p

R
+ p

B
< 1 for N < 2

k
2 , so there must be a coloring with no red or

blue Kk, which means that KN does not have property (k, k). �

Of course, there is quite a gap between the lower and the upper bound for
R(k, k). Still, as simple as this Book Proof is, no lower bound with a better
exponent has been found for general k in the more than 50 years since
Erdős’ result. In fact, no one has been able to prove a lower bound of the
form R(k, k) > 2( 1

2
+ε)k nor an upper bound of the form R(k, k) < 2(2−ε)k

for a fixed ε > 0.

Our third result is another beautiful illustration of the probabilistic method.
Consider a graph G on n vertices and its chromatic number χ(G). If χ(G)
is high, that is, if we need many colors, then we might suspect that G
contains a large complete subgraph. However, this is far from the truth.
Already in the fourties Blanche Descartes constructed graphs with arbitrar-
ily high chromatic number and no triangles, that is, with every cycle having
length at least 4, and so did several others (see the box on the next page).

However, in these examples there were many cycles of length 4. Can we do
even better? Can we stipulate that there are no cycles of small length and
still have arbitrarily high chromatic number? Yes we can! To make matters
precise, let us call the length of a shortest cycle in G the girth γ(G) of G;
then we have the following theorem, first proved by Paul Erdős.
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Triangle-free graphs with high chromatic number

Here is a sequence of triangle-free graphs G3, G4, . . . with

χ(Gn) = n.

Start with G3 = C5, the 5-cycle; thus χ(G3) = 3. Suppose we have
already constructed Gn on the vertex set V . The new graph Gn+1 has
the vertex set V ∪ V ′ ∪ {z}, where the vertices v′ ∈ V ′ correspond
bijectively to v ∈ V , and z is a single other vertex. The edges of
Gn+1 fall into 3 classes: First, we take all edges of Gn; secondly
every vertex v′ is joined to precisely the neighbors of v in Gn; thirdly
z is joined to all v′ ∈ V ′. Hence from G3 = C5 we obtain as G4 the
so-called Mycielski graph.

Clearly, Gn+1 is again triangle-free. To prove χ(Gn+1) = n + 1 we
use induction on n. Take any n-coloring of Gn and consider a color
class C. There must exist a vertex v ∈ C which is adjacent to at
least one vertex of every other color class; otherwise we could dis-
tribute the vertices of C onto the n − 1 other color classes, resulting
in χ(Gn) ≤ n − 1. But now it is clear that v′ (the vertex in V ′ cor-
responding to v) must receive the same color as v in this n-coloring.
So, all n colors appear in V ′, and we need a new color for z.

Theorem 3. For every k ≥ 2, there exists a graph G with chromatic

number χ(G) > k and girth γ(G) > k.

The strategy is similar to that of the previous proofs: We consider a cer-
tain probability space on graphs and go on to show that the probability for
χ(G) ≤ k is smaller than 1

2 , and similarly the probability for γ(G) ≤ k
is smaller than 1

2 . Consequently, there must exist a graph with the desired
properties.

G3:

G4:

Constructing the Mycielski graph

� Proof. Let V = {v1, v2, . . . , vn} be the vertex set, and p a fixed num-
ber between 0 and 1, to be carefully chosen later. Our probability space
G(n, p) consists of all graphs on V where the individual edges appear with
probability p, independently of each other. In other words, we are talking
about a Bernoulli experiment where we throw in each edge with proba-
bility p. As an example, the probability Prob(Kn) for the complete graph

is Prob(Kn) = p(n

2). In general, we have Prob(H) = pm(1 − p)(
n

2)−m if
the graph H on V has precisely m edges.

Let us first look at the chromatic number χ(G). By α = α(G) we denote
the independence number, that is, the size of a largest independent set in G.
Since in a coloring with χ = χ(G) colors all color classes are independent
(and hence of size ≤ α), we infer χα ≥ n. Therefore if α is small as
compared to n, then χ must be large, which is what we want.

Suppose 2 ≤ r ≤ n. The probability that a fixed r-set in V is independent
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is (1 − p)(
r

2), and we conclude by the same argument as in Theorem 2

Prob(α ≥ r) ≤

(

n

r

)

(1 − p)(
r

2)

≤ nr(1 − p)(
r

2) = (n(1 − p)
r−1

2 )r ≤ (ne−p(r−1)/2)r,

since 1 − p ≤ e−p for all p.

Given any fixed k > 0 we now choose p := n− k
k+1 , and proceed to show

that for n large enough,

Prob
(

α ≥
n

2k

)

<
1

2
. (3)

Indeed, since n
1

k+1 grows faster than log n, we have n
1

k+1 ≥ 6k log n
for large enough n, and thus p ≥ 6k log n

n . For r := ⌈ n
2k ⌉ this gives

pr ≥ 3 logn, and thus

ne−p(r−1)/2 = ne−
pr

2 e
p

2 ≤ ne−
3
2

log ne
1
2 = n− 1

2 e
1
2 = ( e

n )
1
2 ,

which converges to 0 as n goes to infinity. Hence (3) holds for all n ≥ n1.

Now we look at the second parameter, γ(G). For the given k we want to
show that there are not too many cycles of length ≤ k. Let i be between 3
and k, and A ⊆ V a fixed i-set. The number of possible i-cycles on A is
clearly the number of cyclic permutations of A divided by 2 (since we may
traverse the cycle in either direction), and thus equal to (i−1)!

2 . The total

number of possible i-cycles is therefore
(

n
i

) (i−1)!
2 , and every such cycle C

appears with probability pi. Let X be the random variable which counts the
number of cycles of length ≤ k. In order to estimate X we use two simple
but beautiful tools. The first is linearity of expectation, and the second is
Markov’s inequality for nonnegative random variables, which says

Prob(X ≥ a) ≤
EX

a
,

where EX is the expected value of X . See the appendix to Chapter 15 for
both tools.

Let XC be the indicator random variable of the cycle C of, say, length i.
That is, we set XC = 1 or 0 depending on whether C appears in the graph
or not; hence EXC = pi. Since X counts the number of all cycles of
length ≤ k we have X =

∑

XC , and hence by linearity

EX =

k
∑

i=3

(

n

i

)

(i − 1)!

2
pi ≤

1

2

k
∑

i=3

nipi ≤
1

2
(k − 2)nkpk

where the last inequality holds because of np = n
1

k+1 ≥ 1. Applying now
Markov’s inequality with a = n

2 , we obtain

Prob(X ≥ n
2 ) ≤

EX

n/2
≤ (k − 2)

(np)k

n
= (k − 2)n− 1

k+1 .
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Since the right-hand side goes to 0 with n going to infinity, we infer that
p(X ≥ n

2 ) < 1
2 for n ≥ n2.

Now we are almost home. Our analysis tells us that for n ≥ max(n1, n2)
there exists a graph H on n vertices with α(H) < n

2k and fewer than n
2

cycles of length ≤ k. Delete one vertex from each of these cycles, and
let G be the resulting graph. Then γ(G) > k holds at any rate. Since G
contains more than n

2 vertices and satisfies α(G) ≤ α(H) < n
2k , we find

χ(G) ≥
n/2

α(G)
≥

n

2α(H)
>

n

n/k
= k,

and the proof is finished. �

Explicit constructions of graphs with high girth and chromatic number (of
huge size) are known. (In contrast, one does not know how to construct
red/blue colorings with no large monochromatic cliques, whose existence
is given by Theorem 2.) What remains striking about the Erdős proof is
that it proves the existence of relatively small graphs with high chromatic
number and girth.

To end our excursion into the probabilistic world let us discuss an important
result in geometric graph theory (which again goes back to Paul Erdős)
whose stunning Book Proof is of recent vintage.

Consider a simple graph G = G(V, E) with n vertices and m edges. We
want to embed G into the plane just as we did for planar graphs. Now, we
know from Chapter 12 — as a consequence of Euler’s formula — that a
simple planar graph G has at most 3n − 6 edges. Hence if m is greater
than 3n− 6, there must be crossings of edges. The crossing number cr(G)
is then naturally defined: It is the smallest number of crossings among all
drawings of G, where crossings of more than two edges in one point are
not allowed. Thus cr(G) = 0 if and only if G is planar.

In such a minimal drawing the following three situations are ruled out:

• No edge can cross itself.

• Edges with a common endvertex cannot cross.

• No two edges cross twice.

This is because in either of these cases, we can construct a different drawing
of the same graph with fewer crossings, using the operations that are indi-
cated in our figure. So, from now on we assume that any drawing observes
these rules.

Suppose that G is drawn in the plane with cr(G) crossings. We can im-
mediately derive a lower bound on the number of crossings. Consider the
following graph H : The vertices of H are those of G together with all
crossing points, and the edges are all pieces of the original edges as we go
along from crossing point to crossing point.

The new graph H is now plane and simple (this follows from our three
assumptions!). The number of vertices in H is n + cr(G) and the number
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of edges is m + 2cr(G), since every new vertex has degree 4. Invoking the
bound on the number of edges for plane graphs we thus find

m + 2 cr(G) ≤ 3(n + cr(G)) − 6,

that is,

cr(G) ≥ m − 3n + 6. (4)

As an example, for the complete graph K6 we compute

cr(K6) ≥ 15 − 18 + 6 = 3

and, in fact, there is an drawing with just 3 crossings.

The bound (4) is good enough when m is linear in n, but when m is larger
compared to n, then the picture changes, and this is our theorem.

Theorem 4. Let G be a simple graph with n vertices and m edges, where

m ≥ 4n. Then

cr(G) ≥
1

64

m3

n2
.

The history of this result, called the crossing lemma, is quite interesting.
It was conjectured by Erdős and Guy in 1973 (with 1

64 replaced by some
constant c). The first proofs were given by Leighton in 1982 (with 1

100 in-
stead of 1

64 ) and independently by Ajtai, Chvátal, Newborn and Szemerédi.
The crossing lemma was hardly known (in fact, many people thought of it
as a conjecture long after the original proofs), until László Székely demon-
strated its usefulness in a beautiful paper, applying it to a variety of hitherto
hard geometric extremal problems. The proof which we now present arose
from e-mail conversations between Bernard Chazelle, Micha Sharir and
Emo Welzl, and it belongs without doubt in The Book.

� Proof. Consider a minimal drawing of G, and let p be a number between
0 and 1 (to be chosen later). Now we generate a subgraph of G, by selecting
the vertices of G to lie in the subgraph with probability p, independently
from each other. The induced subgraph that we obtain that way will be
called Gp.

Let np, mp, Xp be the random variables counting the number of vertices,
of edges, and of crossings in Gp. Since cr(G)−m + 3n ≥ 0 holds by (4)
for any graph, we certainly have

E(Xp − mp + 3np) ≥ 0.

Now we proceed to compute the individual expectations E(np), E(mp) and
E(Xp). Clearly, E(np) = pn and E(mp) = p2m, since an edge appears
in Gp if and only if both its endvertices do. And finally, E(Xp) = p4cr(G),
since a crossing is present in Gp if and only if all four (distinct!) vertices
involved are there.
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By linearity of expectation we thus find

0 ≤ E(Xp) − E(mp) + 3E(np) = p4cr(G) − p2m + 3pn,

which is

cr(G) ≥
p2m − 3pn

p4
=

m

p2
−

3n

p3
. (5)

Here comes the punch line: Set p := 4n
m (which is at most 1 by our assump-

tion), then (5) becomes

cr(G) ≥
1

64

[

4m

(n/m)2
−

3n

(n/m)3

]

=
1

64

m3

n2
,

and this is it. �

Paul Erdős would have loved to see this proof.
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