Topologische untere Schranken an $\chi(G)$

February 19, 2021

Topologische untere Schranken an $\chi(G)$

Welche unteren Schranken kennen wir schon?

- ▶ Cliquenzahl $\omega(G)$, dann ist $\omega(G) \leq \chi(G)$
- ▶ Unabhängigkeitszahl $\alpha(G)$, dann ist $N/\alpha(G) \leq \chi(G)$
- **e** gebrochene chromatische Zahl $\chi_f(G)$, dann ist $\chi_f(G) \leq \chi(G)$

Topologische untere Schranken an $\chi(G)$

Welche unteren Schranken kennen wir schon?

- ▶ Cliquenzahl $\omega(G)$, dann ist $\omega(G) \leq \chi(G)$
- ▶ Unabhängigkeitszahl $\alpha(G)$, dann ist $N/\alpha(G) \leq \chi(G)$
- **e** gebrochene chromatische Zahl $\chi_f(G)$, dann ist $\chi_f(G) \leq \chi(G)$

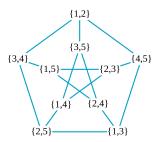
Alle diese Schranken können beliebig schlecht sein

Alle o.g. Schranken können beliebig schlecht sein

Beispiel: Kneser Graphen $KG_{n,k}$

- ► Knoten sind die Teilmengen von $[n] = \{1, ..., n\}$ mit k Elementen
- ► Kanten zwischen disjunkten Mengen

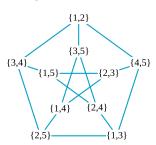
Figure:
$$n = 5, k = 2$$



Alle o.g. Schranken können beliebig schlecht sein

- ▶ Betrachten wir den Fall n = 3k 1:
- $\blacktriangleright \chi(KG_{n,k}) = k+1$ beliebig groß
- $\omega(KG_{n,k}) = 2$ (Dreiecksfrei für n < 3k)
- $ightharpoonup \alpha(KG_{n,k}) = \binom{n-1}{k-1}$, damit ist die Schranke < 3

Figure: n = 5, k = 2



- Wir wollen also eine Schranke, die gut für Kneser Graphen ist.
- ▶ So eine Schranke löst Kesner's Vermutung, nämlich dass

$$\chi(KG_{n,k})=n-2k+2.$$

- Wir wollen also eine Schranke, die gut für Kneser Graphen ist.
- So eine Schranke löst Kesner's Vermutung, nämlich dass

$$\chi(KG_{n,k})=n-2k+2.$$

Knesers Vermutung, originale Version

Teilt man die n elementigen Teilmengen einer (2n+k) elementigen Menge in k+1 Klassen, so gibt es eine Klasse, die ein paar disjunkter Mengen enthält.

$$\times (kg_{2n+k,n}) > k+1$$

Knesers Vermutung, originale Version

Teilt man die n elementigen Teilmengen einer (2n+k) elementigen Menge in k+1 Klassen, so gibt es eine Klasse, die ein paar disjunkter Mengen enthält.

Knesers Vermutung, originale Version

Teilt man die n elementigen Teilmengen einer (2n + k) elementigen Menge in k + 1 Klassen, so gibt es eine Klasse, die ein paar disjunkter Mengen enthält.

Obere Schranke ist leicht zu finden:

Sei $X = \{1, \ldots, 2n + k\}$ die Menge, die Zerteilt wird und K_i die Klasse an Teilmengen $A \subset X, |A| = n$ mit $\min A = i$. Dann zerteilen wir die Teilmengen in die Klassen

$$K_1, \ldots, K_{k+1}, \bigcup_{i=k+2}^{2n+k} K_i.$$
 2n-1

Gliederung

- Vorbereitungen/Definitionen
- ► Box-Komplexe und Lovász' Schranke
- ► Nachbarschaftskomplexe von Lovász
- Lovász Beweis Knesers Vermutung

Vorbereitungen/Definitionen

bipartitier Subgraph

Wir nennen den durch $A\subset V, B\subset V$ induzierten bipartiten Subgraph G[A,B]

allgemeine Kneser Graphen

Sei X eine endliche Menge und $F \subset P(X)$. Wir definieren den Graphen KG(F):

- F sind die Knoten
- Kanten zwischen disjunkten Mengen

jeder Graph ist ein Kneser Graph

Sei \bar{E} sie Menge der nicht-Kanten in G, wir setzen:

$$F_v = \{\bar{e} \in \bar{E} \mid v \in \bar{e}\}$$

also die Menge nicht-Kanten, die v mit etwas hätten verbinden können.

jeder Graph ist ein Kneser Graph

Sei \bar{E} sie Menge der nicht-Kanten in G, wir setzen:

$$F_v = \{\bar{e} \in \bar{E} \mid v \in \bar{e}\}$$

also die Menge nicht-Kanten, die v mit etwas hätten verbinden können. Dann ist

$$G \simeq KG(\bigcup \{F_v\}).$$
 $\checkmark \longmapsto F_v$

jeder Graph ist ein Kneser Graph

Sei \bar{E} sie Menge der nicht-Kanten in G, wir setzen:

$$F_v = \{\bar{e} \in \bar{E} \mid v \in \bar{e}\}$$

also die Menge nicht-Kanten, die v mit etwas hätten verbinden können. Dann ist

$$G \simeq KG(\bigcup \{F_v\}).$$

- 1. Fall, $\{v,w\} \in E$: Dann sind F_v und F_w disjunkt, denn nur $\{v,w\}$ könnte potentiell in beiden Mengen liegen.
- 2. Fall, $\{v, w\} \not\in E$: Dann ist $\{v, w\}$ sowohl in F_v also auch in F_w .

Simplizialkomplexe

Simplizialkomplexe

Ein Symplizialkomplex K ist ein nicht-leeres hereditäres Mengensystem. Aus $S \in K$ und $S' \subset S$ folgt also $S' \in K$.

Ein einfaches Beispiel ist die Vereinigung von Potenzmengen:

$$P({1,2,3}) \cup P({a,b}) \cup P({A,B}).$$

Simplizialkomplexe

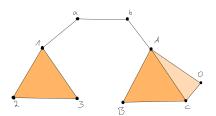
Zu dem Simplizialkomplex K gehört ein topologischer Raum, ||K||.

Simplizialkomplexe

Zu dem Simplizialkomplex K gehört ein topologischer Raum, ||K||. Beispiel:

$$K = P(\{1, 2, 3\}) \cup P(\{a, b\}) \cup P(\{A, B, C, D\}) \cup \{\{1, a\}, \{A, b\}\}$$

Figure: ||K||



\mathbb{Z}_2 Räume und Indizes

Ein \mathbb{Z}_2 Raum ist ein paar (T, v) aus einem topologischen Raum T und einem Homöomorphismus $v: T \to T$ mit $v^2 = \mathrm{id}$.

Beispiel
$$T = S^n$$
 mit $v(x) = -x$.

Eine \mathbb{Z}_2 Abbildung von T_1 nach T_2 ist dann eine stetige Abbildung $f: T_1 \to T_2$ mit

$$f \circ v_1 = v_2 \circ f$$
.

Der \mathbb{Z}_2 Index von (T, v) ist dann definiert durch

$$\operatorname{ind}(T, v) = \min\{n \geq 0 \mid \text{Es gibt eine } \mathbb{Z}_2 \text{ Abbildung } T \to S^n\}.$$

\mathbb{Z}_2 Räume und Indizes

Ein \mathbb{Z}_2 Raum ist ein paar (T, v) aus einem topologischen Raum T und einem Homöomorphismus $v: T \to T$ mit $v^2 = \mathrm{id}$.

Beispiel
$$T = S^n$$
 mit $v(x) = -x$.

Eine \mathbb{Z}_2 Abbildung von T_1 nach T_2 ist dann eine stetige Abbildung $f: T_1 \to T_2$ mit

$$f \circ v_1 = v_2 \circ f$$
.

Der \mathbb{Z}_2 Index von (T, v) ist dann definiert durch

$$\operatorname{ind}(T, v) = \min\{n \geq 0 \mid \text{Es gibt eine } \mathbb{Z}_2 \text{ Abbildung } T \to S^n\}.$$

Aus dem Satz von Borsuk-Ulam folgt:

$$ind(S^n) = n.$$

$$ind(S^n) = n$$

Bosuk Ulam

Ist $f: S^k \to \mathbb{R}^m$ stetig und ist k > m so gibt es $x \in S^k$ mit

$$f(x) = f(-x)$$
.

Also gibt es keine \mathbb{Z}_2 Abbildung $S^n \to S^k$ für k < n: Sei f eine solche, dann ist aber

$$f(v(x)) = f(-x) = f(x) \neq -f(x) = v(f(x)).$$

Homotopy

Homotopy

Zwei stetige Abbildungen $f,g:A\to B$ sind homotop, $f\simeq g$, falls es ein stetiges $h\colon [0,1]\times A\to B$ gibt mit h(0,a)=f(a) und h(1,a)=g(a).

Zwei topologische Räume sind homotop, $A \simeq B$, falls es $f: A \to B, g: B \to A$ gibt mit

$$f \circ g \simeq id_B, \quad g \circ f \simeq id_A$$

Boxkomplexe

Nun wollen wir Graphen Simplizialkomplexe zuweisen:

Es sei $A \sqcup B = A \times \{1\} \cup B \times \{2\}$ und

$$\mathit{CN}(A) = \{ v \in V \mid \{a, v\} \in E \text{ für alle } a \in A \}.$$

Boxkomplexe

Nun wollen wir Graphen Simplizialkomplexe zuweisen:

Es sei
$$A \sqcup B = A \times \{1\} \cup B \times \{2\}$$
 und

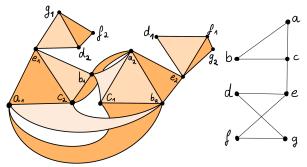
$$CN(A) = \{v \in V \mid \{a, v\} \in E \text{ für alle } a \in A\}.$$

Boxkomplex

$$B(G) = \{A \sqcup B \mid A, B \subset V, A \cap B = \emptyset,$$

$$G[A, B] \text{ ist vollständig, } CN(A), CN(B) \neq \emptyset\}$$

$B(G) = \{A \sqcup B \mid A, B \subset V, A \cap B = \emptyset,$ $G[A, B] \text{ ist vollständig, } CN(A), CN(B) \neq \emptyset\}$



$$B(G) = P(\{a_1, b_1, c_2, e_1\}) \cup P(\{a_2, b_2, c_1, e_2\}) \cup P(\{d_1, e_2, f_1, g_2\})$$
$$\cup P(\{d_2, e_1, f_2, g_1\}) \cup P(\{a_1, b_2, c_2\}) \cup P(\{a_1, b_2, c_1\})$$
$$\cup P(\{a_2, b_1, c_1\}) \cup P(\{a_2, b_1, c_2\}).$$

Wie wird B(G) zu einem \mathbb{Z}_2 Komplex?

Auf B(G) gibt es eine natürliche \mathbb{Z}_2 Struktur:

$$v(x,1) = (x,2), \quad v(x,2) = (x,1).$$

Damit ist B(G) ein \mathbb{Z}_2 Raum.

Ist $f: G \to H$ ein Homomorphismus, so ist B(f) definiert durch

$$B(f)(v, i) = (f(v), i), i = 1, 2.$$

Dann induziert B(f) eine stetige \mathbb{Z}_2 Abbildung $B(G) \to B(H)$.

Wie wird B(G) zu einem \mathbb{Z}_2 Komplex?

Auf B(G) gibt es eine natürliche \mathbb{Z}_2 Struktur:

$$v(x,1) = (x,2), \quad v(x,2) = (x,1).$$

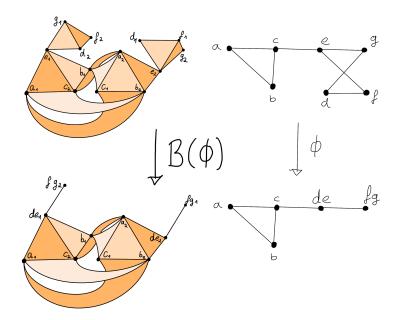
Damit ist B(G) ein \mathbb{Z}_2 Raum.

Ist $f: G \to H$ ein Homomorphismus, so ist B(f) definiert durch

$$B(f)(v, i) = (f(v), i), i = 1, 2.$$

Dann induziert B(f) eine stetige \mathbb{Z}_2 Abbildung $B(G) \to B(H)$. Erinnerung: $f: G \to H$ Homomorphismus bedeutet

$$v - w \implies f(v) - f(w)$$



Kurze Zusammenfassung

Wo stehen wir bis jetzt?

- ▶ Wir können Graphen top. Räume zuweisen: $G \rightarrow ||B(G)||$.
- ▶ Diese haben eine \mathbb{Z}_2 Struktur.
- lacktriangle Graph Homomorphismen induzieren \mathbb{Z}_2 Abbildungen

Kurze Zusammenfassung

Wo stehen wir bis jetzt?

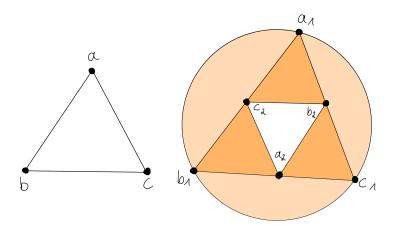
- ▶ Wir können Graphen top. Räume zuweisen: $G \rightarrow ||B(G)||$.
- ▶ Diese haben eine \mathbb{Z}_2 Struktur.
- lacktriangle Graph Homomorphismen induzieren \mathbb{Z}_2 Abbildungen

Was jetzt?

- lacktriangle Eine m-Färbung ist ein Homomorphismus $G o K_m$.
- ▶ Wir kriegen also eine \mathbb{Z}_2 Abbildung $\|B(G)\| \to \|B(K_m)\|$.
- $||B(K_m)|| \simeq S^{m-2}.$

Warum ist $||B(K_m)|| \simeq S^{m-2}$?

Figure: K_3 und $||B(K_3)||$



Die Schranke

Eine m-Färbung führt also zu einer \mathbb{Z}_2 Abbildung in S^{m-2} , also gilt $\chi(G) \geq \operatorname{ind} B(G) + 2$.

Nachbarschaftskomplexe von Lovász

Was hat Lovász ursprünglich gemacht? Dafür brauchen wir noch eine Definition:

Nachbarschaftskomplexe von Lovász

Was hat Lovász ursprünglich gemacht? Dafür brauchen wir noch eine Definition:

Ist (X, \leq) partiell geordnet, so schreiben wir $\Delta(X, \leq)$ für den Ordnungskomplex von X

- ► Knoten sind die Elemente von X
- Simplizes sind die Ketten

Für ein Mengensystem $F\subset P(X)$ schreiben wir ΔF für $\Delta(F\backslash\{\emptyset\},\subset)$

Die Schranke von Lovász

Lovász benutzt im Beweis Knesers Vermutung den Raum

$$L(G) = \Delta \{A \subset V \mid CN(CN(A)) = A\}.$$

Auf L(G) haben wir die \mathbb{Z}_2 Aktion: $A \mapsto CN(A)$.

Die Schranke von Lovász

Lovász benutzt im Beweis Knesers Vermutung den Raum

$$L(G) = \Delta \{A \subset V \mid CN(CN(A)) = A\}.$$

Auf L(G) haben wir die \mathbb{Z}_2 Aktion: $A \mapsto CN(A)$. Mit ein paar Anpassungen des Beweises von Lovász bekommt man so

$$\chi(G) \geq \operatorname{ind} L(G) + 2.$$

Es gilt

$$\operatorname{ind} B(G) = \operatorname{ind} L(G).$$

Vorteil von B: B ist ein Funktor!

Nachbarschaftskomplexe

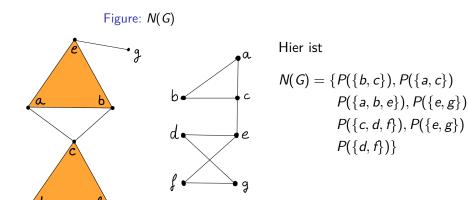
Eigentlich hat Lovász folgende Räume benutzt:

$$N(G) = \{S \subset V \mid CN(S) \neq \emptyset\}.$$

N(G) ist der Nachbarschaftskomplex von G.

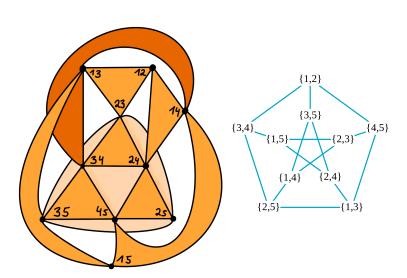
Beispiele N(G)

$$N(G) = \{S \subset V \mid CN(S) \neq \emptyset\}.$$



Beispiel: $N(KG_{5,2})$

$$N(G) = \{S \subset V \mid CN(S) \neq \emptyset\}.$$



Beweis Knesers Vermutung

Damit konnte Lovász beweisen, dass

$$\chi(G) \geq 3 + \mathsf{Zusammenhang}(N(G)).$$

Was bedeutet "Zusammenhang" und was ist Zusammenhang($N(KG_{n,k})$)?

Definition Zusammenhang

Homotopy

Zwei stetige Abbildungen $f,g:A\to B$ sind homotop, $f\simeq g$, falls es ein stetiges $h\colon [0,1]\times A\to B$ gibt mit h(0,a)=f(a) und h(1,a)=g(a).

Zusammenhang(T) ist das kleinste k, so dass es eine stetige Abbildung $f: S^{k+1} \to T$ gibt mit $f \not\simeq 0$.

Definition Zusammenhang

Homotopy

Zwei stetige Abbildungen $f,g:A\to B$ sind homotop, $f\simeq g$, falls es ein stetiges $h\colon [0,1]\times A\to B$ gibt mit h(0,a)=f(a) und h(1,a)=g(a).

Zusammenhang(T) ist das kleinste k, so dass es eine stetige Abbildung $f: S^{k+1} \to T$ gibt mit $f \not\simeq 0$.

Oder äquivalent: Zusammenhang(T) ist das größte k, so dass sich jede stetige Abbildung $S^r \to T$ stetig auf D^{r+1} fortsetzen lässt, $r = 0, \ldots, k$.

Was ist Zusammenhang($N(KG_{n,k})$)?

Ist Zusammenhang $(N(KG_{n,k})) = n - 2k - 1$, so folgt Knesers Vermutung, nämlich, dass

$$\chi(KG_{n,k})=n-2k+2.$$

In der originalen Schreibweise schreiben wir

$$n \rightarrow 2n + k$$
, $k \rightarrow n$.

Was ist Zusammenhang($N(KG_{n,k})$)?

Ist Zusammenhang $(N(KG_{n,k})) = n - 2k - 1$, so folgt Knesers Vermutung, nämlich, dass

$$\chi(KG_{n,k})=n-2k+2.$$

In der originalen Schreibweise schreiben wir

$$n \rightarrow 2n + k$$
, $k \rightarrow n$.

Wir brauchen also

Zusammenhang(
$$N(KG_{2n+k,n})$$
) = $k-1$.

Was ist Zusammenhang($N(KG_{2n+k,n})$)?

Wir brauchen

Zusammenhang
$$(N(KG_{2n+k,n})) = k-1.$$

Theorem (Lovász)

Sei S eine endliche Menge, $n,k\in\mathbb{N}$. Sei K der Simplizialkomplex mit den n elementigen Teilmengen von S als Knoten, wobei die Simplizes die Mengen an Knoten $\{A_0,\ldots,A_m\}$ sind, für die

$$\left|\bigcup_{i=0}^m A_i\right| \leq n+k$$

gilt.

Dann gilt

Zusammenhang
$$(K) = k - 1$$
.

Was ist Zusammenhang($N(KG_{2n+k,n})$)?

Theorem (Lovász)

Sei S eine endliche Menge, $n,k\in\mathbb{N}$. Sei K der Simplizialkomplex mit den n elementigen Teilmengen von S als Knoten, wobei die Simplizes die Mengen an Knoten $\{A_0,\ldots,A_m\}$ sind, für die

$$\left|\bigcup_{i=0}^m A_i\right| \leq n+k$$

gilt.

Dann gilt

Zusammenhang
$$(K) = k - 1$$
.

Mit der Wahl |S| = 2n + k gilt

$$K = N(KG_{2n+k,n}).$$

Was ist Zusammenhang($N(KG_{2n+k,n})$)

Mit der Wahl
$$|S| = 2n + k$$
 gilt

$$K = N(KG_{2n+k,n}),$$

denn:

Was sind die Nachbarn von A, A Knoten des Kneser Graphen?

Was ist Zusammenhang($N(KG_{2n+k,n})$)

Mit der Wahl
$$|S| = 2n + k$$
 gilt

$$K=N(KG_{2n+k,n}),$$

denn:

Was sind die Nachbarn von A, A Knoten des Kneser Graphen? Die gemeinsamen Nachbarn sind alle Mengen, die disjunkt zu A sind, deren Vereinigung ist dann A^c , hat also genau n+k Elemente.

Idee: Zeige, dass K homotop zu S^k ist.

- $ightharpoonup A = \{A_0, \dots, A_m\}$ Simplex in K
- $V(A) = \bigcup A_i$
- ▶ M(A) ist der Simplex aufgespannt von den n- Teilmengen von U(A)
- ▶ A heißt überfüllt, falls |U(A)| < n + k

Idee: Zeige, dass K homotop zu S^k ist.

- $ightharpoonup A = \{A_0, \dots, A_m\}$ Simplex in K
- $V(A) = \bigcup A_i$
- ► M(A) ist der Simplex aufgespannt von den n- Teilmengen von U(A)
- ▶ A heißt überfüllt, falls |U(A)| < n + k

- ▶ Induktion über |S|: Falls $|S| \le n + k$, so ist K einfach ein Simplex
- ▶ Angenommen |S| > n + k

- Induktion über |S|: Falls $|S| \le n + k$, so ist K einfach ein Simplex
- ▶ Angenommen |S| > n + k

- Induktion über |S|: Falls $|S| \le n + k$, so ist K einfach ein Simplex
- ▶ Angenommen |S| > n + k

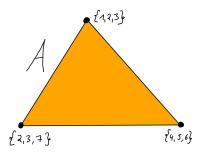
- ▶ Sei K' der abgeschlossene Subkomplex bestehend aus überfüllten Simplizes
- ▶ Sei K_0 das (k-1)—Skelett von K.
- ▶ 1. Ziel: K₀ deformiert zu K'.
- ▶ Dafür müssen wir eine stetig Abbildung $\Psi \colon K_0 \to K'$ finden, so dass

$$\Psi(A) \subset M(A) \forall \text{Simplizes } A \in K_0.$$

Dann ist $\Psi \simeq K_0 \stackrel{i}{\to} K$.

Beispiel

Sei $S = \{1, \dots, 8\}$ n = 3, k = 4, dann ist folgender Simplex in K



Dann ist $A \in K_0$ aber

$$U(A) = \{1, \ldots, 7\} \implies A \notin K'.$$

- Wir definieren Ψ auf jedem Simplex einzeln
- Induktion über dim A: Gilt dim A = 0, so ist A überfüllt, also in K'. Wir können also $\Psi(A) = A$ definieren.

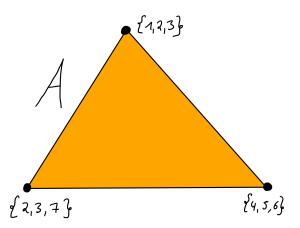
- Wir definieren Ψ auf jedem Simplex einzeln
- Induktion über dim A: Gilt dim A = 0, so ist A überfüllt, also in K'. Wir können also $\Psi(A) = A$ definieren.
- ▶ Angenommen dim A > 0 und Ψ ist auf ∂A schon definiert.
- ▶ Sei K'_A der Subkomplex von K' mit Knoten aus M(A), also $K'_A = M(A) \cap K'$.

- ▶ Angenommen dim A > 0 und Ψ ist auf ∂A schon definiert.
- ▶ Sei K'_A der Subkomplex von K' mit Knoten aus M(A), also $K'_A = M(A) \cap K'$.
- ▶ IV: $\Psi(\partial A)$ liegt in K'_A und weil $|U(A)| \le n + k < |S|$ ist K'_A (k-1) Zusammenhängend.
- ▶ A ist in K_0 , enthält also maximal k-1 Knoten.

- ▶ Angenommen dim A > 0 und Ψ ist auf ∂A schon definiert.
- ▶ Sei K'_A der Subkomplex von K' mit Knoten aus M(A), also $K'_A = M(A) \cap K'$.
- ▶ IV: $\Psi(\partial A)$ liegt in K'_A und weil $|U(A)| \le n + k < |S|$ ist K'_A (k-1) Zusammenhängend.
- ▶ A ist in K_0 , enthält also maximal k-1 Knoten.
- \triangleright $\partial A \simeq S^{k-1}$.
- ightharpoonup Also können wir Ψ von ∂A auf A fortsetzen.
- ▶ Damit ist Ψ definiert und wir haben: K_0 deformiert zu K'.

Beispiel

Sei $S = \{1, \dots, 8\}$ n = 3, k = 4, dann ist folgender Simplex in K



- ▶ Wir haben: K_0 deformiert zu K'.
- ▶ 2.Ziel: K' ist Nullhomotop (kann zu einem Punkt zusammengezogen werden)
- Für $u, v \in S$ definieren wir

$$\phi_{u,v}(X) = \begin{cases} X \setminus \{u\} \cup \{v\}, & u \in X, v \notin X, \\ X & \text{sonst.} \end{cases}$$

• $\phi_{u,v}$ erhält Simplizes in K, ist also $\{A_0,\ldots,A_m\}$ ein Simplex so auch $\{\phi_{U,v}(A_1),\ldots,\phi_{u,v}(A_m)\}$.

▶ Falls $u \notin U(A)$ oder $v \in U(A)$ so ist

$$U(\phi_{u,v}(A)) \subset U(A)$$

► Falls $u \in U(A)$, $v \notin U(A)$ so ist

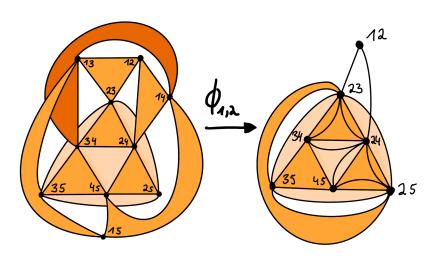
$$U(\phi_{u,v}(A))=U(A)\backslash\{u\}\cup\{v\}$$

Also immer

$$|U(\phi_{u,v}(A))| \leq |U(A)| \leq n+k-1$$

falls A überfüllt ist.

Beispiel



- ▶ Es ist $\phi_{u,v}$: $K' \to K'$.
- ► Ist A überfüllt, so gilt:

$$\phi_{u,v}(A) \cup A$$

liegt im von $U(A) \cup \{v\}$ aufgespannten Simplex.

- ▶ Damit ist $\phi_{u,v}$ homotop zu $K' \stackrel{i}{\rightarrow} K$
- Das gilt dann auch für Kompositionen, also für

$$\phi=\phi_{u_{|S|}u_n}\cdots\phi_{u_{n+1},u_n}\cdots\phi_{u_{|S|},u_2}\cdots\phi_{u_{n+1},u_2}\phi_{u_{|S|},u_1}\cdots\phi_{u_{n+1},u_1}.$$
 wenn $S=\{u_1,\ldots,u_{|S|}\}.$

$$\phi = \phi_{u_{|S|}u_n} \cdots \phi_{u_{n+1},u_n} \cdots \phi_{u_{|S|},u_2} \cdots \phi_{u_{n+1},u_2} \phi_{u_{|S|},u_1} \cdots \phi_{u_{n+1},u_1}.$$

Es gilt

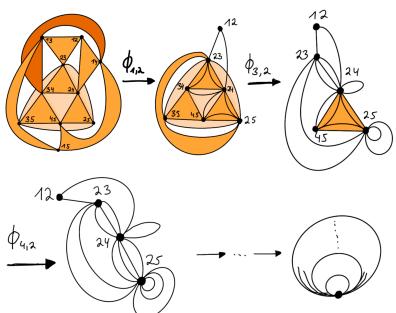
$$\phi(X) = \{u_1, \ldots, u_n\}$$

für alle $X \subset S$, |X| = n.

- ▶ Damit ist K' zu $\{u_1, \ldots, u_n\}$ deformierbar, also Nullhomotop.
- $ightharpoonup K_0$ deformiert zu K', also ist auch K_0 Nullhomotop.
- K_0 war das (k-1)- Skelett, also $K_0 = \partial K$.
- Nach dem zusammenziehen erhalten wir Sphären, die alle an einem Punkt zusammengeklebt sind.

Wir können also das (k-1)-Skelett zu einem Punkt zusammenziehen. Danach bleiben nur noch k-Sphären, die an einem Punkt zusammenhängen

Beispiel



Damit ist K also (k-1)-Zusammenhängend und der Beweis beendet.

Damit ist K also (k-1)-Zusammenhängend und der Beweis beendet.

Wir haben also:

Zusammenhang
$$(KG_{2n+k,n}) = k-1$$

und damit

$$\chi(KG_{2n+k,n}) \geq k+2$$

oder umgestellt

$$\chi(KG_{n,k}) \geq n-2k+2.$$

ielen Lank Aufwerksamkeit