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Chapter 1:
A challenge of great significance



A challenge of great significance

Question
Are there graphs with large chromatic number but no triangles?

Answer
Yes and there have been many constructions of such graphs!
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Tutte Tutte!
|V (Gk)| = n and |Y | = k(n − 1) + 1

Figure: Tutte’s construction
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Tutte Tutte!
|V (Gk)| = n and |Y | = k(n − 1) + 1

Figure: Tutte’s construction

Matching between nodes of X1 and Gk
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Figure: Tutte’s construction(
|Y |
n

)
copies of Gk .
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Tutte Tutte!
|V (Gk)| = n and |Y | = k(n − 1) + 1

Figure: Tutte’s construction

χ(Gk) ≥ k

Christos Eleftherios Pavlidis (TU Berlin) The Chromatic Conquest February 19, 2021 5 / 29



Shift your focus
Let n > 2k > 2,

V (Gn,k) = {(a1, . . . , ak) : 1 ≤ a1 < a2 < . . . < ak ≤ n}

Figure: Shift graphs with k = 2

χ(Gn,2) ≥ dlog2ne
n→∞−→ ∞
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A taste of topology

The Borsuk-Ulam theorem
If f : Sn → Rn is continuous then there exists an x ∈ Sn such that
f (x) = f (−x).

The general Lusternik-Schnirelmann theorem
If Sn ⊆ Rn+1 is covered by n + 1 sets A1,A2, . . . ,An+1 such that each
Ai is either open or closed, then there exist i and x ∈ Sn such that
−x , x ∈ Ai .
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The Kneser graphs
Definition
Let KGn,k denote the Kneser graph with vertices F :=

(
[n]
k

)
and

edges E := {{F1,F2} : F1,F2 ∈ F ,F1 ∩ F2 = ∅}

Examples:

KGn,1 is the complete graph Kn with χ(Kn) = n
KG2k−1,k is a graph with no edges, and so χ(KG2k−1,k) = 1
KG2k,k is a matching (every set is adjacent only to its
complement), so χ(KG2k,k) = 2

Lovász–Kneser theorem
χ(KGn,k) = n − 2k + 2 ∀ k > 0, n ≥ 2k − 1
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All around the world

Proof: χ(KGn,k) ≤ n − 2k + 2 :
Set

c(F ) := min{min(F ), n − 2k + 2}

If c(F1) = c(F2) = i < n − 2k + 2:

i ∈ F1 ∩ F2 6= ∅

If c(F1) = c(F2) = n − 2k + 2:

F1,F2 ⊆ {n − 2k + 2, . . . , n}

but |{n − 2k + 2, . . . , n}| = 2k − 1 so F1 ∩ F2 6= ∅

Christos Eleftherios Pavlidis (TU Berlin) The Chromatic Conquest February 19, 2021 9 / 29



All around the world

Proof: χ(KGn,k) ≤ n − 2k + 2 :
Set

c(F ) := min{min(F ), n − 2k + 2}

If c(F1) = c(F2) = i < n − 2k + 2:

i ∈ F1 ∩ F2 6= ∅

If c(F1) = c(F2) = n − 2k + 2:

F1,F2 ⊆ {n − 2k + 2, . . . , n}

but |{n − 2k + 2, . . . , n}| = 2k − 1 so F1 ∩ F2 6= ∅

Christos Eleftherios Pavlidis (TU Berlin) The Chromatic Conquest February 19, 2021 9 / 29



All around the world

Proof: χ(KGn,k) ≤ n − 2k + 2 :
Set

c(F ) := min{min(F ), n − 2k + 2}

If c(F1) = c(F2) = i < n − 2k + 2:

i ∈ F1 ∩ F2 6= ∅

If c(F1) = c(F2) = n − 2k + 2:

F1,F2 ⊆ {n − 2k + 2, . . . , n}

but |{n − 2k + 2, . . . , n}| = 2k − 1 so F1 ∩ F2 6= ∅

Christos Eleftherios Pavlidis (TU Berlin) The Chromatic Conquest February 19, 2021 9 / 29



All around the world
Proof: χ(KGn,k) > n − 2k + 1 :
Suppose KGn,k is d := n − 2k + 1 colorable.
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Figure: Example with n = 13, k = 6 in Rd+1



All around the world
Proof: χ(KGn,k) > n − 2k + 1 :
Suppose KGn,k is d := n − 2k + 1 colorable.
Define A1, . . . ,Ad ⊆ Sd by x ∈ Ai iff there is an i-colored k-tuple in
H(x) := {y ∈ Sd : 〈x , y〉 > 0}.

With Ad+1 := Sd \ (A1 ∪ · · · ∪ Ad)
and Lyusternik–Shnirelman we have i ∈ {1, . . . , d + 1} and x ∈ Sd

with x ,−x ∈ Ai .
If i ≤ d then two disjoint k-tuples are i-colored  
If i = d + 1 then |H(x)| ≤ k − 1, so |Sd \

(
H(x)∪H(−x)

)
| ≥ d + 1.

But this is an equator  

Now χ(KG3k−1,k) = k + 1, and KG3k−1,k is triangle free.
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Composition
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Chapter 2:
Assembling the machinery



A neat Idea

The Probabilistic Method
If, in a given set of objects, the probability that an object does not
have a certain property P , is less than 1, then there must exist an
object with property P .
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A demonstration of wit
Definition
Consider for d , n ∈ N, d ≥ 2, a finite set X and a family
F = {A1, . . . ,An} of subsets of X , each of which having cardinality
d . We say this family F of d-sets is 2-colorable if there exists a
coloring of X with 2 colors, such that no set of F is monochromatic.

Example:

Figure: A 2-colored family of 3-sets
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A demonstration of wit

Theorem
Every family F of at most 2d−1 d-sets is 2-colorable.

Proof
Color X := ⋃

A∈F A uniformly random with two colors. For A ∈ F let
EA be the event that all elements of A are colored alike, then
P(EA) = 2 · 2−d . Hence
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Chapter 3:
Unforeseen consequences



Unforeseen consequences

Main Theorem
For every k ≥ 2, there exists a graph G with chromatic number
χ(G) > k and girth γ(G) > k .

The Erdős–Rényi model
Look at family G(n, p) of n-vertex graphs that include any edge
independently with probability p.

Show:

P
(

(χ ≤ k) ∪ (γ ≤ k)
)
≤ P

(
χ ≤ k

)
+ P

(
γ ≤ k

)
<

1
2 + 1

2

Idea
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Colors of independence

Figure: 3-coloring of the Petersen Graph

Proof (part 1)
k ≥ χ ⇐⇒ αk ≥ χα ≥ n =⇒ α ≥ n

k
The probability that any fixed r -set A ⊆ V is independent is
(1− p)(r

2) , so

P(α ≥ r) ≤
(

n
r

)
(1− p)(r

2) ≤ (n(1− p)(r−1)/2)r ≤ (ne−p(r−1)/2)r ,

as 1− p ≤ e−p. With p := n− k
k+1 and r := d n

2k e and for n large
enough we can get

P
(
α ≥ n

2k

)
≤ . . . ≤

(e
n

) r
2 n→∞−→ 0.
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Colors of independence
Proof (part 1)

k ≥ χ ⇐⇒ αk ≥ χα ≥ n =⇒ α ≥ n
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Expect the unexpected
Proof (part 2)
Let X be the number of cycles of length ≤ k and XC the indicator of
the cycle C . E(XC ) = pi for an i-cycle C .

On a given i-set A ⊆ V
there are (i−1)!

2 different cycles. So

E(X ) =
∑
C

E(XC ) =
k∑

i=3

(
n
i

)
(i − 1)!

2 pi ≤ 1
2

k∑
i=3

nipi ≤ 1
2(k−2)nkpk ,

as np = n 1
k+1 ≥ 1 since p = n− k

k+1 . With Markov’s inequality

P
(

X ≥ n
2

)
≤ E(X )

n/2 ≤ (k − 2)(np)k

n = (k − 2)n− 1
k+1

n→∞−→ 0.
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The puzzle completed
Proof (part 3)
For large enough n there is an n-vertex graph H with α(H) < n

2k and
less than n

2 cycles of length ≤ k .

Let G result by deleting one vertex
from each such cycle. Then γ(G) > k , and α(G) ≤ α(H) < n

2k , so
we obtain

χ(G) ≥ n/2
α(G) ≥

n
2α(H) >

n
n/k = k

Idea
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Chapter 4:
Aftermath



Fingers crossed

Figure: Minimal Drawing of the K6

No edge can cross it-
self.

Edges with common
endvertex cannot cross.

No two edges cross
twice.

so

Every crossing uses two distinct edges and four distinct vertices.
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Fingers crossed

Together with the bound on |E | for planar graphs |E | ≤ 3|V | − 6, we
get:

|E |+ 2cr(G) ≤ 3(|V |+ cr(G))− 6 ⇐⇒ cr(G) ≥ |E | − 3|V |+ 6
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A glimpse of the possibilities

Crossing Lemma
Let G be a simple graph with n vertices and m edges, where m ≥ 4n.
Then

cr(G) ≥ 1
64

m3

n2
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A glimpse of the possibilities
Proof
For a minimal drawing of G and p ∈ [0, 1] let Gp be a random
subgraph of G where each vertex is picked with probability p.

Let
np,mp,Xp be random variables counting the number of vertices,
edges and crossings in Gp. We have

E(np) = np, E(mp) = mp2, E(Xp) = cr(G)p4.

Combining this with the previous result: cr(G) ≥ m− 3n + 6, we get

0 ≤ 6 ≤ E(Xp −mp + 3np) = p4cr(G)− p2m + 3pn

By setting p := 4n
m ≤ 1 we get the desired:

cr(G) ≥ m
p2 −

3n
p3 = 1

64

[
4m

(n/m)2 −
3n

(n/m)3

]
= 1

64
m3

n2
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