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It turns out that an eerie type of chaos
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– and yet, deep inside the chaos
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Introduction

A poset is a set equipped with a partial order relation. Since the ordering
is only partial, there are usually many ways to extend it to a linear order.
Each of them yields a linear extension of the poset.

We are interested in the set of all linear extensions of a given finite
poset P . To make the structure of this set tangible, we consider the linear
extension graph G(P). It has the linear extensions of P as vertices, with
two of them being adjacent if they differ exactly by one adjacent swap of
elements. Figure 0.1 shows a simple example, the cover of this thesis a more
complicated one.

This thesis investigates how properties of the poset P are reflected in the
linear extension graph G(P), and vice versa. We place a special emphasis
on the diameter of G(P).

1 2

3 4

1234

2134

1243

2143 2413

P G(P)

Figure 0.1: A poset and its linear extension graph with swap coloring.

Chapter 1

The function of this chapter is to set the stage for what happens in the later
chapters. We recall basic notions of poset theory and specify our notation.
We introduce partial cubes and some important properties of them. Also,
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we present the basic results of Gallai’s theory of modular decomposition
and transitive orientations.

Chapter 2

In this chapter we introduce linear extension graphs. We present some of
their history and previously known properties. Then we focus on the swap
coloring of the edges of G(P), in which each edge is colored with the pair
of elements of P swapped along it. Our main result of this chapter is that
we can characterize in terms of the graph G(P) which pairs of swap colors
share an element of P .

We also discuss which modifications of the poset P leave the graph G(P)
invariant, and which do not. The results of this chapter provide the ingre-
dients for the reconstruction procedure of the next chapter.

Chapter 3

Here we present a procedure which, given a linear extension graph G, re-
constructs all posets P with G = G(P). We prove that if G cannot be
decomposed into several non-trivial Cartesian factors, then P is unique up
to duality and the addition of global elements. The procedure makes funda-
mental use of Gallai’s modular decomposition theory. In the last section, we
show how to use the reconstruction procedure to recognize linear extension
graphs.

Chapter 4

In this chapter we introduce the second part of the title of this thesis: The
linear extension diameter of a poset. Given a poset P , the linear extension
diameter led(P) is the maximum number of pairs of elements of P which
can appear in different orders in two linear extensions of P . It can easily
be seen that led(P) equals the graph diameter of G(P).

At the beginning of this chapter we present some previous results on
the linear extension diameter. Then we prove that, given a poset P and
some k ≥ 2, it is NP-complete to decide whether led(P) ≥ k. On the posi-
tive side, we show how to compute in polynomial time the linear extension
diameter of a poset of width 3, using a dynamic programming approach.

The results of this chapter are joint work with Graham Brightwell. They
are also contained in [7].
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Chapter 5

In the first part of this chapter we prove a formula for the linear extension
diameter of Boolean lattices which had been conjectured in [22]. Moreover,
we characterize the diametral pairs of linear extensions of Boolean lattices.
The proofs only use basic combinatorial arguments.

The cover of this thesis shows the linear extension graph of the
3-dimensional Boolean lattice. The linear extensions contained in diametral
pairs are highlighted.

Boolean lattices are downset lattices of antichains. Now let DP be the
downset lattice of an arbitrary 2-dimensional poset P . In the second part of
this chapter we characterize the diametral pairs of linear extensions of DP .
Furthermore, we show that we can compute the linear extension diameter
of DP in time polynomial in |P|. The proofs use characteristics of the
2-dimensional poset P .

This chapter is joint work with Stefan Felsner. The results can also be
found in [20].

Chapter 6

This chapter deals with a property of posets which we call diametrally
reversing. A linear extension of a poset P is reversing if it reverses some
critical pair of elements of P . A poset P is diametrally reversing if every
linear extension of P which is part of a diametral pair of linear extensions
of P is reversing.

It follows from the results of Chapter 5 that Boolean lattices are
diametrally reversing. We give an example of a poset P such that no linear
extension of P contained in a diametral pair is reversing. This disproves a
conjecture from [22]. On the other hand, we exhibit some classes of posets
which are diametrally reversing, including interval orders and 3-layer posets.
The last class shows that almost all posets are diametrally reversing.

The results of this chapter are joint work with Graham Brightwell. They
can also be found in [7].
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Chapter 1

Notation and Tools

This chapter sets the stage for the results and proofs we are going to present
in this thesis. Readers who are familiar with the topics may skip it and
consult it only as a reference when needed.

Section 1.1 contains basic definitions and notations concerning posets.
Section 1.2 introduces the dimension of posets, with a special emphasis
on critical pairs and on characterizations of 2-dimensional posets. In Sec-
tion 1.3 we look at partial cubes and some of their properties. Section 1.4
presents the basics of Gallai’s theory on modular decomposition and tran-
sitive orientation of comparability graphs.

1.1 The Basics

Throughout this thesis we assume basic graph theory to be known to the
reader. We mainly use the notation from [13].

Let us start with the objects which are at the basis of this thesis: A
partial order or poset P is a set P equipped with a binary relation ≤ on P ,
which is reflexive, antisymmetric, and transitive. Formally, the relation ≤
is a subset of the ordered pairs (x, y) ∈ P × P . In this thesis we will only
consider finite posets, that is, the ground set P is finite.

A poset Q is a subposet of P if Q ⊆ P , and the relations of Q are
induced by the relations of P , that is, for each pair x, y of elements of Q
we have x ≤ y in Q exactly if x ≤ y in P . By standard abuse of notation,
we usually identify the ground set of a poset with the whole poset.
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1. Notation and Tools

We write x < y if x ≤ y and x 6= y. We also write y ≥ x if x ≤ y
in P , and y > x if y ≥ x and y 6= x. Two elements of P standing in the
relation of P are called comparable, otherwise they are incomparable. We
write x ∼ y if {x, y} ∈ P is a comparable pair of elements, and x‖y if
they are incomparable. Comparable and incomparable pairs are unordered
pairs, and we mostly write x, y or xy instead of {x, y}. We denote the set
of incomparable pairs of P by Inc(P), and let |Inc(P)| = inc(P).

If x < y, then the relation between x and y is a cover relation if there
is no third element w ∈ P such that x < w < y. The interval I(x, y) ⊆ P
consists of all elements w such that x ≤ w ≤ y.

A poset is a chain it contains no incomparable pair of elements. In this
case, the partial order is a linear order . A poset is an antichain if all of its
pairs are incomparable. We denote the antichain on n elements by An. The
height of a poset P is the number of elements of the longest chain appearing
as a subposet of P . The width of a poset is the number of elements of the
largest antichain appearing as a subposet of P .

The Hasse diagram of P is a graph which has the elements of P as
vertices and draws an upward edge between x, y ∈ P for every cover re-
lation x < y. That is, the graph is drawn undirected, but the edges have
an implicit direction. Figure 1.1 shows the Hasse diagram of a poset called
Chevron. All posets depicted in this thesis are shown by their Hasse dia-
grams.

1

2
3

4

5

6

Figure 1.1: The Hasse diagram of the Chevron.

The comparability graph Comp(P) of a poset P is the undirected graph
whose vertex set is the ground set of P , with two vertices being adjacent
exactly if the corresponding elements are comparable in P . A poset P is
called connected if Comp(P) is connected, and the connected components of
P are the connected components of Comp(P). A comparability invariant
is a poset parameter that depends only on the comparability graph of the
poset.

The incomparability graph Incomp(P) of a poset P is the undirected
graph whose vertex set is the ground set of P , with two vertices being
adjacent exactly if the corresponding elements are incomparable in P .

6



1.1. The Basics

The dual P∗ of a poset P is the poset we obtain from P by reversing its
relation, that is, by replacing x ≤ y by y ≥ x for all comparable pairs x, y
of P . We say that P and P∗ differ in direction. This is the first non-standard
term we define, and it will become important later.

An element x ∈ P with x ≤ y for all y ∈ P is called a global minimum
of P . Analogously, if x ≥ y for all y ∈ P, then x is a global maximum of P .
If x ∼ y for all y ∈ P with y 6= x, then x is a global element of P . We
extend this notation to graphs and call a vertex v of a graph G a global
vertex if v is adjacent to every other vertex of G.

If x, y ∈ P and x < y, then x is a predecessor of y, and y is a suc-
cessor of x. We denote the set of predecessors of y by Pred(y), and the
set of successors of x by Succ(x). If we need to specify the poset P , we
write PredP(y) and SuccP(x). We define the downset of a set A ⊆ P as the
set of all x ∈ P with x ≤ a for some a ∈ A, and denote it by A↓. The upset
of A, denoted by A↑, is analogously defined. This means that all downsets
and upsets in this thesis are closed.

There is a canonical bijection between the downsets of P and the an-
tichains of P , since the maximal elements of every downset form an an-
tichain, and conversely, each antichain A ⊆ P generates the downset
{v ∈ P : v ≤ a for some a ∈ A}.

1.1.1 Linear Extensions

As mentioned in the introduction, this thesis investigates the set of linear
extensions of a poset P . A linear extension L of P is a linear order on the
elements of P , such that x ≤ y in P implies x ≤ y in L for all x, y ∈ P. We
write a linear extension as follows:

L = x1x2 . . . xn,

which stands for x1 < x2 < . . . < xn in L. For example, L = 123456 and
L′ = 315246 are linear extensions of the Chevron (see Figure 1.1).

Every poset has a linear extension. The generic algorithm to build a lin-
ear extension L of P consists of n simple steps: In step i, choose xi from the
minima of P − {x1, . . . , xi−1}. After the n-th step, output L = x1x2 . . . xn.
Specifications of the generic algorithm can be given by defining a priority
list for choosing xi in step i.

The number of linear extensions of a poset P on n elements can be as
large as n!, which is attained for P = An. Thus it may be exponential
in |P|. Brightwell and Winkler showed in [8] that counting the number of
linear extensions of a given poset is #P -complete.
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1. Notation and Tools

Let L and L′ be two linear extensions of a poset P . A pair {x, y}, or xy
for short, of elements of P such that x < y in L and x > y in L′ is called
a reversal between L and L′. The distance dist(L,L′) between L and L′

is the number of reversals between L and L′. Clearly, only incomparable
pairs of elements of P can be reversals. Hence we have dist(L,L′) ≤ inc(P).
As for the two linear extensions of the chevron given above, there are four
reversals between them, thus dist(L,L′) = 4.

1.1.2 Special Classes of Posets

The standard example Sn is the poset of height two consisting of two an-
tichains A = {a1, . . . , an} and B = {b1, . . . , bn} such that ai < bj in Sn

exactly if j 6= i.
A poset P is graded if it can be equipped with a rank function ρ from P

to the integer numbers such that x ≤ y implies ρ(x) ≤ ρ(y), and whenever
x < y is a cover relation, then ρ(y) = ρ(x+1). We say that the elements with
the same ρ-value form a level of P . Each graded poset P can be partitioned
into levels A1, . . . , Ar, such that each level Ai forms an antichain in P , and
cover relations only appear between adjacent levels Ai and Ai+1.

A lattice is a poset P such that any two elements x, y ∈ P have a join
and a meet in P . The join x ∨ y of x, y is an element z ∈ P such that
z ≥ x and z ≥ y, and if there is another element w ∈ P fulfilling these two
relations, then we have w ≥ z. The meet x ∧ y is defined analogously by
replacing ≥ with ≤. A join-irreducible element of P is an element v which
is not the join of two elements different from v.

A distributive lattice is a lattice such that x∧ (y ∨ z) = (x∧ y)∨ (x∧ z)
for every pair x, y ∈ P. The downset lattice DP of a poset P is the poset on
the set of all downsets of P , ordered by inclusion. Each downset lattice is a
distributive lattice, with the least upper bound and the greatest lower bound
of two downsets given by their union and their intersection, respectively.
Birkhoff’s famous representation theorem for distributive lattices [3] says
that each distributive lattice D is the downset lattice of the poset induced
by the join-irreducible elements of D (see e.g. [11]).

Each downset lattice is graded, with a rank function given by the number
of elements in the downsets. The 1-element sets of a downset lattice DP

are called the atoms of DP . The downsets containing all but one element
of P are called the coatoms of DP .

The Boolean lattice Bn is the poset on all subsets of [n], ordered by
inclusion. Here, we use the notation [n] = {1, 2, . . . , n}, which is hopefully
on its way to being a ubiquitous standard. By definition, Bn is the downset
lattice of the antichain An. Hence, Bn is graded. Level i of Bn contains
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1.2. Poset Dimension

all subsets of [n] with i elements. The Hasse diagram of Bn equals the
n-dimensional hypercube (see Section 1.3 for the definition).

1.2 Poset Dimension

The dimension of posets is a classic parameter which is discussed extensively
in Trotter’s classic book [59]. Here is the definition:

Definition 1.1 ([17]). A set R = {L1, L2, . . . , Lk} of linear extensions
of P is a realizer of P if for every incomparable pair x, y ∈ P, there are
Li, Lj ∈ R with x < y in Li and x > y in Lj. The dimension dim(P) of P
is the minimum cardinality of a realizer.

Equivalently, dim(P) can be defined as the minimum k for which there
are linear extensions L1, . . . , Lk such that

P =
k

⋂

i=1

Li,

where the intersection is taken over the sets of relations of the Li.
Another characterization of dimension uses an embedding of P into Z

d.
For two vectors v,w in a d-dimensional vectorspace V we have v < w in
the dominance relation if the i-th coordinate of v is smaller than the i-th
coordinate of w, for every i = 1, . . . , d. A realizer R = {L1, . . . , Ld} of
a poset P yields an embedding of P into Z

d such that the order relation
of P equals the dominance relation on Z

d. Let us call such an embedding
proper. It can be obtained by assigning to each v ∈ P the vector in Z

d

whose i-th coordinate equals the position of v in Li, for every i = 1, . . . , d.
Then the dimension of a poset P is the minimal d such that P has a proper
embedding into Z

d.
Suppose we have a set R of linear extensions of a poset P and want to

check whether it is a realizer of P . Using Definition 1.1, we would have to go
through all incomparable pairs of elements. It turns out that it suffices to
check a special type of incomparable pairs, the critical pairs. See Figure 1.2
for illustration.

Definition 1.2. A critical pair of P is an ordered pair (x, y) of elements
of P such that Pred(x) ⊆ Pred(y) and Succ(y) ⊆ Succ(x).

The canonical order of a critical pair (x, y) in a linear extension L of P
is x < y. If y < x in L, then L reverses the critical pair (x, y). If L reverses
some critical pair of P, it is reversing.

9



1. Notation and Tools

x
y

Figure 1.2: Elements x and y form the critical pair (x, y).

The following characterization of critical pairs follows right from the
definition: The pair (x, y) is a critical pair of P if the addition of x < y to
the relations of P does not transitively force any other additional relation
(or, equivalently, if y < x cannot be forced by adding any other relation).

We will see in the proof of the lemma below that every poset which has
an incomparable pair also contains a critical pair. That is, the only posets
without critical pairs are chains.

Lemma 1.3 ([49]). A set R of linear extensions of P is a realizer of P
if and only if for every critical pair (x, y) of P there is a linear extension
in R which reverses (x, y).

Proof. The “only if” direction follows immediately from the definition of a
realizer. For the other direction, it suffices to show that for every ordered
pair (a, b) of incomparable elements of P we can find Li ∈ R with b < a
in Li. Given (a, b), we check if a has a predecessor which is not a predecessor
of b. If so, let us call it a1. Now given an ai with i ≥ 1, we check if ai has
a predecessor ai+1 which is not a predecessor of b. Since P is finite, we will
eventually arrive at an ak such that Pred(ak) ⊆ Pred(b).

Next we check if b has a successor b1 which is not a successor of ak. We
iterate this until arriving at a bℓ such that Succ(bℓ) ⊆ Succ(ak). Observe
that we have Pred(ak) ⊆ Pred(b1) ⊆ Pred(bℓ). It follows that (ak, bℓ) is a
critical pair of P . Since R is a realizer, there is a linear extension L ∈ R
with bℓ < ak in L. Then we have b < bℓ < ak < a in L, which is what we
wanted to show.

It is easy to see that for the standard examples we have dim(Sn) = n.
The critical pairs of Sn are exactly the pairs (ai, bi) for i = 1, . . . , n. Hence
a collection of linear extensions is a realizer of Sn if, for every i, there is a
linear extension in which ai is above bi. But by transitivity we can have
ai > bi for at most one i in each linear extension of Sn.

It was shown in [37] (and is folklore by now) that the dimension of the
Boolean lattice Bn is n. To see this, observe that Bn contains Sn as a

10



1.2. Poset Dimension

subposet, induced by the atoms and coatoms. Clearly, the dimension of a
poset cannot be smaller than the dimension of one of its subposets. Hence
we have dim(Bn) ≥ n.

To show that dim(Bn) is exactly n, we characterize the critical pairs
of Bn. We extend the well-known result to some subposets of Bn which we
use later. For an atom a ∈ Bn, we set ac = [n] \ {a}.

Lemma 1.4. Let P be a subposet of Bn which is induced by a set of subsets
of [n] containing each atom a and each coatom ac of Bn. Then the critical
pairs of P are exactly the n pairs (a, ac).

Proof. Suppose two subsets S and T of [n] form a critical pair of P . Then
they are incomparable, so S 6⊆ T . Therefore S contains an atom a which is
not contained in T . Now if S 6= a, then a would be a predecessor of S which
is not a predecessor of T , contradicting that (S, T ) is a critical pair. Hence
S = a. Since a /∈ T , we know that T ⊆ ac. But if T is a proper subset of
the coatom ac, then ac forms a successor of T which is not a successor of S,
a contradiction. Thus we have T = ac, and the critical pairs of P are as
claimed.

It is now easy to deduce that dim(Bn) = n: In order to build a realizer
{L1, L2, . . . , Ln} of Bn, it suffices to choose as La a linear extension of Bn

in which ac < a, for a = 1, . . . , n.
In general, computing the dimension of a poset is a difficult problem.

Yannakakis [65] showed that deciding whether the dimension of a poset P is
at least t for some fixed t ≥ 3 is an NP-complete problem. The only special
case which is easy to compute is dimension 2. The class of 2-dimensional
posets is well understood and a number of characterizations are available
(see [17], [2] or the overview in [43]).

Since 2-dimensional posets will appear a number of times in this thesis,
we want to prove two characterizations here. We need the following notions:
A poset Q is a conjugate of a poset P if their ground sets coincide and every
pair of distinct elements is comparable in exactly one of the two posets. A
linear extension L of P is called separating if there are elements u, v, w ∈ P
such that u < v < w in L, u < w in P , but v ‖u,w in P . If a linear
extension is not separating, it is non-separating.

Theorem 1.5 ([17]). Let P be a poset. Then the following properties are
equivalent:

(1) P is 2-dimensional.

(2) P has a conjugate.

11



1. Notation and Tools

(3) P has a non-separating linear extension.

Proof. To show that (1) and (2) are equivalent, we start with a real-
izer L1, L2 of P . Then by definition, we have P = L1 ∩ L2, where the
intersection is taken over the relations. Now L1 ∩ L∗

2 defines a partial or-
der Q which is a conjugate of P . On the other hand, if Q is a conjugate
of P , then it is not difficult to see that P∪Q and P∪Q∗ are linear extensions
of P . Together they build a realizer of P .

For the equivalence of (2) and (3), let Q be a conjugate of P and let L′

be a linear extension of Q. Build a linear extension L of P with the generic
algorithm, using L′ as a priority list. If we have v ‖u,w ∈ P, then because Q
is transitive, we have either v < u,w or v > u,w in Q. It follows that L is
non-separating. Conversely, if L is a non-separating linear extension of P ,
then consider the set of relations which are in L, but not in P . Since L is
non-separating, this set of relations is transitively closed, and thus defines
a conjugate of P .

If L and L′ form a realizer of a 2-dimensional poset P , then all in-
comparable pairs of P need to be reversals between L and L′, that is,
dist(L,L′) = inc(P). Obviously, the converse also holds. It follows that L′

is the unique partner of L in a minimum realizer of P . Not all linear exten-
sions of P have a partner at distance inc(P), but we can characterize them
using the arguments from the previous proof.

Corollary 1.6. Let P be a 2-dimensional poset and let L be a linear exten-
sion of P. Then L is contained in a minimum realizer of P exactly if it is
non-reversing.

Proof. Let L be non-reversing. Then the relations which are in L, but not
in P , define a conjugate Q of P . Now L = P ∪ Q and P ∪ Q∗ form a
realizer of P . Conversely, suppose that {L,L′} is a minimum realizer of P ,
and let u, v, w ∈ P with u < w and v‖u,w in P . If u < v < w in L, then
we have v < u and v > w in L′, which is a contradiction. Thus L has to be
non-separating.

It follows from the equivalence between properties (1) and (2) of The-
orem 1.5 that a poset is 2-dimensional exactly if its incomparability graph
is a comparability graph, cf. [2]. Gallai [25] gave a complete list of the
minimal forbidden subgraphs of comparability graphs.

A poset P is called t-irreducible if it has dimension t, but deleting any
element from P makes the dimension drop. Gallai’s characterization of
comparability graphs via forbidden subgraphs yields a list of all 3-irreducible
posets. The Chevron (cf. Figure 1.1) is one of the smallest 3-irreducible
posets. See Trotter’s book [59] for a discussion of t-irreducible posets.
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1.3. Partial Cubes

1.3 Partial Cubes

In this section, we introduce the graph class of partial cubes and present
basic properties and results that will be useful later. Partial cubes were
first mentioned by Firsov [23] and Graham and Pollak [29], and first char-
acterized by Djoković [15]. Several papers with other characterizations and
generalizations followed, see [30], [31], [64], [9] and more recently [47]. The
class of partial cubes includes various important graph classes, e.g. trees,
hyperplane arrangement graphs and median graphs. For overviews provid-
ing more references and connections to other fields, see [31], [33] and [12].

Definition 1.7. The Hamming distance between two strings is the number
of coordinates in which they differ. The r-dimensional hypercube Qr is the
graph on all 0-1-strings of length r, in which two strings are adjacent if
their Hamming distance is 1.

Let G be a graph and H a subgraph of G. Then H is a convex subgraph
of G if for every u, v ∈ V (H), every shortest u-v-path in G is fully contained
in H. Moreover, H is an isometric subgraph of G if for every u, v ∈ V (H),
at least one shortest u-v-path in G is fully contained in H.

A partial cube is an isometric subgraph of a hypercube. A Hamming
labeling of a partial cube G = (V,E) is a labeling of V with 0-1-strings
such that the distance of two vertices in G equals the Hamming distance of
the corresponding strings.

By definition, each partial cube has a Hamming labeling. The following
proposition summarizes basic properties of hypercubes, see e.g. [33].

Proposition 1.8. Let Qr be a hypercube. Then

(i) Qr is connected, bipartite, r-regular and has diameter r.

(ii) |V (Qr)| = 2r and |E(Qr)| = r2r−1.

(iii) For any pair of vertices u, v ∈ Qr, the subgraph induced by the interval
I(u, v) is a hypercube whose dimension equals the Hamming distance
of u and v.

(iv) If G is a subgraph of Qr, then |E(G)| ≤ 1
2
|V (G)| · log2(|V (G)|), with

equality holding if and only if G = Qs for some s ≤ d.

The fact that Qr is bipartite carries over to all partial cubes. A bipar-
tition is given by the parity of the number of 1s in a Hamming labeling of
the vertices.
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1. Notation and Tools

Definition 1.9 ([15]). For an edge uv of a graph G, let Wuv be the set of
vertices of G that are closer to u than to v in G. Two edges e = xy and f
of G stand in relation θ if f joins a vertex in Wxy with a vertex in Wyx.
The relation θ is called the Djoković-Winkler relation.

The definition of θ given above is due to Djoković [15]. Winkler [64]
defined another relation θ′ on the edges of a graph, in which two edges
e = vw and f = xy are related if d(x, v) + d(y, w) 6= d(x,w) + d(y, v),
where d denotes the graph distance. It is not difficult to see that θ′ and θ
coincide on bipartite graphs, hence in particular on partial cubes. Since we
will only use these two relations for partial cubes, we do not distinguish
between them, and call θ = θ′ the Djoković-Winkler relation, following [33].

We will use the following characterizations of partial cubes:

Theorem 1.10 ([15], [64]). Let G = (V,E) be a connected graph. The
following statements are equivalent:

(1) G is a partial cube.

(2) G is bipartite and for every edge uv of G, the sets Wuv and Wvu induce
convex subgraphs of G.

(3) G is bipartite and θ is an equivalence relation on E.

Let G = (V,E) be a partial cube. By the above theorem, the Djoković-
Winkler relation is an equivalence relation on the edges of G. This yields
a partition of E into Djoković-Winkler classes θ1, . . . , θr. If e ∈ θk, we
write θ(e) = θk, abusing the notation. Here is a crucial lemma about the
Djoković-Winkler classes:

Lemma 1.11. Let G be a partial cube given with a Hamming labeling. Then
the coordinates of the Hamming labeling are in bijection with the Djoković-
Winkler classes of G. Moreover, the Hamming labeling is unique up to
permutation of coordinates and addition of redundant coordinates.

Proof. Consider a shortest path P in Qr between two vertices x and y
which coincide in the i-th coordinate. It is easy to see that all vertices on P
coincide with x and y in the i-th coordinate. Now let e = xy be an edge
of Qr such that x and y differ in the i-th coordinate. It follows that all
vertices coinciding with x in the i-th coordinate are closer to x than to y,
and vice versa. In other words, Wxy consists of all vertices which coincide
with x in the i-th position, and Wyx consists of all vertices which coincide
with y in the i-th position. The edges joining a vertex in Wxy to a vertex
in Wyx are therefore exactly the edges corresponding to a change of the i-th
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1.3. Partial Cubes

coordinate. This yields a bijection between the coordinates of the Hamming
labeling and the Djoković-Winkler classes of G.

Assume that G is an isometric subgraph of Qr, and let P be a shortest
path in G. Then P is also a shortest path in Qr. Thus the observation
of the last paragraph carries over to P : If the endvertices of P coincide
in a coordinate, then all vertices on P do. Consequently, if e = xy is an
edge of G such that the Hamming labeling of x and y differs in the i-th
coordinate, then Wxy consists of all vertices which coincide with x in the
i-th position, and Wyx consists of all vertices which coincide with y in the
i-th position. Also, if θ(e) = θk, then the edges in θk are exactly the edges
connecting two vertices differing in the i-th position.

Since the partition of the edges into Djoković-Winkler classes is clearly
unique, it follows that the Hamming labeling is unique up to permutation
of coordinates and addition of redundant coordinates.

The hypercube Qr is the Cartesian product of r copies of K2. In [64]
it was shown that the isometric embedding of a graph into a product of
complete graphs is essentially unique. This generalizes the uniqueness of
the Hamming labeling shown above.

Using Winkler’s definition, it is easy to see that the Djoković-Winkler
relation of a bipartite graph can be computed in polynomial time. With
characterization (iii) of Theorem 1.10, this yields a recognition algorithm for
partial cubes. The currently fastest recognition algorithm has been given
by Eppstein [18].

Theorem 1.12 ([18]). Let G be an undirected graph on n vertices. Then
there is an algorithm which checks in time O(n2) whether G is a partial cube.
The algorithm constructs the Djoković-Winkler classes of G, and uses them
to obtain a valid Hamming labeling of G.

Djoković [15] defines the isometric dimension dimI(G) of a graph G as
the smallest r such that G has an isometric embedding into the hyper-
cube Qr. He proved the following:

Theorem 1.13 ([15]). If G is a partial cube, then dimI(G) equals the
number of Djoković-Winkler classes of G.

With Eppstein’s algorithm, it follows that the isometric dimension of a
partial cube can be computed in quadratic time.

The following easy lemma is probably known to anybody interested in
partial cubes, though the publications we are aware of only mention one
direction. We give a proof for completeness.
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1. Notation and Tools

Lemma 1.14. Let P be a path in a partial cube G. Then P is a shortest
path in G exactly if no two distinct edges on P belong to the same Djoković-
Winkler class.

Proof. Consider a Hamming labeling of G. By Lemma 1.11, the Djoković-
Winkler classes are in bijection with the coordinates of the Hamming la-
beling. Thus it suffices to show that P is a shortest path in G exactly if no
two distinct edges on P correspond to the same coordinate.

Let x and y be the two endvertices of P , and observe that every x-y-path
needs to use at least one edge for every coordinate in which x and y differ.
Let S be the set of these coordinates. If G is the full hypercube, then it is
clearly true that P is a shortest path in G if and only if it contains exactly
one edge for every coordinate in S. This carries over to an arbitrary partial
cube G, since a shortest path in G cannot be shorter than |S|.

We call a cycle in a graph G an isometric cycle if it is an isometric
subgraph of G. Convex cycles are defined analogously. Note that every
convex cycle is an isometric cycle, but the converse does not hold.

We can now characterize the isometric cycles in partial cubes. Again,
this characterization was probably known beforehand, but we are not aware
of a publication.

Theorem 1.15. Let G be a partial cube, and let C be a cycle in G. Then C
is an isometric cycle exactly if, for any two edges e, f on C, the following
two conditions are equivalent:

(i) e and f are opposite edges of C.

(ii) θ(e) = θ(f).

Proof. Assume that C is an isometric cycle of G. Let C contain two edges
e = xy and f = uv such that x ∈ Wuv as in Figure 1.3. If e and f are
opposite edges in C, then y ∈ Wvu. Thus θ(e) = θ(f). Now suppose that
e and f are not opposite in C. Then there is a shortest y-v-path on C
which contains e and f . By Lemma 1.14, the Djoković-Winkler classes of
the edges on this path are pairwise different.

For the other direction, assume that (i) and (ii) are equivalent for C.
Let x and v be vertices on C. Then there is an x-v-path on C such that
no two distinct edges of P belong to the same Djoković-Winkler class. By
Lemma 1.14, this path is a shortest path. Thus C is an isometric cycle.
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Figure 1.3: Opposite and non-opposite edges e, f in a cycle C.

1.4 Modular Decomposition

In this section, we state results on the modular decompositon and transitive
orientation of graphs from Gallai’s classic paper [25]. We keep the presenta-
tion brief, only presenting the results (without proofs) which we need later
in Section 3.4. We mainly follow Gallai’s notation and the notation used in
the translation in [39].

Definition 1.16. An undirected graph G = (V,E) is called a comparability
graph if it is possible to assign a transitive orientation to the edges in E,
such that whenever (u, v) and (v, w) are arcs, also (u,w) is an arc.

It is easy to see that G is a comparability graph exactly if there is a
poset P such that G = Comp(P), and every transitive orientation of G
corresponds to such a poset.

Now let G = (V,E) be an arbitrary graph. If uv ∈ E and uw ∈ E,
but vw /∈ E, then orienting one of the two edges uv and uw forces the
orientation of the other in a transitive orientation: The edges uv and uw
must either both be directed towards their common endvertex, or both away
from it. We say that uv forces uw. The forcing relation is reflexive and
symmetric, and its transitive closure yields a partition of E. Let us call
the classes of this partition the forcing classes of G. Then the choice of
an orientation for one edge in a forcing class F forces the orientation of all
other edges in F .

Two subsets V1, V2 of the vertices of a graph G will be called completely
adjacent if all possible edges between V1 and V2 are present in G.

Theorem 1.17 ([25]). Let G = (V,E) be an undirected graph on at least
two vertices. Then exactly one of the following cases holds:
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1. Notation and Tools

(‖) G is disconnected and has connected components G1, G2, . . . Gt, t ≥ 2.
Then the forcing classes of G1, G2, . . . , Gt are exactly the forcing
classes of G.

(S) Gc is disconnected (thus G is connected) and has connected compo-
nents Gc

1, G
c
2, . . . G

c
t , t ≥ 2. Let Mi = V (Gc

i). Then for each pair i, j
with i 6= j, it holds that Mi and Mj are completely adjacent in G,
and the Mi-Mj-edges form one forcing class Fij of G. The forcing
classes of G different from the Fij are exactly the forcing classes of
all the (Gc

i)
c.

(P) If G and Gc are both connected and have at least two vertices, then
there exists a unique proper partition M1, . . . ,Mt, t ≥ 2, of V with
the following properties:

(a) For each pair i 6= j, if there is an Mi-Mj-edge in G, then Mi and
Mj are completely adjacent.

(b) The edges whose endpoints are in different Mi form a unique
forcing class F . Every vertex of G is incident with at least one
edge from F .

(c) The forcing classes different from F are exactly the forcing
classes of the graphs G[Mi], i = 1, . . . , t.

(d) The partition of V into M1, . . . ,Mt is not a refinement of another
partition with properties (a)–(c).

In each of the three cases of Theorem 1.17, we obtain a unique proper
partition {M1, . . . ,Mt} of V , the canonical partition of G. The Mi are the
vertex classes of G. An edge of G with both endpoints in some Mi is called
an inner edge, and the other eges are called outer edges. The edges of a
given forcing class are either all inner or all outer edges. By definition, the
canonical partition of the one-vertex graph K1 is K1 itself.

Consider the subgraphs G[Mi] of G given by the canonical partition.
We can now apply Theorem 1.17 to the G[Mi]. The vertex classes of the
canonical partition of the G[Mi] are the second order vertex classes of G.
Recursively, we obtain vertex classes of order 3, 4, . . . of G. Since G is finite,
there is an s ∈ N such that all vertex classes of order s are singletons.

We now present a recursion-free characterization of the vertex classes. It
uses the concept of modules. Gallai uses the term homogeneous set instead
of module.

Definition 1.18. Let G = (V,E) be a graph and M ⊆ V . Then M is a
module of G if every vertex of G which is not in M is either adjacent to all
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1.4. Modular Decomposition

vertices in M , or adjacent to no vertex in M . A module M is called strong
if every other module of G is either disjoint to M or comparable to M under
inclusion. A (strong) module M is called quasi-maximal if there is no other
(strong) module M ′ with M ⊂ M ′ ⊂ G.

Clearly, all vertex classes with respect to the canonical partition form
modules of G. Furthermore, we have:

Lemma 1.19. Let M be a module and F a forcing class of a graph G. If F
has one edge in M , then all edges of F are in M , and F is a forcing class
of M . Conversely, the set of vertices induced by F form a module of G.

Theorem 1.20. If G has at least two vertices, the quasi-maximal modules
of G are the vertex classes of the canonical partition of G. If G is not empty,
then the collection of all strong modules of G is identical to the collection
of all vertex classes of all orders of G.

The modular decomposition is the collection of all strong modules of G,
ordered by inclusion. The modular decomposition of G forms a tree, with
the whole vertex set V as root and singletons as leaves. It is called the
modular decomposition tree.

The number of modules of G can be exponential in general. However,
the modular decomposition tree has at most 2|V |−1 nodes (cf. [42]), which
can be proved by a straightforward induction. This makes it an efficient
structure for storing G, which we will exploit in Chapter 3.

Definition 1.21. The partition graph G# of G is defined as follows: The
vertices of G# are the vertex classes of the canonical partition of G. Two
vertices of G# are adjacent exactly if there exists an edge between the cor-
responding vertex classes in G.

Theorem 1.22. Let G be a graph and G# the partition graph of G. Then
we have:

(1) If G is not connected, then G# has no edge.

(2) If Gc is not connected, then G# is a complete graph, and each edge
of G# forms its own forcing class in G#.

(3) If G and Gc are connected and have at least two vertices, then G#

and (Gc)# are connected. All edges of G# belong to the same forcing
class. Also, G# contains an induced path on four vertices.
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A graph with exactly two transitive orientations (which are then the
reverse of one another) is called uniquely partially orderable. The transition
graph G# in case (3) of the above theorem is uniquely partially orderable,
because all edges belong to the same forcing class.

The following theorem characterizes all transitive orientations of a given
graph.

Theorem 1.23. Let G be a non-empty graph and let M r−1 be a module of
order r − 1 of G (r ≥ 1). Consider the canonical partition {M r

1 , . . . ,M r
k}

of M r−1, the partition graph G[M r−1]#, and two vertex classes M r
i , M r

j

which are completely adjacent in G.

1. If G is a comparability graph then, for each transitive orientation of G,
the M r

i -M
r
j -edges are either all directed from M r

i to M r
j or all directed

from M r
j to M r

i . Moreover, if we orient the edge M r
i M r

j of G[M r−1]#

in the same way, and repeat this for each edge of G[M r−1]#, we obtain
a transitive orientation of G[M r−1]#.

2. Conversely, assume that all partition graphs G[M r−1]# are compara-
bility graphs and choose a transitive orientation for each of them. For
each vertex class M r−1 of any order r − 1, and for any two vertices
M r

i , M r
j of the partition graph G[M r−1]#, let us assign to all M r

i -M
r
j -

edges of G the orientation of the edge M r
i M r

j in G[M r−1]#. Then we
obtain a transitive orientation of G.

Gallai does not explicitly mention an algorithm to construct a transitive
orientation of a comparability graph, but the above result is constructive
and gives an outline of a possible algorithm. We will use this in Section 3.4.
Gallai’s paper [25] also gives a characterization of comparability graphs by
means of forbidden subgraphs.

There has been a lot of research on modular decomposition and transi-
tive orientations of a comparability graph after Gallai’s paper. Algorithmic
aspects were treated in Golumbic’s book [28] and in Möhring’s article [42].

A linear time algorithm for finding the modular decomposition of a
graph has been given by McConnell and Spinrad [40]. The algorithm can
also be extended to find a transitive orientation in linear time if the given
graph is a comparability graph. However, it is very technical and hard to
understand. In [41], they give a simpler algorithm which fulfills both tasks
in time O(n + m log n).

We want to transfer some of the terms defined for comparability graphs
to posets. The term of a module of a poset will appear frequently in this
thesis:
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1.4. Modular Decomposition

Definition 1.24. Let P be a poset. We call a subset M of the elements a
module of P if the elements in M cannot be distinguished from the outside.
More precisely, M is a module if for any x ∈ P \ M we have either x > m
for all m ∈ M or x < m for all m ∈ M or x‖m for all m ∈ M .

If M = {x, y} with x‖y, we say that xy is a twin of P.

For the following, consider the comparability graph Comp(P) of P and
the canonical partition M1, . . . ,Mt of Comp(P), given by Theorem 1.17.
By Theorem 1.23, each Mi is a module of P . Then P induces a transitive
orientation of the partition graph Comp(P)#. Observe that if case (S)
of Theorem 1.23 applies to Comp(P), then this transitive orientation is a
linear order of the modules M1, . . . ,Mt.

Definition 1.25. Let P be a poset and let M1, . . . ,Mt be the canonical
partition of Comp(P). In view of the three cases of Theorem 1.17, we
define:

If case (‖) applies to Comp(P), then the Mi are parallel modules of P,
and P is the parallel composition of P [M1], . . . ,P [Mt].

If case (S) applies to Comp(P), then the Mi are series modules of P,
and P is the series composition of P [M1], . . . ,P [Mt]. Furthermore, if
M1 < M2 < . . . < Mt is the transitive orientation of Comp(P)# induced
by P, then we write P = P [M1] ∗ . . . ∗ P [Mt].

If case (P) applies to Comp(P), then the Mi are prime modules of P,
and P is the prime composition of P [M1], . . . ,P [Mt].

Observe that P = P1 ∗ P2 if P arises from placing P2 “on top of” P1,
that is, the relations of P are obtained by keeping the relations within P1

and P2 unchanged, and setting v1 < v2 whenever v1 ∈ P1 and v2 ∈ P2.
As last result of this chapter, we present a characterization of compara-

bility invariants (see Section 1.1 for the definition). Theorem 1.23 implies a
convenient method to show that a given poset parameter is a comparability
invariant. It was proved explicitly in [16].

Before stating it, we need some notation: Let P and Q be posets and
let x ∈ P. We denote by PQ

x the poset resulting from replacing x by Q
in P . That is, PQ

x has P−x∪Q as ground set. The relation in PQ
x between

two elements of P − x is the same as in P , and the relation in PQ
x between

an element v in P − x and an element in Q is the same as the relation
between v and x in P . Then PQ

x arises from P by inserting Q for x in P .

Theorem 1.26 ([16]). A poset parameter ρ is a comparability invariant
exactly if it remains unchanged whenever a subposet induced by a module is
replaced by its dual, that is, if ρ(PQ

x ) = ρ(PQ∗

x ) for all choices of posets P ,Q
and elements x ∈ P.
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Chapter 2

Properties of Linear Extension Graphs

Linear extension graphs play a central role in this thesis. In this chapter we
explore their beautiful structure and exhibit connections to the underlying
posets.

A linear extension graph is a graph on the set of linear extensions of
a poset, where two linear extensions are adjacent exactly if they differ in
one adjacent swap of elements. This yields a coloring of the edges with
the corresponding swaps. Figure 2.1 shows the Chevron with its linear
extension graph.
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Figure 2.1: The Chevron and its linear extension graph with a swap coloring.
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Linear extension graphs were originally defined by Pruesse and Ruskey
in [48]. The first line of research on linear extension graphs was concerned
with the existence of a Hamilton path; see also [52] and [61]. There has
been subsequent research on other structural properties of G(P), see [51],
[50], [44], [45] and [22].

In Section 2.1 we present basic properties and previous results of lin-
ear extension graphs, and place them into a larger context. In Section 2.2
we concentrate on properties of the edge classes induced by the swap col-
ors. This prepares Section 2.3, in which we will characterize which pairs of
swap colors share an element. The last section of this chapter deals with
the question which modifications of the poset P leave the linear extension
graph G(P) invariant.

2.1 Context and Previous Results

Before pointing out the connection of linear extension graphs to larger
known graph classes, we want to make our notation precize and present
some basic features of linear extension graphs.

Definition 2.1. The linear extension graph G(P) = (V,E) of a poset P
has as vertices the linear extensions of P, with two of them being adjacent
if they only differ in one adjacent transposition, or swap, of elements.

Equivalently, for an edge LL′ ∈ E there is exactly one pair xy ∈ Inc(P)
with x < y in L and x > y in L′. This pair is the swap color of LL′. The
set of all edges with the same swap color forms a color class of G(P).

A graph G is a linear extension graph if there is an underlying poset P
such that G = G(P).

Recall that a reversal between L and L′ is a pair of elements of P ap-
pearing in different orders in L and L′. Thus, each swap color corresponds
to a reversal. By definition, two linear extensions of P are adjacent in G(P)
exactly if there is only one reversal between them, i.e., if the distance be-
tween them is 1. The very first observation about linear extension graphs
we want to prove is that this generalizes to higher distances: The distance
between two linear extensions L,L′ of P equals the graph distance between
the two corresponding vertices in G(P).

Informally, this holds because changing L into L′ is just the same as
sorting the elements of P into the linear order L′, starting with the linear
order L. Thus we may, for example, use a selection sort algorithm (see
e.g. [54]) to show that we never have to make a superfluous reversal in the
sorting process.
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For completeness, we give an explicit proof in the following lemma. A
similar version of this lemma appeared in [44]. Note that we identify a
vertex of G(P) with the corresponding linear extension of P .

Lemma 2.2. Let L and L′ be two linear extensions of a poset P. Let T be
a shortest L-L′-path in G(P), and let S be the set of swap colors appearing
on T . Then the swap colors in S are in bijection with the reversals between L
and L′, and each swap color in S appears only once on T .

Proof. An L-L′-path T in G(P) with swap color set S corresponds to a
sequence of swaps modifying L into L′. To get from L to L′ by swaps, we
need to swap every reversal between L and L′ at least once. We will describe
a process modifying L into L′ which swaps only reversals, and every reversal
only once. This corresponds to a shortest L-L′-path in G(P), and it follows
that every shortest L-L′-path in G(P) has the desired properties.

Let L = u1u2 . . . un and L′ = v1v2 . . . vn. Start with finding the position
of v1 in L, say, v1 = uj. Then uj is a minimal element of P , so we can swap
it with uj−1, then uj−2, and so on, until we obtain a linear extension of P
which coincides with L′ in the first element.

Now assume that we are given Li = u1u2 . . . un which coincides with L′

in the first i elements. Find the position of vi+1 in Li, say, vi+1 = uj. It
follows that j > i, and uj is a minimal element of P −{u1, . . . , ui}. We can
thus swap uj with uj−1, then uj−2, and so on, until we arrive at a linear
extension Li+1 of P which coincides with L′ in the first i + 1 elements.
Inductively, we obtain Ln = L′.

Consider a pair of elements appearing in the same order in L and L′,
that is, a pair x, y ∈ P such that y has higher u-index and higher v-index
than x. Then x and y are never swapped in our process, and hence we swap
only reversals. Also, all of our swaps take an element which appears in L
above some element with higher v-index, and swap it below that element.
Therefore no pair of elements is swapped twice. This means that each
reversal is swapped exactly once.

Let xy ∈ Inc(P) and set G = G(P). We denote by Wxy the set of linear
extensions of P in which x < y, and by Wyx the set of linear extensions
of P in which y < x. Then the edges of swap color xy are exactly the edges
connecting a linear extension in Wxy with a linear extension in Wyx. On the
other hand, every path connecting a linear extension in Wxy with a linear
extension in Wyx has to pass an edge with swap color xy. It follows that
each color class is an edge cut of G.

Observe that the proof of the lemma above yields that each linear ex-
tension graph is connected. Now set Gxy = G[Wxy] and Gyx = G[Wyx].
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2. Properties of Linear Extension Graphs

Then Gxy is the linear extension graph of P ∪ (x < y), and Gyx is the linear
extension graph of P ∪ (x > y). Therefore Gxy and Gyx are connected.
Thus every color class cuts the graph G into exactly two components.

Lemma 2.3 ([51]). Let P be a poset and xy ∈ Inc(P). Then Gxy and Gyx

are convex subgraphs of G(P).

Proof. Let L,L′ ∈ Wxy. We need to show that an arbitrary shortest
L-L′-path T in G(P) is contained in Wxy. By Lemma 2.2, all swap col-
ors appearing on T are reversals between L and L′. Hence xy does not
appear as a swap color on T . Therefore T lies fully in Wxy.

The above lemma is the crucial tool embedding linear extension graphs
into the much larger class of partial cubes.

Theorem 2.4. Linear extension graphs are partial cubes, and the color
classes equal the Djoković-Winkler classes.

Proof. We use the characterization from Theorem 1.10. Let G be a linear
extension graph, and let LL′ be an edge in G. Suppose L and L′ differ by
the swap of the elements x and y, and x < y in L. By Lemma 2.2, we have
WLL′ = Wxy, that is, the set of linear extensions which are closer to L than
to L′ in G is exactly the set of linear extensions in which x < y. Hence it
follows from Lemma 2.3 that G is a partial cube.

The definition of the Djoković-Winkler relation and WLL′ = Wxy yield
that the color classes of G equal the Djoković-Winkler classes of G.

For the following, we want to fix some more notation concerning the
swap colors of linear extension graphs. In view of the above theorem we
use the style of the partial cube notation.

Definition 2.5. Let G = G(P) be a linear extension graph. We denote
the color classes of G(P) by θ1, θ2, . . . , θr. The swap partition Θ(G) is the
partition of E(G) into the color classes θi, i = 1, . . . , r.

A swap coloring of G is a bijection c between Θ(G) and Inc(P) which as-
signs to every color class the swap color of its edges. We usually denote the
reverse mapping of c by θ. That is, if θi ∈ Θ(G), and c(θi) = xy ∈ Inc(P),
we write θ(xy) = θi. We extend this notation to the edges of G, i.e., if the
swap color of e is xy, we write c(e) = xy, and if e ∈ θi, we write θ(e) = θi.

If a graph G is a linear extension graph and we need to specify which
underlying poset a swap coloring of G refers to, we say that c is a swap
coloring of G with respect to P.

If G is a linear extension graph, and thus a partial cube, then it has a
unique partition of its edges into Djoković-Winkler classes. Hence it follows
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from Theorem 2.4 that G has a unique swap partition Θ(G). Further-
more, as a partial cube, G has a Hamming labeling. By Lemma 1.11, this
Hamming labeling is essentially unique, and partitioning the edges of G
according to its coordinates again yields the swap partition Θ(G).

With Theorem 1.15, the following result now follows directly from The-
orem 2.4.

Corollary 2.6 ([44]). Let G be a linear extension graph with swap color-
ing c, and let C be a cycle in G. Then C is an isometric cycle exactly if
for any two edges e, f on C, the following two conditions are equivalent:

(i) e and f are opposite on C.

(ii) c(e) = c(f).

The fact that linear extension graphs are partial cubes is the background
setting that we will use most in this thesis, but it is by far not the only larger
context in which linear extension graphs can be viewed. In the remainder of
this section, we want to point out some other connections. We only hint at
the rich fields behind them. More connections and references can be found
in Reuter’s article [51].

The linear extension graph of the antichain, G(An), is the 1-skeleton
of the permutahedron Πn−1, see e.g. Ziegler’s book on polytopes [66]. The
permutahedron is a well-known polytope which is defined as the convex hull
of all vectors that are obtained by permuting the coordinates of the vector
(1 2 . . . n)t. In the following, we use the term permutahedron, and the
notation Permn, to denote the 1-skeleton of Πn−1.

The permutahedron Permn is also a hyperplane arrangement graph: The
set of hyperplanes Hi,j = {x ∈ R

n : xi = xj} for 1 ≤ i < j ≤ n is called
a braid arrangement. It is not difficult to see that Permn is isomorphic to
the graph on all regions of the braid arrangements, where two regions are
adjacent if they are separated by only one hyperplane. For an introduction
to hyperplane arrangements, see e.g. Stanley’s recent overview [56].

The braid arrangement is a Coxeter arrangement of type An−1. See
the overview [24] by Fomin and Reading for an introduction to reflection
groups and Coxeter arrangements. Hyperplane arrangement graphs are also
the tope graphs of oriented matroids, see e.g. the book [4] by Björner et al..

A fact that we will use in the following is that hyperplane arrangement
graphs are also partial cubes [46], thus, they interpolate between linear
extension graphs and partial cubes.

In the last paragraphs we only considered G(An) = Permn. Now let P
be an arbitrary poset on n elements, and consider the regions of the braid
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2. Properties of Linear Extension Graphs

arrangement again. For each pair i < j in P , let us restrict the hyperplane
arrangement to the halfspace induced by Hi,j in which xi < xj. Then G(P)
is the region graph of the modified braid arrangement. If we restrict the
modified braid arrangement to the box in which all coordinates of vectors
are at most 1, we obtain Stanley’s order polytope, see [55]. This additional
restriction does not change the region graph. It also follows from Stanley’s
results that G(P) is the dual graph of the canonical triangulation of the
order polytope.

Let us consider what happens to Permn if we restrict the braid arrange-
ment to halfspaces. Since Permn is a hyperplane arrangement graph, each
edge e of Permn corresponds to a hyperplane Hi,j. Equivalently, e has swap
color ij. Restricting Permn to the vertices induced by one halfspace of Hi,j

is the same as restricting it to one side of the edge cut θ(ij), thus to Wij

or Wji.
This correspondence sheds new light on the notion of convex subgraphs

in hyperplane arrangement graphs, since we can now see the close con-
nection to geometric convexity. We formulate the following lemma for the
larger class of partial cubes. For an adjacent pair x, y of vertices of a partial
cube G, we call the subgraph G[Wxy] a halfspace of G, cf. [45].

Lemma 2.7 ([45]). Let G be a partial cube. A subgraph of G is convex if
and only if it is an intersection of halfspaces.

With this lemma, it can now be seen that linear extension graphs are in
bijection with convex subgraphs of the permutahedron: If we start with the
full graph Permn and an n-element poset P , we take each comparable pair
in P and delete the halfspace of Permn where the corresponding relation
is violated. This yields a convex subgraph of Permn. Conversely, starting
with a convex subgraph we may consider it as intersection of halfspaces,
and this yields the relations of the corresponding poset.

In fact, something even stronger is true. The convex subgraphs
of Permn, ordered by inclusion, form a lattice Conv(Permn). Now let us
consider the set of all extensions of an n-element poset P . If we order it by
inclusion of the relations, it forms a poset Ext(P). Let us add an artificial
global maximum to it, corresponding to the complete relation P × P, and
denote the result by Ext(P)+.

The following fundamental correspondance was first proved by Feldman
in [19], and later rediscovered by Björner and Wachs [5] and by Reuter [51].

Theorem 2.8. For an n-element poset P, the lattice Conv(Permn) is iso-
morphic to the dual of Ext(P)+.

28



2.2. Color Classes

We want to mention one more fundamental property of linear extension
graphs in this section:

Theorem 2.9 ([44]). The cycle space of a linear extension graph is gen-
erated by 4-cycles and 6-cycles.

Proof Outline. It is not difficult to show that the cycle space of a graph G
is generated by the isometric cycles of G. In fact, it holds that every non-
isometric cycle is a sum of shorter isometric cycles. Now let G be a linear
extension graph. It can be proved that each isometric cycle of G is the sum
of 4-cycles and 6-cycles, by induction on the length of the cycle.

The first crucial step is to show that for each cycle C of length at least 8
in G, there are two consecutive edges of C which are contained in a common
isometric 4-cycle C ′, or three consecutive edges of C which are contained
in a common isometric 6-cycle C ′. This can be deduced from Lemma 2.16.

Now let C be an isometric cycle of G. By induction we may assume
that C and C + C ′ have the same length. The second crucial step is to
apply Corollary 2.6, which says that opposite edges of C ′ have the same
swap color. But then, there are two opposite edges of C + C ′ which do not
have the same swap color. It follows by Corollary 2.6 that C + C ′ is not
an isometric cycle. Thus it is a sum of shorter isometric cycles, and we are
done by induction.

The reader is invited to go back to Figure 2.1 and check that every cycle
in G(P) is composed of 4- and 6-cycles. It can also be observed that every
4-cycle in G(P) corresponds to two disjoint swaps, and every convex 6-cycle
in G(P) corresponds to the permutations of the elements of an antichain A3

in P . It will follow from Lemma 2.16 that this holds in general.

2.2 Color Classes

The color classes play a very important role for our analysis of linear ex-
tension graphs. In this section, we analyze the relation of two color classes
in a linear extension graph. However, we start with looking at the relation
of two edges in the same color class.

Proposition 2.10. Let G = G(P) be a linear extension graph with swap
coloring c, and let e, f ∈ E(G). Then we have c(e) = c(f) exactly if there is
a sequence e1e2 . . . ek of edges with e1 = e and ek = f such that ei and ei+1

are opposite edges in a convex 4-cycle or 6-cycle of G.

Proof. Suppose that there is a sequence e1e2 . . . ek of edges as described in
the proposition. Successive edges in this sequence are opposite in a convex,
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2. Properties of Linear Extension Graphs

and thus isometric, 4-cycle or 6-cycle of G. Recall that edges which are
opposite in an isometric cycle of G have the same color by Corollary 2.6.
Thus c(ei) = c(ei+1) for i = 1 . . . k − 1, and hence c(e) = c(f).

For the other direction, suppose that c(e) = c(f) = xy ∈ Inc(P).
Let e = L1L2 and f = L′

1L
′
2, such that L1, L

′
1 ∈ Wxy and L2, L

′
2 ∈ Wyx,

see Figure 2.2. Our plan is to construct an L1-L
′
1-path T1 in Wxy, and an

L2-L
′
2-path T2 in Wyx. The path T2 mirrors T1, that is, the i-th vertex on T2

differs from the i− th vertex on T1 only in the order of x and y. Both paths
stay as close as possible to the edge cut θ(yx), and hence to one another.
More precisely, there are no two consecutive vertices on T1 or T2 which are
not adjacent to an edge in θ(xy). This means that either the i-th vertex
of T1 is connected to the i-th vertex of T2 via an edge in θ(xy), or this holds
for the (i − 1)-th vertex and the (i + 1)-th vertex.

The edges connecting T1 and T2 form a sequence of edges in which
consecutive edges are opposite in 4-cycles or 6-cycles. All 4-cycles of G are
convex, since G is bipartite. Our construction also yields that all 6-cycles
induced by the sequence are convex in G. Thus the edges connecting T1

and T2 form the sequence we are looking for.

e fθ(xy)

L1

L2

L′
1

L′
2

Wxy

Wyx

T1

T2

xyv

xvy

vxy

yxv
yvx

vyx

Figure 2.2: The paths T1 and T2 and the edges in θ(xy) connecting them.

First let us construct T1 by describing a process to modify L1 into L′
1

while always keeping the invariant that there is at most one element be-
tween x and y. This invariant assures that T1 stays as close as possible to
the edge cut θ(yx). Assume that L1 = u1u2 . . . un and L′

1 = v1v2 . . . vn, and
that the first i − 1 elements of L1 and L′

1 coincide. Find the position of vi

in L1, say, vi = uj. Then uj is a minimum of P − {u1, u2, . . . , ui−1}.
If x 6= uj, we perform swaps in L1 bringing uj to the i-th position of L1.

That is, we first swap uj below uj−1, then below uj−2, and so on until we
finally swap it below ui+1. This keeps the invariant intact.

If x = uj, then y = uj+1 = vi+1. Thus y is a minimal element of
P − {u1, u2, . . . , ui−1, x}. In this case, we bring x and y down in L1 together
by alternately swapping x and y with some element. That is, we first
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2.2. Color Classes

swap x below uj−1, then we swap y below uj−1, and so on, until we swap x
below ui+1 and then y below ui+1. This keeps our invariant intact. We
arrive at a linear extension which coincides with L′

1 in the first i positions
(at least). Iterating this process, we can modify L1 into L′

1 and obtain the
path T1 with the desired properties.

Note that any element which appears between x and y in a linear ex-
tension L on T1 is incomparable with both x and y, because it is above
both x and y in L1 and below both x and y in L′

1, or below x and y in L1

and above x and y in L′
1. Thus we obtain another linear extension of P

by exchanging x and y in L. In this way we obtain the path T2 with the
desired properties. Note that all edges connecting T1 and T2 are in θ(uv).
These edges form the sequence e1 . . . ek we are looking for. If ei and ei+1 are
opposite in a 6-cycle C, then C corresponds to the six permutations of x, y
and a third element v which is incomparable to x and y. It follows that C
forms a convex Perm3 in G. This concludes the proof.

From the above result it follows that the swap partition Θ(G) can be
obtained greedily: Start with an arbitrary edge and assign it to the first
color class. Then iteratively assign all edges that are opposite in a 4-cycle
or 6-cycle to an already assigned edge to the same color class. If this
process ends, repeat it starting with an unassigned edge and a new color
class. However, since the color classes equal the Djoković-Winkler classes,
Eppstein’s partial cube recognition algorithm mentioned in Theorem 1.12
provides a more efficient way of obtaining Θ(G).

Below we define some relations between color classes of a linear extension
graph. They play a central role in our proofs. See Figure 2.3 for illustration.

Definition 2.11. Let G be a linear extension graph, and let θ1, θ2 ∈ Θ(G).
We say that θ1 and θ2 are crossing if both components of G − θ1 contain
edges of θ2. Otherwise, we say that θ1 and θ2 are parallel.

The color classes θ1 and θ2 touch if they are parallel and there is a vertex
incident to edges of both classes.

If θ1 and θ2 are parallel, then θi ∈ Θ(G) lies between θ1 and θ2 if all
edges of θ1 are contained in one component of G − θi, and all edges of θ2

are contained in the other component of G − θi.
Let c be a swap coloring of G = G(P). We also use the notions crossing,

parallel, lying between, and touching for the corresponding swap colors
c(θ1), c(θ2) ∈ Inc(P).

Let us first check that crossing is well-defined, that is, if both compo-
nents of G−θ1 contain edges of θ2, then both components of G−θ2 contain
edges of θ1. Let c be a swap coloring of G = G(P), and let c(θ1) = xv
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x

yu

v

P G(P)

uxyv

uyvx

yuxv

yvux
xy uvuyxv

Figure 2.3: A linear extension graph with swap colors. The color classes θ(uy)
and θ(xv) are crossing, while θ(uv) and θ(xy) are parallel. Moreover, θ(uy) and
θ(xy) are touching, and θ(xv) lies between θ(xy) and θ(uv).

and c(θ2) = uy. Both Wxv and Wvx contain edges from θ2. Pick a vertex L
in Wxv ∪ Wuy and a vertex L′ in Wvx ∪ Wuy. Any shortest L-L′-path in G
contains an edge from θ1 by Lemma 2.2 and stays within Wuy by Lemma 2.3.
Hence Wuy contains an edge from θ1. The same argument can be applied
to show that Wyu contains an edge from θ1.

Note that any pair of color classes (and hence, of swap colors) is either
crossing or parallel. If two color classes are parallel, it means that there is
some transitive forcing between the elements appearing in the corresponding
swap colors. Let us look at the example in Figure 2.3: If x < y in a linear
extension L of P , then from y < v in P it follows by transitivity that x < v
in L. We say that x < y forces x < v. On the other hand, no order of u, y
forces an order of x, v. This is the reason that θ(xy) and θ(xv) are parallel
in G(P), while θ(uy) and θ(xv) are crossing.

In the following lemma, we characterize the relations between color
classes given in Definition 2.11 in terms of the corresponding swap colors.

Lemma 2.12. Let G = G(P) be a linear extension graph with swap color-
ing c, and let θ1, θ2 ∈ Θ(G).

(1) The color classes θ1 and θ2 are parallel exactly if c(θ1) = uv and
c(θ2) = xy for u, v, x, y ∈ P such that u ≤ x and y ≤ v in P.

(2) Let θi ∈ Θ(G) be a third color class of G(P). Then θi lies between θ1

and θ2 exactly if c(θi) = ab for a ∈ I(u, x) and b ∈ I(y, v).

(3) The color classes θ1 and θ2 touch exactly if either y = v and u < x is
a cover relation in P, or u = x and y < v is a cover relation in P.

Proof. To prove (1), assume that θ1 and θ2 are parallel. Then by definition
there are elements u, v, x, y ∈ P with c(θ1) = uv and c(θ2) = xy such that
Wuv ⊂ Wxy. Now Wuv ⊂ Wxy is equivalent to saying that x < y forces
u < v. This is the case exactly if u ≤ x and y ≤ v in P .
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In order to prove (2) recall that, by definition, θi lies between θ1 and θ2

exactly if there are elements a, b ∈ P such that c(θi) = ab and Wuv ⊂ Wab

and Wyx ⊂ Wba. This is equivalent to the fact that a < b forces u < v and
b < a forces y < x. This in turn is equivalent to u ≤ a and b ≤ v and also
y ≤ b and a ≤ x in P , which simply means that a ∈ I(u, x) and b ∈ I(y, v).

It remains to prove (3). Let us first assume that θ1 and θ2 are touching
and that c(θ1) = uv and c(θ2) = xy with u ≤ x and y ≤ v in P as in the
previous paragraphs. From u‖v and x‖y it follows that x‖v and u‖y. If
u 6= x and y 6= v, then the color classes θ(xv) and θ(uy) lie between θ1

and θ2 by (2). But then θ1 and θ2 cannot touch, a contradiction. So we
may assume that y = v. If u < x is not a cover relation, then there is
an element a ∈ P with u < a < x in P . But then the color class θ(av)
lies between θ1 and θ2, and again they cannot touch. This proves the first
direction.

For the other direction, let us assume that c(θ1) = uv and c(θ2) = vx
such that u < x is a cover relation in P . Then θ1 and θ2 are parallel by (1).
Because u < x is a cover relation, we can construct a linear extension L
by first picking all elements in Pred(u) ∪ Pred(v), then picking uvx in this
order, and then the remaining elements. Now L is incident to an edge with
swap color uv and an edge with swap color vx. Thus, θ1 and θ2 touch in L.
This concludes the proof.

We now present two lemmas characterizing the color classes correspond-
ing to special types of incomparable pairs, see Figure 2.4 for illustration.
We start with the case of a twin, see Definition 1.24.

Lemma 2.13. Let G(P) be a linear extension graph with swap coloring c.
Let θ ∈ Θ(G) with c(θ) = xy. Then the pair xy is a twin of P exactly
if no color class of G(P) is parallel to θ. In this case, Gxy and Gyx are
isomorphic.

Proof. If xy is a twin of P , then by definition, every element larger (smaller)
than x in P is also larger (smaller) than y in P , and vice versa. But by
Lemma 2.12, a color uv is parallel to xy in G(P) exactly if u ≥ x and v ≤ y,
where at least one of these relations is strict. Furthermore, observe that xy
is a twin of P exactly if x and y can be exchanged in every linear extension
of P . This yields an isomorphism between Gxy and Gyx.

Observe that Gxy and Gyx may be isomorphic even if xy is not a twin. As
an example, consider the pair uy in the example of Figure 2.3. Furthermore,
note that Lemma 2.13 shows that a linear extension graph can have different
swap colorings corresponding to the same poset.

Now let us look at critical pairs, cf. Definition 1.2.
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P

G(P)

a

u

v w

x

y

au
av aw

ax
vw

ay

Figure 2.4: The poset P contains the twin vw and the critical pairs (u, a)
and (a, y).

Lemma 2.14 ([51]). Let G = G(P) be a linear extension graph with swap
coloring c. Let θ ∈ Θ(G) with c(θ) = xy. Then (x, y) is a critical pair of P
exactly if there is no color class of G which is completely contained in Gyx.

Proof. Consider two incomparable pairs v, w and x, y of P . We have Gvw ⊂
Gyx exactly if v < w forces y < x. In other words, there is no color class
completely contained in Gyx exactly if there is no relation which forces
y < x. We also know that (x, y) is a critical pair of P exactly if y < x
cannot be forced by any other relation. This yields the result.

A sequence of pairwise parallel color classes looks like stripes in a linear
extension class, see for examples the swap colors containing the element a
in Figure 2.4. If we consider a maximal sequence of such stripes in a linear
extension graph, then the above lemma tells us that the color classes at
the two ends of that sequence correspond to critical pairs. In our example,
these are the swap colors au and ay. They are reversed on the side of their
color class which does not contain any other color class. This may hold for
both sides of the color class – then the corresponding swap color is a twin
and hence critical in both orders.

In the next proposition we come back to the relation between color
classes. We characterize the way that two color classes can cross in a linear
extension graph. Let θ1 and θ2 be two color classes of a linear extension
graph G, and suppose there is a convex cycle C in G which contains edges
from both color classes. Then by Corollary 2.6, we know that θ1 and θ2 are
crossing. We say that they cross in C.

Proposition 2.15. Let G be a linear extension graph and let θ1 and θ2 be
a crossing pair of color classes of G. Then they cross in a convex 4-cycle
or a convex 6-cycle of G.
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2.3. Adjacent Swap Colors

Proof. Let G = G(P) and let c be a swap coloring of G. Let c(θ1) = uv and
choose e ∈ θ2 in Guv and f ∈ θ2 in Gvu, see Figure 2.5. By Proposition 2.10,
there is a sequence S of edges in θ1 starting with e and ending with f , such
that successive edges in the sequence are opposite in a convex 4- or 6-cycle.

Let e′ be the last edge in S which is contained in Guv and let f ′ be the
first edge in S which is contained in Gvu. Then e′ and f ′ are opposite edges
in a convex 4- or 6-cycle C. By definition of e′ and f ′, a path from an
endpoint of e′ to an endpoint of f ′ has to pass an edge in θ1. In particular,
the path contained in C has to contain an edge in θ1. Thus, θ1 and θ2 cross
in C.

e fCe′ f ′θ2θ2

θ1

θ1

Guv

Gvu

Figure 2.5: If θ1 and θ2 are crossing, they meet in a convex 4- or 6-cycle.

2.3 Adjacent Swap Colors

In this section, we analyze the relation of two swap colors by looking at
the corresponding color classes. Recall that the incomparability graph
Incomp(P) is the undirected graph on the ground set of P in which two ver-
tices are adjacent if the two corresponding elements are incomparable in P .
Thus, the incomparable pairs of P , and hence the swap colors of G(P),
correspond to the edges of Incomp(P).

Let us call two swap colors adjacent if they correspond to adjacent
edges in the incomparability graph. More precisely, if G = G(P) has
swap coloring c, and θ1, θ2 ∈ Θ(G), then c(θ1) and c(θ2) are adjacent if
c(θ1) ∩ c(θ2) 6= ∅.

Our aim in this section is to characterize adjacent swap colors in terms
of the relation of their color classes in G(P). If we pick two adjacent edges
of G(P), then we can easily characterize how their swap colors relate.
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Lemma 2.16. Let G = G(P) be a linear extension graph with swap color-
ing c. Let e and f be two adjacent edges of G. Then the following holds:

(i) The color classes θ(e) and θ(f) cross in a 4-cycle exactly if c(e)
and c(f) are disjoint.

(ii) The color classes θ(e) and θ(f) cross in a convex 6-cycle exactly if
c(e) and c(f) share an element, and the remaining two elements are
incomparable.

(iii) The color classes θ(e) and θ(f) are parallel exactly if c(e) and c(f)
share an element, and the remaining two elements form a cover rela-
tion of P.

Proof. To prove (i), let c(e) = uv and c(f) = xy. We first assume that
u, v, x, y are pairwise different elements of P . Let L be the linear extension
of P in which e and f meet. Thus elements u and v are adjacent in L, as
well as x and y. Since uv and xy are disjoint, there is a linear extension L′

at distance 2 from L in which uv and xy are reversed. There are two
L-L′-paths of length 2, one which swaps first uv and then xy, and one
which swaps first xy and then uv. The first path starts with e, and the
second path with f . These two paths form a 4-cycle in which c(e) and c(f)
cross.

Now suppose that θ(uv) and θ(xy) cross in a 4-cycle C. Assume for
contradiction that uv and xy are not disjoint, say, xy = vy. Since G is
bipartite, C is isometric. By Corollary 2.6, every linear extension in C is
incident to an edge of color uv in C and an edge of color vy in C. Let L ∈ C.
Then element v has to sit between u and y in L. But if we swap uv in L to
obtain L′ ∈ C, the pair vy is not adjacent in L′. Thus L′ does not have an
incident edge of color vy, which is a contradiction.

To prove (ii), first assume that c(e) and c(f) cross in a convex 6-cycle C.
If c(e) and c(f) are disjoint, we have seen above that the edges e and f are
contained in a 4-cycle. But this is a contradiction since C is convex. Thus
we may assume that c(e) = uv and c(f) = vw. Now suppose that u ∼ w
in P , say, u < w. Then v < u in a linear extension of P forces v < w by
transitivity. Hence there is no edge of color vw in Wvu. It follows that θ(e)
and θ(f) are parallel, a contradiction. Thus we have u‖w in P .

For the other direction, let c(e) = uv and c(f) = vw, and u‖w in P .
Let L be the linear extension of P in which e and f meet. Then the three
elements u, v, w must appear consecutively in L such that v sits between u
and w. Let L′ be the linear extension at distance 3 from L in which the
order of u, v, w is reversed. There are two L-L′-paths of length 3. The
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2.3. Adjacent Swap Colors

first swaps uv, then uw, and then vw; the second swaps vw, then uw, and
then uv. The first path thus starts with e, and the second path with f .
These two paths form a convex 6-cycle in which θ(e) and θ(f) cross.

Now (iii) holds by complete exhaustion of the possible cases. If θ(e)
and θ(f) do not cross in a 4-cycle nor in a 6-cycle, then by Proposition 2.15,
they are parallel. Thus θ(e) and θ(f) touch, and we can use Lemma 2.12
to prove the desired equivalence.

Note that possibilities (i) and (ii) are disjoint. Since it follows from
Proposition 2.15 that any two crossing color classes contain two adjacent
edges, we now know that two crossing color classes either cross in a 4-cycle
or in a convex 6-cycle of G, but not in both. They cross in a 4-cycle exactly
if the corresponding colors are disjoint.

One could be led to think that two arbitrary colors are disjoint exactly
if they cross in a 4-cycle. This was also claimed by Reuter in [50]. However,
there is a case missing, which can be seen in the example in Figure 2.3: The
swap colors uv and xy are parallel, but disjoint.

The following theorem characterizes adjacent colors in terms of their
color classes.

Theorem 2.17. Let G = G(P) be a linear extension graph with swap col-
oring c and let θ, θ′ ∈ Θ(G). Then c(θ) and c(θ′) are adjacent exactly if one
of the following two options holds:

(1) c(θ) = uv and c(θ′) = vw for elements u, v, w ∈ P with u‖w ⇐⇒
θ and θ′ cross in a convex 6-cycle.

(2) c(θ) = uv and c(θ′) = vw for elements u, v, w ∈ P with u ∼ w ⇐⇒
θ and θ′ are parallel, and no two color classes between them cross in
a 4-cycle.

Proof. To show the equivalence (1), let us first assume that c(θ) = uv
and c(θ′) = vw, and that u, v and w form an antichain in P . Then we can
build linear extensions of P by first picking all elements which are predeces-
sors of one of u, v, w, then picking these three elements in some order, and
then the remaining elements of P . This yields six linear extensions of P
which differ only in the order of u, v, w. Thus, these linear extension induce
Perm3 as convex subgraph of G, which is a convex 6-cycle C. The colors
appearing on C are uv, vw and uw. By Corollary 2.6, the classes θ and θ′

cross in C.
Conversely, if θ and θ′ cross in a convex 6-cycle, then there are two

adjacent edges of θ and θ′ for which (ii) of Lemma 2.16 holds. This yields
the desired properties.
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To show (2), assume that c(θ) = uv and c(θ′) = vw with u < w. Then
we know from Lemma 2.12 that θ and θ′ are parallel. The lemma also
tells us that any color class between θ and θ′ has swap color av for some
a ∈ I(u,w). Thus the swap colors of any two classes lying between θ and θ′

share the element v. Now, by Lemma 2.16, if two color classes cross in a
4-cycle, their swap colors are disjoint. Therefore no pair of color classes
between θ and θ′ crosses in a 4-cycle.

To prove the converse we can apply Lemma 2.12 to the parallel color
classes θ and θ′ and assume that c(θ) = uv and c(θ′) = xy with u ≤ x and
y ≤ v in P . We want to show that u = x or y = v has to hold. First
observe that with u‖v and x‖y in P it follows that x‖v and u‖y in P . Thus
there are two color classes θi, θj in G which have swap colors xv and uy,
respectively. By Lemma 2.12, they both lie between θ and θ′. Assume for
contradiction that u 6= x and y 6= v. Then c(θi) and c(θj) are disjoint.
Furthermore, θi and θj are crossing, since no choice of an order of x and v
forces an order of u and y. As we noted after Lemma 2.16, any pair of
crossing color classes with disjoint colors cross in a 4-cycle. Thus θi and θj

cross in a 4-cycle, which is a contradiction.

We give a second characterization of adjacent swap colors which we find
interesting in its own right. The key observation for the characterization
is contained in the following lemma. For a set S of swap colors, let us set
ΘS = {θ ∈ Θ(G) : c(θ) ∈ S}.

Lemma 2.18. Let G = G(P) be a linear extension graph with swap parti-
tion Θ(G) and swap coloring c. Let S ⊂ Inc(P) be a set of swap colors of G
which all share an element v ∈ P. Then it holds that G[ΘS] is cycle-free.

Proof. Assume for contradiction that C is a shortest cycle in G[ΘS]. Let L
be the linear extension appearing in C in which v has the highest posi-
tion that it obtains among all the linear extensions on C. Assume that
L = . . . xvy . . ., i.e., x < v and v < y are cover relations in L. Since any
color on C contains v, but v does not appear after y on C, the two edges
incident to L in C must both have color xv. But this is a contradiction,
since L cannot have two incident edges of the same color.

We need one more new notation: Let a θ-θ′-path be a path starting with
an edge of the color class θ and ending with an edge of the color class θ′.

Theorem 2.19. Let θ, θ′ be two color classes of a linear extension graph
G = G(P) with swap coloring c. Then c(θ) and c(θ′) are adjacent exactly
if for any shortest θ-θ′-path T , the color classes appearing on T induce a
forest in G.
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2.3. Adjacent Swap Colors

Proof. First let us assume that c(θ) and c(θ′) share an element, say,
c(θ) = uv and c(θ′) = vw. If u‖w in P , then θ and θ′ cross in a 6-cycle by
Theorem 2.17. Thus any shortest θ-θ′-path consists of just two edges, and
the swap colors used on that path all share the element v. By Lemma 2.18,
the induced graph G[θ ∪ θ′] is a forest.

If u ∼ w in P , then θ and θ′ are parallel by Theorem 2.17. Let us assume
that u < w in P . By Lemma 2.12, a color class lies between θ and θ′ exactly
if it has swap color av for some a ∈ I(u,w). Let us denote the set of these
swap colors av by S. We claim that a θ-θ′-path T is a shortest θ-θ′-path if
and only if the swap colors used on T are exactly the swap colors in S.

Every color class lying between θ and θ′ must clearly be used on each
θ-θ′-path. So the set of swap colors used on T contains S. We will construct
a θ-θ′-path using only the swap colors of S to prove our claim. To do so,
we construct two linear extensions differing only in the position of v.

Let D = Pred(w) ∪ Pred(v), and U = Succ(u) ∪ Succ(v). Then we
have P = D ∪ I(u,w) ∪ v ∪ U . Let LX be a linear extension of P [X], for
X ∈ {D,U, I(u,w)}. Observe that because of v‖u and v‖w, we know that
v is incomparable in P to all elements of I(u,w). Therefore L = LDvLILU

and L′ = LDLIvLU are linear extensions of P . The vertices L and L′ of G
are connected by a path which uses exactly the swap colors in S. This
proves our claim.

All colors in S, and thus all swap colors on a shortest θ-θ′-path, share
the element v. Hence it follows from Lemma 2.18 that the classes appearing
on a shortest θ-θ′-path cannot induce a cycle in G. This proves the first
direction of the theorem.

For the other direction we assume that the swap colors on any shortest
θ-θ′-path in G induce a forest. Since G is connected, there is such a path T .
Let T = e1e2 . . . ek with θ(e1) = θ, and θ(ek) = θ′. Denote the set of swap
colors used on T by S. Because G[ΘS] is cycle-free, it does not contain
4-cycles. Hence it follows from part (i) of Lemma 2.16 that any pair of
swap colors appearing consecutively on T shares an element. Let c(e1) and
c(e2) share the element b ∈ P. We prove inductively that all swap colors
on T contain the element b.

Assume that the swap colors c(e1) . . . c(ei) all contain the element b, and
assume that c(ei−1) = ab and c(ei) = bc. Consider the linear extension L
in which ei−1 and ei meet. We may assume that the sequence . . . abcd . . .
is contained in L. Then the sequence . . . acbd . . . is contained in the linear
extension in which ei and ei+1 meet. Since c(ei+1) needs to share an element
with c(ei) = bc, we have c(ei+1) = ac or c(ei+1) = bd. If c(ei+1) = ac, then S
contains the three swap colors ab, bc and ac, for a 3-antichain a, b, c ∈ P.
But then it follows from part (ii) of Lemma 2.16 that these three swap
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colors form a convex 6-cycle in G. Thus this cycle appears also in G[ΘS],
which is a contradiction. Therefore we have c(ei+1) = bd, and it follows by
induction that all colors in S contain the element b.

2.4 The Linear Extension Graph as an Invariant

In this section we consider the question which modifications of the poset
leave the linear extension graph invariant.

Given a graph G, we say that a poset P is G-compatible if G = G(P).
Can a graph G have different G-compatible posets? What immediately
comes to mind is that we can reverse the direction of a poset without
changing its linear extension graph: If we change a poset P to P∗, then the
direction of any linear extension is also reversed, and the swaps stay the
same. Therefore we have G(P) = G(P∗) for any P .

Starting from a poset P , it is also easy to find an infinite family of posets
which have the same linear extension graph as P : If a global minimum is
added to P , then it needs to be the smallest element in any linear extension
of P . Thus it does not have any influence on the structure of the linear
extension graph of P . Hence we can add arbitrarily long chains of global
minima to P without changing its linear extension graph. If P contains
other global elements, that is, elements comparable to all other elements
in P , then these can also be deleted or replaced by arbitrarily long chains
without effect on the linear extension graph.

Definition 2.20. A G-compatible poset is essentially unique if it is unique
up to its direction and the addition or deletion of global elements.

More basic alterations which leave the linear extension graph invariant
are possible if P is a series composition. Recall that a series composition
P1 ∗ P2 results from putting P2 “on top of” P1, see Definition 1.25.

The Cartesian product G12G2 of two graphs G1, G2 is defined as fol-
lows: The vertices of G12G2 are the pairs (v1, v2) with v1 ∈ V (G1) and
v2 ∈ V (G2). Two such vertices (v1, v2) and (v′

1, v
′
2) are adjacent if v1 = v′

1

and v2v
′
2 ∈ E(G2), or vice versa.

A slightly more general version of the following basic Proposition ap-
peared in [44].

Proposition 2.21 ([50]). If P = P1 ∗ P2 ∗ . . . ∗ Pk for posets P1, . . . ,Pk,
then G(P) = G(P1)2G(P2)2 . . . 2G(Pk).

Proof. Every linear extension L of P is a concatenation of linear extensions
of the Pi. On the other hand, every concatenation of linear extensions
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2.4. The Linear Extension Graph as an Invariant

of the Pi in the right order is a linear extension of P . Moreover, a swap
in L has to swap two elements of the same Pi. That is, an edge in G(P)
corresponds to an edge in one of the G(Pi). It is now easy to see that G(P)
is the Cartesian product of the G(Pi).

Definition 2.22. Let P ,P ′ be two posets. We say that P ′ arises from series
alteration of P if P = P1∗P2∗. . .∗Pk and P ′ arises from P by changing the
order of the Pi and the direction of some of the Pi in the series composition.

The Cartesian product is clearly commutative, so we have the following
corollary:

Corollary 2.23. The linear extension graph is invariant under series al-
teration.

The next question that comes up is how far we can go with mod-
ifying P while keeping G(P) invariant. Recall that the comparability
graph Comp(P) of a poset P is the graph on the ground set of P , with
two elements being adjacent exactly if they are comparable in P . Clearly,
series alterations are a modification of P which do not change the compa-
rability graph.

Does G(P) stay invariant under all poset modifications leaving the com-
parability graph invariant? It was first observed by Reuter [50] that the
linear extension graph is not a comparability invariant. He gave the coun-
terexample depicted in Figure 2.6.

Theorem 1.26 says that a poset parameter is a comparability invariant
exactly if it remains the same whenever a subposet of P induced by a
module is replaced by its dual. In Reuter’s example, P and P ′ differ in the
direction of the subposet induced by the module {c, d, e}, but the linear
extension graph does not remain invariant. We will see in Section 3.4 how
the color classes of a linear extension graph G determine the direction of
modular subposets in a G-compatible poset P .

In the next chapter, we give a reconstruction procedure which proves
that the series alteration and the addition of global elements are the only
modifications leaving the linear extension graph invariant. Let us call a
graph Cartesian prime if it is not the Cartesian product of several non-
trivial Cartesian factors. Our procedure will imply the following theorem
(see Section 3.5):

Theorem 2.24. Let G be a linear extension graph. Then the G-compatible
poset is essentially unique exactly if G is Cartesian prime.
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Figure 2.6: The linear extension graph is not a comparability invariant, since
the two posets P and P ′ have the same comparability graph, but their linear
extension graphs are not isomorphic.
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Chapter 3

Reconstructing Posets from Linear Extension

Graphs

We have seen in the last chapter that each linear extension graph G has
many different G-compatible posets. However, the differences we saw were
not very exciting. In this chapter we give a procedure to reconstruct all
G-compatible posets of a linear extension graph G. We will see that there
are no poset modifications leaving the linear extension graph invariant apart
from the ones we saw. We will also show how to use our procedure to
recognize linear extension graphs.

The first five sections of this chapter are devoted to the reconstruction
procedure, wile the last section explains the recognition. Let us fix a linear
extension graph G = (V,E) for all sections dealing with the reconstruction.
We denote the set of G-compatible posets by PG.

Since a poset can have exponentially many linear extensions, G can be
huge compared to a poset P ∈ PG. But much of the information that it
carries appears redundantly. It turns out that for the reconstruction we do
not need to know the whole graph G. Recall that G comes with a unique
swap partition Θ(G). For the reconstruction, we only need to know certain
relations between the color classes in Θ(G).

Let us assume that we do not know G, but we know a visionary person,
a G-medium, which can answer certain questions related to Θ(G). To start
with, the G-medium tells us the number r of color classes of G. Recall that
r = dimI(G) by Theorem 1.13. Moreover, the G-medium can give answers
to the following admissible questions about a pair θi, θj ∈ Θ(G):
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3. Reconstructing Posets from Linear Extension Graphs

1. Are θi and θj parallel or crossing?

2. In case θi and θj are crossing, do they cross in a 4-cycle or in a 6-cycle?

3. In case θi and θj are parallel, are they touching?

4. If θi and θj are parallel and θk is a third color class of G, does θk lie
between θi and θj?

The time we have to wait for an answer to an admissible question de-
pends on what power our G-medium possesses. It is long if the G-medium
only sees G, but very short if it can look beyond and see some P ∈ PG.
This is made precise in Section 3.1.

The first main aim of this chapter is to prove the following:

Theorem 3.1. Let G be a linear extension graph. Given a G-medium, we
can reconstruct the set PG in time O(dimI(G)4 · q), where q is the time the
G-medium needs to answer an admissible question.

Recall that the addition of global elements to a poset P ∈ PG yields
another G-compatible poset. Thus PG contains infinitely many posets.
The reconstruction procedure outputs a minimal poset in PG and a concise
description of how to obtain all other posets on PG.

We will prove Theorem 3.1 by giving a reconstruction procedure in sev-
eral steps. Each section of this chapter is dedicated to one step of the pro-
cedure. In most steps we construct an object (e.g. a comparability graph or
a transitive orientation) which corresponds to a G-compatible poset. These
objects will also be called G-compatible. This will become clear from the
context.

In Section 3.1, we reveal how to answer admissible questions. This
includes showing how to obtain the color classes of G efficiently. In Sec-
tion 3.2 we determine which pairs of color classes correspond to adjacent
swap colors. Thus, we construct the unique line graph of a G-compatible
incomparability graph. From this we obtain, in Section 3.3, the unique min-
imal G-compatible comparability graph Comp(G). The most difficult part
is to construct all G-compatible transitive orientations of Comp(G). We do
this in Section 3.4, thus reconstructing PG. In Section 3.5, we finish the
proof of Theorem 3.1 by discussing the running time. Finally, in Section 3.6
we show how to use the reconstruction procedure to recognize whether an
arbitrary given graph is a linear extension graph.
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3.1 Answering Admissible Questions

In this section we first show that the G-medium can answer each admissible
question in constant time if it sees a poset P ∈ PG and a swap coloring c
of G with respect to P . After that we show that if the G-medium sees G
with the partition Θ(G), then it can answer each admissible question in
time O(|V | + |E|). We also show that Θ(G) can be obtained from G in
time O(|V |2).

Let us first assume that our G-medium is given a poset P ∈ PG. We
want the given structure to distinguish between relations and cover relations
of P . If this is not the case, i.e., if only the relations of P are known, it can
be achieved in a preprocessing step: Consider the matrix M whose rows and
columns are labeled with P , such that position (u, v) has entry 1 exactly
if u < v in P , and 0 otherwise. Now compute the matrix M2. Then the
rules of matrix multiplications imply that the entry of M2 at position (u, v)
equals the number of elements w ∈ P such that u < w and w < v in P .
Thus, u < v is a cover relation of P exactly if position (u, v) is 1 in M ,
but 0 in M2. This preprocessing step can be done in time O(|P|α), where
α ≥ 2 is the exponent of a matrix multiplication algorithm. Currently, the
fastest known algorithm has α = 2.376 [10].

So, in the following lemma, we assume that P is given in a way which
allows us to check for each pair u, v ∈ P in constant time whether u = v
or u ‖ v or u < v or v < u in P and, if one of the last two options holds,
whether the relation is a cover relation.

Lemma 3.2. Given a G-compatible poset P and the swap coloring c of G
with respect to P, the answer to an admissible question can be found in
constant time.

Proof. Suppose that c(θi) = uv and c(θj) = xy. By Lemma 2.12, the color
classes θi and θj are parallel exactly if either u ≤ x and y ≤ v, or u ≤ y
and x ≤ v, or u ≥ x and y ≥ v, or u ≥ y and x ≥ v. Since any pair of color
classes is either crossing or parallel, they are crossing otherwise. Therefore
Question 1 can be settled by checking the above four cases.

Assume that θi and θj are crossing. Then by Proposition 2.15, they
either cross in a 4-cycle or in a 6-cycle, thus there are adjacent edges of
the two classes. Therefore it follows from Lemma 2.16 that θi and θj cross
in a 4-cycle exactly if uv and xy are disjoint. Otherwise, they cross in a
6-cycle. Hence Question 2 can be answered in constant time by looking at
the elements uv and xy.

Questions 3 and 4 can be answered with the help again of Lemma 2.12.
Suppose θi and θj are parallel because u ≤ x and y ≤ v. Then θi and θj
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touch exactly if either y = v and u < x is a cover relation in P , or u = x
and y < v is a cover relation in P . Hence by assumption, Question 3 can
be answered in constant time. Moreover, a third class θk with c(θk) = ab
lies between θi and θj exactly if a ∈ I(x, u) and b ∈ I(v, y). By checking
x ≤ a and a ≤ u and v ≤ b and b ≤ y in P , Question 4 can be answered in
constant time.

Now let us assume that the G-medium sees only the (unlabeled) linear
extension graph G. Let us first show how to construct Θ(G).

Lemma 3.3. Given a linear extension graph G = (V,E), the swap parti-
tion Θ(G) can be obtained in time O(|V |2).

Proof. By Theorem 2.4, the linear extension graph G is a partial cube, and
the color classes of G equal its Djoković-Winkler classes. Thus the partial
cube recognition algorithm from Theorem 1.12 constructs the color classes
of G. The algorithm runs in time O(|V |2).

Now assume that we are given G = (V,E) with the unique swap parti-
tion Θ(G) = {θ1, θ2, . . . , θr} of E into color classes.

Lemma 3.4. Given a linear extension graph G = (V,E) and the swap
partition Θ(G), the answer to an admissible question can be found in
time O(|V | + |E|).

Proof. Consider two color classes θi, θj ∈ Θ(G). To check whether they are
crossing, use the following procedure: Delete all edges in θi from G. We
are left with two components. Now check if both components contain edges
of θj. If so, then θi and θj are crossing, otherwise they are parallel. These
steps can be performed in time O(|V | + |E|) and answer Question 1.

To answer Question 2, build Gij = (V, θi∪θj), the graph induced by the
two given color classes. It follows from Theorem 1.13 that the components
of Gij are partial cubes of dimension 2. Thus each component is either a
single edge, a path of length 2, or a 4-cycle. We then check if Gij contains a
4-cycle. Since a crossing pair of color classes either crosses in a 4-cycle or in
a 6-cycle, but not in both, this decides Question 2. Building the graph Gij

and searching its components for a 4-cycle can be done in time O(|V |+|E|).
To answer Question 3, we can run through all the vertices of G and check

at each vertex whether there is an incident edge from θi and an incident
edge from θj. Thus Question 2 can be decided in time O(|V | + |E|).

Finally, to answer Question 4, observe that in case that θi and θj are
parallel, the graph G − θi − θj has three components, cf. Figure 3.1. Let
us denote the two components of G − θi by G+

i and G−
i , such that G+

i
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contains edges of θj. Similarly, let us denote the two components of G− θj

by G+
j and G−

j , such that G+
j contains edges of θi. The three components

of G − θi − θj then are G−
i , G−

j and G+
i ∩ G+

j .
It follows from the definition that a color class θk lies between θi and θj

exactly if all edges of θk are contained in G+
i ∩ G+

j . Thus to answer Ques-
tion 4, we can build G−θi−θj and check if there is no edge of θk contained
in G−

i and G−
j . This can be done in time O(|V | + |E|).

G(P)

θi θj

G−
i G−

jG+
i ∩ G+

j

Figure 3.1: If θi and θj are parallel, then G − θi − θj has three components.

In the following sections, we will just assume that our G-medium can
answer admissible questions in time q, knowing that this can vary from
constant time to O(|V | + |E|).

3.2 Checking Adjacency of Swap Colors

At the start of our reconstruction procedure, the G-medium only told us the
number r of color classes of G. Let us denote the swap color corresponding
to θi by ci. If P ∈ PG, then there is a swap coloring c of G with respect
to P such that c(θi) = ci. However, so far we do not know anything about
the ci except which color class of G they correspond to.

If P ∈ PG, then each ci corresponds to an edge in the incomparability
graph of P . Recall that two swap colors are adjacent if the two correspond-
ing incomparable pairs of P share an element, that is, if they correspond
to adjacent edges in Incomp(P).

In this section, we want to determine which pairs ci, cj of swap colors
of G are adjacent. In Theorem 2.17 we have seen that this is uniquely
determined by G.

Proposition 3.5. We can determine all adjacencies between swap colors
of G in time O(r4 · q).

Proof. For each pair ci, cj of swap colors, we need to check whether one of
the properties (1) and (2) of Theorem 2.17 holds. Consider the correspond-
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ing color classes θi, θj ∈ Θ(G). It takes one admissible question to check
whether they are crossing or parallel.

In case θi and θj are crossing, we ask Question 2 to check whether they
cross in a 6-cycle. Then (1) is fulfilled exactly if the answer is yes. So we
can check (1) with no more than two admissibile questions.

In case θi and θj are parallel, we ask Question 4 for every color class
θk 6= θi, θj. In this way we determine the set Θ(G)ij of color classes lying
between θi and θj. After that, we use Questions 1 and 2 to find out whether
any pair of color classes in Θ(G)ij crosses in a 4-cycle. Hence we can check
property (2) with O(r2) admissible questions.

There are O(r2) pairs of swap colors, so we conclude that the adjacencies
can be determined in a total running time of O(r4 · q).

3.3 Reconstructing the Comparability Graph

In the previous section, we have determined which swap colors of G are
adjacent. Put differently, we have shown that there is a unique graph X(G)
which is the line graph of Incomp(P) for some poset P ∈ PG. Thus, X(G) is
the line graph of Incomp(P) for every poset in PG. In this section, we show
that there is a unique minimal graph Comp(G) which is the comparability
graph of a poset in PG. We also show that it comes with a unique swap
coloring c, which we will make precise later. Moreover, we will see how to
construct Comp(G) and c.

Recall from Section 2.4 that G does not determine the number of global
elements in a G-compatible poset P . This is reflected in the fact that a
global element of P is not part of any edge of Incomp(P).

Lemma 3.6. Let Γ(G) be the family of graphs which are the comparability
graph of some poset in PG. Then Γ(G) contains a unique minimal graph
Comp(G). Furthermore, Γ(G) equals the family of all graphs which can be
obtained from Comp(G) by successively adding global vertices.

Proof. We have seen that there is a unique graph X(G) which is the line
graph of Incomp(P) for some P ∈ PG. We first show that there is a unique
graph H(G) which equals Incomp(P) for some P ∈ PG.

If X is a simple connected graph, then it is a line graph of a simple
graph H exactly if the edges of X can be decomposed into cliques such
that each vertex appears in exactly two cliques. Such a decomposition
is called a Krausz decomposition (see [62]). Then H is the graph which
has the cliques of a Krausz decomposition as vertices, with two of them
being adjacent if they share a vertex. The Krausz decomposition is unique
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unless X is a triangle, which is the line graph of both K3 and K1,3. The
line graph of a disconnected graph equals the union of the line graphs of its
components. These results are easy to prove, see e.g. the discussion of line
graphs in West’s book [62]. The uniqueness result was originally proved by
Whitney [63].

It follows that the incomparability graph of the posets in PG is unique
unless X(G) has a triangle component. To settle this exception, let us look
at K3 and K1,3 as incomparability graphs. Clearly, the unique poset with K3

as incomparability graph is the 3-antichain A3. Now, G(A3) has three color
classes which are pairwise crossing. On the other hand, the unique poset
Q with K1,3 as incomparability graph consists of a chain on three elements
and an additional element incomparable to the chain. Then G(Q) has three
color classes which are pairwise parallel.

Observe that Incomp(P) consists of different components exactly if P
is a series composition of several subposets. This carries over to the line
graph of Incomp(P). Thus if one component of X(G) is a triangle, then
the corresponding series component in a G-compatible poset is either a
3-antichain or a chain on three elements with an additional element. Since G
has a unique swap partition, G uniquely determines which one of these two
possibilities holds.

This shows that there is a unique graph H(G) which equals Incomp(P)
for some P ∈ PG. It is easy to see that the comparability graph Comp(P)
equals Incomp(P)c plus a set of global vertices corresponding to the set of
global elements of P . Thus the unique minimal graph in Γ(G) is H(G)c,
which we denote by Comp(G), and the characterization of Γ(G) follows.

A weaker version of the above result was also stated in Reuter’s
article [50]. However, it was based on a flawed characterization of adja-
cent colors, as mentioned in Section 2.3.

Let H be a comparability graph. Then we say that a bijection c be-
tween the color classes of G and the non-adjacent pairs of vertices of H
is a G-compatible swap coloring for H if there is a poset P ∈ PG with
H = Comp(P) such that c is the swap coloring of G with respect to P .

Lemma 3.7. The G-compatible swap coloring for Comp(G) is unique up
to automorphisms of Comp(G).

Proof. We use the notation of the previous proof. We identify the swap
colors ci of G with the vertices of X(G). The cliques of the Krausz decom-
position of X(G) become the vertices of H(G). For a non-triangle com-
ponent C of X(G), we assign ci ∈ V (X(G)) to the unique edge of H(G)
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connecting the two cliques in which it appears. By construction, this is the
unique assignment preserving the adjacencies of the swap colors.

A triangle component C of X(G) corresponds to a component C̄ of H(G)
which is either K3 or K1,3. Hence, relabeling the edges of C̄ is an automor-
phism of H(G). We thus assign the three swap colors of C arbitrarily to
the edges of C̄.

It follows that the assignment of the ci to edges of H(G) preserving the
adjacencies of the swap colors is unique up to automorphisms of H(G). This
is equivalent to the fact that there is a unique G-compatible swap coloring
for Comp(G) up to automorphisms of Comp(G).

Recall that G has r swap colors, hence X(G) has r vertices. Then
H(G) = Comp(G)c has r edges and may have θ(r) vertices. Thus we assume
for the following that Comp(G) has O(r) vertices.

Lemma 3.8. Given the graph X(G), we can reconstruct Comp(G) and the
G-compatible swap coloring for Comp(G) in time O(r2 + r · q).

Proof. We consider the components of X(G) = (VX , EX) separately. For
a component C which is not a triangle, we use an algorithm by Lehot [38]
which takes a line graph X 6= K3 as input and reconstructs the unique
graph H such that X is the line graph of H. The algorithm runs in time
O(|V (X)|+|E(X)|). It works by assigning the vertices of X to the cliques of
the Krausz decomposition. Thus, it also yields the part of the G-compatible
swap coloring corresponding to C.

For a triangle component C of X(G), we pick ci, cj ∈ V (C) arbitrarily.
We pose Question 1 to our G-medium to find out whether θi and θj are
crossing or parallel. By the proof of the previous lemma, this determines
the corresponding component C̄ of H(G). For obtaining c, we have seen
that we can assign the swap colors of C arbitrarily to the three edges of C̄.

Taking care of the non-triangle components of X(G) takes at most
O(|EX |+ |VX |) = O(r2) time altogether. If X(G) contains a linear number
of triangle components, these take time O(r · q). Thus we can reconstruct
H(G) in time O(r2 + r · q). From this, Comp(G) can be obtained in O(r)
by taking the complement.

If the linear extension graph was a comparability invariant, then we
would have completed our reconstruction procedure by now: The set of
G-compatible posets would be given by the set of all transitive orientations
of Comp(G). However, we have seen in Section 2.4 that the linear extension
graph is not a comparability invariant. Therefore we have to continue to
find out which transitive orientations of Comp(G) are G-compatible.
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3.4 Orienting the Comparability Graph

In this section we show how to find all G-compatible transitive orientations
of Comp(G), that is, all transitive orientations yielding a poset P ∈ PG.
Since Comp(G) is the minimal G-compatible comparability graph, we de-
note the family of these posets by Pmin

G . By Lemma 3.6, the family PG of all
G-compatible posets can be obtained from the family Pmin

G by the addition
of global elements to the posets in Pmin

G . Hence this section contains the
last (and most involved) step of our reconstruction procedure.

From the preceding section, we are also given a G-compatible swap
coloring c for Comp(G) which is unique up to automorphisms of Comp(G).
We are only interested in posets P ∈ Pmin

G respecting c, that is, such that c
is the swap coloring of G with respect to P . It follows from Lemma 3.6 that
posets in Pmin

G with a different swap coloring correspond to automorphisms
of the posets respecting c.

It will turn out that in most cases, the poset in Pmin
G is essentially unique.

In this section, essentially unique means unique up to automorphisms and
duality. Recall that we use the notion direction for the difference between
a poset P and its dual P∗.

Let Comp(G) = (VC , EC) and recall that |VC | ∈ O(r). If Comp(G)
has exactly two transitive orientations, then Comp(G) is uniquely partially
orderable. In this case, we can use the algorithm of McConnell and Spin-
rad [40] to compute its transitive orientation in time O(|VC |+ |EC |). Hence
we can complete the last step without the help of a G-medium.

In the general case, we compute the modular decomposition tree T of
Comp(G), see Section 1.4. This can be done with the algorithm of [40] in
time O(r). Each node of T corresponds to a module of Comp(G). The root
of T corresponds to VC , and each leaf of T is a single vertex of Comp(G).
The nodes of T are labelled (‖), (S) or (P), according to which case of
Theorem 1.17 applies to their canonical partition.

The case that the root of T is an (S)-node is the only exception where
the poset in Pmin

G is not essentially unique. We will deal with this case in
the last subsection. The main work is to prove the following proposition:

Proposition 3.9. Assume that we are given the minimal G-compatible
comparability graph Comp(G) and the G-compatible swap coloring c for
Comp(G), as well as the the modular decomposition tree T of Comp(G).

If the root node of T is not an (S)-node, then Pmin
G contains an essentially

unique poset, and we can construct it in time O(r3q).

Proof. We construct a G-compatible transitive orientaton of Comp(G) by
starting with the leaves of T and then working our way upwards.

51



3. Reconstructing Posets from Linear Extension Graphs

For each type of node there will be a subsection explaining how to
process it. Before going into details, we want to give a rough explanation
of how the orientation procedure works. The details will then be explained
in three subsections.

Because Comp(G) is a comparability graph, each induced subgraph of
it is also a comparability graph and thus has a transitive orientation. In
particular, this holds for a subgraph induced by a node of T , which is
a module M of G. We will see that each subgraph G[M ] has only one
G-compatible transitive orientation (up to its direction). This yields a
poset P(M) which we will also call G-compatible.

Note that a transitively oriented graph defines a poset and vice versa. In
this proof, we often switch between the two concepts, in particular between
a transitively oriented graph G[M ] and the corresponding poset P(M). We
use notions for these objects interchangeably.

We start with processing the leaves. Because the leaf-nodes are single-
vertex graphs, there is nothing to do to choose a transitive orientation.
In each further step, we choose a node M of T such that we have al-
ready processed all children of M . The children of M in T are the vertex
sets M1, . . . ,Mt of the canonical partition of M . Thus, for every child Mi

of M we have already found the unique G-compatible transitive orientation
of G(Mi). This yields the posets P(M1), . . . ,P(Mt).

Now we construct a G-compatible transitive orientation of the partition
graph G[M ]# of G[M ]. This yields a poset P(M#) = P(G[M ]#) which we
want to use to obtain P(M). By Theorem 1.23, each transitive orientation
of G[M ] arises from replacing every vertex of G[M ]# by the corresponding
child of M in T and directing all edges between two children according to
the edge between the corresponding vertices of G[M ]#. The only thing we
need to check is in which direction we insert the children of M . That means,
to obtain P(M), we need to decide whether to replace an Mi in P(M#)
by P(Mi) or by P(Mi)

∗.
We will see that the direction of the first inserted child forces the direc-

tion of all other children! In other words, once we fixed the direction of some
P(Mi) in P(M)#, we fixed the direction of P(M), and every other P(Mj)
has only one direction which is compatible with G and the chosen direction
of P(Mi). (This holds, of course, unless P(Mi) is self-dual. But then the
other direction corresponds to an automorphism of Comp(G), and will thus
be ignored.)

This motivates the following definition: We say that P(Mi) and
P(Mj) interlock if their directions are G-compatible, that is, if there is
a G-compatible poset in which they both appear in the given direction.
The crucial tool of this proof is the Interlocking Lemma stated below.
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For the Interlocking Lemma, we need the notion of a pivot for a
pair Mi,Mj, which is a vertex v ∈ Comp(G) such that v is non-adjacent in
Comp(G) to all elements of Mi and Mj. Also, for each Mi we need a mini-
mal element m−

i and maximal element m+
i of P(Mi), such that m−

i ≤ m+
i

in P(Mi). If P(Mi) has no relations, then m−
i and m+

i coincide.

Interlocking Lemma. Let Mi and Mj be two children of M , and P(Mi)
and P(Mj) the corresponding G-compatible posets.

(i) If Mi ‖Mj in P(M#), then it is uniquely determined by G in which
directions P(Mi) and P(Mj) interlock. We can determine it in
time O(q).

(ii) If Mi ∼ Mj in P(M#) and there exists a pivot v for the pair Mi,Mj,
then it is uniquely determined by G whether Mi ∼ Mj is a cover
relation of P(M#), and if so, in which directions P(Mi) and P(Mj)
interlock. Given v, we can determine it in time O(q).

Proof. For case (i), observe that mσ
i and mσ′

j for σ, σ′ ∈ {+,−} are non-
adjacent in Comp(G). Thus we may consider the color classes of G associ-
ated with m+

i m−
j and m−

i m+
j by c. If there is a poset P ∈ Pmin

G respecting c
which contains P(Mi) and P(Mj) in the given directions, then these two
colors are parallel by Lemma 2.12. If not, these two colors are crossing,
and we have to reverse the direction of P(Mj) (or P(Mi)) to make them
interlock. We can find out which case holds by posing Question 1 to the
G-medium.

For case (ii), let v ∈ Comp(G) be a pivot for Mi,Mj, and let σ, σ′ ∈
{+,−}. It holds by Lemma 2.12 that mσ

i ∼ mσ′

j is a cover relation in a poset

P ∈ Pmin
G respecting c exactly if the colors mσ

i v and mσ′

j v touch in G. That
is, Mi ∼ Mj is a cover relation of P(M#) exactly if there are σ, σ′ ∈ {+,−}
such that mσ

i v and mσ′

j v are touching.
Thus, by posing Question 3 to our G-medium at most four times, we

can find out whether Mi ∼ Mj is a cover relation of P(M#), and how Mi

and Mj interlock. △

Let us go back to the outline of our orientation procedure. Recall that
in every step, we process a node M of the decompositon tree T , and want
to turn P(M#) into P(M) by replacing every Mj by P(Mj). Using the
Interlocking Lemma, we can find the unique direction of P(Mj) compatible
with G and the chosen direction of the first P(Mi). In the three following
subsections, we explain how to do this according to the type of the node M
of T .
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Thus we construct the unique G-compatible transitive orientation of
G[M ], yielding a poset P(M). When we have processed the root of T , we
know from Theorem 1.23 that we have constructed a transitive orientation
of Comp(G). In this way we obtain the essentially unique poset in Pmin

G .
Note that it might seem more natural to process the decomposition

tree T from the root downwards. Our method only works upwards because
in every step, we need the fact that the children of the current node of T
are already transitively oriented and thus correspond to a poset.

3.4.1 The Parallel Case

First, let us consider the case that the chosen node M of T is a (‖)-node.

Lemma 3.10. If M is a (‖)-node, then the G-compatible poset P(M) is
essentially unique and we can reconstruct it in time O(r · q).

Proof. By Theorem 1.22, the graph G[M ]# has no edge. Thus we obtain
a transitive orientation of G[M ]# and hence a poset P(M#) for free. We
only need to check which directions we need to insert the posets P(Mi).

We pick the smallest i such that G[Mi] contains at least one edge (that
is, such that P(Mi) is not an antichain), and fix its direction arbitrarily. For
j = i + 1, . . . , t, we want to match the direction of P(Mj) to the direction
of P(Mi). By the Interlocking Lemma, this is uniquely determined by G
and can be determined in time O(q).

It follows that there is a unique G-compatible transitive orientation
of G[M ]. To compute it, we have to interlock each pair MiMj for
j = i + 1, . . . , t. There are at most t−1 such pairs, each taking time q. The
module M cannot have more children than there are vertices of Comp(G),
thus t ∈ O(r). Hence a (‖)-node can be processed in time O(r · q). △

3.4.2 The Series Case

Next, let us consider the case that M is an (S)-node of T .

Lemma 3.11. If M is an (S)-node which is not the root node of T , then
the G-compatible poset P(M) is essentially unique and we can reconstruct
P(M) in time O(r2 · q).

Proof. It holds by Theorem 1.22 that G[M ]# is a complete graph, and each
transitive orientation of G[M ]# can be found by choosing a linear order of
the children M1, . . . ,Mt of M and directing the edges of G[M ]# from lower
to higher indices in this order.

54



3.4. Orienting the Comparability Graph

To find a G-compatible linear order of M1, . . . ,Mt, we want to use
part (ii) of the Interlocking Lemma. Since M is not the root node of T ,
on the path from M to the root of T there is a node M ′ of T which is not
labeled (S). Then M ′ has a child M ′

1 which contains M , and a child M ′
2

which is not adjacent to M ′
1 in G[M ′]#. Any vertex v ∈ M ′

2 is non-adjacent
in Comp(G) to all vertices of M . Thus, v can be used as a pivot vertex for
all pairs Mi,Mj of children of M . Hence it follows with the Interlocking
Lemma that the G-compatible linear order of M1, . . . ,Mt is unique up to
direction.

To reconstruct this linear order, we can check for each pair Mi,Mj

whether it is a cover relation in P(M#). Once we have done this for every
pair, we choose a direction of the resulting linear order to obtain P(M#).
Since the Interlocking Lemma also tells us in which direction adjacent pairs
of P(M#) interlock, this yields P(M).

We can find the pivot vertex v in time O(r) by searching the vertices
of Comp(G). Given v, the running time is O(q) for every pair of children
of M . Since M has O(r) children, we can build P(M) in time O(r2 · q). △

3.4.3 The Prime Case

The most difficult case is when M is a (P)-node.

Lemma 3.12. If M is a (P)-node, then the G-compatible poset P(M) is
essentially unique, and we can reconstruct it in time O(r2 · q).

Proof. It was observed after Theorem 1.22 that if M is a (P)-node, then
G[M ]# has exactly two transitive orientation, where one is the reverse of
the other. Construct one of these transitive orientations with the algorithm
from [40]. This yields a partial order P(M#) on M1, . . . ,Mt.

Now we have to choose directions of the P(Mi) which are compatible
with G. After relabeling, we may assume that M1M2 . . . Mt is a linear
extension of P(M#). We perform t steps, where step j serves to fix the
direction of P(Mj). We start with fixing the direction of P(M1) arbitrarily.
In each later step j, consider Mj in the poset P(M#). If there is an index
i < j such that Mi‖Mj in P(M#), then the direction of P(Mj) can be fixed
using part (i) of the Interlocking Lemma. This case certainly applies if j = t,
otherwise Mt would be a series module of M , which is a contradiction since
M is a (P)-node.

In case we have M1, . . . ,Mj−1 < Mj in P(M#), we want to apply
part (ii) of the Interlocking Lemma. If there is a vertex v ∈ Comp(G)
such that the vertices of M are non-adjacent to v in Comp(G), then v can
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serve as a pivot vertex for the pair M1,Mj. This allows us to fix the direc-
tion of P(Mj). However, it may happen (if M is the root node of T ) that
no such v exists. In this case, we have to find a private pivot for each Mj.

Let S be the set of immediate predecessors of Mj in P(M#), that is, of
predecessors forming a cover relation with Mj. Then by assumption we have
S↓ = {M1, . . . ,Mj−1}. If Mk > Mi in P(M#) for all Mi,Mk with Mi ∈ S
and k > j, then S↓ is a series module of P(M#). This is a contradiction
since M is a prime node in T . Thus there is an Mi ∈ S and an Mk with
k > j such that Mi‖Mk in P(M#). It follows that Mj ‖Mk in P(M#).
Hence we can use a vertex from Mk as a pivot for the pair Mi,Mj in order
to fix the direction of P(Mj).

Thus in each step j, the direction of P(Mj) is uniquely determined.
After fixing the direction of P(Mt), we have constructed a G-compatible
poset P(M). We have also seen that it is essentially unique.

It remains to calculate the running time for the (P)-case. A transitive
orientation of G[M ]# can be computed in time linear in |M | with the algo-
rithm of [40], and thus in O(r). As for fixing the directions of the P(Mj),
the worst case happens if we need to find a private pivot for each j. A
private pivot can be found by searching Comp(G) and hence in time O(r).
Thus it follows from the Interlocking Lemma that each step can be com-
pleted in time O(r ·q). There are t ∈ O(r) steps in total. Thus a (P)-module
can be processed in time O(r2 · q). △

Completing the proof of Proposition 3.9.

We have seen in the three subsections above that we can process every
node M of T to construct a G-compatible poset P(M). In every case, P(M)
is essentially unique. Now it follows from Theorem 1.23 that Pmin

G contains
an essentially unique poset.

We complete the proof of Proposition 3.9 by checking the overall running
time. Each node Mi of T has a unique father in T . When this father is
processed, we need a minimal element m−

i and a maximal element m+
i

of P(Mi) such that m−
i ≤ m+

i . Clearly, we can find m−
i and m+

i in time
linear in |Mi|. Recall that the modular decomposition tree has a linear
number of nodes. Thus, the number of Mi we consider is in O(r). Hence
we can find all elements mσ

i with σ ∈ {+,−} in a total time of O(r2).
After this, every node of T can be processed in time O(r2 · q). Thus

the time to construct the G-compatible transitive orientation of Comp(G)
is bounded by O(r3 · q).
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3.4.4 The Exceptional Case

Now let us finally consider the case that the root of T is an (S)-node.

Lemma 3.13. Suppose that M is the root node of T and that it is an
(S)-node with children M1, . . . ,Mt. Then Pmin

G consists of the posets formed
by any series composition of the posets P(M1), . . . ,P(Mt), each taken in
arbitrary direction.

Proof. If the root node M of T is a series node, this means by Definition 1.25
that a poset P(M), and thus a poset in Pmin

G , is a series composition of the
posets P(Mi). By Corollary 2.23, the linear extension graph is invariant
under series alteration, that is, under a change of the order or the direction
of the series modules. The result follows.

The lemma above yields a precise description of all G-compatible posets
in the case that the root of T is an (S)-node. Thus in this case, we know the
posets in Pmin

G already after processing all the children of the root. There
can be up to 2tt! such posets (their description is obviously only implicit).

3.5 Putting Things Together

Completing the proof of Theorem 3.1.

Recall that once we know all posets in Pmin
G , we obtain the set PG by adding

an arbitrary number of global elements to each P ∈ Pmin
G .

To obtain the running time of our reconstruction procedure we need to
look at the running times of the different steps. The step taking the longest
time is to find the adjacencies of the swap colors, namely, O(r4 · q). This
can probably be improved.

We have thus shown that with a G-medium answering admissible ques-
tions in time q, we can construct the set PG of all G-compatible posets in
time O(r4 · q). This concludes the proof of Theorem 3.1.

The case that the root of T is an (S)-node makes a big difference for
the set of G-compatible posets. Note that deciding whether or not this case
holds can already be done by looking at G: It follows from Lemma 3.13
and Proposition 2.21 that the root of T is an (S)-node exactly if G is a
Cartesian product of several non-trivial graphs. Hence the G-compatible
poset is unique up to direction and the addition of global elements exactly
if G is Cartesian prime. We have thus proved Theorem 2.24.

To finish the discussion of the reconstruction procedure, let us mention
that Sabidussi [53] and, independently, Vizing [60] showed that every fi-
nite connected graph has a Cartesian factorization which is unique up to
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order and isomorphism of the factors. The unique Cartesian factorization
of a graph can be found in linear time with an algorithm of Imrich and
Peterin [34].

Hence another approach to our reconstruction algorithm would be to
first ask the G-medium to find the Cartesian factors G1, . . . , Gf of G.
Then each Gi would have an essentially unique Gi-compatible poset. The
set of G-compatible posets then equals the series compositions of the
Gi-compatible posets in any order and direction, completed by some global
elements. However, if the G-medium has access to a G-compatible poset P
and can thus answer the admissible questions in constant time, we can avoid
looking at the whole graph G. In this case it is not favorable to start with
the Cartesian factorization.

3.6 Recognizing Linear Extension Graphs

In the last section of this chapter, we show that the recognition procedure
developed in the previous sections can also be used to recognize whether
an arbitrary given graph is a linear extension graph. Essentially, it works
by applying the reconstruction procedure to the given graph G. If the
procedure gets stuck at some point, we know that G is not a linear extension
graph. Otherwise, we obtain a candidate P for a poset in PG. We then
try to match the linear extensions of P and the vertices of G. If this is
successful, we have a labeling of G with the linear extensions of P . Thus
G = G(P) and hence G is a linear extension graph.

Theorem 3.14. Whether a given graph G = (V,E) is a linear extension
graph can be recognized in time O(|V |2 + dimI(G)4 · |E|).

Proof. We partition the proof into several parts. In Subsection 3.6.1, we
construct the candidate P for a G-compatible poset, after ensuring that P
is essentially unique. In Subsection 3.6.2, we choose a vertex v ∈ G and
construct the linear extension Lv of P which corresponds to v if G = G(P).
In Subsection 3.6.3, we try to match the linear extensions of P to the
vertices of G, starting from Lv.

3.6.1 Constructing a Candidate Poset

In order to recognize if G is a linear extension graph, we cannot avoid
looking at the whole graph G. Thus without increasing the running time
we may start with applying the linear time algorithm by Imrich and Pe-
terin [34] which decomposes G into its Cartesian factors. It follows from
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Proposition 2.21 and Theorem 2.24 that G is a linear extension graph ex-
actly if each of its Cartesian factors is a linear extension graph. So for the
rest of this proof, we will assume that G is Cartesian prime.

Next, we check whether G is a partial cube using Eppstein’s Algorithm
from Theorem 1.12. If the answer is negative, then G is not a linear ex-
tension graph by Theorem 2.4. If the answer is positive, the algorithm also
computes the swap partition Θ(G).

Now we follow the steps of our reconstruction procedure. In this case,
our G-medium is just the graph G. We check adjacencies of the swap
colors as shown in Section 3.2. After that, we build the unique candidate
Comp(G) = (VC , EC) for a minimal G-compatible comparability graph as
shown in Section 3.3.

At this point, we test whether Comp(G) is a comparability graph. This
can be done with an algorithm by Golumbic [27]. If Comp(G) is not a
comparability graph, we know that G is not a linear extension graph.

If Comp(G) is a comparability graph, then we continue with computing
the modular decomposition tree T of Comp(G). Since G is Cartesian prime,
it follows from Proposition 2.21 that the root node of T is not a series node.
Thus by Proposition 3.9, the candidate P for a poset in PG is essentially
unique.

We try to reconstruct P by finding a G-compatible transitive orientation
of Comp(G) with the methods of Section 3.4. If some part of the orientation
algorithm cannot be carried out, e.g., we do not find a pivot to apply the
Interlocking Lemma, or we do not obtain a linear order of the modules in
in Subsection 3.4.2, then G is not a linear extension graph. Otherwise, we
obtain a poset P , which is the essentially unique poset in Pmin

G if G is a
linear extension graph.

As for the running time, the partial cube recognition algorithm takes
time O(|V |2). Recall that the number r of swap colors of G equals the iso-
metric dimension dimI(G) of G. Thus |VC |, |P| ∈ O(dimI(G)). Golumbic’s
recognition algorithm for comparability graphs runs in time O(∆ · |EC |),
where ∆ is the maximum degree of of Comp(G). Thus Comp(G) can be
tested in time O(dimI(G)3), which is dominated by the running time of the
reconstruction.

By Lemma 3.4, we can answer each admissible question in time
O(|V | + |E|). Therefore it follows from Theorem 3.1 that we can recon-
struct P in time O(dimI(G)4 · |E|). Altogether, the first part of the recog-
nition algorithm takes time O(|V |2 + dimI(G)4 · |E|).
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3. Reconstructing Posets from Linear Extension Graphs

3.6.2 Finding a Start

If all the steps in Subsection 3.6.1 worked out, we now have a poset P which
is the essentially unique candidate for a poset in Pmin

G . By our construction,
it comes with a candidate c for a swap coloring of G with respect to P which
is unique up to automorphisms of P . Thus, c is a bijection between Θ(G)
and Inc(P).

Let c−1 be the inverse map of c. Recall that for the linear exten-
sion graph G(P), we denote the color class corresponding to xy ∈ Inc(P)
by θ(xy). If G = G(P), then c−1(xy) = θ(xy) for each xy ∈ Inc(P).

Choose a vertex v of G. Our aim is to find a linear extension Lv of P
which corresponds to v in case G = G(P). We know that Lv is unique up
to automorphisms of P . To find it, we consider the swap colors of the edges
which are incident to v in G. Let v be incident to the edges e1, . . . , ek in G.
Denote the color of ei by ci = xiyi. Then the pairs xiyi are the jumps of P .
Our plan is to determine for each i which of the two relations, xi < yi or
xi > yi, is valid in Lv. Then we obtain Lv by adding these relations to P ,
as is proved in the lemma below.

Lemma 3.15. Let P be a poset and L = x1x2 . . . xn a linear extension of P.
Let xij , xij+1 be the jumps in L, for j ∈ J ⊆ {1, . . . , n − 1}. Then it holds
that P+ = P + {(xij , xij+1), j ∈ J} = L.

Proof. After adding the relations of all jumps to P , we have xi < xi+1 in P+

for any i = 1, . . . , n − 1. Hence P+ = L. △

Now we proceed as follows: For each i, consider the elements xi and yi

in P , and look for a pivot element which distinguishes them. Here, an
element v ∈ P is a pivot element if it is comparable to one of xi and yi, and
incomparable to the other. Suppose there is such a v, and suppose that
v ∼ xi and v‖yi. We consider the two cases v < xi and xi < v.

If v < xi in P , then xi < yi forces v < yi in a linear extension of P . Thus,
the color classes θ(xiyi) and θ(vyi) are parallel in G(P), cf. Figure 3.2. The
class θ(vyi) is contained in Gyixi

, that is, in the component of G(P)−θ(xiyi)
consisting of the linear extensions of P in which yi < xi. To check whether
xi < yi or xi > yi has to hold in Lv, we check on which side of G− c−1(xiyi)
we find v and c−1(vyi). Then, xi < yi holds in Lv exactly if v lies on the
other side of c−1(xiyi) as the class c−1(vyi).

If xi < v in P , then yi < xi forces yi < v in a linear extension of P .
Again, the color classes θ(xiyi) and θ(vyi) are parallel in G(P). This time
the class θ(vyi) is contained in Wxiyi

. Hence we have xi < yi in Lv exactly
if v lies on the same side of c−1(xiyi) as the class c−1(vyi).
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PSfrag

G(P)
v < yi v < yi

θ(xiyi) θ(vyi)

yi < xiyi < xi

yi < v
xi < yi

Figure 3.2: The position of a color class θ(vyi) parallel to θ(xiyi) can be used
to determine which side of θ(xiyi) contains the linear extensions with xi < yi.

If there is no pivot element to distinguish between xi and yi, then any
other element v ∈ P is either larger than both these elements, or smaller
than both, or incomparable to both. This means that xiyi is a twin of P
(cf. Definition 1.24). By Lemma 2.13, it follows that the two components of
G(P)−θ(xiyi) are isomorphic. Thus if G = G(P), then the two components
of G − c−1(xiyi) are isomorphic. In this case we can decide arbitrarily
whether xi < yi or xi > yi in Lv.

As for the running time of this second part, there may be O(dimI(G))
edges incident to v in G, thus we may have to consider O(dimI(G))
pairs xiyi. For each pair, we can find a pivot element (or decide that there is
none) in time O(dimI(G)), by checking for every v 6= xi, yi its relations to xi

and yi. Building the graph G− c−1(xiyi) and searching its two components
for v and c−1(vyi) can be done in time O(|V |+ |E|). Thus the second part
of the recognition can be completed in time O(dimI(G)2 · (|V | + |E|)).

3.6.3 Labeling Vertices with Linear Extensions

Now that we have found a linear extension Lv of P corresponding to v in
case G = G(P), our plan is to generate all linear extensions of P and label
the vertices of G with them in a breadth first search fashion. If L is a linear
extension of P and x, y ∈ Inc(P) are adjacent in L, then we denote by Lxy

the linear extension arising from L by swapping x and y.
We start with v and label it with Lv. For the following, we use a queue

to keep track of the linear extensions we still need to process. Initially, the
queue only contains Lv.

In every step, we pick the first linear extension L from the queue and
find all incomparable pairs of P which are adjacent in L. For each such
incomparable pair xy, check if v has an incident edge e ∈ c−1(xy) in G. If
the answer is no, then G 6= G(P). If the answer is yes, then we try to label
the neighbor v′ of v along e with the linear extension Lxy. This can be done
without problem if v′ has not yet received a label.
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3. Reconstructing Posets from Linear Extension Graphs

If v′ is already labeled with a linear extension L′, then we check if
L′ = Lxy. If not, then G 6= G(P). If the labeling was successful, then
add Lxy to the queue. When all adjacent incomparable pairs in L have
been looked at, we delete L from the queue. Now we pick the first linear
extension in the queue and process it in the same way as L.

When the queue is empty, we have processed all linear extensions of P ,
because any linear extension of P can be reached from Lv via a sequence
of adjacent swaps. Now we check if there are still unlabeled vertices in G.
If yes, then G 6= G(P). If not, then we have correctly labeled the vertices
of G with the linear extensions of P , and thus it holds that G = G(P).
Hence, G is a linear extension graph.

Let us consider the running time of the above labeling procedure. In
the case that G = G(P), there are |V (G)| linear extensions which need to
be processed. For each one of them, we need to run through the O(dimI(G)
elements of P to check which incomparable pairs are adjacent. On the other
hand, as soon as the algorithm exhibits a swap between two linear extensions
which is not compatible with G, it stops. Thus we do not perform more
than O(|V (G)|) steps. Hence the running time of the labeling procedure is
O(dimI(G) · |V (G)|).

The overall running time of the recognition algorithm is clearly dom-
inated by the O(|V |2 + dimI(G)4 · |E|) needed for the first part. This
concludes the proof of Theorem 3.14.

To close this chapter, let us remark that even if dimI(G) is expected
to be small compared to the size of the whole graph G, it can be as large
as |E(G)| (e.g. if G is a path). Hence the running time of the reconstruction
and the recognition procedures presented in this chapter can be very long.
This also holds because linear extension graphs are typically exponentially
large in the size of the underlying poset.

In the next chapters, we are interested in properties of G(P) that we
can determine in time polynomial in |P|.
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Chapter 4

Complexity of Linear Extension Diameter

In the preceding two chapters we analyzed the structure of linear extension
graphs and the connections to properties of the corresponding posets. For
the remainder of this thesis, we will mainly be interested in one particu-
lar parameter of the linear extension graph: its diameter. The diameter
of G(P) equals the linear extension diameter of P .

The diameter of a graph is a parameter which is not very complicated to
determine: We can use any shortest path algorithm to compute the longest
shortest distance between two vertices in the graph. But since G(P) is
typically exponentially large in the size of P , we are interested in results
about the linear extension diameter of P which we can obtain without
looking at the whole graph G(P). That is, we view the linear extension
diameter as a parameter of the underlying poset. This comes out more
clearly in the following definition:

Definition 4.1 ([22]). The linear extension diameter of a poset P, denoted
by led(P), is the maximum distance between two linear extensions of P.
A diametral pair of linear extensions of P, or in short diametral pair of P,
is a pair of linear extensions of P achieving this maximum distance. If L,L′

is a diametral pair of P, then L′ is a diametral partner of L.

Recall that the distance between two linear extensions L,L′ of P is the
number of reversals between L and L′. Since only incomparable pairs of
elements can form a reversal, we have dist(L,L′) ≤ inc(P). It follows that
led(P) ≤ inc(P) for any poset P .
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4. Complexity of Linear Extension Diameter

A diametral pair L,L′ can be used to obtain a drawing of P which
is in some sense optimal: Use L and L′ on the two coordinate axes to
get a position in the plane for each element of P . Since the number of
incomparable pairs of P which appear in different orders in L and L′ is
maximized, the resulting drawing has a minimal number of pairs which are
comparable in the dominance order, but incomparable in P . Figure 4.1
illustrates this for the example of the Chevron.
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PG(P)

Figure 4.1: The linear extension graph of the Chevron with a diametral pair
and the resulting drawing of the Chevron.

In Section 4.1, we revise some known results about the linear extension
diameter. In Section 4.2 of this chapter we prove that, in general, computing
the linear extension diameter in polynomial time is NP-complete. In the
third and last section of this chapter, we prove that the linear extension
diameter of posets of width 3 can be computed in polynomial time.

4.1 Previous Results

In this section we give a short overview of previously known result about the
linear extension diameter. They have been proved by Felsner and Reuter
in [22].

There are very few exact results about the linear extension diameter. Let
us start with considering the easiest cases: If P is a chain, then G(P) con-
sists of a single vertex, so its diameter is 1. If the poset is the antichain An,
then a diametral pair consists of two permutations of the elements such
that one is the reverse of the other. Hence led(An) =

(

n
2

)

.
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If P has dimension 2, then by definition it has a realizer R = {L,L′}
such that every incomparable pair x‖y of elements of P appears in different
orders in L and L′. So led(P) equals the number of incomparable pairs
of P . The converse is also true: If we have led(P) = inc(P) for some poset,
then a diametral pair of linear extensions of P yields a realizer of P , and
thus dim(P) = 2. We have thus proved the following:

Theorem 4.2 ([22]). Let P be a poset. Then led(P) = inc(P) holds exactly
if dim(P) = 2.

Note that the Chevron has seven incomparable pairs, but its linear ex-
tension diameter is only six. It follows that its dimension is at least 3.

Recall from Section 1.2 that the dimension of a poset P can be char-
acterized as the minimum d such that P has a proper embedding into Z

d,
that is, an embedding such that the dominance order on Z

d equals the or-
der relation of P . From the above theorem it follows that the drawing of P
induced by a diametral pair is a proper embedding into the plane exactly
if P is 2-dimensional.

Let us consider the Chevron again: The drawing on the right of Fig-
ure 4.1 is not a proper embedding into the plane, since the pair 1, 3 of
elements is comparable in the dominance order, but not in the Chevron.
However, this is the only pair which is not embedded properly.

Felsner and Reuter [22] give a number of lower bounds on the linear
extension diameter, relating led(P) to the width, dimension and fractional
dimension of P . They are shown by rather straightforward constructions
of pairs of linear extensions. As for upper bounds, led(P) ≤ inc(P) can
be refined to led(P) ≤ inc(P) − (dim(P) − 2). This bound is tight for the
standard examples.

There are also some results in [22] about the behavior of led(P) under
removals of elements or relations. For an element x ∈ P denote by inc(x)
the number of elements of P which are incomparable to x. Then it holds
that led(P) ≥ led(P−x) ≥ led(P)−inc(x). For a cover relation r = (x < y)
of P , we have led(P) ≤ led(P−r) ≤ led(P)+min{inc(x), inc(y)}+1. Most
of these inequalities are sharp, for which examples are given in [22]. Again,
the inequalities are quite straightforward to prove. Since our considerations
go into a different direction, we do not go into more details here.

A result that we will use concerns the situation of modules in P . Re-
call that a module of P is a subset of the elements of P which cannot be
distinguished from the outside, see Definition 1.24. For completeness, we
provide a proof of the following lemma:
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4. Complexity of Linear Extension Diameter

Lemma 4.3 ([22]). For every poset P and module M of P, there is a
diametral pair L,L′ of P such that the elements of M appear successively
in L and L′.

Proof. Consider a diametral pair L,L′ of linear extensions of P . Each
element x ∈ P contributes a certain number of reversals to the distance
of L and L′. Let x be an element of M which contributes a maximum
number of reversals with the elements not in M . Now we move all the
other elements of M to the position of x in L and L′ without changing their
internal order. Since M is a module, this cannot violate any relation of P ,
thus the result will again be two linear extensions of P . By the choice of x,
their distance cannot have decreased. So we have constructed a diametral
pair of P such that the elements of M appear consecutively in both linear
extensions.

Recall that a comparability invariant is a poset parameter that depends
only on the comparability graph of the poset. We have seen in Section 2.4
that the linear extension graph is not a comparability invariant. With the
above result, it can be shown easily that the linear extension diameter is
indeed a comparability invariant.

Theorem 4.4 ([22]). The linear extension diameter is a comparability in-
variant.

Proof. By Theorem 1.26, it suffices to prove that the linear extension di-
ameter remains unchanged whenever a subposet induced by a module is
replaced by its dual, that is, if led(PQ

x ) = led(PQ∗

x ) for all choices of posets
P ,Q and an element x ∈ P.

Since the ground set of Q is a module in PQ
x , by Lemma 4.3 there is a

diametral pair L,L′ of linear extensions of PQ
x in which the elements of Q

appear successively. If we reverse the order of the elements of Q in L and L′,
we obtain two linear extensions of PQ∗

x . Their distance is the same as the
distance between L and L′. Thus we have led(PQ

x ) ≤ led(PQ∗

x ). With the
same argument, the converse also holds.

One of the main results in [22] is an exact formula for the linear extension
diameter of generalized crowns. To state it, we first give some definitions.

The crown Cn was defined in [2] as the height-2 poset consisting of
two antichains A = {a1, . . . , an} and B = {b1, . . . , bn} such that ai < bj

in Sn exactly if j ∈ {i, i + 1}. Here, the indices of the ai and bi are to be
interpreted cyclically.

The generalized crowns, defined by Trotter [58], form a class of posets
interpolating between the standard examples and the crowns. We use the
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4.2. NP-Completeness for General Posets

definition from [22]: The generalized crown Ck
n is a height two poset and has

as ground set the two antichains a0, . . . , an−1 and b0, . . . , bn−1. The relations
are defined by ai < bj exactly if i−⌊(k − 1)/2⌋ ≤ j ≤ i + ⌊k/2⌋. Again the
indices are to be read cyclically. Note that Cn−1

n = Sn and C2
n = Cn.

Theorem 4.5 ([22]). For each n ≥ k ≥ 2, the linear extension diameter
of the generalized crown Ck

n is given by

led(Ck
n) = 2n (n − k + k(k − 1)) .

For the class of Boolean lattices Bn, a formula for the linear extension
diameter is conjectured in [22] and proved up to n = 4. We prove the
conjecture for all n in Section 5.1.

Felsner and Reuter [22] also provide a heuristic method for the construc-
tion of two linear extensions with large distance. It is extremely simple:
Start with one linear extension L. Now construct L′, the complementary
linear extension of L, with the generic algorithm, using the reverse of L
as priority order. Intuitively, there are many reversals between L and L′.
In [22] it is shown that if this process is applied iteratively, it converges to
a pair of linear extensions which form a complementary pair, that is, they
are mutually complementary. The convergence is reached after 2h steps,
where h is the height of the poset.

It is easy to see that each complementary pair L,L′ is locally extreme
in G(P). That is, there is no neighbor of L′ which has larger distance
from L than L′, and no neighbor of L which has larger distance from L′

than L. Unfortunately, complementary pairs do not have to be diametral,
and diametral pairs do not have to be complementary. It is unknown,
however, how far a complementary pair can be from being diametral.

4.2 NP-Completeness for General Posets

In this section we prove that it is NP-complete to determine the linear
extension diameter of a general poset. More precisely, we consider the
following decision problem:

LINEAR EXTENSION DIAMETER
Input: Finite poset P , natural number k
Question: Are there two linear extensions of P with distance at least k?

For the hardness proof we use a reduction of the following problem:

BALANCED BIPARTITE INDEPENDENT SET
Input: Bipartite graph G, natural number k

67



4. Complexity of Linear Extension Diameter

Question: Is there an independent set of size 2k, consisting of k vertices in
each bipartition set?

This problem is NP-complete as the equivalent problem BALANCED
COMPLETE BIPARTITE SUBGRAPH is NP-complete [26].

Theorem 4.6. LINEAR EXTENSION DIAMETER is NP-complete.

Proof. The problem is in NP, because the distance of two given linear exten-
sions can be checked in time quadratic in the number of elements of P , and
thus two linear extensions at distance k are a certificate for a YES-instance.

To show that the problem is NP-hard, suppose that an instance of
BALANCED BIPARTITE INDEPENDENT SET is given: A bipartite
graph G = (A ∪ B,E) and k ∈ N. In a preprocessing step, we take a
disjoint union of two copies G1 = (A1 ∪ B1, E1) and G2 = (A2 ∪ B2, E2)
of G and join all vertices of A1 to all vertices of B2 as well as all vertices
of A2 to all vertices of B1. We call the resulting graph G′ = (A′ ∪ B′, E ′).
Then G has a balanced independent set of size 2k exactly if G′ has two
disjoint balanced independent sets of size 2k. A further convenient fact is
that, after this preprocessing step, we know that k ≤ |A′|/2, |B′|/2.

Now we build a poset P starting from G′ by designating the vertices of G′

as black elements of P . The sets A′ and B′ each form an antichain in P , and
an element of B′ is larger than an element of A′ exactly if they are adjacent
in G′. Then we add the green elements A1, A2, . . . , Ar, B1, B2, . . . , Bs and C
and D with relations as shown in Figure 4.2.

a1

b1

a2

b2

ar

bs

A1 A2 Ar

B1 B2 Bs

C

D
G′

A′

B′

P

. . .

. . .

. . .

. . .

Figure 4.2: For the hardness proof, we build a poset from a bipartite graph.

Finally we form P∗ from P by replacing the green elements by long
chains. Let n be the number of vertices of G′. Each Ai and each Bj

is replaced by a chain of length 2n4, and C and D by chains of length
(2k−1)n4. All these chains form modules in P∗, so we know by Lemma 4.3
that there is a diametral pair of linear extensions of P∗ in which they appear
successively. Since we are only interested in the distance between the linear
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extensions of a diametral pair, it suffices to consider such a diametral pair.
This diametral pair corresponds to a pair of linear extensions of P . The
distance in P∗ between the two linear extensions can be thought of as a
weighted distance between linear extensions of P . From now on, we work
in P .

We will analyse what a weighted diametral pair of linear extensions of P
has to look like, and we will eventually see that its distance depends on the
existence of a balanced independent set of G′. Recall that the distance be-
tween two linear extensions is the number of reversals between them. There
are three types of pairs of elements of P that can be reversed: First, the pairs
consisting of two black elements. Every such black/black reversal adds 1
to the distance. These reversals form the unit reversals. Second, there are
the reversals of a black element with a green element. A black/green rever-
sal contributes 2n4 or (2k − 1)n4 unit reversals to the distance, depending
on the type of the green element involved. Finally there are reversals be-
tween two green elements, that is, between two Ai or two Bj. Every such
green/green reversal yields 4n8 unit reversals.

We saw that the contribution of the three types of reversals differs a
lot. In fact, the total gain of all possible reversals of one type yields still
less than one reversal of the next bigger type: There are n black elements,
so the number of black/black reversals is at most

(

n
2

)

. This is θ(n2), far
less than the θ(n4) that one black/green reversal yields. And how many of
those can there be in total? Even if the black elements were incomparable
to the whole rest of the poset, the black/green reversals could altogether
contribute only θ(n6) unit reversals, again far less than the θ(n8) of a single
green/green reversal.

The consequence of this is that we can analyse the linear extensions
forming a weighted diametral pair of P in three separate steps. First we
check how the green elements have to be ordered in the linear extensions to
yield a maximum number of green/green reversals. In the second step, we
fill in the black elements in order to get a maximum number of black/green
elements, knowing that these cannot influence the order of the green ele-
ments, because they cannot contribute enough. In the last step, we use the
remaining freedom to order the black elements so that they add a maximum
number of unit reversals. Note that the first two steps do not depend on
the particular graph G′. We define the base distance to be the weighted
distance we can achieve between two linear extensions of P independently
of the particular given graph G′; put differently, it is the linear extension
diameter of P∗ built from a complete bipartite graph G′. In the last step
we will see that the existence of a balanced independent set determines how
much led(P∗) exceeds the base distance.
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We start with the first step. For this, it is enough to look at the poset P ′

induced only by the green elements, so P ′ = P \ G′. It consists of an
antichain of minima, formed by the Ai, the two elements C and D which
are comparable to all other elements of P ′, and an antichain of maxima,
formed by the Bj. See Figure 4.3 for illustration.

A1 A2 Ar

B1 B2 Bs

C

D

P ′ . . .

. . .

Figure 4.3: In the first step, we only consider the green part P ′ of P.

The poset P ′ is two-dimensional, and the diametral pairs consist of two
linear extensions L′

1, L′
2 such that the Ai and Bj come in an arbitrary order

in L′
1, and in the opposite order in L′

2. Thus up to labelling the Ai and Bj,
a diametral pair of linear extensions of P ′ has the form

L′
1 = A1A2 . . . ArCDB1B2 . . . Bs

L′
2 = ArAr−1 . . . A1CDBsBs−1 . . . B1.

Hence the green/green reversals in a diametral pair contribute a total num-
ber of

((

r
2

)

+
(

s
2

))

· 4n8 unit reversals to the base distance.
For the second step we need to take the elements of G′ into account.

We concentrate on the lower half P̄ of P , induced by the elements of
A1 ∪ . . . ∪ Ar ∪ C ∪ a1 ∪ . . . ar (see Figure 4.4).

a1 a2 ar

A1 A2 Ar

C A′. . .

. . .

Figure 4.4: In the second step, we look at the lower half P̄ of P.

The subposet induced by the remaining elements is the upper half. The
only incomparabilities between the upper and the lower half occur between
two black elements, and we are not interested in black/black reversals in
the second step. Other than that, the lower half and the upper half are
symmetric; we only need to replace r by s.
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Let us now look at the lower half. Each ai is incomparable to C and
to all Aj with j 6= i. One option to insert ai into L′

1 and L′
2 yielding

many reversals is to place it right above its predecessor Ai in both linear
extensions, thus reversing with all Aj, j 6= i, but not with C. This is clearly
best possible among all options which do not reverse ai and C. If we want
to reverse ai with C, then the best option is to insert ai above C (and thus
also above all Aj) in one linear extension, and place it as low as possible in
the other. Note for this option that ai still has to be above Ai, and thus
it cannot be reversed with the Aj which are below Ai in the other linear
extension.

In the first option, ai contributes (r−1)·2n4 unit reversals. In the second
option, we win (2k−1)n4 unit reversals from C, but lose 2n4 ·min{i−1, r−i}
unit reversals from the Aj. Which option is best therefore depends on i.
We will consider three different cases. Recall for the following that k ≤ r/2.
We say that the elements between C and D are in the middle of a linear
extension of P .

If i ≤ k, then min{i − 1, r − i} = i − 1. Then we have 2n4 · (i − 1) <
(2k−1)n4. Hence it is best to choose the second option and insert ai above
C in L′

2, thus, to put ai in the middle of L′
2.

If i ≥ r − k + 1, then min{i− 1, r − i} = r − i, and again 2n4 · (r − i) <
(2k − 1)n4. In this case it is best to insert ai in the middle of L′

1.
Finally, if k + 1 ≤ i ≤ r − k, then k ≤ i − 1 and k ≤ r − i. Thus 2k ≤

2 · min{i − 1, r − i} and consequently (2k − 1)n4 <2n4 · min{i − 1, r − i}.
Therefore the first option is best in this case, that is, ai will not be put in
the middle of L′

1 or L′
2.

It follows that exactly k of the ai will be inserted in the middle of L′
1

and L′
2, respectively. The analysis for the upper half can be made com-

pletely analogously, so k of the bj end up in the middle of L′
1 and L′

2,
respectively. Up to reversals in the middle, we can now write down what a
diametral pair L1, L2 of linear extensions of the whole poset P looks like.

L1 = A1a1A2a2 . . . ArCar−k+1 . . . ar−1arb1b2 . . . bkDB1B2 . . . bs−1Bs−1bsBs

L2 = ArarAr−1ar−1 . . . A1Cak . . . a2a1bsbs−1 . . . bs−k+1DBsBs−1 . . . b2B2b1B1

Note that the chosen order of the Ai and Bj determines which elements ai

and bj end up in the middle of L1 and L2.
The black/green reversals contributed by the lower half amount to the

following number of unit reversals:

r(r − 1) · 2n4 −2
(

∑k
i=1(i − 1)

)

· 2n4 +2k · (2k − 1)n4

= r(r − 1) · 2n4 −k(k + 1) · 2n4 +2k · (2k − 1)n4.
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For the number of contributed black/green reversals of the upper half, we
only have to replace r by s.

The third step is now easy. To analyse how many black/black reversals
we can obtain, we first observe that it is clearly possible to completely
reverse the order of the ai as well as the order of the bj. This adds another
(

r
2

)

+
(

s
2

)

to the base distance.
Now we put our calculations together to find the base distance d between

two diametral linear extensions of P .

d =
∑

t=r,s

(

t
2

)

· 4n8 + t(t − 1) · 2n4 − k(k + 1) · 2n4 + 2k · (2k − 1)n4 +
(

t
2

)

=
((

r
2

)

+
(

s
2

))

· (2n4 + 1)
2
− 2k(k + 1) · 2n4 + 4k · (2k − 1)n4

For the only other possible black/black reversals, we have to check if
some of the ai can be brought above some of the bj. This can only happen
between the ai and bj in the middle of L1 and L2. So there are at most 2k2

additional unit reversals to be won. This number can be obtained exactly
if G′ contains two disjoint balanced independent sets of size 2k. Because if
it does, then we can choose an order of the Ai and Bj so that the vertices
of one independent set end up in the middle of L1, and the vertices of the
other in the middle of L2, and then bring all the involved ai above all the
involved bj. On the other hand, if we can win these additional 2k2 unit
reversals, then clearly there have to be two disjoint balanced independent
sets in G′.

Recall that G′ has two disjoint balanced independent sets of size 2k
exactly if G has one. So we conclude that G has a balanced independent set
of size 2k exactly if P∗ has two linear extensions of distance at least d+2k2.
Since it is clearly possible to build P∗ in time polynomial in the size of G,
this proves the hardness of LINEAR EXTENSION DIAMETER.

Note that BALANCED BIPARTITE INDEPENDENT SET is fixed-
parameter tractable, that is, there is an algorithm which solves it in time
f(k) · poly(|V (G)|), where f is an arbitrary function depending only on k,
and poly is a polynomial. This can be done by checking for all pairs of
k-subsets of A and B whether they form an independent set in G.

It thus remains open whether LINEAR EXTENSION DIAMETER is
still NP-hard if we fix the desired number of reversals between two linear
extensions.

Open Question 1. Is the problem LINEAR EXTENSION DIAMETER
fixed-parameter tractable?
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4.3 Algorithm for Posets of Width 3

In this section we describe an algorithm that determines the linear extension
diameter of posets of width 3, using a dynamic programming approach.

Before we go into the proof, recall the famous Dilworth’s Theorem [14]
which states that any poset of width k can be decomposed into k chains
(see e.g. [59]).

Theorem 4.7. The linear extension diameter of posets of width 3 can be
computed in polynomial time.

Proof. Let a poset P of width 3 be given. By Dilworth’s Theorem, P has
a decomposition into three chains. Such a decomposition can be found in
linear time with an algorithm of Felsner, Raghavan and Spinrad [21]. Let P
have n elements, partitioned into the three chains A,B and C. A convenient
consequence is that P can have no more than n3 downsets, because every
downset is uniquely determined by an antichain of elements forming the
maxima of the downset. Let PD denote the poset induced by a downset D
of P . Our approach is to calculate the linear extension diameter of P
dynamically by calculating it for every PD and re-using data in the process.

Let us analyse what the linear extensions of P can look like. In this
proof we always read linear extensions from top to bottom, so the initial
segment of a linear extension consists of its topmost vertices, to find the
i-th element we count from the top, and so on. The first element of a linear
extension L can either be the top element of A, the top element of B, or
the top element of C. Then there is an initial segment with only elements
of that chain, until at a certain position the top element of a second chain
appears.

For chains V,W,X, Y ∈ {A,B,C} and i, j ∈ N with i, j ≥ 2, we now
define ledD(V W, i,XY, j) as the maximum distance between two linear
extensions L1, L2 of PD such that the following holds: the maximal ele-
ment of L1 belongs to chain V , the second chain appearing is chain W ,
and the first element of chain W appears at position i in L1; the maximal
element of L2 belongs to chain X, the second chain appearing is chain Y ,
and the first element of chain Y appears at position j in L2. We call such
a pair of linear extensions relevant for ledD(V W, i,XY, j), see Figure 4.5
for illustration. If there is no relevant pair of linear extensions, we set
ledD(V W, i,XY, j) = −∞.

Our plan now is to calculate ledD(V W, i,XY, j) for all choices of param-
eters D,V,W,X, Y, i, j. The number of values to compute is then bounded
by n3 · 6 · 6 · n · n = O(n5), and thus polynomial.
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L1 L2

∈ V

∈ W

∈ X

∈ Y

i

j

i − 1
j − 1

Figure 4.5: Scheme of a relevant pair of linear extensions for ledD(V W, i, XY, j).

If PD consists of only one chain or a chain plus one element, then we
can read off the desired value immediately. For all other cases we describe
a recursive formula. So let us assume that PD contains elements from all
three chains, or that there are two chains from which PD contains more than
one element, and that we have computed all values for all downsets of PD.
We want to compute ledD(V W, i,XY, j) with V,W,X, Y ∈ {A,B,C}. We
first choose a chain which appears in V W as well as in XY . Since there
are only three chains available, it must exist. Suppose it is chain A. We
will use the values for D′ = D − a1 for our recursion, where ai is defined as
the i-th element of chain A (counted from the top) in PD. There are three
cases to consider, and each case will be divided into several possibilities.

First we consider the case where A is the chain appearing second in
both L1 and L2 and the chains appearing first are different. We show a
formula for ledD(BA, i, CA, j); the formula for ledD(CA, i, BA, j) is analo-
gous. If a1 > bi−1 or a1 > cj−1, then ledD(BA, i, CA, j) = −∞. Otherwise
we know that the element a1 contributes exactly i − 1 + j − 1 reversals to
the distance between L1 and L2. Hence to calculate ledD(BA, i, CA, j), we
can maximize over all distances between two linear extensions L′

1, L
′
2 of D′

in which we can reinsert a1 to get two relevant linear extensions.
What do the relevant linear extensions L′

1 and L′
2 look like? Of

course it holds that L′
1 starts with i − 1 elements of chain B, and L′

2

with j − 1 elements of chain C. So the first chains appearing in L′
1

and L′
2 are fixed. But after the initial segment, there are four possi-

bilities. If the second appearing chain is again A in both L′
1 and L′

2,
then we are interested in the maximum distance over all possible posi-
tions of a2, so let us set α = maxr≥i,p≥j ledD′(BA, r, CA, p). The distance
may increase if the second chain in L′

1 is C, so we want to know β =
maxr≥i,p≥j ledD′(BC, r, CA, p); or if the second chain in L′

2 is B, in which
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case we are interested in γ = maxr≥i,p≥j ledD′(BA, r, CB, p). The last pos-
sibility we have to take into account is δ = maxr≥i,p≥j ledD′(BC, r, CB, p).
To compute ledD(BA, i, CA, j), we have to maximize over all these possi-
bilities. We obtain

ledD(BA, i, CA, j) = i + j − 2 + max{α, β, γ, δ}.

In the second case, A appears first in one linear extension, say L1, and
second in the other, L2. We will show a formula for ledD(AB, i, CA, j). The
formulae for ledD(AC, i, BA, j), ledD(AB, i, BA, j) and ledD(AC, i, CA, j)
are built analogously. Again, if b1 > ai−1 or a1 > cj−1, then
ledD(AB, i, CA, j) = −∞. Otherwise, we know that a1 contributes j − 1
reversals to the distance between L1 and L2. Let us distinguish the pos-
sibility i > 2 from the possibility i = 2. If i > 2, then we know that a
relevant L′

1 starts with i − 2 elements of A and then lists b1. So we only
need to maximize over the possible second chains in L′

2. We obtain

ledD(AB, i, CA, j) = j − 1 + max{α, β}, where

α = max
p≥j

ledD′(AB, i − 1, CA, p) and

β = max
p≥j

ledD′(AB, i − 1, CB, p).

If i = 2, then a relevant L′
1 starts with an element from B, and we

maximize over all possible combinations of second chains in L′
1 and in L′

2:

ledD(AB, 2, CA, j) = j − 1 + max{α, β, γ, δ}, where

α = max
r≥2,p≥j

ledD′(BA, r, CA, p), β = max
r≥2,p≥j

ledD′(BA, r, CB, p),

γ = max
r≥2,p≥j

ledD′(BC, r, CA, p), δ = max
r≥2,p≥j

ledD′(BC, r, CB, p).

In the third case, A is the first chain in both L1 and L2. We will show
how to compute ledD(AB, i, AC, j); the other cases for the second chains
work analogously. The principle is the same as in the first two cases, we
only need to distinguish more possibilities now. First we observe that a1

does not contribute any reversals here, but on the other hand we will always
get a finite value for ledD(AB, i, AC, j). If both i > 2 and j > 2, we know
exactly which chains come first and second in the relevant linear extensions.
Hence, nothing changes but the position of the first element of the second
chain:

ledD(AB, i, AC, j) = ledD′(AB, i − 1, AC, j − 1).

If one of the two parameters i and j is exactly 2, then we need to distinguish
two possibilities as before.

75



4. Complexity of Linear Extension Diameter

If i = 2 and j > 2, we have

ledD(AB, 2, AC, j) = max{α, β}, where

α = max
r≥2

ledD′(BA, r, AC, j − 1) and

β = max
r≥2

ledD′(BC, r, AC, j − 1).

For i > 2 and j = 2, we obtain

ledD(AB, i, AC, 2) = max{α, β}, where

α = max
p≥2

ledD′(AB, i − 1, CA, p), and

β = max
p≥2

ledD′(AB, i − 1, CB, p).

Finally, if i = 2 and j = 2, we again have to consider four possibilities:

ledD(AB, 2, AC, 2) = max{α, β, γ, δ}, where

α = max
r≥2,p≥2

ledD′(BA, r, CA, p), β = max
r≥2,p≥2

ledD′(BA, r, CB, p),

γ = max
r≥2,p≥2

ledD′(BC, r, CA, p), δ = max
r≥2,p≥2

ledD′(BC, r, CB, p).

Hence we can compute the desired values for all downsets in time poly-
nomial in n. The linear extension diameter of the whole poset P is now of
course the maximum of the values for PD = P over all choices of parameters
for ledD(V W, i,XY, j).

However, since the number of linear extensions increases exponentially
with the width, a large width makes the computation of the linear extension
diameter more difficult. A natural question to ask is whether there is a
polynomial time algorithm computing the linear extension diameter poset
with arbitrary fixed width. We have found no way of generalizing the above
proof to answer this. Our proof uses the special property of a set of size 3
that, whenever you chose a pair from this set, and then again a pair from
this set, there is an element that you chose twice. This does not generalize
to a set containing more elements.

Open Question 2. Is the problem of computing the linear extension di-
ameter solvable in polynomial time for posets of fixed width?
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Chapter 5

Linear Extension Diameter of Distributive

Lattices

In the previous chapter we showed that it is NP-complete to determine the
linear extension diameter of a poset, in general. For a poset P of width 3, we
have seen a dynamic programming approach to compute led(P). However,
we could not give a closed formula.

In this chapter, we consider the linear extension diameter of different
classes of distributive lattices. In Section 5.1 we deal with Boolean lattices.
We prove a formula for their linear extension diameter and characterize
their diametral pairs of linear extensions. In Section 5.2 we consider the
more general class of downset lattices of 2-dimensional posets. Again, we
characterize their diametral pairs of linear extensions. The proofs are based
on the same ideas as those for Boolean lattices, but they also make heavy
use of the structure of the underlying 2-dimensional posets. We also show
how to compute the linear extension diameter of the downset lattice of a
2-dimensional poset P in time polynomial in |P|.

Note that the results of Section 5.1 are contained in the results of Sec-
tion 5.2. We nevertheless carry out the proofs for the Boolean lattices in
detail since they provide an accessible introduction to the techniques used
in the general case. However, since Section 5.2 is largely self-contained, the
self-confident reader may proceed there directly.
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5. Linear Extension Diameter of Distributive Lattices

5.1 Boolean Lattices

Recall that the n-dimensional Boolean lattice Bn is the poset on all subsets
of [n], ordered by inclusion. In this section, we prove a formula for the
linear extension diameter of Boolean lattices, confirming Conjecture 5.1
below. Then we characterize the diametral pairs of linear extensions of Bn.

Conjecture 5.1 (Felsner, Reuter [22]). led(Bn) = 22n−2− (n+1) ·2n−2.

The formula in Conjecture 5.1 is the distance between two linear exten-
sions of Bn, arising from a generalization of the reverse lexicographic order.
Since these revlex linear extensions play a central role throughout the whole
chapter, we devote a subsection to their introduction.

5.1.1 Revlex Linear Extensions

Before defining revlex linear extensions, let us clarify some notation: Let σ
be a permutation of [n]. We say that i is σ-smaller than j, and write i <σ j,
if σ−1(i) < σ−1(j). The σ-minimum minσ S of a finite set S is the element
which is σ-smallest in S. For example, if σ = 2413, then 4 <σ 1, and
minσ{1, 2, 3} = 2. We define σ-larger and σ-maximum analogously.

Definition 5.2. The σ-revlex order <σ on the pairs S, T ⊆ [n] is defined
as follows:

S <σ T ⇐⇒ max
σ

(S△T ) ∈ T.

Lemma 5.3. The relation of being in σ-revlex order defines a linear exten-
sion Lσ of the Boolean lattice.

Proof. We need to show that the σ-revlex relation defines a linear order on
the subsets of [n] which respects the inclusion order. The last part is easy
to see: For S, T ⊆ [n] with S ⊆ T we have S△T ⊆ T , thus S ≤σ T .

It is also clear that the relation is antisymmetric and total. So we
only need to prove transitivity. Assume for contradiction that there are
three sets A,B,C ⊆ [n] with A <σ B and B <σ C and C <σ A. Then
maxσ(A△B) = b ∈ B, maxσ(B△C) = c ∈ C and maxσ(C△A) = a ∈ A.

Note that from b ∈ B and c /∈ B we have that b 6= c. Because the
situation of the three elements a, b, c is symmetric, it follows that they are
pairwise different. Assume that c = maxσ{a, b, c}. Then by definition of b,
we have c /∈ A△B, and by definition of a, we have c /∈ A△C. But now it
follows that c /∈ B△C, which is a contradiction.
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5.1. Boolean Lattices

Definition 5.4. Let σ be a permutation on [n]. The linear extension of Bn

given by the σ-revlex order is a revlex linear extension Lσ of Bn.
By σ we denote the reverse of σ. We call the pair Lσ, Lσ a revlex pair

of linear extensions.

In [22], the linear extensions Lid and Lid are called the reverse lexico-
graphic and the reverse antilexicographic order. As linear extensions of B4,
they have the following form:

Lid = ∅ 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

Lid = ∅ 4 3 34 2 24 23 234 1 14 13 134 12 124 123 1234

Theorem 5.11 proves that the pairs Lσ, Lσ are exactly the diametral
pairs of linear extensions of Bn. Recall that a diametral pair of linear
extensions can be used to obtain an optimal drawing of a poset. Figure 5.1
shows the drawing of B4 resulting from Lid, Lid.
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Figure 5.1: The drawing of B4 based on the diametral pair Lid, Lid. The subsets
of [4] are denoted by their characteristic vectors.

Revlex orders have an appealing intrinsically symmetric structure: It
follows immediately from the definition that any subcube is traversed in
the same manner. More precisely, consider a revlex linear extension Lσ

of Bn. A k-dimensional subcube Bk of Bn is induced by a set S of subsets
of [n] such that n− k atoms are fixed to appear either in all or in no subset
in S, and only k atoms are free. Then the linear extension of Bk induced
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by Lσ is again a revlex linear extension. It corresponds to the permutation
induced by σ on the free atoms of the subcube.

Another property of the revlex linear extensions is that they are built
in a depth first search fashion. In [22], this property is called super-greedy :
In the generic algorithm for building linear extensions, xi is chosen from
Min(P − {x1, . . . , xi−1}) ∩ Succ(xj), where j < i is maximal such that this
set is non-empty.

We want to highlight one more property of revlex orders. It is related to
their super-greediness and will be central in the next chapter. Recall that
a linear extension is called reversing if it contains a critical pair of elements
in the non-canonical order, see Definition 1.2.

Lemma 5.5. Every revlex linear extension of Bn is reversing.

Proof. Let σ be a permutation of [n], consider the revlex linear extension Lσ

of Bn. By Lemma 1.4, the critical pairs of Bn are exactly the n atom-coatom
pairs (a, ac), where a ∈ [n] and ac = [n] \ {a}. Now let a = maxσ[n]. Then
maxσ(a△ac) = a. Thus ac < a in Lσ, which means that Lσ reverses this
critical pair.

5.1.2 Determining the Linear Extension Diameter

Results about Boolean lattices are usually proved by induction on the
dimension. This is often done by partitioning Bn into two subcubes, e.g.
by partitioning the subsets of [n] into those which contain the atom n and
those which do not. To prove Conjecture 5.1, we use a novel partition,
defined as follows:

Definition 5.6. For D ⊆ [n] and I ⊆ [n] \ D we define CD,I as the set of
all ordered pairs (S, T ) of subsets of [n] with S△T = D and S ∩ T = I.

Clearly, the sets CD,I partition the ordered pairs of subsets of [n] into
equivalence classes. Note that these equivalence classes are in bijection with
the intervals of Bn: The class CD,I corresponds to the interval [I,D ∪ I],
and it contains all pairs (S, T ) with S ∩ T = I and S ∪ T = D ∪ I.

Another important observation is that we can associate a subset X ⊆ D
with the pair (X ∪ I,Xc ∪ I) ∈ CD,I , where Xc = D\X. On the other hand,
for each pair (S, T ) ∈ CD,I we have S \ I =: X ⊆ D and T = Xc ∪ I. This
yields the following useful lemma:

Lemma 5.7. The pairs of a class CD,I are in bijection with the subsets of D.
Each class contains 2d ordered pairs, where |D| = d.
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Recall that the distance between two linear extensions is the number
of reversals, that is, of unordered pairs of elements appearing in different
orders in the two linear extensions. In contrast to this, the equivalence
classes CD,I contain ordered pairs. Therefore we will often have to switch
between ordered and unordered pairs in our proofs.

The following proposition, settling the lower bound of Conjecture 5.1,
was proved inductively in [22]. Here we give a more combinatorial proof.

Proposition 5.8 ([22]). The distance between a revlex pair of linear ex-
tensions of Bn is

22n−2 − (n + 1) · 2n−2.

Proof. Let σ be a permutation of [n] and let Lσ, Lσ be the corresponding
revlex pair. We claim that an equivalence class CD,I contributes exactly
2d−2 reversals between Lσ and Lσ if d ≥ 2, and none if d < 2.

Observe that since σ is the reverse permutation of σ, the σ-minimum of
a set equals its σ-maximum, and vice versa. Thus we have

S <σ T ⇐⇒ min
σ

(S△T ) ∈ T.

Let CD,I be an equvialence class as in Definition 5.6. If D is empty,
then CD,I contains only the pair (I, I), and thus cannot contribute any
reversal. If D consists of only one element, say, x, then CD,I consists of the
two pairs (I, x ∪ I) and (x ∪ I, I). Since I ⊂ x ∪ I, the class CD,I again
cannot contribute any reversal.

So we may assume that D contains at least two elements, and hence
maxσ D 6= minσ D. Then a pair in CD,I corresponding to some X ⊆ D is a
reversal between Lσ and Lσ if and only if exactly one of the elements minσ D
and maxσ D is contained in X. We want to count (S, T ) and (T, S) only
once, so let us count the sets X ⊆ D with minσ D ∈ X and maxσ D /∈ X.
There are 2d−2 such sets, and thus CD,I contributes 2d−2 reversals between
Lσ and Lσ, as claimed.

How many reversals does this yield in total? A pair (D, I) induces a
class CD,I exactly if D ⊆ [n] and I ⊆ [n] \ D, and D is large enough, that
is, d ≥ 2. Let us count how many reversals a large enough D contributes.
It has 2n−d partners I with which it forms a class. Thus, D contributes
2n−d ·2d−2 = 2n−2 reversals. There are 2n−(n+1) large enough sets D ⊆ [n].
Therefore the distance between Lσ and Lσ is

2n−2 · (2n − (n + 1)) = 22n−2 − (n + 1) · 2n−2.

For proving the upper bound on led(Bn), we need Kleitman’s Lemma:

81



5. Linear Extension Diameter of Distributive Lattices

Kleitman’s Lemma ([35]). Let F1 and F2 be families of subsets of [d]
which are closed downwards, that is, for every set in Fi all of its subsets
are also in Fi. Then the following formula holds:

|F1| · |F2| ≤ 2d|F1 ∩ F2|.

Kleitman’s lemma can be proved by a rather straightforward induction,
see e.g. [1].

Theorem 5.9. led(Bn) = 22n−2 − (n + 1) · 2n−2.

Proof. Proposition 5.8 yields led(Bn) ≥ 22n−2 − (n + 1) · 2n−2 since the
distance between any pair of linear extensions is a lower bound for the linear
extension diameter. To prove that this formula is also an upper bound, we
will again use the equivalence classes from Definition 5.6. Given two linear
extensions L1, L2 of Bn, we will show that each CD,I can contribute at most
2d−2 reversals between L1 and L2.

Let us fix a class CD,I . It will turn out that the set I actually plays no
role for our argument, therefore we assume that I = ∅. The only thing this
assumption changes is that for a set X ⊆ D, now (X,Xc) itself is a pair
of CD,I . The reader is invited to check that the following argument goes
through unchanged if each X is replaced by X ∪ I and each Xc by Xc ∪ I.

We say that X ⊆ D is down in a linear extension L if X < Xc in L.
Let F1 be the family of subsets of D which are down in L1, and F2 the
family of subsets of D which are down in L2. A pair (X,Xc) ∈ CD,I yields
a reversal between L1 and L2 exactly if X is down in one Li, but not in the
other. Thus our aim is to find an upper bound on |F1△F2|.

The following key observation captures the essence of transitive forcing
between the different pairs: If X < Xc in Li, and Y ⊆ D is a subset
of X, then Xc ⊆ Y c, and hence, by transitivity, Y < X < Xc < Y c in Li.
Thus from X ∈ Fi it follows that Y ∈ Fi for every subset Y of X. This
means that F1 and F2 each form a family of subsets of [d] which is closed
downwards. (Put differently, F1 and F2 form downsets in Bd.) Hence we
can apply Kleitman’s Lemma, which yields |F1| · |F2| ≤ 2d|F1 ∩ F2|.

We observe that for every L and every set X ⊆ D, exactly one of X
and Xc is down in L. Hence we have |F1| = |F2| = 2d−1. It follows that
|F1 ∩ F2| ≥ 2d−2.

Also, if X is down in both L1 and L2, then Xc is down in neither. That
is, X ∈ F1 ∩ F2 ⇐⇒ Xc ∈ (F2 ∪ F1)

c, and thus |F1 ∩ F2| = |(F2 ∪ F1)
c|.

From this we obtain

|F1△F2| = 2n − |F1 ∩ F2| − |(F2 ∪ F1)
c| ≤ 2d − 2d−2 − 2d−2 = 2d−1.
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In F1△F2, every reversal is counted twice – once with the set that is
down in L1 and once with the set that is down in L2. Therefore the number
of (unordered) reversals that CD,I can contribute is at most 2d−2. Now we
can use the argument from the end of the proof of Proposition 5.8 to show
that the total number of reversals is at most 22n−2 − (n + 1) · 2n−2.

In the above two proofs we have shown the following fact, which we
state explicitly here since it will be useful for the characterization of the
diametral pairs of Bn.

Fact 5.10. If L,L is a diametral pair of linear extensions of Bn, then each
equivalence class CD,I with d ≥ 2 contributes exactly 2d−2 reversals be-
tween L and L.

5.1.3 Characterizing Diametral Pairs

We have shown that every revlex pair of linear extensions is a diametral pair
of the Boolean lattice. Thus we know n!/2 diametral pairs. The following
theorem proves that these are in fact the only ones.

Theorem 5.11. The diametral pairs of the Boolean lattice are unique up to
isomorphism. More precisely, if L,L is a diametral pair of linear extensions
of Bn and σ is the order of the atoms in L, then L = Lσ and L = Lσ.

Proof. We show by induction on k that each set of cardinality k is in
σ-revlex order in L and in σ-revlex order in L with all sets of cardinality
less or equal to k. To do so, we use Fact 5.10: Every equivalence class CD,I

with d ≥ 2 contributes exactly 2d−2 reversals between the diametral linear
extensions L and L.

Recall that σ denotes the order of the atoms in L. For every pair i <σ j
of atoms, consider the class CD,I defined by D = {i, j} and I = ∅. This
class needs to contribute 22−2 = 1 reversal. Thus, i and j must appear in
reversed order in L. Hence the permutation defining the order of the atoms
in L is σ.

Let Lk be the restriction of L to the sets of cardinality at most k. Our
induction hypothesis is that all pairs of sets in Lk−1 are in σ-revlex order,

that is, Lk−1 = Lk−1
σ , and that all pairs of sets in L

k−1
are in σ-revlex order,

that is, L
k−1

= Lk−1
σ . For the induction step, we will first show that each

set of size k is in the desired order in Lk and L
k

with all sets of strictly
smaller cardinality, then that it is in the desired order with all sets of equal
cardinality.

We use the following expression: Let X,Y, Z ⊆ [n] such that X and Z
have cardinality k− 1 and Y has cardinality k. If X < Z is a cover relation
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in Lk−1 and X < Y < Z in Lk, then we say that Y sits in the slot between
X and Z in Lk.

Let A be a set of size k in Bn and let A′ be the subset of A which is
largest in Lk−1. Let B be the immediate successor of A′ in Lk−1.

Claim. A has to sit in the slot between A′ and B in Lk.

Note that A′ = A \ a for an atom a ∈ [n]. By induction, all subsets
of A are in σ-revlex order in L. So we know that if A′′ is a second subset of
cardinality k − 1, then the element of A that is missing in A′ is σ-smaller
than the element of A that is missing in A′′. Therefore a = minσ A.

Now observe that since A′ < B in Lk−1 and |A′| = k − 1 we have
A′‖B. Again by induction we know that maxσ(A′△B) = b ∈ B. If there
were b′ ∈ B \ A′ with b′ 6= b, then A′ < B \ b′ < B in Lk−1, which is a
contradiction to the choice of B. Therefore B \ A′ = {b}.

Because A′‖B, there is an element a′ ∈ A′ \ B. We have b >σ a′ and
therefore also b >σ a. Hence, b = maxσ(A△B) and a = minσ(A△B).

Consider the class CD,I defined by D = A△B and I = A ∩ B. Note
that |D ∪ I| = |A ∪ B| = |A ∪ {b}| = k + 1. Choose a set X ⊆ D \ {a, b}.
Then |X ∪ I| ≤ k − 1, thus we can apply the induction hypothesis to
get X ∪ I < b ∪ I in L, and with b ∈ Xc it follows X ∪ I < Xc ∪ I
in L. Analogously, we have X ∪ I < a ∪ I < Xc ∪ I in L. Therefore the
pair (X,Xc) does not yield a reversal between L and L, and neither does
the pair (Xc, X).

There are 2d−2 choices for X, hence we have found 2d−1 ordered pairs
in CD,I which do not yield reversals between L and L. By Fact 5.10, the
class CD,I contributes exactly 2d−2 reversals. But the remaining 2d−1 ordered
pairs in CD,I can yield at most 2d−2 reversals, thus, they all have to be
reversed between L and L. It follows that all subsets Y of D containing
exactly one of the two atoms a and b have to be down in exactly one of the
two linear extensions.

In particular, we can choose Y = A \ I to see that {A,B} must be a
reversal. In L, we know the order of A and B: Set A′′ = I ∪ a ⊆ A, then
minσ(B△A′′) = a ∈ A′′. But this means maxσ(B△A′′) = a ∈ A′′. So we
have B < A′′ in L by induction and thus B < A in L by transitivity. Hence
it follows that A < B in L. This proves our claim that A has to sit in the
slot between A′ and B in L. △

Recall that maxσ(A△B) = b ∈ B. Hence, by showing A < B in Lk,
we have shown that A is in σ-revlex order with B in Lk. Since the slot
after A′ is the lowest possible position for A in Lk, it follows by transitivity
that A is in σ-revlex order with all sets of cardinality less than k in Lk. By
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reversing the roles of L and L we see that A also has to be in σ-revlex order
in L with all sets of smaller cardinality. Now we will show that all pairs of
sets with equal cardinality k need to be in σ-revlex order in L.

Let us consider two sets Ai, Aj ∈ Bn with cardinality k. If they are
inserted into different slots in Lk, then their order in Lk equals their order
in Lσ, thus they are in σ-revlex order. If they go into the same slot, then
they have the same largest (k − 1)-subset A′ in L. Thus |Ai△Aj| = 2. We
also know that ai := Ai\A′ = minσ Ai and aj := Aj\A′ = minσ Aj. Assume
without restriction that ai <σ aj. Then for the pair of sets {Aj, {ai}}, we
know that ai = minσ(Aj△{ai}) = maxσ(Aj△{ai}). By induction it follows
that Aj < ai < Ai in L, that is, Ai and Aj belong to different slots in L.
Now, since the class CD,I containing (Ai, Aj) needs to contribute 22−2 = 1
reversal between L and L, and (Ai, Aj) is the only incomparable pair in this
class (except for the reversed pair), we know that we must have Ai < Aj

in Lk. Since maxσ(Ai△Aj) = aj, this means that Ai and Aj are in σ-revlex
order in Lk.

We can apply the same argument with the roles of L and L reversed to

show that all sets of cardinality k are in σ-revlex order in L, thus L
k

= Lk
σ.

By induction we conclude that L = Lσ and L = Lσ.

5.2 Downset Lattices of 2-Dimensional Posets

The Boolean lattice Bn can be viewed as the distributive lattice of downsets
of the n-element antichain, see Section 1.1. Now let P be an arbitrary poset
and consider its downset lattice DP , that is, the poset on all downsets of P ,
ordered by inclusion.

In Section 5.2.1, we give an upper bound for the linear extension diame-
ter of DP . We then define revlex linear extensions of DP . We show that if P
is 2-dimensional, our upper bound on led(DP) is attained by revlex pairs.
In Subsection 5.2.2, we prove that for 2-dimensional P , all diametral pairs
of DP are revlex pairs. For the proofs, we make use of the main ideas from
the last section. In Subsection 5.2.3 we show how to compute the linear
extension diameter of DP in time polynomial in |P|.

As described before, we can use our results to obtain optimal drawings
of DP . See Figure 5.2 for an example.

In this section we make fundamental use of the canonical bijection be-
tween the downsets and the antichains of a poset which was mentioned in
Section 1.1. We frequently switch back and forth between the two view-
points. We write A↓ to refer to the downset generated by an antichain A.
We write Max(A) to refer to the antichain of maxima of a downset A.
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Figure 5.2: A drawing of a downset lattice based on a diametral pair.

5.2.1 Revlex Pairs are Diametral Pairs

To prove an upper bound for the linear extension diameter of downset lat-
tices, we use a generalization of the equivalence classes from Definition 5.6.

Definition 5.12. Let P be a poset, D ⊂ P and I ⊂ P \D. We define CD,I

as the set of all ordered pairs (A,B) of antichains of P with D = A△B
and I = A ∩ B.

It is easy to see that the sets CD,I partition the ordered pairs of antichains
of P into equivalence classes. Note that for a class CD,I , the sets D and I
are disjoint. Furthermore, there is no relation in P between any element
of I and any element of D.

Lemma 5.13. Let CD,I be an equivalence class as defined above. Let P [D]
be the subposet of P induced by the elements of D, and let K be the set of
connected components of P [D]. Then the pairs in CD,I are in bijection with
the subsets of K.

Proof. For a given equivalence class CD,I , let (A,B) be a pair in CD,I , thus
we have D = A△B. First observe that since A and B are antichains, P [D]
is a poset of height at most 2 (see Figure 5.3). Thus all elements of D belong
to the antichain Max(D) of maxima of P [D] or to the antichain Min(D) of
minima of P [D].
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Consequently, every connected component κ of P [D] is either a single
element or has height 2. If κ is a single element, it belongs either to A or
to B. If κ has height 2, there are again two possibilities: Either the maxima
of κ all belong to A and its minima all belong to B, or the maxima of κ all
belong to B and its minima all belong to A. In the first case, the minima
of κ also belong to A↓, but not to A. In the second case, the minima of κ
also belong to B↓, but not to B.

κ1 κ2 κ3 ∈ A

∈ A

∈ A ∈ B

∈ B

Figure 5.3: An example for P[D] with three components. The assignment of
minima and maxima to A and B specifies one of the eight pairs in the class.

We obtain a different pair (A′, B′) ∈ CD,I by switching the roles of A
and B in one component of P [D]. We can do this switch independently for
each component, but we have to do it for the whole component to ensure
that the elements belonging to A and B, respectively, still form an antichain.

Let K ⊆ K be a subset of the components of P [D]. With K we associate
a subset XK of D by setting

XK =
⋃

κ∈K

Max(κ) ∪
⋃

κ/∈K, |κ|>1

Min(κ).

Let Xc
K = D \ XK . Now define a map from the powerset of K to CD,I via

K 7→ (AK , BK) = (XK ∪ I,Xc
K ∪ I).

We claim that this defines a bijection. Recall that D and I are disjoint and
that there are no relations between them. It follows that

AK△BK = (XK ∪ I)△(Xc
K ∪ I) = XK ∪ Xc

K = D,

and
AK ∩ BK = (XK ∪ I) ∩ (Xc

K ∪ I) = I.

Thus K is indeed mapped to a pair in CD,I .
If K and K ′ are two different subsets of K, then XK and XK′ differ on at

least one component of P [D], and hence (AK , BK) 6= (AK′ , BK′). Therefore
our map is injective. On the other hand, given a pair (A,B) ∈ CD,I , we have
seen that for every component κ of P [D], the downset A either contains all

87



5. Linear Extension Diameter of Distributive Lattices

maxima of κ or none of them. Now let K(A,B) be the set of those components
for which A contains the maxima. Then K(A,B) is mapped to (A,B). Hence
our map is also surjective.

Note that the above lemma implies that there are exactly 2d pairs in
the class CD,I , where d = |K| denotes the number of connected components
of P [D].

For the following, let us keep in mind that CD,I contains ordered pairs,
whereas reversals, constituting the distance between two linear extensions,
are unordered pairs.

Theorem 5.14. Let DP be the downset lattice of an arbitrary poset P. The
linear extension diameter of DP is bounded by a quarter of the number of
pairs (A,B) of antichains of P such that P [A△B] has at least two connected
components.

Proof. Let L1, L2 be an arbitrary pair of linear extensions of DP and CD,I an
equivalence class as in Definition 5.12. First note that if D is empty, then
the class CD,I only consists of a single pair, namely, (I, I). This class cannot
contribute any reversal. Now let D be non-empty, and assume that P [D]
is connected. Then, by Lemma 5.13, we know that CD,I consists of the two
pairs (A,B) and (B,A), where A = Max(D)∪I and B = (D\Max(D))∪I.
But then we have B↓ ⊂ A↓, that is, the two downsets form a comparable
pair in DP . Hence CD,I cannot contribute any reversals if P [D] is connected.

Now let us assume that P [D] has at least two components. We claim
that at most half of the pairs contained in CD,I can be reversed between
L1 and L2. This means that the number of reversals that each class can
contribute is at most a quarter of the number of pairs that it contains.

Recall the terminology from Lemma 5.13. For a pair (A,B) ∈ CD,I , let
us call A↓ down in Li if A↓ < B↓ in Li, for i = 1, 2. The pairs in CD,I are
in bijection with the subsets of K. Define the family Fi as the family of
subsets K of K such that A↓

K is down in Li.
A pair {A↓, B↓} is a reversal between L1 and L2 exactly if A↓ is down

in one of the two linear extensions, but not in both. Put differently, a pair
(AK , BK) ∈ CD,I yields a reversal exactly if K is contained in one of the Fi,
but not in both. Thus we are interested in bounding |F1△F2|.

Let K ∈ Fi, and K ′ ⊂ K. We claim that K ′ ∈ Fi. Indeed, by definition
of XK we have (XK′ ∪ I)↓ ⊂ (XK ∪ I)↓, that is, A↓

K′ ⊂ A↓
K . Analogously it

holds (Xc
K ∪ I)↓ ⊂ (Xc

K′ ∪ I)↓ and hence B↓
K ⊂ B↓

K′ . Thus from A↓
K < B↓

K

in Li it follows that A↓
K′ < A↓

K < B↓
K < B↓

K′ in Li. Therefore the families
F1 and F2 are closed downwards, and we can apply Kleitman’s Lemma as
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in the proof of Theorem 5.9. This yields |F1 ∩ F2| ≥ 2−d · |F1| · |F2|, where
d = |K|.

Observe that if (A,B) ∈ CD,I is associated with the set K ⊆ K,
then (B,A) is associated with the set Kc = K \ K. Now in each Li,
either A↓ is down or B↓ is down. Thus K ∈ Fi exactly if Kc /∈ Fi. Hence
|F1| = |F2| = 2d−1. It follows that |F1∩F2| ≥ 2d−2. Similarly, if A↓ is down
in both Li, then B↓ is down in neither, and vice versa. This means that
K ∈ F1 ∩F2 exactly if Kc ∈ (F1 ∪F2)

c. Therefore |F1 ∩F2| = |(F1 ∪F2)
c|.

We conclude that

|F1△F2| = 2d − |F1 ∩ F2| − |(F1 ∪ F2)
c| ≤ 2d − 2d−2 − 2d−2 = 2d−1.

We have thus shown that each class CD,I can contribute at most 2d−2

reversals between two linear extensions of DP as claimed.

Next we are going to prove that the bound of the above theorem is tight
in the case of a 2-dimensional poset P . To do so, we define revlex linear
extensions of DP . In analogy to Definition 5.2, we have:

Definition 5.15. Let σ be a linear extension of P. For a set S ⊆ P, let
maxσ S be the element of S which is largest in σ. The σ-revlex order <σ

on the pairs {A↓, B↓} of downsets of P is defined as follows:

A↓ <σ B↓ ⇐⇒ max
σ

(A△B) ∈ B.

Lemma 5.16. Let P be a poset and let σ be a linear extension of P. The
relation of being in σ-revlex order defines a linear extension of DP .

Proof. Since maxσ(A△B) = maxσ(A↓△B↓), we could equivalently define
the relation <σ directly via the downsets. Thus this relation is just a
restriction of the σ-revlex order on all subsets of P (see Definition 5.2) to
the downsets of P . In Lemma 5.3, we proved that the σ-revlex order on
all subsets is a linear order and that it extends the inclusion relation. This
carries over to the restriction to the downsets of P .

The above lemma was shown in [32] for the special case that P equals Bn.

Definition 5.17. Let P be a 2-dimensional poset, and let σ be a linear
extension of P. We call the linear extension of DP which is given by the
σ-revlex order a revlex linear extension of DP .

Now let σ be contained in a realizer of P. We denote by σ the unique
partner of σ in a realizer of P. The pair Lσ, Lσ is a revlex pair of linear
extensions of DP .
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5. Linear Extension Diameter of Distributive Lattices

Recall that all incomparable pairs of P are reversals between σ and σ.
Thus σ and σ form a diametral pair of linear extensions of P . Recall also
that by Corollary 1.6, the linear extensions σ and σ are non-separating,
that is, there are no three elements u, v, w ∈ P such that u < w and v‖u,w
in P , but u < v < w in σ or σ.

Theorem 5.18. Let P be a 2-dimensional poset, and let {σ, σ} be a realizer
of P. Then the revlex pair Lσ, Lσ is a diametral pair of linear extensions
of DP .

Proof. We will show that for each class CD,I , a revlex pair realizes the
maximum possible number of reversals. Fix an arbitrary class CD,I . We
have seen in the proof of Theorem 5.14 that CD,I cannot contribute any
reversals if P [D] is empty or consists of only one component. Now let K
be the set of connected components of P [D] as before, and assume that
|K| = d ≥ 2.

A pair (A,B) ∈ CD,I yields a reversal between Lσ and Lσ exactly if
one of the two elements maxσ(A△B) and maxσ(A△B) is contained in A,
and the other in B. Since (A,B) and (B,A) contribute only one rever-
sal, let us count the number of pairs (A,B) with maxσ(A△B) ∈ A and
maxσ(A△B) ∈ B.

Note that the σ-maximum of A△B belongs to the antichain Max(D),
which is completely reversed between σ and σ. It follows that we have
maxσ Max(D) = minσ Max(D) and maxσ Max(D) = minσ Max(D). We
claim that maxσ Max(D) and minσ Max(D) lie in different components
of P [D].

Suppose for contradiction that there is a component κ of P [D] contain-
ing both maxσ Max(D) and minσ Max(D). Since we assumed that P [D]
has at least two components, we can choose an element x ∈ Max(D) which
is not contained in κ and thus has no relation to any element of κ. Then
minσ Max(D) < x < maxσ Max(D) in σ. Denote by κ1 the set of elements
of κ which are σ-smaller than x, and by κ2 the set of elements of κ which
are σ-larger than x. Both sets are non-empty since minσ Max(D) ∈ κ1 and
maxσ Max(D) ∈ κ2. Since κ is a connected component of P [D], there are
elements u ∈ κ1 and v ∈ κ2 with u < v in P . But then u < x < v in σ with
x‖u, v in P , and this is a contradiction because σ is non-separating.

We have shown that maxσ(A△B) and maxσ(A△B) lie in different com-
ponents of P [D], say, maxσ(A△B) ∈ κ and maxσ(A△B) ∈ λ with κ, λ ∈ K.
Now let K ⊆ K be a set of components with κ ∈ K and λ /∈ K. Consider
the pair (AK , BK) ∈ CD,I . By definition, we have maxσ(A△B) ∈ AK and
maxσ(A△B) ∈ BK . Thus the pair (AK , BK) contributes a reversal between
Lσ and Lσ. There are 2d−2 possibilities of choosing K. Thus every class CD,I
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with d ≥ 2 contributes at least 2d−2 reversals between Lσ and Lσ. We have
seen in Theorem 5.14 that this is maximal. Therefore Lσ and Lσ are a
diametral pair of linear extensions of DP .

We have now proved that, for a 2-dimensional poset P , every class CD,I

for which P [D] has at least two components contributes exactly 2d−2 rever-
sals between a diametral pair of linear extensions of DP . Since there are 2d

pairs in CD,I , we have the following corollary:

Corollary 5.19. Let DP be the downset lattice of a 2-dimensional poset P.
The linear extension diameter of DP equals a quarter of the number of
pairs (A,B) of antichains of P such that P [A△B] has at least two connected
components.

Note that the proof of Conjecture 5.1, that is, the proof that led(Bn)
equlas 22n−2 − (n+1)2n−2, follows from this corollary. This is implied more
directly by Theorem 5.23.

5.2.2 Diametral Pairs are Revlex Pairs

We are now ready to characterize the diametral pairs of downset lattices of
2-dimensional posets.

Theorem 5.20. Let P be a 2-dimensional poset, and let L,L be a diametral
pair of linear extensions of DP . Let σ be the linear extension of P defined
by the order of the downsets x↓ for x ∈ P in L. Then σ is contained in a
realizer {σ, σ} of P, and we have L = Lσ and L = Lσ.

Proof. We again use the equivalence classes from Definition 5.12. For each
incomparable pair x, y ∈ P, consider the equivalence class CD,I defined by
D = {x, y} and I = ∅. Then P [D] consists of two singletons. Since L,L
is a diametral pair, this class must contribute 22−2 = 1 reversal, and thus
x↓ and y↓ must appear in opposite order in L and L. Recall that σ is the
linear extension of P defined by the order of the downsets x↓ in L. Let us
denote the linear extension defined analogously for L by σ. We have seen
that every incomparable pair of elements of P must be a reversal between
σ and σ. Hence, {σ, σ} is a realizer of P .

In the following, we use induction on the cardinality of the downsets of P
to show that L = Lσ and L = Lσ, in analogy to the proof of Theorem 5.11.
More precisely, we show that each downset of cardinality k is in σ-revlex
order in L and in σ-revlex order in L with all downsets of cardinality ≤ k,
by induction on k. We use the fact that every equivalence class CD,I for
which P [D] is disconnected contributes exactly 2d−2 reversals between L
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and L. Note that we have settled the base case already: All downsets of
cardinality 1 are of the form x↓ for some minimal element x ∈ P, and we
have shown in the previous paragraph that these behave as expected.

Let Lk be the restriction of L to the sets of cardinality at most k. Our

induction hypothesis is that Lk−1 = Lk−1
σ and L

k−1
= Lk−1

σ . We structure
the induction step as follows: We first show that each set of size k is in the

desired order in Lk and L
k

with all sets of smaller size. This will be the
main part of the proof. Then we show that all pairs of sets of equal size k

are in the desired order in Lk and L
k
.

We use the following expression: Let X,Y, Z be downsets of P such that
X and Z have cardinality k − 1 and Y has cardinality k. If X < Z is a
cover relation in Lk−1 and X < Y < Z in Lk, then we say that Y sits in
the slot between X and Z in Lk.

Let A↓ be a downset of cardinality k of P . Let Ã↓ be the subset of A↓

which is largest in Lk−1, and let B↓ be its immediate successor in Lk−1.

Claim. A↓ needs to sit in the slot between Ã↓ and B↓ in Lk.

Proving this claim requires some technical details. Here is an outline
of what we are going to do: We first locate the elements maxσ(A↓△B↓) =
maxσ(A△B) and maxσ(A↓△B↓) = maxσ(A△B). Using these we see that
{A↓, B↓} needs to be a reversal between L and L. From the order of A↓

and B↓ in L we can finally deduce that A↓ < B↓ in Lk.
We have Ã↓ = A↓ \ a for some a ∈ A. All subsets of A↓ are in σ-revlex

order in L by induction. So we know that if Â↓ is a second subset of
cardinality k − 1 of A↓, then the element of A↓ that is missing in Ã↓ is σ-
smaller than the element of A↓ that is missing in Â↓. Thus we can conclude
that a = minσ A. Since the antichain A is completely reversed between σ
and σ, it follows that a = maxσ A.

Now observe that since Ã↓ < B↓ in Lk−1 and |Ã↓| = k − 1, we have
Ã↓ ‖B↓. By induction we know that maxσ(Ã↓△B↓) ∈ B↓. Let b be the
σ-smallest element of B↓ \ Ã↓ which is σ-larger than all elements of Ã↓ \B↓.
Then (Ã↓ ∩ B↓) ∪ b is a downset of P . By induction, Ã↓ < (Ã↓ ∩ B↓) ∪ b
in Lk−1. Since (Ã↓ ∩ B↓) ∪ b ⊆ B↓ we must have (Ã↓ ∩ B↓) ∪ b = B↓

by the choice of B↓. Thus B↓ \ Ã↓ = {b} and maxσ(Ã↓△B↓) = b. We
will use the next three paragraphs to show that maxσ(A↓△B↓) = b and
maxσ(A↓△B↓) = a.

Note that B↓ 6⊆ A↓ by the choice of Ã↓, and thus B↓ \A↓ = {b}. Hence
b 6≤ a in P . On the other hand, a 6< b in P because otherwise a ∈ B↓ \ Ã↓

and thus a = b, a contradiction. It follows that a‖b in P .
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Next let us show that a <σ b. Because of |Ã↓| = k − 1, we know that
Ã↓ \ B↓ 6= ∅. Let a′ ∈ Ã \ B. If a‖a′ in P , then a′ ∈ A \ B and with
a = minσ A it follows that a <σ a′. Putting this together with a′ <σ b, we
get a <σ b. If a and a′ are comparable, then a′ < a in P . Now assume
for contradiction that b <σ a. Then we have a′ <σ b <σ a, with b ‖ a′, a
and a′ < a in P . This means that σ is a separating linear extension. But
since σ is contained in the realizer {σ, σ} of P , this is a contradiction.

We have shown that a <σ b. We knew already that maxσ(Ã↓△B↓) = b,
and because a is the only element in A↓ \ Ã↓, we can conclude that
maxσ(A↓△B↓) = b. Also, since a‖b in P we now know that a >σ b. Because
a = maxσ A and B↓ \ A↓ = {b}, we have maxσ(A↓△B↓) = a.

Let us now consider the class CD,I defined by D = A△B and I = A ∩ B.
The elements a and b lie in different components of P [D], because
B \ A = {b} and a‖b in P . So we may assume that a ∈ α and b ∈ β,
where α and β are different elements from the set K of components of P [D].
As before, set d = |K|.

Observe that |A↓ ∪ B↓| = |A↓ ∪ {b}| = k + 1. Now choose a subset
K ⊂ K with α, β /∈ K. For the corresponding downset (XK ∪ I)↓ = A↓

K

we have A↓
K ⊆ A↓ ∪ B↓. Since a, b /∈ A↓

K , we can apply the induction
hypothesis to A↓

K . We can also apply it to the set (b ∪ I)↓. It holds that
maxσ(AK△(b ∪ I)) = b, so we have A↓

K < (b ∪ I)↓ in L by induction.
Let Xc

K ∪ I = BK . Then we have (b ∪ I)↓ ⊆ B↓
K , and thus A↓

K < B↓
K

in L by transitivity. Analogously, maxσ(AK△(a ∪ I) = a holds. Hence,
A↓

K < (a∪ I)↓ in L by induction and thus A↓
K < (a∪ I)↓ < (Xc

K ∪ I)↓ = B↓
K

in L.
It follows that A↓

K is down in L and L for every K ⊂ K with α, β /∈ K.
Thus (A↓

K , B↓
K) cannot yield a reversal between L and L, and neither

can (B↓
K , A↓

K). There are 2d−2 possibilities to choose K. Thus we have
exhibited 2 · 2d−2 pairs in CD,I which do not contribute a reversal between
L and L. From the fact we remarked after Theorem 5.18 it follows that all
other pairs in CD,I have to contribute reversals.

Consequently, all subsets K of K containing exactly one of the two
components α and β need to contribute a reversal, or equivalently, all A↓

K

which contain exactly one of the two elements a, b need to be down in
exactly one of the two linear extensions. In particular, our set A↓ needs to
be down relative to CD,I in exactly one of the two linear extensions.

It turns out that A↓ cannot be down in L: For (I ∪ a)↓ ⊂ A↓, we have
maxσ(B△(I∪a)) = a. So we have B↓ < (I∪a)↓ in L by induction and thus
B↓ < A↓ in L by transitivity. Hence it follows that A↓ < B↓ in L. This
proves our claim that A↓ has to sit in the slot between Ã↓ and B↓ in Lk. △
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Because maxσ(A△B) = b ∈ B, and A↓ < B↓ in L as shown in the
claim, we now know that A↓ is in σ-revlex order with B↓ in Lk. Since the
slot after Ã↓ is the lowest possible position for A↓ in Lk, it follows from the
transitivity of the σ-revlex order that A↓ is in σ-revlex order in Lk with all
sets of smaller cardinality. By reversing the roles of L and L, we obtain

that A↓ is in σ-revlex order in L
k

with all sets of smaller cardinality. Next
we show that all pairs of sets with equal cardinality k are in σ-revlex order
in Lk.

Let A↓
i , A↓

j ∈ DP be two downsets of the same cardinality k. If they are
inserted into different slots in L, they are in σ-revlex order by transitivity.
If they belong into the same slot, this means that they have the same largest
(k−1)-subset Ã↓ in L. So their symmetric difference contains only two ele-
ments, say, A↓

i△A↓
j = {ai, aj}. We have ai = A↓

i \ Ã↓ = minσ Ai = maxσ Ai

and aj = A↓
j \ Ã↓ = minσ Aj = maxσ Aj. Note that ai and aj have to be in-

comparable in P , and assume that ai <σ aj, thus aj <σ ai. Then for the pair

{A↓
j , a

↓
i } we know maxσ(A↓

j△a↓
i ) = ai. Hence, by induction, A↓

j < a↓
i < A↓

i

in L. But since the equivalence class containing (A↓
i , A

↓
j) needs to contribute

22−2 = 1 reversal between L and L, and this can only be the pair {A↓
i , A

↓
j},

we know that we must have A↓
i < A↓

j in L. Because maxσ Ai△Aj = aj, this

means that A↓
i and A↓

j are in revlex order in L.

We can apply the same argument (with the roles of L and L reversed) to
show that all pairs of downsets of equal cardinality k are in σ-revlex order
in L. By induction we conclude that L = Lσ and L = Lσ.

5.2.3 Computing the Linear Extension Diameter

We have seen in Theorem 4.6 that it is NP-complete to compute the linear
extension diameter of a general poset. That is, the linear extension diameter
of a general poset P cannot be computed in a running time polynomial in |P|
(unless P = NP). But with the results of the previous section, the problem
is tractable if the given poset is a downset lattice D of a 2-dimensional
poset.

In fact, we can construct any diametral pair of linear extensions of D
in time polynomial in |D|. To see this, we use Birkhoff’s representation
theorem of distribitive lattices, which says that from a distributive lattice D
one can obtain P with D = DP as the poset induced by the join-irreducible
elements of D (see Subsection 1.1).

By the characterization of 2-dimensional posets given in Theorem 1.5,
finding a realizer {σ, σ} of P amounts to finding a transitive orientation of
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5.2. Downset Lattices of 2-Dimensional Posets

its incomparability graph. This can be done in time linear in |P| by the
algorithm given in [40]. With the definition of the σ-revlex order we can
compute Lσ and Lσ. This is a diametral pair of linear extensions of D by
Theorem 5.18. We know by Theorem 5.20 that all diametral pairs arise
in this way. The linear extension diameter of D can now be computed by
simply checking for all pairs of elements of D whether they form a reversal
between Lσ and Lσ.

In this subsection we show that we can in fact do much better: For a
2-dimensional poset P , we can compute the linear extension diameter of DP

in time polynomial in |P|. Note that in general, P can have exponentially
many downsets, e.g., if P is an antichain or has only very few relations.
Hence |DP | may be exponentially larger than |P|.

For the proofs of this subsection, we mainly consider antichains instead
of downsets, again using the canonical bijection between them. It is known
that the antichains of a 2-dimensional poset can be counted in polynomial
time, see [57] or [43]. We give a proof in the lemma below since the methods
we use for proving the following theorem rely on the same ideas.

Lemma 5.21 ([57]). Let P be a 2-dimensional poset. Denote by A(P) the
set of antichains of P and let a(P) = |A(P)|. Then a(P) can be computed
in time O(|P|2).

Proof. Let σ = x1x2 . . . xn be a non-separating linear extension of P . De-
note by A(xi) the set of antichains of P which contain xi as σ-largest
element, and let a(xi) = |A(xi)|. We will use a dynamic programming
approach to compute a(xi) for all i.

To start with, we have a(x1) = 1. Now suppose we have computed a(xj)
for all j < i. The main observation is that for any A ∈ A(xj) with j < i
and xi‖xj, the set xi ∪ A is again an antichain. This holds because any
xk ∈ A with xk < xi would yield a contradiction to σ being non-separating.
Therefore we have

a(xi) = 1 +
∑

j<i, xi‖xj

a(xj),

where the 1 accounts for the antichain {xi}. Consequently, we obtain the
number of all antichains of P as a(P) = 1+

∑

i a(xi), where the 1 accounts
for the empty set.

With the above formula, the evaluation of a(xi) can be done in linear
time for each i. Thus a(P) can be computed in quadratic time.

Theorem 5.22. The linear extension diameter of the downset lattice DP

of a 2-dimensional poset P can be computed in time O(|P|5).
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5. Linear Extension Diameter of Distributive Lattices

Proof. From Corollary 5.19, we know that led(DP) equals a quarter of the
number of pairs (A,B) of antichains of P such that P [A△B] has at least
two connected components. For a pair (A,B) of antichains of P , we set
D = A△B and I = A ∩ B.

We will count four different classes of pairs of antichains. Let α be the
number of all ordered pairs of antichains of P . Let β be the number of
pairs (A,B) with D = ∅, and γ the number of pairs with |D| = 1. Finally,
let δ be the number of pairs such that |D| > 1 and P [D] is connected. Then
led(DP) = 1

4
(α − β − γ − δ).

We have α = a(P)2. Moreover, the pairs we count for β are just the
pairs (A,A), so β = a(P).

For the following, let σ = x1x2 . . . xn be a non-separating linear exten-
sion of P . We denote by [xi, xk] the set {xi, xi+1, . . . , xk}, and by (xi, xk)
the set {xi+1, . . . , xk−1}. We use analogous notions for “half-open intervals”
of σ.

To obtain γ, we count the pairs (A,A − x), where A is a non-empty
antichain in P , and x is an element of A. Thus we count each A exactly |A|
times. We want to refine the ideas of the proof of Lemma 5.21 to keep track
of the sizes of the antichains. Therefore we define vectors s(xi), where sr(xi)
is the number of antichains of cardinality r in A(xi).

We can recursively compute s(xi) for i = 1, 2, . . . , n as follows: The first
entry of each s(xi) is 1, counting the antichain {xi}. For the other entries
we have

sr(xi) =
∑

j<i: xj‖xi

sr−1(xj).

Then the number of pairs (A,A− x) equals
∑

r r
∑

i sr(xi). Now γ is twice
this number, since we also need to count the pairs (A − x,A).

The most difficult part is to compute δ, the number of pairs (A,B) of
antichains of P such that |D| > 1 and P [D] is connected. Let us look at
the structure of P [D ∪ I], see Figure 5.2.3.

DI left Iright

Figure 5.4: P[D ∪ I] for a pair of antichains counted in δ.

We know that P [I] is an antichain and P [D] consists of two antichains,
Max(D) and Min(D), which are both non-empty by definition of δ. We
claim that each element of I is either σ-smaller than all elements of D,
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5.2. Downset Lattices of 2-Dimensional Posets

or σ-larger than all elements of D. Indeed, suppose there is an x ∈ I
and u, v ∈ D with u <σ x <σ v. Then since P [D] is connected, we can
find u′, v′ ∈ D with u′ < v′ in P and u′ <σ x <σ v′. But since there
are no relations between x and the elements of D, this means that σ is
separating. This contradiction proves our claim. Thus σ can be partitioned
into three intervals, such that the elements of D are all contained in the
middle interval, and I is split up into two parts: The first interval, I left, and
the third interval, Iright.

Now define δ(k, ℓ) as the number of pairs counted for δ which fulfill
maxσ Min(D) = xk and maxσ Max(D) = xℓ. In addition, we require that
xℓ = maxσ A ∪ B, which means that Iright is empty. We split up δ(k, ℓ) into
the number δ1(k, ℓ) of pairs for which P [D] has only one maximum and the
number δ2(k, ℓ) of pairs for which it has several.

To compute δ1(k, ℓ), we have to count the number of possibilities to
choose the antichain Min(D) and the antichain I left. By definition we have
maxσ Min(D) = xk. Suppose that minσ Min(D) = xi as in Figure 5.5.

xk

xℓ

xi

DI left

Figure 5.5: P[D ∪ I] for a pair of antichains counted in δ1(k, ℓ).

Let us define Pi,k,ℓ as the poset induced by the elements xj ∈ (xi, xk)
with xj < xℓ and {xi, xj, xk} ∈ A(P). Then to choose Min(D), we have to
choose an antichain in Pi,k,ℓ.

Once a set D is fixed, it remains to choose I left to determine a pair
of antichains counted in δ1(k, ℓ). Let P left

i,ℓ be the poset induced by the
elements x ∈ P with x ∈ [x1, xi) and x‖xℓ. We claim that the sets which
can be chosen as I left are exactly the antichains of P left

i,ℓ .

By definition, each element x ∈ I left is σ-smaller than xi. We have to
choose x so that it is incomparable to all elements in D. It is clear that
x ∈ [x1, xi) cannot be larger in P than any element in D ⊆ [xi, xℓ]. Now
if we choose x incomparable to xℓ, it cannot be smaller than any element
in D, either. Thus to choose I, we have to choose an antichain in P left

i,ℓ as
claimed.
Altogether we have

δ1(k, ℓ) =
∑

xi∈[x1,xk], {xi,xk}∈A(P), xi<xℓ

a(Pi,k,ℓ) · a(P left
i,ℓ ).
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It remains to compute δ2(k, ℓ), the number of pairs (A,B) counted in
δ(k, ℓ) for which P [D] has several maxima. We want to cut off the σ-largest
maximum and (possibly) some minima and recursively use values δ2(k

′, ℓ′)
and δ1(k

′, ℓ′) that we have calculated already (cf. Figure 5.6).

xk

xℓ

xk′

xℓ′

DI left

Figure 5.6: P[D ∪ I] for a pair of antichains counted in δ2(k, ℓ).

For a pair (A,B) counted in δ2(k, ℓ), the second largest maximum
of P [D] in σ is an element xℓ′ ∈ [x1, xℓ) with xℓ′‖xℓ. In general, P [D]
is not connected after deletion of xℓ. But since P [D] was connected origi-
nally, Min(D) contains an element xk′ with xk′ < xℓ and xk′ < xℓ′ . Let xk′

be the σ-smallest such element. There can be more elements in [xk′ , xk]
which are part of Min(D). With the same reasoning as for δ1(k, ℓ), these
form exactly the antichains in Pk′,k,ℓ. So we have

δ2(k, ℓ) =
∑

xℓ′∈[x1,xℓ), xℓ′‖xℓ

∑

xk′∈[x1,xℓ′ ), xk′<xℓ′ ,xℓ

(

δ1(k
′, ℓ′)+ δ2(k

′, ℓ′)
)

·a(Pk′,k,ℓ).

Recall that for the pairs counted in δ(k, ℓ), we required that Iright is
empty. So to compute δ, we have to weight every pair with the number of
possible choices for Iright. Let Pright

k,ℓ be the poset induced by the elements
of P which are in (xℓ, xn] and incomparable to xk in P . We claim that the
sets eligible for Iright are exactly the antichains of Pright

k,ℓ .

Each element x ∈ Iright has to be incomparable to all elements of D.
Since x ∈ (xℓ, xn], it cannot be smaller than any element in D. If we
choose x incomparable to xk, then x cannot be larger than any element
of D either: If x > y for some element y ∈ Min(D), then y has to be
σ-smaller than xk, which makes σ separating. Thus to choose Iright we have
to choose an antichain in Pright

k,ℓ as claimed. Hence we obtain δ as follows:

δ =
∑

k,ℓ

(

δ1(k, ℓ) + δ2(k, ℓ)
)

· a(Pright
k,ℓ ).

To finish the proof of the theorem, let us consider the overall running
time for the computation of led(DP). From Lemma 5.21 we know that the
number of antichains of a poset can be computed in quadratic time. Thus
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α and β can be determined in quadratic time. To compute γ we need to
compute sr(xi) for r = 1, . . . , n and i = 1, . . . , n. For each value sr(xi), our
formula can be evaluated in linear time. Thus it takes O(n3) to determine γ.

For the computation of δ we first determine, in a preprocessing step,
the values a(Pi,k,ℓ) for all triples i, k, ℓ. Given such a triple, we can
build Pi,k,ℓ in linear time, and then compute a(Pi,k,ℓ) in quadratic time
using Lemma 5.21 again. Altogether, this can be done in O(n5). Similarly,
we can determine a(P left

k,ℓ ) and a(Pright
k,ℓ ) for all pairs k, ℓ in a preprocessing

step taking time O(n4). Then for each pair k, ℓ, we can compute δ1(k, ℓ)
and δ2(k, ℓ) in linear time. Thus it takes O(n3) to obtain all these values.
In the end, we can put them together in quadratic time to obtain δ.

The overall running time is the maximum over all these separate steps.
We conclude that led(DP) can be computed in time O(n5).

In the previous theorem we showed how to compute led(DP) for a
2-dimensional poset P , but we could not give an explicit formula like the
one we have for the Boolean lattice. This is possible for the special case
where P is a disjoint union of chains. Such a lattice DP is also known as
a factor lattice of integers: If P = C1 ∪ . . . ∪ Cw with |Ci| = ℓi, we can
associate each chain with a prime number pi. Then DP is the lattice of all
factors of m =

∏w
i=1 pℓi

i , ordered by divisibility.

Theorem 5.23. If P = C1 ∪ . . . ∪ Cw with |Ci| = ℓi is a disjoint union of
chains, then the linear extension diameter of DP equals

1

4
·





(

ω
∏

i=1

(ℓi + 1)

)2

−
ω

∑

k=1

(ℓk + 1)ℓk ·
∏

i6=k

(ℓi + 1) −
ω

∏

i=1

(ℓi + 1)



 .

Proof. From Corollary 5.19 we know that led(DP) equals a quarter of the
number of pairs (A,B) of antichains of P such that P [A△B] has at least
two connected components. So we need to count the pairs of antichains of P
which differ on at least two of the Ci. We will count all pairs of antichains
and subtract from it the number of pairs differing on zero or one chain.

To choose one antichain, we have ℓi+1 choices in each Ci. So P contains
exactly

∏ω
i=1(ℓi + 1) antichains, and this is also the number of pairs of

antichains differing on zero chains. The number of all pairs of antichains is
thus (

∏ω
i=1(ℓi + 1))

2
. The number of pairs of antichains which differ on one

chain is the sum over k of all choices of two different elements in chain Ck

and one element from each other chain. This yields the desired formula.
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5.3 Open Questions

It is NP-hard to compute the linear extension diameter of a general poset,
see [7]. For Boolean lattices and for downset lattices of 2-dimensional posets
we can now construct the diametral pairs of linear extensions in polynomial
time. Is this possible for more general classes?

Open Question 3. Is it possible to compute the linear extension diameter
of an arbitrary distributive lattice in polynomial time, or even characterize
its diametral pairs of linear extensions?

Since any distributive lattice is the downset lattice of some poset, we
would only have to extend our theorem to downset lattices of posets with
arbitrary dimension. Unfortunately, our method may fail already when the
dimension of the underlying poset is 3.

We considered the 3-dimensional Chevron C. Instead of taking a realizer
of C to construct a revlex pair of linear extensions of DC , we could only use
a diametral pair of C. The resulting revlex pair turned out to not even be
locally diametral. That is, there was an incomparable pair of elements of C
which appeared in the same order in both of the revlex linear extensions –
and in one of them they were even adjacent. So we could swap this pair
and obtain two linear extensions of DC with larger distance.

Besides looking at larger classes of distributive lattices, another common
way to generalize results about Boolean lattices is to look at subposets
induced by levels.

Open Question 4. Can we construct the diametral pairs of linear exten-
sions of a poset induced by two levels of Bn?

Again, our methods do not answer this question. Consider for exam-
ple the subposet of B5 induced by the sets of cardinality 2 and 3. The
revlex pairs (built by restricting revlex linear extensions of B5) do not form
diametral pairs of this poset.

Another natural question we were interested in asks whether there is
a fixed fraction of the incomparable elements of a poset that can always
be reversed between two linear extensions. Graham Brightwell [6] recently
answered this question in the negative by constructing a family of random
posets P for which led(P) ∈ o(inc(P)) holds with high probability.

Open Question 5. Which properties of a family F of posets ensure that
there is a c > 0 such that led(P)/inc(P) > c for each P ∈ F?
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Chapter 6

Diametrally Reversing Posets

In the previous chapter we characterized the diametral pairs of linear
extensions of special types of posets. Since computing the linear extension
diameter is an NP-complete problem, we cannot hope to achieve this in
general. In this chapter, we are interested in necessary conditions for linear
extensions to be part of a diametral pair. Let us call a linear extension
which is part of a diametral pair a diametral linear extension.

By Theorem 5.11, we know what the diametral linear extensions of the
Boolean lattice look like: They are exactly the revlex linear extensions,
induced by the σ-revlex orders, see Definition 5.2. As mentioned in Subsec-
tion 5.1.1, the revlex linear extensions have many appealing properties. For
example, by Lemma 5.5 each revlex linear extension L of Bn is reversing.
That is, there is a critical pair of elements of Bn appearing in non-canonical
order in L.

Let us consider the reversing linear extensions in a linear extension
graph G, see Figure 6.1. We call a swap color a critical color if it cor-
responds to a critical pair. By Lemma 2.14, the critical colors are exactly
the colors c = ab such that there is one component of G − θ(c), say, Gba,
which does not completely contain any other color class. The vertices of Gba

are exactly the linear extensions reversing the critical pair (a, b). That is, if
we take a sequence of pairwise parallel color classes, then the critical colors
are those at the two ends of such a sequence. Intuitively, it seems plausible
that diametral linear extensions should also appear at the end of a sequence
of parallel color classes.
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x y z

a b

P G(P)

xb

xy

xy

yz
yz

xz

xz

za

ab

ab

Figure 6.1: The critical pairs of P are (x, b) and (z, a), so the critical colors
of G(P) are xb and za.

In the linear extension graph depicted in Figure 6.1, it looks as if the
critical colors cut off the “extremal parts” of the graph. If someone would
ask us to find diametral pairs of vertices in this graph, we would probably
look for them among the reversing linear extensions. In the case of the
depicted example, as in the case of Boolean lattices, this is enough, since
all diametral linear extensions are reversing.

These somewhat hand-waving arguments are meant to motivate the fol-
lowing definition:

Definition 6.1. A poset P is diametrally reversing if every diametral linear
extension of P is reversing.

Note that chains are not diametrally reversing, because they contain no
critical pair. Intuition may lead us to think that all posets containing at
least one incomparable pair are diametrally reversing. In Section 6.1 we will
see that this is not true. However, in Section 6.2, we will exhibit several
classes of posets which are indeed diametrally reversing, including posets of
height 2, interval posets and 3-layer posets. From the last class it follows
that almost all posets are diametrally reversing.

Felsner and Reuter [22] conjectured that a property which is a little
weaker than being diametrally reversing holds for all posets:

Conjecture 6.2 ([22]). Let L,L′ be a diametral pair of a poset P. Then
at least one of the two linear extensions L,L′ is reversing.

In Section 6.1 we provide a non-trivial counterexample to this conjec-
ture. The trivial fact that chains do not fulfill the conjecture turns out to
be crucial for the construction of the counterexample.
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6.1 Not all Posets are Diametrally Reversing

In this section we construct a counterexample to Conjecture 6.2. We will
first give a nontrivial example of a poset which is not diametrally reversing,
because it provides a simpler version of the construction. The idea in both
examples is to replace some elements of a Boolean lattice by long chain
modules. The chains function like a weight on the elements they replace,
and we can therefore use them to manipulate the behavior of the diametral
pairs. At the same time, the chains do not add any new critical pairs, as
the following lemma shows.

Lemma 6.3. Let P be a finite poset, and let P ′ arise from it by replacing
each element x of P by the chain X = x1 ≤ x2 ≤ . . . ≤ xk(x). Then by
mapping a pair (x, y) of elements of P to the pair (x1, yk(y)) of elements
of P ′, we obtain a bijection between the critical pairs of P and the critical
pairs of P ′.

Proof. Observe that, since all the introduced chains are modules, we have
v < w in P exactly if all elements of V are smaller than all elements of W
in P ′, and v‖w in P exactly if all elements of V are incomparable to all
elements of W in P ′.

If (x, y) is a critical pair of P , then x‖y in P and hence x1‖yk(y) in P ′.
We have

PredP(x) ⊆ PredP(y) =⇒ PredP ′(x1) ⊆ PredP ′(yk(y))

and
SuccP(y) ⊆ SuccP(x) =⇒ SuccP ′(yk(y)) ⊆ SuccP ′(x1),

and thus (x1, yk(y)) is a critical pair of P ′.
Now let (xi, yj) be a critical pair of P ′. Then we claim that i = 1

and j = k(y) must hold. Since xi‖yj, all pairs of elements from the two
chains are incomparable. Therefore each element in X other than x1 has a
predecessor which is not a predecessor of yj, namely, x1. In the same way,
each element in Y other than yk(y) has a successor which is not a successor
of xi, namely, yk(y). Hence all critical pairs of P ′ have the form (x1, yk(y)).
On the other hand, if (x1, yk(y)) is critical in P ′, then clearly (x, y) is critical
in P , and thus the defined mapping is a bijection.

The construction of our counterexamples starts with the Boolean lat-
tice. As a reminder, Figure 6.2 shows the Hasse diagram of B4. Recall
Lemma 1.4, which characterizes the critical pairs of subposets of Bn. We
call the 2-, 3- and 4-element sets in Bn doubles, triples and quadruples ,
respectively.

103



6. Diametrally Reversing Posets

∅

1 2 3 4

12 13 1423 24 34

123 134 234124

1234

Figure 6.2: The Boolean lattice B4.

Theorem 6.4. Let B∗
4 be the poset resulting from B4 if the doubles are

replaced with chains of length 3. Then B∗
4 is not diametrally reversing.

Proof. Let us first think of B∗
4 as the poset obtained from B4 by replacing

the doubles with long chains. Let w be their length; later we will show that
w = 3 suffices.

Note that the introduced chains all form modules in B∗
4 . We are inter-

ested in pairs of linear extensions of B∗
4 with large distance. By Lemma 4.3,

we can always make the chain modules appear successively in a pair of lin-
ear extensions without lowering the distance. Therefore we will first look at
such linear extensions. We denote the elements in such a linear extension
as if they were elements of B4, treating the long chains as one element.

In analogy with the hardness proof (Theorem 4.6), the distance between
two linear extensions of B∗

4 can be thought of as a weighted distance between
linear extensions of B4. Reversing two doubles yields w2 unit reversals.
If w is chosen large enough, then reversing as many doubles as possible has
priority over all other reversals. Thus we may assume that in a diametral
pair L1, L2 of B∗

4 , the doubles appear in some order in L1 and in the opposite
order in L2.

Let L be a reversing linear extension of B∗
4 . By Lemma 6.3 and

Lemma 1.4 we know that the critical pairs of B∗
4 are exactly the pairs (a, ac)

for a = 1, 2, 3, 4 and ac = [4] \ a. Assume without restriction that 234 < 1
in L. Then we know that {23, 24, 34} < 234 < 1 < {12, 13, 14} in L. Let L′

be a linear extension of B∗
4 which has maximum distance to L. For large w

we have {12, 13, 14} < {23, 24, 34} in L′. Suppose for contradiction that L′

reverses the critical pair (a, [4] \ a). Then the three doubles containing a
must appear in L′ after the three doubles contained in [4] \ a. But the last
three doubles in L′ do not have an atom in common. It follows that L′
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cannot be reversing. We conclude that if a diametral linear extension of B∗
4

is reversing, then no diametral partner of it is.
With a closer analysis we can bound w. Here are two linear extensions

of B4 which reverse all pairs of doubles:

L1 = ∅ 1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

L2 = ∅ 4 3 34 2 24 1 14 23 234 13 134 12 124 123 1234

Their weighted distance is
(

6
2

)

w2 + 14w + 13. If we consider two reversing
linear extensions, then their quadratic term is smaller, as shown above. For
the linear term, we observe that the largest atom in a linear extension of B4

can be larger than at most three doubles, and the second largest atom larger
than at most one double. Analogously, the smallest coatom can be smaller
than at most three doubles, the second smallest coatom smaller than at
most one. Therefore the linear term is at most 16w. The constant term is
bounded by 14 by counting six reversals among atoms and among coatoms,
respectively, and two reversals for the two critical pairs. Now we just have
to choose w such that

(

6
2

)

w2 +14w +13 >
((

6
2

)

− 1
)

w2 +16w +14, and this
holds for w = 3.

So there is a gap between the distance of two reversing linear extensions
of B∗

4 and the distance of a diametral pair. This gap remains even if we
do not insist that the chain modules appear successively, so we conclude
that B∗

4 is not diametrally reversing.

Note that B∗
4 is a graded poset (see Subsection 1.1 for the definition),

so not all graded posets are diametrally reversing. Now we refine the ideas
of the above construction to disprove Conjecture 6.2.

Theorem 6.5. There is a poset P∗ such that no diametral linear extension
of P∗ is reversing.

Proof. We consider the subposet P of the six-dimensional Boolean lat-
tice B6 induced by all the atoms, the three doubles 12, 34, 56, no triples,
the six quadruples 1235, 1246, 1345, 2346, 1356, 2456, and all the coatoms,
see Figure 6.3. We replace the doubles and the quadruples in P by chains
of length w, which we will specify later. The resulting poset is our coun-
terexample P∗.

Again we are interested in pairs of linear extensions of P∗ with large
distance, and we first look only at linear extensions in which the chain
modules appear successively (cf. Lemma 4.3). We work with P instead
of P∗, treating the chains of length w as single elements, called red elements,
which have weight w. We make w so big that gaining a maximum number
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Figure 6.3: The counterexample to Conjecture 6.2: the red elements represent
long chains.

of red-red reversals, each contributing w2 unit reversals, is more desirable
than any other type of reversal. Let us call the poset induced by the red
elements Pred. A maximum number of red-red reversals is achieved by
taking two linear extensions of P∗ which restricted to the red elements
form a diametral pair of Pred.

The poset Pred is two-dimensional, so we have led(Pred) = inc(Pred)
=

(

3
2

)

+
(

6
2

)

+ 3 · 4 = 30. Since we can extend a linear extension of Pred

to a linear extension of P∗, we obtain led(P∗) > 30w2.
Which distance can a pair of linear extensions achieve in which at least

one of them is reversing? Again by Lemmas 6.3 and 1.4 we know that
the critical pairs of P∗ are exactly the pairs (i, [6] − i), i = 1, . . . , 6.
So let (L1, L2) be a pair of linear extensions of P∗, and let L1 reverse
the critical pair (6, 12345), say. Then for the red elements we have
{12, 34, 1235, 1345} < 12345 < 6 < {56, 1246, 2346, 1356, 2456} in L1. As-
sume that there is a diametral linear extension L of Pred which respects
these relations. Recall that a diametral pair of a 2-dimensional poset forms
a realizer. Thus the partner of L has to fulfill 1246 < 34 and 2346 < 12 at
the same time, which is impossible. Thus there are no more than 29 red-red
reversals between L1 and L2.

Let us bound the number of other reversals between L1 and L2. Each
atom of P∗ is incomparable to four red elements, and each coatom to five.
If we add all possible reversals of atoms, all possible reversals of coatoms,
and finally the reversed critical pair, we see that the distance between L1

and L2 is at most 29w2 + 6 · 4w + 6 · 5w + 6! + 6! + 1 = 29w2 + 54w + 1441.
We choose w so big that 30w2 > 29w2 + 54w + 1441, e.g., w = 100.

Then there is a gap between the distance we can achieve when reversing a
critical pair and the distance of a diametral pair. Again, we cannot gain
anything by relaxing the condition that the chain modules have to appear
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successively, so we conclude that every diametral pair of P∗ consists of two
non-reversing linear extensions.

Note that our construction disproves the conjecture in a very strong
sense: Not only have we shown that not every diametral pair of our example
contains a reversing linear extension, but in fact no diametral pair at all
does.

6.2 Most Posets are Diametrally Reversing

In this section we will present a number of classes of diametrally reversing
posets. Consequently, all of these posets fulfill Conjecture 6.2. As a warm-
up, we start with 2-dimensional posets.

Proposition 6.6. Every poset of dimension 2 is diametrally reversing.

Proof. If P is a 2-dimensional poset, then the diametral pairs of linear
extensions of P are exactly the realizers of P . By Lemma 1.3, a pair L1, L2

of linear extensions forms a realizer of P if and only if every critical pair
of P is reversed in at least one of them. If a non-reversing diametral linear
extension L would exist, then its diametral partner L′ would have to reverse
all critical pairs of P . But in this case, L′ alone would already be a realizer
of P . This is a contradiction to P being 2-dimensional.

6.2.1 Modules

What can we deduce about the diametral linear extensions of a poset P
by looking at the modules of P? As an example, consider the case that P
is a series composition of smaller posets Pi. Then the linear extension
graph G(P) is the Cartesian product of the G(Pi); see Proposition 2.21.
Therefore it is easy to see that it suffices that one of the Pi is diametrally
reversing to make the whole poset P diametrally reversing. It turns out
that this is even true for general modules:

Proposition 6.7. Let P be a poset containing a module M . If P [M ] is
diametrally reversing, then so is P.

Proof. Let M be a module of P , and assume that P [M ] is diametrally
reversing. By Lemma 4.3, there is a diametral pair of linear extensions
of P in which the elements of M appear successively. Restricting the two
linear extensions of such a pair to M clearly yields a diametral pair of linear
extensions of P [M ].
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If L1 and L2 form a diametral pair of P in which the elements of M do
not appear successively, they still have to contribute the same number of
reversals. Hence the restrictions of L1 and L2 to M again yield a diametral
pair of P [M ]. Thus, they both reverse a critical pair of P [M ]. Since M is
a module, the critical pairs of P [M ] stay critical in P . We conclude that
if every diametral linear extension of P [M ] is reversing, then also every
diametral linear extension of P is reversing.

A special case of a module is a twin, that is, a pair xy of elements of P
having the same set of predecessors and the same set of successors (cf. Def-
inition 1.24). Note that the two elements in a twin must be incomparable.
Thus, both (x, y) and (y, x) form a critical pair of P . So any linear exten-
sion of P reverses one of these two critical pairs, and we have the following
very useful result:

Corollary 6.8. Every poset containing a twin is diametrally reversing.

Proof. This result also follows immediately from Propositions 6.6 and 6.7
by setting M = A2.

6.2.2 Interval Orders

In this section we prove that interval orders are diametrally reversing.

Definition 6.9. A poset is an interval order if its elements can be repre-
sented by intervals on the real line such that u < v if and only if the interval
representing u is completely left of the interval representing v. If this can
be done only with intervals of length 1, we speak of a unit interval order.

We may assume that the endpoints in an interval representation of an
interval order P are pairwise different. Then the left endpoints of the in-
tervals yield a linear order of the elements of P , the left-endpoint-order,
and the right endpoints yield the right-endpoint-order. Clearly, the left-
endpoint-order and the right-endpoint-order are linear extensions of P . It
is also easy to see that an interval order is a unit interval order exactly if
it has an interval representation in which the left-endpoint-order equals the
right-endpoint order.

Note that the critical pairs of an interval order correspond to pairs of
intervals which do not contain each other, ordered from left to right.

In the following proposition, we prove that unit interval orders are di-
ametrally reversing (except for chains). We need this result for the proof
of the general case. The proof of the special case also contains basic ideas
we will use repeatedly in later proofs.
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In our proofs, we identify an element of an interval order with the in-
terval representing it, so we may speak, e.g., of an incomparable pair of
intervals.

Proposition 6.10. Every unit interval order which is not a chain is di-
ametrally reversing.

Proof. Let P be a unit interval order. We can assume that P is not an an-
tichain, otherwise we are done by Proposition 6.6. Consider a unit interval
representation of P . Then the left-endpoint-order is the same as the right-
endpoint-order. As a consequence, each incomparable pair u, v is a critical
pair (u, v), where u is represented by the interval more to the left. So in fact
there is only one non-reversing linear extension: the left-endpoint-order L.
We will show that L cannot be diametral.

Cover the plane with a grid of vertical lines a, b, c, . . . of distance 1. We
may assume that all intervals are closed on the right end and open on the
left end. Then every interval intersects exactly one grid line. We place the
grid in such a way that a hits the right endpoint of the leftmost interval.
Let us denote the elements intersecting line a with a1, a2, . . . , ak, ordered as
in L, the elements intersecting line b with b1, b2, . . ., and so on. Note that
we have a1 < b1 in P , because if they would be incomparable, b1 had to
intersect line a, a contradiction. Also observe that if we have ak < b1 in P ,
then the ai form a series module of P , and every pair aiaj is a twin of P .
So by Corollary 6.8 we can assume that ak‖b1.

Now assume for contradiction that L forms a diametral pair with L′.
In L, element ak is adjacent to b1, hence we must have b1 < ak in L′,
otherwise we could increase the distance of the two linear extensions by
exchanging ak and b1 in L.

Similarly, the order of the ai can be chosen freely in L since they form
an antichain of successive elements. Therefore the order of the ai in L must
be the reverse of their order in L′, otherwise we could construct a pair of
linear extensions with larger distance.

So we conclude that in L′ we must have b1 < ak and ak < a1, which
implies b1 < a1. But this is a contradiction because a1 < b1 in P .

In the general case, we will use the same idea: We show that if, in a
pair of linear extensions, one linear extension is not reversing, then we can
always construct two linear extensions with larger distance.

For the proof we want to use a canonical representation of interval or-
ders. We need the following well-known characterization, see e.g. [43].
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Theorem 6.11. A poset P is an interval order if and only if the maximal
antichains of P can be linearly ordered such that, for each element v ∈ P,
the maximal antichains containing v occur consecutively.

Proof. The “only if” direction is immediately clear when considering an
interval representation. For the other direction, we take a linear order of
the antichains as in the characterization and define ℓ(v) and r(v) as the
indices of the first and last antichains containing v. Then (ℓ(v), r(v))v∈P

defines a representation of P by open intervals with integer endpoints.

The representation induced by the linearly ordered antichains mentioned
in the proof above will be our canonical interval representation. Figure 6.4
shows an example where we have drawn vertical lines to mark the integers
which constitute left or right endpoints of intervals. An observation impor-
tant for the proof is that no intervals start or end between the lines, but at
every line except for the last one an interval starts, and at every line except
for the first one an interval ends.

a

c

b
d

e wx

y

z

Figure 6.4: Example of an interval order in canonical representation.

Now we have enough tools at hand to go into the proof.

Theorem 6.12. Every interval order which is not a chain is diametrally
reversing.

Proof. Let P be an interval order given in canonical representation. Let L
be a diametral linear extension of P with diametral partner L′. Suppose for
contradiction that L is non-reversing, that is, every critical pair (x, y) of P
appears in the canonical order x < y in L. A non-reversing linear extension
of the example in Figure 6.4 is given by L = xewabcdyz; the names of the
elements are chosen as to illustrate the proof that follows. We will construct
a pair of linear extensions with larger distance, contradicting the fact that
L,L′ is a diametral pair.

If there are no two intervals in P such that one contains the other,
then the left-endpoint-order equals the right-endpoint-order. Thus P is a
unit interval order and we are done by the previous proposition. So we may
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assume that there are incomparable pairs of intervals containing each other;
these are exactly the pairs which are not critical.

Let c be the first element in L which appears after an element a with
r(a) ≥ r(c). (If there is no such c, then we apply the proof to L read
backwards, exchanging left and right endpoints.) Note that since L is non-
reversing, it follows that ℓ(a) < ℓ(c). Let b be the element appearing
immediately before c in L. Our plan is to move b down in L and up in L′,
creating a pair of linear extensions with larger distance.

We want to place b low in L, that is, in a position such that all the
elements before b in L are predecessors of b. To show that this is possible
we claim that the predecessors of b form an initial segment of L. Indeed,
if we consider an element d that is incomparable to b, then clearly it has a
larger right endpoint than any predecessor e of b. Hence if d would appear
before e in L, we would have chosen e as c, a contradiction. Therefore we
can safely move b down in L and place it right after its first predecessor,
obtaining a linear extension L̄. Let S be the set of elements that b passes,
that is, that are smaller than b in L and larger than b in L̄.

Now we move b up in L′, that is, we move it just before its lowest
successor in L′. We call the resulting linear extension L̄′. First we show
that the distance between L̄ and L̄′ is not smaller than the distance between
L and L′. Note that b is low in L̄ and thus any element that b passes
when moving up in L′ only increases the distance between the two linear
extensions. If we can ensure that in L̄′, the element b is larger than all
elements of S, then we have shown that the distance between the linear
extensions did not decrease. But this can be done: By the choice of c, all
elements which are smaller than b in L, in particular the elements of S,
have a smaller right endpoint than b. Therefore every successor of b is also
a successor of all elements in S. Hence if we move b up in L′ and place it
just before its lowest successor, we will have passed all elements of S.

It remains to show that the distance between L̄ and L̄′ is actually larger
than the distance between L and L′. We will identify a pair of elements
that is a reversal between the first pair of linear extensions, but not between
the latter. First let us concentrate on the pair b, c. By the choice of c, we
must have r(b) ≥ r(a) ≥ r(c). Since b < c in L, it follows that b and c are
incomparable. If ℓ(b) ≥ ℓ(c), then (c, b) is a critical pair which is reversed
in L, a contradiction. Thus we have ℓ(b) < ℓ(c).

Now from the properties of the canonical interval representation it fol-
lows that there exists an element w which is incomparable to b but smaller
than c. What is the order of b, c and w in L and L′? In L we know that b
and c appear adjacently, so w has to appear before both of them. In L′ the
order of b and c must be reversed, otherwise we could construct a pair of
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linear extensions with larger distance immediately by changing their order
in L. Hence in L′ we have w < c < b, and thus the pair w, b is not reversed
between L and L′. But b is low in L̄, and therefore we have b < w in L̄.
Therefore w and b are reversed between L̄ and L̄′, and we have found the
desired pair. This shows that the non-reversing linear extension L cannot
be diametral.

6.2.3 3-Layer Posets

In this subsection we will prove that a class of posets covering the vast
majority of all posets is diametrally reversing.

Definition 6.13. A 3-layer poset is a poset in which each maximal chain
has length 3, and in addition, each minimum is smaller than each maximum
(cf. Figure 6.5). We call a 3-layer poset complete if each incomparable pair
consists of two elements from the same layer.

A

B

C

Figure 6.5: Scheme of a 3-layer poset. The sets A, B and C form antichains.
All elements of A are smaller than all elements of C.

Theorem 6.14. Every 3-layer poset which is not a chain is diametrally
reversing.

Proof. Let P be a 3-layer poset consisting of a layer A of minima, a middle
layer B, and a layer C of maxima. First we consider the easy case where
there is only one element b in the middle layer. Since P is graded, every
minimum has a successor in the middle layer. In this case all minima are
smaller than b. But this means in fact that every pair of minima is a twin,
and by Corollary 6.8 we are done. Hence we can assume |B| ≥ 2.

Observe that, if we have an incomparable pair (a, b) with a ∈ A and
b ∈ B, then it forms a critical pair automatically: Pred(a) = ∅ ⊆ Pred(b),
and Succ(b) ⊆ C ⊆ Succ(a). An analogous argument shows that every
incomparable pair (b, c) with b ∈ B and c ∈ C is critical. Let us call a
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linear extension mixing if it contains an element of B appearing before an
element of A or an element of C appearing before an element of B. Thus
we have shown that any mixing linear extension is reversing.

Now let us consider a non-mixing diametral linear extension L with
diametral partner L′. We will first analyse L′. If L′ is also a non-mixing
linear extension, then P must be a complete 3-layer poset, since in all
other cases we can find two linear extensions with larger distance. But
in a complete 3-layer poset, any pair of minima forms a twin, and so by
Corollary 6.8 we are done. Thus we can assume that L′ is a mixing linear
extension.

The linear extension L′ starts with an initial segment consisting of only
minima, followed by a part where elements of the three layers are mixed,
and it finishes with a final segment consisting of only maxima. We call the
set of elements forming the initial segment A′ ⊆ A, and the set forming
the final segment C ′ ⊆ C. Note that since P is graded, the partition of
the elements into three layers is unique. In particular, A′ and C ′ cannot be
empty.

We label the elements of the three layers as a1, a2, . . . ak, b1, b2, . . . bℓ and
c1, c2, . . . ck in the order in which they appear in L′. Now we return to L.
Since L is non-mixing, the elements of every level appear successively. So
we are free to choose the layer orders in L and therefore choose them in a
way which differs most from L′. Hence the elements of each layer appear in
L exactly in the opposite order of their order in L′. Thus L has the form

L = akak−1 . . . a2a1bℓbℓ−1 . . . b2b1cmcm−1 . . . c2c1.

Assuming that A′ = {a1, a2, . . . , ak′} and C ′ = {cm′ , cm′+1, . . . , cm} we know
that L′ looks like this:

L′ = a1a2 . . . ak′b1Xbℓcm′ . . . cm−1cm.

Here, X denotes the mixed part of L′ consisting of elements of potentially
all three layers.

We claim that (b1, bℓ) is a critical pair. Since they are both elements
of the middle layer, they are incomparable. The predecessors of b1 are
contained in A′, since these are the only elements smaller than b1 in L′. We
want to show that A′ ⊆ Pred(bℓ).

In L, the set A′ is found at the end of the sequence of minima, imme-
diately before the element bℓ. Hence if a1 and bℓ were incomparable, they
could be exchanged in L to yield a pair of linear extensions with larger dis-
tance, a contradiction. So we have a1 < bℓ. We can extend this argument
to show that any ai ∈ A′ needs to be smaller than bℓ. This holds because
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we can choose any order of the initial segment A′ in L′. So we are free
to turn any ai ∈ A′ into a1 by reordering the elements of A′ in L′ and L.
Thus with the above argument, ai < bℓ for any ai ∈ A′. Hence we have
Pred(b1) ⊆ A′ ⊆ Pred(bℓ).

It remains to show that Succ(bℓ) ⊆ Succ(b1). The argument works
analogously: From the position of bℓ in L′ we deduce that Succ(bℓ) ⊆ C ′.
In L, the element b1 appears immediately before the elements of C ′. If
some ci ∈ C ′ were incomparable with b1, then we could construct a pair
of linear extensions with larger distance by rearranging C ′ in L and L′

and exchanging b1 with ci. This would be a contradiction to L,L′ being a
diametral pair, and thus Succ(bℓ) ⊆ Succ(b1).

We have shown that (b1, bℓ) is a critical pair of P . In L, we have bℓ < b1,
so we found a critical pair that is reversed in L. This shows that if a
non-mixing linear extension of P is diametral, then it is reversing.

Corollary 6.15. Every poset of height 2 which is not a chain is diametrally
reversing.

Proof. A poset of height 2 can be thought of as 3-layer posets with C = ∅.
We can use the proof of Theorem 6.14 with only very few changes.

We consider L and L′ defined as before. The argument is the same until
we define A′ and C ′. Here it holds that C ′ = ∅, since C = ∅. We then have

L = akak−1 . . . a2a1bℓbl−1 . . . b2b1 and

L′ = a1a2 . . . ak′b1Xbℓ,

where the mixed segment X of L′ consists of elements from A and B.
Now it can be shown exactly in the same way as in the previous proof

that Pred(b1) ⊆ A′ ⊆ Pred(bℓ). Furthermore, Succ(bℓ) = ∅ = Succ(b1).
Thus (b1, bℓ) is a critical pair of P which is reversed in L.

Kleitman and Rothschild [36] showed that almost all posets are 3-layer
posets. More precisely, among the posets on n elements, the proportion of
the number of 3-layer posets to the number of all posets tends to 1 as n
tends to infinity. Since there is only one chain for each n, we can neglect
these, and so with Theorem 6.14 we immediately obtain the following result:

Corollary 6.16. Almost all posets are diametrally reversing.

Of course, there are still open questions about which classes of posets
are diametrally reversing. We close with the following:

Open Question 6. Are all posets of height 3 diametrally reversing?
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