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We present a function space oriented coupling approach for the multi-
scale simulation of nonlinear processes in mechanics using finite elements
and molecular dynamics concurrently. The key idea is to construct a trans-
fer operator between the different scales on the basis of weighted local av-
eraging instead of using point wise taken values. The local weight functions
are constructed by assigning a partition of unity to the molecular degrees of
freedom (Shepard’s approach). This allows for decomposing the micro scale
displacements into a low frequency and a high frequency part by means of
a weighted L2-projection. Numerical experiments illustrating the stabilizing
effect of our coupling approach are given.
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1 Introduction

Multiscale modelling allows for the concurrent description of material properties and
behavior on different scales. Often, two scales are considered, a small scale (micro scale)
and a larger scale (macro scale). The micro scale is designed to capture the material
properties on the molecular or atomistic level, whereas the macro scale is connected to
a continuous description. Processes taking place on the atomistic level as, e.g., fracture,
can therefore be incorporated into the macro model without changing the continuous
description significantly. For the numerical simulation of multiscale models often molec-
ular dynamics on the atomistic scale and finite elements on the continuous scale are
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employed. It is a central aim of multiscale methods to provide systematic techniques for
an accurate coupling between the respective atomistic and continuous models.

For example, within the Quasi-Continuum Method [1], following the Cauchy-Born
rule, the scale transfer is realized by clustering degrees of freedom on the micro scale
and identifying particular representative atoms with nodes of the finite element mesh.

Other widely used techniques are up-scaling methods [2, 3, 4] and concurrent coupling
schemes [2, 5, 1, 6, 7, 8, 9, 10]. Up scaling methods derive a macroscopic model from
a microscopic model by using, e.g., asymptotic expansions or Taylor expansions. In
contrast, the coupling schemes employ the micro and macro model concurrently and
impose additional constraints on both scales in order to enforce the coupling conditions.

For example, the bridging scale method [11, 12, 13] is a multiscale method by means
of which the solution is decomposed into a micro scale and a macro scale part. The
displacements on the macro scale are obtained by minimizing the error between the
molecular dynamics displacements and the finite element displacements in a least-squares
sense.

The bridging domain method [7, 8] and the Atomistic to Continuum (AtC) method
[14, 15, 16] use a coupling region which is only a portion of the continuum and the
molecular domain. In the bridging domain method the energy in the continuum atom-
istic overlap region is given by a convex combination of the continuum and atomistic
contributions. In the AtC coupling the overlap region is used to impose the constraints
between the continuum and atomistic solution in a weak sense. In [16] four classes of
AtC blending methods providing a mathematical framework for the coupling of atom-
istic and continuum models are established. In [15] the AtC method for blending the
continuum stress and the atomistic force is applied to a hierarchical structure consisting
of a linear elastic, a non-linear elastic and an EAM-based atomistic model.

In order to gain computational efficiency, often the microscopic discretization is ap-
plied only in small regions of interest, where it either replaces or enriches the macro scale.
When following this approach, one major problem are spurious boundary reflections or
photon reflections at the boundary of the molecular dynamics domain.

One cause of this spurious boundary modes can be found in the fact that the atomistic
scale contains high frequency information that cannot be represented by means of the
discretization on the macro scale. Therefore high frequency waves might be reflected
instead of propagated into the coarse scale. This phenomenon has already been observed
in the mid seventies by Adelmann and Doll [17]. The methods used to overcome this
difficulty depend on the coupling method employed. For a detailed description of these
reflection in the context of the Quasi Continuum Method we refer to the overview article
of Curtin and Miller [9].

Also, non-reflecting boundary techniques, which are boundary conditions, that reduce
the amount of the spurious reflections, were developed in connection with wave equa-
tions [18] and can be adopted to the multiscale setting [17, 19, 12, 3]. They find their
application, for instance, on the context of wave propagation phenomena on unbounded
domains, in order to make the computational domain finite. These boundary condi-
tions cannot be found in a unified manner since they are also called e.g. absorbing,
transparent, open one way or free-space boundary conditions.
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Figure 1: left: starting configuration with initial amplitude, right: spurious reflections

are damped

In [12], the boundary reflections are eliminated by introducing forces to atoms close
to the interface. These forces are equivalent to the lattice impedance. However, these
damping techniques use a time history kernel which involves inverse Laplace transfor-
mation in time and Fourier transformation in space. This requires a global problem on
the interface to be solved which is numerically costly. An example of damping in order
to eliminate reflections is shown in Figure 1 where we applied Berenger’s concept of
perfectly matched boundary layer [20, 21].

Here we present a new transfer operator based on a weak coupling approach. The
key idea is to construct the transfer operator on the basis of weighted local averaging
instead of using point wise taken values as in [7, 22, 11, 13]. Moreover, the continuum
description overlaps the complete molecular domain, thus we have no handshake or
blending region. The local weight functions are constructed by assigning a partition of
unity to the molecular degrees of freedom. This allows for decomposing the micro scale
displacements into a low frequency and a high frequency part by means of a weighted
L2-projection. Thus, the entire formulation is in the setting of a function space.

Since our operator is based on a weak formulation of the transfer conditions with re-
spect to the L2-scalar product, quadrature is necessary for the assembling of its algebraic
representation. For a detailed description of the related data-structures and methods
we refer to [23], where a similar quadrature problem in the context of non-linear contact
problems is treated.

Of course, the transfer of physical quantities such as temperature or stress, between
different scales, is a demanding task. For recent approaches we refer to [44, 45, 46]. In
[44] an equivalent continuum for a dynamically deforming atomistic particle system is
defined. The equivalence is among other achieved by interpreting the mechanical stress
as an internal force, which interacts between material points. In [45] a review of local
thermomechanical quantities obtained from molecular dynamic simulations is given. An
other approach for the construction of a local atomic deformation gradient [46] might
also be applicable to our new coupling scheme.

This paper is structured as follows. In Section 2 we briefly introduce the fine scale
setting and the coarse scale setting. The separation of the displacement field into a
coarse scale part and a fine scale part is shown in Section 3. In Section 4, the new
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coupling approach is presented. Applications can be found in the last section.

2 Multiscale Modeling

Let us consider a body Ω ⊂ R
d, d = 1, 2, 3, which, under the influence of external and

internal forces, will undergo some deformation. In this section, we give a multiscale
approach for the description of the body’s deformation. This multiscale approach is
based on the concurrent usage of molecular dynamics (MD), which is associated to the
micro scale, and finite elements (FE), which are associated to the macro scale. Since this
type of coupled multiscale simulation requires a thorough information transfer between
the micro and the macro scale, we begin our considerations by describing in more detail
the discrete models used on the respective scales.

Let us start with the micro scale. For reasons of computational efficiency, the MD-
simulation is only applied locally to a portion Ω′ ⊂ Ω of our body. This domain of
interest Ω′ might be the neighborhood around a crack tip or at the vicinity of a contact
boundary, where local effects are expected to take place which cannot be represented
on the coarser scale. In the remaining part Ω \ Ω′ only the coarse scale model will be
employed. The material behavior on the micro scale is now modelled by means of an
isolated system of atoms or molecules of a crystalline solid. We identify each of the
atoms in their reference position with a point Xα ∈ R

d, α ∈ A, where A is an index set.
Under the influence of external and internal forces, the atoms displace in space. The
position X̂α from the α-th atom in a deformed configuration is then given as

X̂α = Xα + qα , (1)

where qα is the displacement of atom α.
The atomic displacements q = (qα)α∈A are assumed to obey Newton’s law of motion

MAq̈ = f internal + f external , (2)

where f internal and f external are the internal and external forces. With each atom α, we
associate the mass mα > 0, such that

MA = diag(mαIdRd×d)α∈A (3)

is the mass matrix on the micro scale. In case a potential V is given, the internal forces
acting on a conservative system can be obtained as f internal = −∇X̂V (X̂).

Summing up for each configuration stemming from (1), the state of the αth particle
is given by

(Xα, qα) ∈ R
d × R

d (4)

The finite element model employed on the macro scale is based on a continuum me-
chanics approximation of the deformation of our body Ω. Following the basic approach
of continuum mechanics, on the macro scale the body in its reference configuration is
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identified with the smooth and bounded domain Ω ⊂ R
d. The deformed configuration

of Ω is given by φ(Ω), where
φ : Ω −→ R

d (5)

is the deformation mapping and
u = φ− id (6)

are the displacements, see, e.g., [24]. Let us emphasize that in contrast to the micro
scale description (1), each point of Ω is now associated with a material point in Ω.

In order to approximate the continuous displacement field u, we now employ a finite
element discretization of lower order. Let T h denote a shape regular mesh with mesh size
parameter h > 0 which approximates Ω. We use Lagrangian conforming finite elements
of first order (P1) for the displacements u and denote the set of all nodes of T h by N h.
The finite element space Sh(Ω) ⊂ H1(Ω) is spanned by the nodal basis

Sh(Ω) = spanp∈Nh{λh
p}.

The Lagrangian basis functions λh
p ∈ Sh are uniquely characterized by the Kronecker-

delta property
λh

p(q) = δpq , p, q ∈ N h ,

where δpq is the Kronecker-delta. Any function ū ∈ Sh(Ω) can uniquely be written as

ū =
∑

p∈Nh

ūpλ
h
p , (7)

where (ūp)p∈Nh ∈ R
d·|Nh|, ūp ∈ R

d, is the coefficient vector. We can identify each element
of Sh(Ω) with its coefficient vector (ūp)p∈Nh. In a next step we define the subset Ω′ ⊂ Ω
where the the coarse as well as the fine scale simulation is present. To do so, we define
T h
∗ ⊂ T h as the set of simplexes having a nonempty intersection with the particles, i.e.,

T h
∗ = {T ∈ T h, ∃Xα, α ∈ A : Xα ∈ T}.

Thus we have
Ω′ =

⋃

T∈T h
∗

T, Sh
∗ = Sh(Ω)

∣∣
Ω′ and N h

∗ = N h ∩ Ω′.

Let us remark that the size and shape of the domain Ω′ is not given a priori and can
be chosen arbitrarily.

Here, we do not incorporate any Dirichlet boundary conditions into the ansatz–space
Sh(Ω), since the finite element space Sh(Ω) will only serve as the coarse scale space for
the representation of the total displacement field. In order to simplify our notation, in
the forthcoming we omit the superscript h whenever possible. Throughout this paper,
we denote nodes by Latin letters, e.g., p, s, t, . . . and atoms by Greek letters, e.g., α, β, . . .
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Figure 2: The finite element space Sh and its restriction to Ω′

3 Multiscale Decompositions

Since the length scales of the coarse scale and the fine scale differ by orders of magnitudes,
it is natural to decompose the total displacement field into a coarse scale and a fine scale
part. Taking into account the different maximal frequencies which can be represented
by the respective discretization, we can decompose the total displacement field w into a
low oscillatory part w̄ and a high oscillatory part w′,

w = w̄ + w′ , (8)

see Figure 3 for an illustration. This kind of scale-decomposition has been used in the
context of bridging scale methods [11] and of variational multiscale methods [25]. The
decomposition (8), however, requires that w′ as well as w̄ are elements of the same
vector space. In [11], the Euclidean space is chosen, whereas the variational multiscale
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Figure 3: Scale decomposition of the total displacement field w

decomposition [25] relies on conforming finite element spaces which are used on the
respective scales. In the following we propose a decomposition in an L2 sense within an
infinite-dimensional function space.

4 Weak Multiscale Coupling

In this section we present our new coupling operator for the information transfer between
the molecular dynamics model (fine scale) and the continuum mechanics model (coarse
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scale). The coupling between the different length scales is usually done in a fully discrete
framework, see [1, 22, 11, 7]: after discretizing the continuum mechanics by, e.g., finite
elements, the coarse scale solution is interpreted as an element of the Euclidean space.
Then, the transfer is realized by the identification of point values [1] or by means of a
least-squares approach [26, 22, 11].

Here, we propose a different approach, where the construction of the transfer operator
takes advantage of an infinite dimensional function space. This is motivated by the
stabilizing effect of weak coupling operators in the context of non-conforming domain
decomposition or mortar methods for elliptic problems, see, e.g., [27, 28, 29]. There,
for the transfer of displacements and stresses between non-matching meshes or different
discretizations, a discrete L2-projection instead of an interpolation operator is used.
Similar to mortar methods, our coupling approach is non-symmetric in the sense that
one scale (the “slave” scale) inherits the values for the displacements from the other scale
(the “master” scale). It is a particular advantage of the weak coupling approach that it
provides a stable coupling independent of the respective mesh sizes. This feature is of
crucial importance for multiscale simulations, since the employed length scales differ in
orders of magnitude.

4.1 Design of Local Approximation Spaces

The L2-projection used for the scale transfer, introduced informally above, is formulated
in a function space based setting. Thus the decomposition given by (8) should also be in
the function space. However, in the molecular dynamics simulation, each molecule is an
element of R

d. Therefore we use an approximation, which maps the discrete displacement
of the atoms qα, α ∈ A into a function space, i.e.

ι : (Rd × R
d)|A| → L2(Ω′) ι(X, q) = w.

In order to interpret a molecular displacement as a function in L2, we employ local
approximation spaces for each atom as it is done in the context of Partition of Unity
methods (PUM) [30, 31, 32].

The starting point for our PUM is to build an approximation space V PUM. To do so,
a patch ωα ∈ R

d is attached to each point, such that the union of these patches form
an open cover Cω := {ωα}α∈A of the domain. To this end, we define for each atom α a
patch ωα associated with Xα ∈ Ω′ as

ωα = {x ∈ R
d : ‖Xα − x‖ < hα}.

The most basic property, which these patches have to fulfill, is that they cover the
complete domain Ω′: ⋃

α∈A

ωα ⊃ Ω′.

For an example of a 2D sketch see Figures of 4. On the basis of such a suitable cover
Cω we can define a partition of unity via data fitting techniques. In general, the term
data fitting method refers to the construction of special shape functions ϕi for the
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Figure 4: Left : A domain with circular patches. Right : A domain with rectangular
patches

approximation of some function u from a discrete data set D. The approximation uS is
then given by

uS(x) :=

|D|∑

i=1

uiϕi(x) ,

where the ui are given data.
Here, we follow Shepard’s approach [33] for the construction of a PU. Thus, the shape

functions ϕα are defined as

ϕα(x) =
Wα(x)∑
β Wβ(x)

, (9)

with weight functions Wα. Shepard [33] originally proposed the use of

Wα(x) = ‖x−Xα‖
−t , t > 0, x ∈ Ω. (10)

It can easily be seen that the weight functions defined in (10) have a global support
and therefore the functions ϕα have also a global support. Consequently, the evaluation
of one shape function involves all weight functions Wβ. Hence a localized version of
Shepard’s Method should be employed to ensure the compact support of ϕα, i.e. we
assume supp(Wα) = ω̄α so that

ϕα(x) =
Wα(x)∑

ωβ∈{ωγ : ωγ∩ωα 6=∅}

Wβ(x)
, x ∈ ωα .

Thus w from (8) can be given by

w := ι(X, q) =

|A|∑

α=1

qαϕα(x). (11)

Besides the support of the Wα, the smoothness of the weight functions directly influ-
ences the smoothness of the shape functions. Here, we use Splines as weight functions
[32]. For more details concerning the approximation properties of the PUM we refer to
[30].
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Most of the approximation techniques for the construction of shape functions, use
a Moving Least Squares (MLS) approach, originated from scattered data approxima-
tion. In the MLS method one wishes to find the best approximation from a certain
approximation space to the data at a some point x with respect to a weighted l2 inner
product. Moreover, the Shepard functions only reproduce the constant and hence, they
have approximation order one in L2. We remark that our coupling operator does not

depend on the construction of the shape functions via Shepard’s approach (0th order
MLS). However, other moving least squares method like higher order MLS, e.g. [34],
Reproducing Kernel Particle Methods (RKPM)[35, 36, 37] or Radial Basis Functions
(RBF)[38, 39] can be used.

4.2 Weak Multiscale Operator

In this section we derive a new approach for the coupling between molecular dynamics
(fine scale) and continuum mechanics (coarse scale). Our approach is based on ideas
from non-conforming domain decomposition methods, namely mortar methods. The key
ideas of mortar methods is to provide a stable coupling between different discretizations
or meshes by means of using a weak continuity condition at the respective interfaces.
Starting from linear problems [27], mortar methods have been extensively studied in the
context of elliptic partial differential equations, see, e.g. [28] and the references cited
therein.

In the context of multiscale simulations, however, the coupling is often realized by
means of the interpolation operator, since the molecules are in general interpreted as
points in Rd, see, e.g., [22, 12]. Unfortunately, this might lead to undesirable effects
due to the insufficient representation of the high frequency components of the fine scale
solution by finite element functions. Using the techniques described in the previous
Section, however, we are free to interpret atoms either as elements in R

d or as functions
in L2. Assuming that the masses are unity, this allows for a function space based
coupling, leading to our weak multiscale operator.

Our aim is to construct a coarse scale approximation w̄ ∈ Sh of the total displace-
ment function given by (11). The coarse scale representation w̄ ∈ Sh of the molecular
displacement function w is defined by means of the L2-projection πh : L2(Ω′) −→ Sh

∗ ,
i.e.

πh(w) ∈ Sh
∗ : (πh(w), µ)L2(Ω′) = (w, µ)L2(Ω′) ∀µ ∈Mh , (12)

where, the multiplier space Mh is defined by

Mh = span{µs | s ∈ N h
∗ } .

Here, the basis functions µs, s ∈ N h
∗ are assumed to have the local support suppµs ⊆

suppλs|Ω′. As is the case in the mortar setting, there are several possible choices for the
basis functions µs of Mh. We follow the standard approach, see, e.g. [27, 28] by setting

µs = λs|Ω′ , s ∈ N h
∗ . (13)
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Figure 5: Upper: Lagrange Multiplier Space Mh, lower: Lagrange Multiplier Space Mh
mod

As an alternative, the multiplier space can also be given by

Mh
mod = {µ | µ ∈ Sh

∗ , µ|T ∈ P0(T ) if T ∩ ∂Ω′ 6= ∅}. (14)

In this modified multiplier space, the order of a test function is reduced by one if it
contains a endpoint of Sh

∗ (see Figure 5). In this case, we have to modify Sh
∗ by impos-

ing homogeneous Dirichlet boundary condition. Let us remark that the choice of the
multiplier space Mh reflects the way w̄ is extended into Sh.

Our coarse scale representation is now defined by extending πh(w) ∈ Sh
∗ to w̄, i.e.

w̄ = E(πh(w)), where E : Sh
∗ → Sh is an extension operator. Thus we can rewrite (8) by

w = w′ + w̄ = (w − E(πh(w))) + E(πh(w)). (15)

For the extension operator E , different choices are possible cf. [40]. Here we chose

E(v) =
∑

p∈Nh

vpλp with

{
vp = wp , p ∈ N h

∗ ,
vp = 0 , else .

As a consequence of our choice (13) of the multiplier space, the displacements in Sh
∗

inherit their values from the molecular dynamics. Therefore, in the spirit of mortar
methods, we call the finite-element space Sh the slave space and the approximation
space spanned by the Shepard functions the master space.

Let us now describe, how to obtain the discrete representation of our transfer operator.
Inserting w =

∑
α∈A qαϕα and πh(w) =

∑
p∈Nh

∗
πpλp into (12), we obtain

Mπ = Rq (16)

with M = (mts)t,s∈Nh
∗

and R = (rsα)s∈Nh
∗ ,α∈A and

rsα =

∫

Ω

µsϕα and mts =

∫

Ω

λtµs . (17)

here, we have set q = (qα)α∈A and π = (πp)p∈Nh
∗
. This gives rise to our weak coupling

operator in its algebraic representation

W = M−1R, (18)

10
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which transfers the low-frequency information from the micro-scale to the macro-scale.
We remark that this approach shows similarities to the bridging domain method. More
precisely, the constraints in [7] in algebraic strucutre are given by

Nw̄ = I
Rd|A|×⌈|A|q (19)

with N being the matrix containing the values of the FE shape functions evaluated at
the atomic positions. Comparing (16) and (19) one can see, that in the bridging domain
method, the fine scale (slave side) inherits the values from the coarse scale (master
side), whereas in (16) the coarse scale (slave side) inherits the values from the fine scale
(master side). Additionally, the weights in (19) are computed on a completely local
basis, whereas in the weights in (16) are computed by means of local averaging. For a
related approach in the context of multigrid methods we refer to [41] and the references
cited therein.

Due to the definition of Sh
∗ and for suitably chosenMh, the matrixM has the character

of a finite element mass matrix, is well conditioned and M−1µ can be computed easily
for any µ ∈Mh. For assembling the matrix R, we need to evaluate integrals of the form

∫

ωα∩supp(λp)

µpϕα dx. (20)

In order to compute these integrals, the cut between the support of µp and the patch ωα

has to be computed. On the resulting polytope, then the quadrature has to be carried
out. Since, following our approach, the cut polytopes can be controlled in their size
but not in their shape, the quadrature is a challenging task. In order to deal with this
problem we have developed and implemented the library CutLib, which allows for cut
detection and quadrature on the resulting cut-polytopes; for details we refer to [42].

By construction, our coupling operator πh allows for the decomposition of the kinetic
energy T into a coarse scale and a fine scale part in an L2 sense, analogue to [11]. In the
case Mh = Sh

∗ which is known as the standard multiplier space in the mortar setting,
we moreover have

T =
1

2
(ẇ, ẇ)L2(Ω′)

=
1

2
(ẇ, ˙̄w)L2(Ω′) +

1

2
(ẇ, ẇ′)L2(Ω′)

=
1

2
( ˙̄w, ˙̄w)L2(Ω′) +

1

2
(ẇ′, ˙̄w)L2(Ω′) +

1

2
(ẇ, (I − πh)ẇ)L2(Ω′)

=
1

2
( ˙̄w, ˙̄w)L2(Ω′) +

1

2
(ẇ, (I − πh)ẇ)L2(Ω′)

since the mixed term 1
2
(ẇ′, ˙̄w)L2(Ω′) vanishes due to the fact that range(I − πh)⊥Mh.

Relation to the Bridging Scale Method In contrast to (18), the coarse scale descrip-
tion in the Bridging Scale Method [11] is given by

W̃ = M−1
conN

TMA, (21)

11
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withMcon = NTMAN andMA given by (2). In the Bridging Scale Method, the transition
from coarse to fine scale is defined by interpolation and the projection from fine to coarse
is defined as the least squares approximation of the atomistic displacements with respect
to the atomistic mass matrix MA. More precisely, the components of Mcon = m̃p,q∈Nh

are given by

mS
pq =

∑

α∈A

mαλp(Xα)λq(Xα) =
∑

α∈A

mα

meas(ωα)
λp(Xα)λq(Xα) · meas(ωα) ≈

∫

Ω′

λpλq dx .

(22)
Thus, assuming that the density mα

meas(ωα)
is one and that the patches (ωα)α∈A fulfill

ωα ∩ ωβ = ∅ ⇐⇒ α 6= β, (22) can be interpreted as a summed quadrature rule.
By introducing the scalar product 〈·, ·〉BS := 〈MA·, ·〉 on R

|A| × R
|A| the projection

from the total displacement field w to the coarse part w̄ is given by

〈Nw̄,Nµ〉BS = 〈w,Nµ〉BS ∀µ ∈ R
|Nh

∗ |,

i.e., the bridging scale method can be seen to be based on the choice Mh = span{λp | p ∈
N h

∗ }. However, the coupling itself uses the discrete scalar product 〈·, ·〉BS, which dis-
tinguishes it from our approach, where the L2−scalar product connected to the coarse
scale is used. This probably seems to be the more natural approach within the weak
formulation of the finite element method.

For investigating the structure of the bridging scale operator W̃ in more detail, let us
consider the case that the masses of the atoms are equal, i.e., m = m1 = m2 = ... = m|A|.
Then, the atomistic mass matrix MA reduces to MA = m Id and the coarse scale mass
matrix becomes Mcon = NTMAN = mNTN . Thus, the operator W̃ reduces to

W̃ = (NTN)−1NT ,

which are simply the normal equations stemming from 〈Nw̄ − w,Nµ〉 µ ∈ R
|Nh

∗ |.
We now want to explore more differences and commonalities between (21) and (18).

For sake of simplicity, we consider the case, that only two particles xα and xβ are in the
support of two shape functions ψ1 and ψ2. Then the matrix N in (21) as well as the
matrix R in (18) become quadratic.

N =

(
λ1(xα) λ1(xβ)
λ2(xα) λ2(xβ)

)
R =

( ∫
ω1α

λ1ϕα

∫
ω1β

λ1ϕβ∫
ω2α

λ2ϕα

∫
ω2β

λ2ϕβ

)
.

In the forthcoming, we consider the condition numbers κ(W̃ ) and κ(W ) in dependence
of the distance dαβ := |Xα − Xβ|. The condition number is indicative of the stability
or sensitivity of the transfer operators. In Table 1, the condition number in dependence
of the distance is shown. It can be seen that the condition number κ(W̃ ) is increasing
while κ(W ) show a very slow growth. In fact, the growth of the condition number of the
matrix R can be controlled, since the integration domains ω can be chosen individually
to fulfill ω1α 6= ω2α 6= ω1β 6= ω2β. Obviously, the argumentation above also holds for the
case of more than two particles in the support of the element.
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Figure 6: Two particles in the support of one element

dαβ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

κ(W̃ ) 6.1905 6.9812 7.9746 9.2577 10.9756 13.3893 17.0212 23.0900

κ(W ) 3.1027 3.2188 3.3274 3.4186 3.5502 3.6052 3.6559 3.7311

Table 1: Comparison of the condition number of N and W w.r.t. the distance between

the two particles α and β

5 Numerical Results

5.1 A One Dimensional Example

We adopt the numerical example of [12]: The interval [−100rEQ, 100rEQ] is covered by 40
linear finite elements with mesh size h = 5rEQ. To each of the 56 atoms between −28rEQ

and 28rEQ, a patch of size 0.6rEQ is attached. For the molecular scale the Lennard-Jones
(LJ) potential is given by

VLJ(r) = 4ε

(
σ12

r12
−
σ6

r6

)
; σ = 1, ε = 1. (23)

The equilibrium state of the molecules is given by rEQ = 21/6σ. Outside the MD/FE
region the nodal forces are calculated via the Cauchy-Born rule. The Cauchy Born
rule states that the atomic system deforms according to the continuum deformation
gradient F . More precisely let rsp

ij (rref

ij ) be the position of atom i in the spatial (reference)
configuration. Then the distance of the particles in their spatial (reference) configuration
is given by

r
(∗)
ij = r

(∗)
i − r

(∗)
j ∗ = {sp, ref}.

In the Cauchy-Born rule setting it is assumed that the spatial configuration results from
the application of the local deformation gradient F = ∇φ to the reference configuration,

13
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i.e.
rsp

ij = F · rref

ij .

Let us note that the the Cauchy-Born rule fails for sufficiently large deformations [43].
The initial amplitude in the molecular part is given by

u(r) = 0.12 ·
e(−r/σ)2 − uc

1 − uc

(
1 + 0.1 · cos

(
8π

5
r

))
with uc = e−(1/5)2 ,

i.e. the amplitude of the wave was 12% of the equilibrium spacing.
Let Tend be the total run time of the simulation. We follow [12] by advancing both
simulations by a time step τ ∈ [0, T ]. Thus in a single time step the coarse scale
simulation is advanced once and the fine scale simulation is advanced m times. The
fractional time steps in the n-th coarse scale time step is given by [j] := n + j

m
and the

sub cycle time step is given by τm = τ
m

. On the fine scale the velocity Verlet and on the
coarse scale the explicit central difference algorithm are used. We furthermore assume
that pn, qn, sn are given, then the update is given by:

p[j+1] = p[j] + q[j]τm + 1/2s[j]τ 2
m p MD displacement

q[j+1/2] = q[j] + s[j]τm q MD velocity

s[j+1] = M−1
A f(p[j+1]) s MD acceleration

q[j+1] = q[j+1/2] +
1

2
s[j+1]τm.

After m = 50 fine scale steps the molecular dynamics quantities of the coarse time step
n+ 1 are obtained. In order to advance the coarse scale simulation from n to n+ 1 the
internal forces are computed by combining the coarse scale displacement w̄ and the fine
scale part Q = (I −NW ) of the molecular simulation.

dn+1 = dn + vnτ +
1

2
anτ 2 d FE displacement

an+1 = M−1NTf(Nd+Qq) a FE acceleration

vn+1 = vn +
1

2
(an + an+1)τ v FE velocity.

In our simulation we chose τ = 0.2.
In Figure 7, the coupled MD/FE simulation with the multiplier space Mh is shown.

The square-marked line (red) represents the displacements of the fine scale. The con-
tinuous line (blue) maps the displacement of the coarse displacement. For comparison
to the multiscale simulation a full atomistic simulation using 420 atoms is shown in
Figure 8. The performance of the modified multiplier space Mh

mod for the same problem
is shown in Figure 9.

As can be seen by comparing Figure 7 with Figure 9, there are only slight differences
for the choices Mh and Mh

mod. We expect a different behaviour in higher dimensions.
In the following, we compare our new weak transfer operator with the transfer operator

W̃ . As measures for the comparison we chose the norms ‖ · ‖L2(Ω) and ‖ · ‖∞.
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Figure 7: FE-MD simulation using Mh as multiplier space , for the coarse scale time

steps n = 3, n = 12 and n = 18.
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Figure 8: Full MD simulation, for the fine scale time steps: m · n = 150, 600 and 900

In order to measure the difference between the discrete displacement field stemming
from the atomistic scale with the values of the coarse scale, in our approach we choose
the the L2 norm. On Ω′, this error can easily be computed as

‖w − ki(w)‖2
L2(Ω′) = wTMPUMw − 2wTRki(w) + ki(w)TMki(w), i = 1, 2, (24)

where MPUM is the PUM mass matrix whose elements are given by mPUM
αβ =

∫
ϕαϕβ.

Here, k1 is the Least Squares projection W̃ and k2 is the weak coupling operator W . For
the error in the ‖ · ‖∞ norm, we simply computed

‖w −N(ki(w))‖2
∞, i = 1, 2, (25)

The following table shows the obtained errors for i = 1, 2.
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Figure 9: FE-MD simulation using Mh
mod

as multiplier space , for the coarse scale time

steps n = 3, n = 12 and n = 18

‖ · ‖L2(Ω′) ‖ · ‖∞

coarse time step bridging scale weak coupling bridging scale weak coupling

3 6.0 · 10−3 2.7 · 10−4 2.8 · 10−2 6.7 · 10−3

6 3.0 · 10−2 1.1 · 10−4 5.3 · 10−2 4.8 · 10−3

9 6.0 · 10−2 5.7 · 10−4 7.5 · 10−2 4.8 · 10−3

12 8.1 · 10−2 1.2 · 10−3 7.3 · 10−2 3.9 · 10−3

15 8.3 · 10−2 2.3 · 10−3 7.4 · 10−2 6.1 · 10−3

18 7.5 · 10−2 2.1 · 10−3 7.3 · 10−2 5.1 · 10−3

Table 2: Difference between the discrete displacement field stemming from the atomistic

scale with the values of the coarse scale in the ‖ · ‖L2(Ω′)- and ‖ · ‖∞ norm

5.2 A Two Dimensional Example

In this example, we test the performance of our projection operator πh for d = 2.
To do so, we study wave propagation through a small sheet. Considering the domain
Ω = [0, 80] × [400, 800] ⊂ R

2 the coupling region chosen is Ω′ = [0, 80] × [400, 550] ⊂ Ω.
An initial displacement in the molecular domain Ω′ propagates out of the coupling zone
into Ω\Ω′, where only coarse finite elements are used. The following picture is a sketch
of the simulation geometry:

The initial displacement in Ω′ is a combination of high- and low frequency parts:

u(x, y) =
A

A− uc

(
Ae(−(y−t)/σ)2 − uc

)(
1 + b cos

(
2π

H
(y − t)

))
ey

with ey = (0, 1)T , t = 510, σ = 15, H = σ/4, A = 0.15, b = 0.3, rc = 5 · σ and
uc = Ae(rc/σ)2, where we adopted the notation used in [12].
The potential function is the LJ-Potential (23) with nearest-neighbour interaction, i.e
rcut = 3/2 · rreq. For the coarse scale we employ standard linear elastic Saint-Vernant
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Figure 10: A sketch of the computational domain in 2d

material law with elastic module E = 30 and Poisson ratio ν = 0.2589, discretized on a
triangular mesh.
The coupling zone contained 11.130 atoms and about 585 triangles. The patch size is
h = 1.7 for each atom. Since the focus here is put on the properties of the new transfer
operator, the MD block was chosen large enough to avoid spurious reflections at the
boundary.

For the integration in time, we have used the time-stepping scheme given in Subsec-
tion 5.1 with the following changes applied:

• The coarse-scale force is calculated by linear elasticity F = F (d).

• The coupling is done by overwriting the coarse-scale displacement and velocities in
each time step in the coupling zone by the values obtained from the L2 projection
of the values on the fine scale.

We chose τ = 0.1 and m = 2. Figure 11 shows the time-evolution of the absolute value
of the perturbation as it propagates into the coarse region Ω\Ω′. In the coupling region,
only the atomic displacements are shown. It can be seen that by using the L2 projection
an almost seamless transition between the scales can be achieved.

6 Conclusion

We presented a new transfer operator on the basis of weighted local averaging instead
of point wise taken values. The local weight functions are constructed by assigning a
partition of unity to the molecular degrees of freedom. Consequently, the decomposition
of the displacements into low frequency and high frequency can be realized by a weighted
L2 projection. We also showed that in our scheme the Bridging Scale method can be
interpreted as a special case of this new coupling approach. In numerical experiments
we compared the results of the coupled simulation with a full atomistic simulation and
showed that obtained results are almost identical.
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Figure 11: FE-MD simulation using the weak transfer operator. Absolute value of the

displacement after n = 1, n = 30, n = 55 and n = 100 time steps.
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