Exercise Sheet 9

Due-date: Monday, 17/1/2022, before the lecture starts.

Exercise 1

Topology

Winter term 2021/2022

Prof. Dr. Michael Joswig, Holger Eble

Let K be a geometric simplicial complex and let $v \in \operatorname{vert}(K)$ be a vertex, i.e. a 0dimensional simplex, of K. Let E(K, v) be the edge group of K based at v. Show that the group homomorphism $\varphi : E(K, v) \to \pi_1(|K|, v)$ constructed in the Wednesday lecture is injective.

Exercise 2

Show that the dunce hat (cf. Homework Sheet 8, Exercise 2) is triangulable.

Exercise 3

Let K be a geometric simplicial complex in \mathbb{R}^n . The cone CK on K is a geometric simplicial complex in \mathbb{R}^{n+1} and was constructed in the Monday lecture: Choose an apex $v \in \mathbb{R}^{n+1} \setminus \mathbb{R}^n$ and take the pyramids $\hat{\sigma} := \operatorname{conv}(\sigma, v)$ for $\sigma \in K$ to be the members of CK. Show that this yields indeed a geometric simplicial complex. Further, show that the space |CK| and the cone $C|K| := (|K| \times I)/(|K| \times \{1\})$ over |K| are homeomorphic.

Definition: locally finite complex. Let K be a possibly infinite geometric simplicial complex in \mathbb{R}^n . The complex K is called *locally finite* if every vertex of K belongs to only finitely many simplices of K.

Exercise 4

Show that a geometric simplicial complex K in \mathbb{R}^n is locally finite precisely if its realization $|K| \subset \mathbb{R}^n$ is a locally compact topological space.

For the rest of this exercise sheet let K be an abstract simplicial complex.

Definition: Realization of an abstract simplicial complex (as a *colimit*). As we discussed in the exercise session, the realization |K| can be given by glueing the simplices of K together according to the cell structure of K. To do so, we set $\Delta^F :=$ $\{x \in \mathbb{R}^F : \sum x = 1, \text{ all } x_k \ge 0\}$ for any finite set F. It is a (#F - 1)-dimensional simplex with #F vertices. Let now $\sigma \in K$ be a face of K. For any face $\tau \subset \sigma$ of σ there is a canonical embedding

$$\begin{aligned} \boldsymbol{\mu}_{\tau}^{\sigma} \colon \boldsymbol{\Delta}^{\tau} &\longrightarrow \boldsymbol{\Delta}^{\sigma} \\ \boldsymbol{x} &\longmapsto (\mathbf{1}_{\tau}(k) \cdot \boldsymbol{x}_{k})_{k} \end{aligned}$$

4 Points

4 Points

2 Points

2 Points

with the indicator function $\mathbf{1}_{\tau}$ of τ . A realization of |K| can be given as

$$|K| := \left(\prod_{\sigma \in K} \Delta^{\sigma} \right) /_{\sim} \; ,$$

where for $x \in \Delta^{\sigma}$ and $y \in \Delta^{\rho}$ we have $x \sim y$ if and only if there is some $z \in \Delta^{\sigma \cap \rho}$ with $\iota^{\sigma}_{\sigma \cap \rho}(z) = x$ and $\iota^{\rho}_{\sigma \cap \rho}(z) = y$. Further, for any $\sigma \in K$ we define the map $\chi_{\sigma} \colon \Delta^{\sigma} \to |K|$ as the composition of the quotient map with the inclusion into the disjoint union.

Exercise 5 (Reality check)

3 Points

These statements immediately follow from the universal property of final topologies.

- a) Let S be a polyhedral surface (cf. lecture of the first week, *polyhedron* in Armstrong's book) and let K(S) be the underlying abstract simplicial complex. Show that S and |K(S)| are homeomorphic, cf. Homework Sheet 5, Exercise 6.
- b) Let K be any abstract simplicial complex with vertex set V(K) = [n]. Let $\Delta := \operatorname{conv}\{e_i : i \in [n]\} \subset \mathbb{R}^n$ and $\Delta[\sigma] := \operatorname{conv}\{e_i : i \in \sigma\} \subset \Delta$ for any non-empty $\sigma \in K$. Let K' be the geometric simplicial complex $K' := \{\Delta[\sigma] : \sigma \in K\}$. Show that the realizations of K and K' are canonically homeomorphic.
- c) Show that the maps χ_{σ} are closed embeddings.

Definition: Path-components of K. The vertices V(K) of K are precisely those members of K, which are singleton sets. Two vertices $x, y \in V(K)$ lie in the same path-component if there is a sequence $z_0, z_1, \ldots, z_n \in V(K)$ of vertices of K with $x = z_0$, $y = z_n$ and $\{z_k, z_{k+1}\} \in K$ for all k. Coming from an equivalence relation, the pathcomponents of K partition the vertex set V(K).

Now, let $C \subset V(K)$ be a path-component of K. We set

$$K_C := \bigcup_{\substack{\sigma \in K \\ \sigma \subset C}} \chi_\sigma(\Delta^{\sigma}) \subset |K|$$

and we identify the sets K_C as the connected components of |K| in the following exercise.

Exercise 6

5 Points

Let K still be an abstract simplicial complex.

- a) Show that $|K| = \bigcup K_C$, where C runs through the path-components of K.
- b) Every set K_C is path-connected.
- c) Every set K_C is clopen (open and closed) in |K|. For this, recall which topology is given on |K| by the construction above.
- d) We have a partition $\{K_C: C \text{ path-component of } K\}$ of |K|.

e) The connected components of the realization |K| are open and coincide with the path-components of |K|. Further, the connected components of |K| are in bijection with the connected components of the graph $|K^{(1)}| \subset |K|$ of |K|, where $K^{(1)}$ only takes into account the faces of K with dimension less or equal to one, i.e. with cardinality less or equal to two.