Discrete Geometry II Winter term 2020/21 Prof. Dr. Michael Joswig, Holger Eble

Exercise sheet 4

Due-date: Friday, 04/12/2020, via e-mail to eble@math.tu-berlin.de

Exercise 1

4 Points

4 Points

Let l, i > 0 be two fixed integers. Show that there is a unique $j \in \mathbb{N}$ and a unique sequence of natural numbers $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$ such that

$$l = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j} .$$

Exercise 2

- a) Consider all subsets of \mathbb{N} with cardinality k. Show that the reverse lexicographic order on those sets (i.e. $G < H \iff \max(G \setminus H) < \max(H \setminus G)$) is a linear order.
- b) Let $P \subset \mathbb{R}^3$ be the following triangular prism:

Consider the triangulation $\mathcal{T} := \{\{0, 1, 2, \tilde{0}\}, \{1, 2, \tilde{0}, \tilde{1}\}, \{2, \tilde{0}, \tilde{1}, \tilde{2}\}\}$ of *P*. Compute the *f*-vector of \mathcal{T} and construct the compressed simplicial complex Δ_f .

Exercise 3

5 Points

- a) Determine the *h*-vector of the cubes in all dimensions.
- b) Determine the *h*-vector of the cross polytopes in all dimensions.
- c) Determine the *h*-vector of the permutahedra in all dimensions.

Exercise 4

3 Points

Let P be a simplicial d-polytope and ∂P its boundary complex. In general, ∂P is always (homeomorphic to) some sphere. In this special case, ∂P is a simplicial (d-1)-sphere. Show that $h_d(\partial P) = 1$.