Exercise sheet 3

Due-date: Monday, 30/11/2020, via e-mail to eble@math.tu-berlin.de

Exercise 1

Let $Q := [-1, 1]^2$ and $C := \text{conv}(Q \times 2Q \times \{1\}, 2Q \times Q \times \{-1\}).$

a) Show that

 $C = \{ x \in \mathbb{R}^5 : -1 \le x_5 \le 1, \ \pm 2x_1 \le 3 - x_5, \ \pm 2x_2 \le 3 - x_5, \ \pm 2x_3 \le 3 + x_5, \ \pm 2x_4 \le 3 + x_5 \} .$

- b) Show that C is combinatorially equivalent to $[0, 1]^5$.
- c) Show that $\Gamma(C) \cong \Gamma(\pi(C))$ where π deletes the last coordinate.

Exercise 2

Give an example of an obstract objective function which is not induced by a linear objective function.

Exercise 3

Show that every 3-dimensional cubical polytope has more vertices than facets. Is $f_0 - f_2$ constant for each such polytope?

Exercise 4

Let $P = [0, 1]^d$ or any other polytope. We consider colorings of vert(P) with two colors red and blue and we call such a coloring a *valid coloring* (for our purposes) if the red vertices can be separated from the blue vertices by some hyperplane $H \subset \mathbb{R}^d$.

- a) Count the valid colorings for the *d*-cube $P = [0, 1]^d$, d = 1, 2 and maybe 3.
- b) Fix $P = [0, 1]^d$ for some arbitrary dimension d. Show that the valid colorings of $\operatorname{vert}(P)$ can be parametrized via some set of hyperplanes $H_i \subset A(P), i \in I$ finite, where A(P) denotes the space of affine functionals $f : \mathbb{R}^d = \operatorname{aff}(P) \to \mathbb{R}$.
- c) A finite collection \mathcal{H} of hyperplanes is called *Hyperplane Arrangement*. Define what a chamber of \mathcal{H} is.

Hint: Let $v \in \text{vert}(P)$ and let H_v be the subspace of affine functionals on aff(P) vanishing on v. Give an explicit description of H_v and determine its dimension. Which property does the (open) halfspace H_v^+ have?

Friday, 20/11/2020

6 Points

3 Points

2 Points

2 Points

Exercise 5 3 Points Let $X \subset \mathbb{S}^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$ be a set of cardinality 6, randomly (uniformly) chosen. Then the set $V := X \cup -X$ has almost surely cardinality 12 and $P := \operatorname{conv}(V)$ is a centrally symmetric 3-polytope which is almost surely simplicial. Prove or disprove: Identifying antipodes on the boundary of P yields almost surely a triangulation of \mathbb{RP}^2 with 6 vertices.