Discrete Geometry II Winter term 2020/21 Prof. Dr. Michael Joswig, Holger Eble

Exercise sheet 1

Due-date: Friday, 13/11/2020, via e-mail to eble@math.tu-berlin.de

All exercises on this sheet cover very basic facts from the course Discrete Geometry I. If you run into trouble for whatever reason, please visit our chat room (https://riot.polymake.org/#/room/#DGII:polymake.org) and ask for help if needed.

Polytopes may assumed to be full-dimensional and to contain a chosen point, e.g. 0.

Exercise 1

Let $P \subset \mathbb{R}^n$ be a polyhedron. We saw in the lecture that P can be expressed as

$$P = \operatorname{conv}(V) + \operatorname{cone}(R)$$

for finite sets $V, R \subset \mathbb{R}^n$. (This is an *interior* description of P, sometimes also called \mathcal{V} -description of P.)

- a) Show that $\operatorname{cone}(R)$ is uniquely determined.
- b) Is $\operatorname{conv}(V)$ also unique?

Exercise 2

Let v be a vertex of a polytope P. Show that v has at least $\dim(P)$ neighbours.

Exercise 3

Let P be a polytope. Show that the following statements are equivalent:

- a) The polytope P is dual to a simplicial polytope.
- b) Every vertex figure of P is a simplex.
- c) Every vertex has exactly $\dim(P)$ neighbours.
- d) Every vertex is contained in exactly $\dim(P)$ facets.

Exercise 4

2 Points

Let $C(d,n) \subset \mathbb{R}^d$ be a cyclic polytope with *n* vertices, $n > d \ge 4$. Show that the graph G(C(d,n)) of C(d,n) is the complete graph K_n on *n* nodes.

Reminder: The graph of a polytope P is an undirected graph having the vertices of P as nodes and the 1-faces of P as edges.

2 Points

2 Points

2 Points

as

Exercise 5

Let $Z = [p_{(1)}, q_{(1)}] + \cdots + [p_{(k)}, q_{(k)}] \subset \mathbb{R}^n$ be the Minkowski sum of k line segments inside \mathbb{R}^n . Give an affine map with domain $[-1, 1]^k \subset \mathbb{R}^k$ that maps onto Z.

Exercise 6

Show that the polytope Z of Exercise 5 is *centrally symmetric*, i.e. it has a center $x_0 \in Z$ such that $x_0 - x \in Z$ holds if and only if $x_0 + x \in Z$ holds.

Exercise 7

Let $A \in \mathbb{R}^{n,d}$ and $b \in \mathbb{R}^n$. Show that the set of all linear functions $c \colon \mathbb{R}^d \to \mathbb{R}$ such that the linear program

 $\begin{array}{ll} \max & c \cdot x \\ \text{subject to} & Ax \leq b \end{array}$

attains its optimum on a face F with $\dim(F) > 0$ has (Lebesgue) measure 0. Thus a randomly picked objective function c almost always yields a single vertex as optimal region of the LP.

Exercise 8

Describe phase I of the simplex algorithm along an example of your choice.

Exercise 9

Let P be a polytope. Show that its graph G(P) is connected.

Exercise 10

Give an example of a connected (undirected) graph G(V, E) such that every $v \in V$ has degree at least d but which is not d-connected, for some d > 2.

oint

2 Points

1 Point

1 Point

1 Point

1 Point

2 Points