Discrete Geometry II Winter term 2020/21 Prof. Dr. Michael Joswig, Holger Eble

Session 9

Exercise 1 (General note on subdivisions of products.)

Let $\mathbf{A} = (p_j)_{j \in J} \subset \mathbb{R}^{d_A}$ and $\mathbf{B} = (q_k)_{k \in K} \subset \mathbb{R}^{d_B}$ two point configurations. Then $\mathbf{A} \times \mathbf{B}$ is a point configuration in $\mathbb{R}^{d_A+d_B}$ with point $(p_i \times q_k)_{j \in J, k \in K}$. Given any subdivisions \mathcal{A} of \mathbf{A} and \mathcal{B} of \mathbf{B} , there is an induced subdivision $\mathcal{A} \times \mathcal{B}$ of the product $\mathbf{A} \times \mathbf{B}$.

- a) How does $\mathcal{A} \times \mathcal{B}$ look like?
- b) How do triangulations behave passing to the product?
- c) Do you know the number of (symmetry classes of) triangulations of the 3-cube C_3 ? Is C_3 unimodular, do all its full-dimensional simplices have the same dimension? Can you draw the dual graph for some distinct triangulation?
- d) What do you know about/expect for the number of triangulations of the *n*-cube?

Exercise 2 (Triangulations of prism(Δ_n) revisited.)

As in the lecture, let $\Delta_n \subset \mathbb{R}^n$ be the standard simplex of dimension n-1. The prism over Δ_n , defined as $\operatorname{prism}(\Delta_n) := \Delta_n \times \Delta_2$ has $2 \cdot n$ vertices $a_1, \ldots, a_n, b_1, \ldots, b_n$, n+2 facets: the top facet (a_i) , the bottom facet (b_i) and n vertical facets, all affinely isomorphic to $\Delta_{n-1} \times \Delta_2$.

- a) Recall how simplices σ of prism (Δ_n) look like. How many vertical facets does σ , i.e. facets contained in some vertical facet of prism (Δ_n) have?
- b) Let \mathcal{T} be a triangulation of $\operatorname{prism}(\Delta_n)$ and let $\sigma, \tau \in \mathcal{T}$ be an adjacent pair of (maximal) simplices. Describe the geoemtric situation in terms of *non-vertical facets* of σ and τ . Assume first that σ contains the top (b_i) .
- c) Let $\sigma = (i_1, \ldots, i_n) \in \mathcal{S}_{\backslash}$ be a permutation. Then the following *n* simplices form a triangulation of prism (Δ_n) :

$$\mathcal{T}_{\sigma} = \{a_{i_1}, \dots, a_{i_k}, b_{i_k}, \dots, b_{i_n} \colon k = 1, \dots, n\}$$

- d) Let \mathcal{T} be a triangulation of prism (Δ_n) . Then $\mathcal{T} = \mathcal{T}_{\sigma}$ for some $\sigma \in \mathcal{S}_n$.
- e) Determine the number of triangulations of $prism(\Delta_n)$.
- f) Are all triangulations of $prism(\Delta_n)$ regular?

Exercise 3 Show that $prism(\Delta_n)$ is unimodular.

Let $\mathbf{A} = (a_j)_{j \in J} \subset \mathbb{R}^d$ be a point configuration and let \mathcal{T} be a triangulation of \mathbf{A} . The vector

$$\Phi_{\mathbf{A}}(\mathcal{T}) = \sum_{j \in J} \sum_{C \in \mathcal{T}: j \in C} \operatorname{vol}(C) e_j \in \mathbb{R}^J$$

is called GKZ(Gelfand-Kapranov-Zelevinsky)-vector of \mathcal{T} . The polytope

 Σ -poly(\mathbf{A}) := conv { $\Phi_{\mathbf{A}}(\mathcal{T})$: \mathcal{T} is triangulation of \mathbf{A} } $\subset \mathbb{R}^{|J|}$

is called *secondary polytope* of **A** and is of dimension |J| - d - 1. Its vertices correspond to the regular subdivisions of **A**!

Exercise 4 Let $\mathbf{A}_n := \operatorname{vert}(\operatorname{prism}(\Delta_n)).$

- a) What is Σ -poly(\mathbf{A}_3)? What do its edges correspond to?
- b) Show that Σ -poly(\mathbf{A}_n) is affinely (not only combinatorially) isomorphic to the (n-1)-dimensional permutahedron on n letters.

We now turn our attention to the general product of simplices $\Delta_n \times \Delta_m$.

Exercise 5 There is a $(n \times m)$ -grid representation and a complete bipartite graph $K_{n,m}$ representation of $\Delta_n \times \Delta_m$.

- a) Explain these.
- b) How do faces/facets look like in those representations?
- c) How many dots do simplices of $\Delta_n \times \Delta_m$ have in the grid representation and how do they look like? See Exercise 6.
- d) How does the triangulation

 ${a_1, b_1, b_2, b_3}, {a_1, a_2, b_2, b_3}, {a_1, a_2, a_3, b_3}$

of $prism(\Delta_n)$ look like in the grid representation?

e) Can you already come up with a specific triangulation for $\Delta_3 \times \Delta_3$ or even $\Delta_n \times \Delta_m$?

Exercise 6 A subset of the vertices of $\Delta_n \times \Delta_m$ is

- a) affinely independent if and only if the corresponding subgraph of the bipartite graph $K_{n,m}$ is a forest, i.e. doesn't have any cycles.
- b) a simplex if and only if the corresponding subgraph of the bipartite graph $K_{n,m}$ is a spanning tree.
- c) affinely spanning if and only if the corresponding subgraph of the bipartite graph $K_{n,m}$ is a connected and spanning.
- d) ... formulate this on your own.

Exercise 7 The point configuration $vert(\Delta_n \times \Delta_m)$ is unimodular.