Discrete Geometry II Winter term 2020/21 Prof. Dr. Michael Joswig, Holger Eble

Session 2

Let P be a polytope throughout.

Exercise 1

Let Q_1 be a bipyramid over the 3-simplex. Let Q_2 be a pyramid over the bipyramid over the 2-simplex. Determine dim (Q_i) . Draw $G(Q_i)$. You may even be able to draw Q_i . Determine the *f*-vectors of Q_i . It is even possible to read off the face lattices $\mathcal{F}(Q_i)$. Show that Q_1 and Q_2 have isomorphic graphs but are not combinatorially isomorphic.

Exercise 2

Let v be a vertex of P and let H^* be a closed halfspace with bounding hyperplane H such that $v \in H$. Assume that all edges of P which contain v are contained in H^* . Prove that $P \subset H^*$. Thus, H is a supporting hyperplane for P.

Exercise 3

Let H be any hyperplane and $W \subset H \cap \text{vert}(P)$ be a *proper* subset. Show that removing W from G(P) leaves a connected subgraph. *Hint: Balinski flavoured proof...*

Exercise 4

Make the 'beyond-F'' statement of the total separability degree theorem precise: Why is $(G(P) \setminus V')|_{X'}$ connected? Here X' denotes the vertices of P lying beyond the facet F' of P'.

Exercise 5 (guess work)

The g-Theorem is a deep statement about simplicial polytopes and their f-vectors. What do you think is the situation for arbitrary polytopes? Is it a tiny/small/big/huge step to go there?