& 1

Path-based multi-commodity flows
in large networks

Rolf H. Mdhring
Heiko Schilling

Ekkehard Kohler, Katharina Langkau, Martin Skutella

Technische Universitit Berlin
Combinatorial Optimization and Graph Algorithms

Why path-based flow models?

Flow models in practice have complicated side constraints
0 individual path constraints
O avoid turns and low level streets in traffic routes
O restrict the length of routes (no long detours)
O only way to describe flows over time
0 global resource constraints
O share the network as a common resource
O path packing problems
0 complicated evaluation functions
O depends on paths (road pricing/track assignment)

O non-linear in standard flow variables

Overview

[An application: Traffic routing

M Project goals and working program

M Static model for traffic flows
M Fast basic algorithms for large networks
[Algorithm engineering and software development

M Dynamic models for traffic flows

Example: Traffic route guidance

5

B

..

®E

L Joathims
oy e, &
o> J -
: ‘E' Jf%"@?e,
S "\%Vg:
7\\\:
/\/i\%
Y
7N

Modeling congestion

transit time

>

traffic on street

Streets have capacities and traffic-dependent transit times

Minimize total travel time

The underlying mathematical model

Static non-linear (fractional) multi-commodity flow model
Models rush hour traffic
O Street network (digraph) G = (V, A)

Arcs a € Ahave a o capacity u,>0

. transit time 7, (x,)
O geographic length /, >0

O link delay function T, (x,) L

flow x,

1 Demand: & node pairs (s, ,t;) with demand b, > 0

0 Route the demand subject to the capacities such that

total travel time) ., x,7,(x,) — min

a “a

Selfish routing leads to user equilibrium

Users optimize independently and selfish =

{1 reach a Nash equilibrium (user equilibrium), i.e.
nobody can improve his route just by himself

7, (x) = transit time of flow x along path p

x is in Nash equilibrium iff ,(x) < 7, (x) for all paths p, ¢ € P

| transfer § flow units from path p to path ¢ |

User equilibrium is not optimal and subject to unwanted effects

Traffic management leads to system optimum

Centralized assignment of routes =

(1 reach the system optimum i.e.
total travel time) ., x,7,(x,) is minimum

[Can be done in arc flow model, so standard
methods available

1 Beats user equilibrium Roughgarden & Tardos [STOC 2000]

But:
1 Individual routes may be far too long

Centralized assignment of routes

Centralized assignment of routes

system optimum restrict length of routes

System optimum under length restriction

Requires path-oriented flow formulation

QO P, set of paths from s, to ¢, that are “not too long”
i.e.,, /(path)<(1+¢)-I(shortest path from s, to ¢,)

QP=PU..UP,

0 May represent flow x as O vector x4 of arc flow values or
o vector x of path flow values
Q 7,(x) = transit time of flow x along path p € P
[assign routes from restricted path set P such that
O all demands are satisfied

O arc capacities are respected
O total travel time Y, o, x,'7,(x,) =2 cp X,T,(x) — min

The optimization model

min (74 (Ox))T®xP & = arc-path incidence matrix,
dimension |4| x |P| x4=®xF

st. WxP=bh W= commodity-path incidence matrix
dimension |C| x |P|, C={1,...,k}
DxP <yl
x>0 ol
pEP

convex objective
linear constraints

The linearized problem

Assume that transit times 74 = const

O Linear program with a huge number of variables x,, p € P

0 Use revised simplex algorithm with column generation

O solve LP only with few path variables x,
=> dual variable values 7, o,

O optimality condition for whole LP is

2uey (T, —m)z 0 foralli€ C,pEP,

=> constrained shortest path problem
find shortest path from s, to ¢, w.r.t. arc lengths 7, — 7,

a

such that / (path) < (1+¢) - [(shortest path from s, to ¢,)

The constrained shortest path problem

min 7 (p)
st. l(p)<L
pis an s —t path

0 weakly NP-hard, there are full approximation schemes (of
no practical use) [Warburton 1987]

0 Branch & bound and Lagrangean relaxation
[Beasley & Christofides1989]

0 Labeling algorithm (Dijkstra-like) [Aneja, Aggarwal & Nair
1983]

0 LP-guided combinatorial algorithms [Mehlhorn & Ziegelmann
2000]

Main steps in the solution method

gradient method (Frank-Wolfe)

simplex algorithm

algorithm for constrained shortest paths

shortest path algorithm, e.g. Dijkstra

General behavior

Instance REAL 600! seconds
|A] = 4040 500 o
C| = 3166 400 o eP
Ultrasparc 333 MHz 300
200
100 4% opt
/I 2. factor 15 14 13 12 11

3.1e6! objective value
3.0e6
2.9e6
2.8e6
2.7e6
2.6e6
25e6

50-200 iterations

2. factor 15 14 1.3 1.2 11

Project goals and working program

M Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

[Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

[Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

M [Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Measuring route guidance through (un)fairness

Unfairness of a route guidance strategy =

max transit time 7, (x) of a used path p for OD pair i

max

min transit time 7 , (x) of a used path p for OD pair i
all OD pairs i

Unfairness (user equilibrium) =1

Unfairness (system optimum) may be arbitrarily large

Varying constraint factor

Instance REAL, Gap 0.5%, and geographic distances

Factor

5

infeasible

UE |290970441] 72 | 6621 | 119 [1015[1041]

Make this approach scalable

O No use of Simplex algorithm

O Lagrangian relaxation of capacity constraints

O so far a factor of 2 faster
1 Faster computation of constrained shortest paths

O do standard speed-ups from shortest paths carry over?
0O Exploit hierarchy and geography

O natural in street networks

Project goals and working program

[Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

I Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

[Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

M [Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Shortest paths in large networks

) Hierarchy w.r.t. regions and street classes
) Hierarchy w.r.t. graph separators
2 Preprocessing

O Acceleration methods

Street-class approach

0 Decompose the graph into a
hierarchy of regions

e
jasat

. O street classes of arcs go first up
and then down with the hierarchy

0 Search only for unimodal paths

(O First results

' O Run time ~ 60% of standard
Dijkstra

O Path lengths ~ 20% longer

Separator approach

0 Find small graph separators that cut the graph into few regions
1 Determine distance matrix for separator vertices of each region

0 Compute shortest paths using the hierarchy induced by separators

Separator approach

Separators constructed by simple heuristic

Graph 1:

O 12100 vertices and 19570 arcs
O 603 separator vertices

O 7691 additional arcs

a 54 regions

a 25 sec for preprocessing

Graph 2:
O 3810 vertices and 6027 arcs
i O 231 separator vertices

: 0 2399 additional arcs
50% improvement O 35 regions

on average O 2.3 sec for preprocessing

Angle preprocessing

T [Brandes, Schulz, Wagner & Wilhalm]

0 For every vertex v and edge ¢
leaving v, determine
containing all vertices having ¢ on
a shortest path from v.

0 During algorithm:
if target vertex not in angle of e,
then “forget” e

0 long preprocessing phase
runtime ~ 40% of normal Dijkstra

0 Combination of separator approach and angle preprocessing:
~ 25% of normal Dijkstra

Constrained shortest paths: Acceleration

Destination oriented Bi-directional Combined

fac std bi | bi-do | com fac | bi-do-br | do-br
1.50 | 1490 | 374 | 1.54| 0.85 1.50 1.50 0.86
1.20 | 1471|390 | 9.89| 3.47 1.20 1.58 0.86
1.10 | 1408 | 403 | 18.32| 9.03 1.10 1.59 0.86
1.05 | 1435| 4301|1038 | 4.92 1.05 4.08 1.72
1.00 | 1382 376| 1.66| 091 1.00 1.63 0.88
optimal until first path found

Project goals and working program

[Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

[Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

M Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

M [Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Introduction

O Generic programming

O separates data structures and algorithms
via abstract requirement specifications

O uses parametric polymorphism (templates) in C++
(O Traits classes

O provide mappings between types, functions and constants
to meet specification/concept requirements

O determine information about “unknown” types

O “configure” templates

GraphView

— ShortestPath

—

Input Graph

GraphView

*in_edges()

* nodes()] [pseudo-]
* out_edges

container

0 GraphView realized as traits class

0 May plug in different views
(template parameter)

- O Same algorithm works on different
graph types

0 ShortestPath< GraphView >;

TimeExpanded GraphView

Shortestpath
A

* node id =<n>

e time t

Time-Expanded GraphView

* edge id =<n,, n,>

GraphView
* nodes()

* in_edges()
* out_edges

timing rules

Input Graph

Algorithm <
TimeExpandedGraphView<

GraphView,
TimingRules >>;

Modified GraphView

MaxFlow

[
FlowData
* capacities() | property

* flows maps

GraphView
* nodes()

*in_edges(), ...

4

[* node_id = <n>, edge_id = <n n,>]

Modified GraphView
+ in_edges’ = subset(in_edges, saturation_filter), ...

[* edge_id = <n,,n,>, * edge_length]

Updating Flow &
—

g =

MaxFlow< GraphView, FlowData,

Updating Flow Builder

Input Graph

SP_Builder >;

Algorithm generator

0 Multicommodity flow algorithm [Garg & Kénemann 1998]:
plug in different updating flow algorithms

0 Problem: sub-algorithm object needs access to data in main
algorithm object, but cannot refer to partially created objects

0 Solution: reverse_cast from Instancevariable to main object
(e.g. from updating flow module to maxflow algorithm object)
(uses pointer offsets in heap allocation table)

1 Thus access to data within main object at run time

A g .
SubAlgorithm — MainAlgorithm —

GraphView E H ——

e

