
Path-based multi-commodity flows
in large networks

Path-based multi-commodity flows
in large networks

Rolf H. Möhring

Heiko Schilling

Rolf H. Möhring

Heiko Schilling

Technische Universität Berlin

Combinatorial Optimization and Graph Algorithms

Technische Universität Berlin

Combinatorial Optimization and Graph Algorithms

Ekkehard Köhler, Katharina Langkau, Martin SkutellaEkkehard Köhler, Katharina Langkau, Martin Skutella

Why path-based flow models?

Flow models in practice have complicated side constraints

q individual path constraints

m avoid turns and low level streets in traffic routes

m restrict the length of routes (no long detours)

m only way to describe flows over time

q global resource constraints

m share the network as a common resource

m path packing problems

q complicated evaluation functions

m depends on paths (road pricing/track assignment)

m non-linear in standard flow variables

Overview

An application: Traffic routing

Project goals and working program

Static model for traffic flows

Fast basic algorithms for large networks

Algorithm engineering and software development

Dynamic models for traffic flows

Example: Traffic route guidance

a project with DaimlerChrysler

Modeling congestion

Streets have capacities ...

Minimize total travel time

traffic on street

transit time

... and traffic-dependent transit times

The underlying mathematical model

q Street network (digraph) G = (V, A)

Static non-linear (fractional) multi-commodity flow model
Models rush hour traffic

Arcs a Œ A have a m capacity ua ≥ 0

m geographic length la ≥ 0
m link delay function ta (xa)

flow xa

transit time ta (xa)

q Demand: k node pairs (si ,ti) with demand bi ≥ 0

q Route the demand subject to the capacities such that

total travel time Âa ŒA xa⋅ta (xa) Æ min

Selfish routing leads to user equilibrium

Users optimize independently and selfish fi

q reach a Nash equilibrium (user equilibrium), i.e.
nobody can improve his route just by himself

tp (x) = transit time of flow x along path p

x is in Nash equilibrium iff tp (x) < tq (x¢) for all paths p, q Œ P

transfer d flow units from path p to path q

User equilibrium is not optimal and subject to unwanted effects

Traffic management leads to system optimum

Centralized assignment of routes fi

q reach the system optimum i.e.
total travel time Âa ŒA xa⋅ta (xa) is minimum

But:

q Individual routes may be far too long

q Can be done in arc flow model, so standard
methods available

q Beats user equilibrium Roughgarden & Tardos [STOC 2000]

Centralized assignment of routes

Centralized assignment of routes

system optimum restrict length of routes

System optimum under length restriction

Requires path-oriented flow formulation
q Pi set of paths from si to ti that are “not too long”

 i.e., l (path) ≤ (1+e) ⋅ l (shortest path from si to ti)
q P = P1 »…» Pk

q tp (x) = transit time of flow x along path p Œ P
q assign routes from restricted path set P such that

m all demands are satisfied
m arc capacities are respected
m total travel time Âa ŒA xa⋅ta (xa) = Âp ŒP xp⋅tp (x) Æ min

q May represent flow x as m vector xA of arc flow values or

m vector xP of path flow values

The optimization model

F = arc-path incidence matrix,
dimension |A| ¥ |P| x

A = F xP
min (t A (F xP))T F xP

s.t. Y xP = b Y= commodity-path incidence matrix
dimension |C| ¥ |P| , C = {1,…, k}

F

Y

|P|

|A|

|C|

u
A

b

F xP ≤ u
A

xP ≥ 0

p Œ P

convex objective
linear constraints

The linearized problem

Assume that transit times t A = const

q Linear program with a huge number of variables xp, p Œ P

fi constrained shortest path problem
find shortest path from si to ti w.r.t. arc lengths ta – pa
such that l (path) ≤ (1+e) ⋅ l (shortest path from si to ti)

q Use revised simplex algorithm with column generation

m solve LP only with few path variables xp
 fi dual variable values pa, si

m optimality condition for whole LP is

Âa Œp (ta – pa) ≥ si for all i Œ C, p Œ Pi

F

Y

pa

si

The constrained shortest path problem

q weakly NP-hard, there are full approximation schemes (of
no practical use) [Warburton 1987]

q Branch & bound and Lagrangean relaxation
[Beasley & Christofides1989]

q Labeling algorithm (Dijkstra-like) [Aneja, Aggarwal & Nair
1983]

q LP-guided combinatorial algorithms [Mehlhorn & Ziegelmann
2000]

min t (p)
s.t. l(p) ≤ L

p is an s – t path

Main steps in the solution method

shortest path algorithm, e.g. Dijkstra

algorithm for constrained shortest paths

simplex algorithm

gradient method (Frank-Wolfe)

General behavior

2. 1.5 1.4 1.3 1.2 1.1factor
100

200

300

400

500

600 seconds

4% opt

5% opt.

2. 1.5 1.4 1.3 1.2 1.1factor

objective value

6
6
6
6
6
6
6

2.5e
2.6e
2.7e
2.8e
2.9e
3. e
3.1e
0

5% opt.
4% opt

Instance REAL

|A| = 4040
|C| = 3166
Ultrasparc 333 MHz

50-200 iterations

Project goals and working program

Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

[Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

Measuring route guidance through (un)fairness

Unfairness of a route guidance strategy =
max transit time t p (x) of a used path p for OD pair i

max
min transit time t p (x) of a used path p for OD pair i

all OD pairs i

Unfairness (user equilibrium) = 1
Unfairness (system optimum) may be arbitrarily large

Varying constraint factor

Instance REAL, Gap 0.5%, and geographic distances

Make this approach scalable

q No use of Simplex algorithm

m Lagrangian relaxation of capacity constraints

m so far a factor of 2 faster

q Faster computation of constrained shortest paths

m do standard speed-ups from shortest paths carry over?

q Exploit hierarchy and geography

m natural in street networks

Project goals and working program

Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

[Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

Shortest paths in large networks

q Hierarchy w.r.t. regions and street classes

q Hierarchy w.r.t. graph separators

q Preprocessing

q Acceleration methods

Street-class approach

q Decompose the graph into a
hierarchy of regions

q Search only for unimodal paths

m street classes of arcs go first up
and then down with the hierarchy

q First results

m Run time ~ 60% of standard
Dijkstra

m Path lengths ~ 20% longer

Separator approach

q Find small graph separators that cut the graph into few regions

q Determine distance matrix for separator vertices of each region

q Compute shortest paths using the hierarchy induced by separators

Separator approach

Graph 1:
q 12100 vertices and 19570 arcs
q 603 separator vertices
q 7691 additional arcs
q 54 regions
q 25 sec for preprocessing

Separators constructed by simple heuristic

Graph 2:
q 3810 vertices and 6027 arcs
q 231 separator vertices
q 2399 additional arcs
q 35 regions
q 2.3 sec for preprocessing

50% improvement
on average

Angle preprocessing

q For every vertex v and edge e
leaving v, determine angle
containing all vertices having e on
a shortest path from v.

q Combination of separator approach and angle preprocessing:
~ 25% of normal Dijkstra

q long preprocessing phase
runtime ~ 40% of normal Dijkstra

v
e

q During algorithm:
if target vertex not in angle of e,
then “forget” e

[Brandes, Schulz, Wagner & Wilhalm]

Constrained shortest paths: Acceleration

Destination oriented Bi-directional Combined

0.911.6637613821.00
4.9210.3843014351.05
9.0318.3240314081.10
3.479.8939014711.20
0.851.5437414901.50
combi-dobistdfac

optimal

0.881.631.00
1.724.081.05
0.861.591.10
0.861.581.20
0.861.501.50
do-brbi-do-brfac

until first path found

Project goals and working program

Static model for traffic flows
Evaluate quality of solution (compare to user equilibrium)
Accelerate existing static algorithms (relax capacities,
improve subalgorithms);

Fast basic algorithms for large networks
Design fast basic algorithms, in particular shortest path
algorithms (acceleration methods, hierarchical, approximative)

[Dynamic models for traffic flows]
Traffic is modeled as dynamic flow in a directed graph;
travel times of arcs are time- and flow-dependent

Algorithm engineering and software development
Reuse of existing software, concepts for combining different
libraries, data structures for flow related tasks

Introduction

q Generic programming

m separates data structures and algorithms
via abstract requirement specifications

m uses parametric polymorphism (templates) in C++

q Traits classes

m provide mappings between types, functions and constants
to meet specification/concept requirements

m determine information about “unknown” types

m “configure” templates

ShortestPath

SP_algorithm

node_id = <n>
edge_id = <n1,n2>

Input Graph

GraphView

GraphView
• nodes()
• in_edges()
• out_edges

[pseudo-]
container

q GraphView realized as traits class

q May plug in different views
(template parameter)

q Same algorithm works on different
graph types

q ShortestPath< GraphView >;

Shortestpath

Algorithm

node_id = <n,t>
edge_id = <n1,t,n2,t+D>

Input Graph
Time-Expanded GraphView
• node_id = <n>
• edge_id = <n1, n2>
• time t
• …

TimeExpanded GraphView

Algorithm <
TimeExpandedGraphView<

GraphView,
TimingRules >>;

timing rules

GraphView
• nodes()
• in_edges()
• out_edges

Modified GraphView

MaxFlow< GraphView, FlowData,
 Updating_Flow_Builder = SP_Builder >;

GraphView
• nodes()
• in_edges(), …

FlowData
• capacities()
• flows

property
maps

Input Graph

MaxFlow

MF_Algorithm

• node_id = <n>, • edge_id = <n1,n2>

• edge_id = <n1,n2>, • edge_length

Modified GraphView
• in_edges’ = subset(in_edges, saturation_filter), …

Updating_Flow

SP

constr. SP

Algorithm generator

q Multicommodity flow algorithm [Garg & Könemann 1998]:
plug in different updating flow algorithms

q Problem: sub-algorithm object needs access to data in main
algorithm object, but cannot refer to partially created objects

q Solution: reverse_cast from Instancevariable to main object
(e.g. from updating flow module to maxflow algorithm object)
(uses pointer offsets in heap allocation table)

q Thus access to data within main object at run time

SubAlgorithm

GraphView

Algorithm

MainAlgorithm

Data

