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LANDAU–LIFSHITZ EQUATION, UNIAXIAL ANISOTROPY CASE:

THEORY OF EXACT SOLUTIONS

R. F. Bikbaev,∗ A. I. Bobenko,† and A. R. Its‡

Using the inverse scattering method, we study the XXZ Landau–Lifshitz equation well-known in the theory

of ferromagnetism. We construct all elementary soliton-type excitations and study their interaction. We

also obtain finite-gap solutions (in terms of theta functions) and select the real solutions among them.
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1. Introduction

The Landau–Lifshitz (LL) equation [1]

�St = [�S × �Sxx] + [�S × J �S],

�S = (S1, S2, S3), S2
1 + S2

2 + S2
3 = 1, J = diag(J1, J2, J3),

(1.1)

well-known in the theory of ferromagnetism, is an object of increased attention from specialists in theory
of completely integrable nonlinear evolutionary systems. This specific interest in Eq. (1.1), compared with
other models embedded in the inverse scattering method, is explained, in particular, by the following fact.
The representation of the LL equation as the compatibility condition of two linear equations (a U–V pair
representation) was obtained long ago: for the completely isotropic case (J1 = J2 = J3, XXX model)
by Takhtajan in 1977 [2], for the uniaxial anisotropy case (J1 = J2 �= J3, XXZ model) by Borovik in
1978 [3], and finally for the completely anisotropic case (J1 �= J2 �= J3, XYZ model) by Sklyanin and
independently by Borovik in 1979 (see [4]). It would therefore seem that for Eq. (1.1), we have a possibility
of directly applying the traditional apparatus of the inverse scattering method with all its basic attributes:
constructing explicit solutions, studying the Cauchy problem, and so on. But this possibility was not
completely realized up to the mid-1980s. The difficulty in applying the inverse scattering method to the LL
equation is explained by the fact that the LL equation (more than any other integrable system) requires
reformulating the inverse scattering method into the “matrix Riemann problem method,” which was not
yet completely realized when the U–V pair was written for Eq. (1.1), although reformulating the inverse
scattering method in this direction, strictly speaking, had already begun in 1975 in the well-known papers
by Shabat, Zakharov, and Manakov [5], [6].
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Thus, starting from 1979, a quite strange situation appeared in the mathematical theory of the LL
equation. This equation seemed to be embedded into the scheme of the inverse scattering method, but
there was no real advantage from that. We note that Eq. (1.1) is extremely important from the physical
standpoint. Therefore, the theory of the LL equation was intensively and quite successfully developing
independently of the “interrelations” with the inverse scattering method. In particular, many specific
solutions of it, both solitons and more complicated types, were known by 1979. In this regard, first of
all, we should mention the papers by Akhiezer and Borovik [7], [8] and the research of Kosevich’s group
(Kosevich, Ivanov, Kovalev, Bogdan, Babich, and others) and Eleonskii’s group (Eleonskii, Kirova, Kulagin,
and others). We allow ourself to not present numerous citations of these authors, referring the reader to
the review by Kosevich [9] for these citations as well as for a more detailed history of this problem.

Among the papers that used the inverse scattering method as much as was possible in the described
period, in addition to the already mentioned papers by Takhtajan, Sklyanin, and Borovik, we note the
works on the finite-gap integration of the LL equation by Bogoljubov Jr. and Prikarpatskii [10] (XXZ
case), Cherednik [11], and Date, Jimbo, Koshivara, and Miwa [12] (XYZ case). We also relate the very
interesting paper by Bogdan and Kovalev [13] (where the N -soliton solutions of the LL equation in the
completely anisotropic case were constructed by the Hirota method) to this cycle of papers, although the
authors themselves set the Hirota method in opposition to the inverse scattering method (in our view,
unjustifiedly).

The fundamental contribution to the development of effective schemes for applying the inverse scat-
tering method to the LL equation was made in 1982 after Mikhailov had rigorously defined the matrix
Riemann problem with axiomatics suitable to the U–V -pair for the XYZ case of the LL equation in [14].
The result appeared immediately: the multisoliton solutions of Eq. (1.1) in the completely anisotropic case
were systematically described by Mikhailov in [14] and by Rodin in [15], while Bobenko [16] and Borisov [17]
proposed “dressing procedures” for this equation that allowed constructing new solutions using known ones.
There was also progress in the algebraic-geometric (finite-gap) integration of Eq. (1.1): we succeeded in
embedding the XXZ case of Eq. (1.1) into Krichever’s scheme and reduced the finite-gap integration of
this equation to explicit formulas in terms of theta functions [18], and we also implemented an analogous
program for the completely anisotropic case, thus making the corresponding results in [10] and [11] more
useful. Summarizing the above discussion, we can state that there is now a scheme in the theory of LL
equation (1.1) that allows systematically constructing all previously known solutions, obtaining new exact
solutions essentially different from those already known, and studying various effects associated with their
interactions.

Our goal here is to present a detailed description of the considered scheme using the intermediate
example (in complexity) of the LL equation in the uniaxial anisotropy case. This paper is intended for
specialists in the ferromagnetism theory and does not assume that the reader has a deep familiarity with
the ideas of the inverse scattering method. We try to give as much attention as possible to concrete results,
to physically interesting particular cases, and to the effects obtainable from the approach we have developed.
This purpose essentially determines the structure of this paper.

We present the foundation of the scheme in Secs. 2 and 3, formulating and discussing the “generalized
matrix Riemann problem” corresponding to the XYZ case of the LL equation. Although we start with [14]
mentioned above, we nevertheless use a nonstandard version of the transformation of the integrable equation
into the Riemann problem, taking the version from papers by Jimbo, Miwa, and Ueno [19], [20]. It seems
the most suitable foundation for developing all the basic constructions of our scheme in the subsequent
sections. The mathematical apparatus in Secs. 2 and 3 is quite elementary: we use only the simplest ideas
of linear algebra and complex analysis (the algebra of 2×2 matrices and the Liouville theorem).

In Secs. 4–6, staying within the framework of this apparatus, we develop the dressing procedure for
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the XXZ LL equation together with its use to construct, classify, and describe soliton solution interactions.
We emphasize that we, apparently, do not obtain new results here. But our derived formulas have many
methodological advantages compared with known representations of the exact solutions of LL equation. In
particular, all the obtained answers are completely symmetric with respect to the components of the vector
�S from the standpoint of the degree of explicitness and compactness. Our formulas are parameterized by
points of the complex plane (by the spectrum of the appropriate linear problem), which satisfy quite weak
constraints (see Sec. 5). This allows studying various limits in our constructed solutions effectively.

In Sec. 6, we demonstrate the possibilities of our method by describing the effects of mutual inter-
actions among different elementary solutions. Here, in addition to rather simple processes of two-soliton
interactions, we also describe the phenomenon of a soliton passing through a domain wall.

We consider essentially new types of solutions of the XXZ LL equation in Secs. 7–10, where we present
a realization of the basic conceptual theorem in Sec. 2 in the framework of the “finite-gap integration”
technique based on the already less trivial mathematical apparatus of the theory of functions on compact
Riemann surfaces. Unfortunately, we cannot keep the exposition closed here. But we try to minimize the
need to refer to external mathematical sources. The closest source is [21]. The reader can also refer to
the concluding chapters in [22] and the introductory part in [23]. We present supplementary information
on reductions of Riemann surfaces (used in Sec. 9) in the appendix. A more detailed presentation of the
theory of Riemann theta functions (subject to the rules for integrating nonlinear equations) can be found
in [21] (also see [24]–[26]).

We now briefly describe the content of Secs. 7–10. In Sec. 7, we construct complex almost periodic
(finite-gap) solutions of the LL equation in the case of uniaxial anisotropy in terms of multidimensional
theta functions. In Sec. 8, we derive the reality conditions using the technique in [27]. From the standpoint
of physical applications, the multidimensional theta function is a very complicated object for quantitative
analysis. But there are currently program packages for calculations on Riemann surfaces [28]. In particular,
they allow calculating solutions effectively in terms of theta functions. The multidimensional formulas
containing theta functions hence become valuable for numerical analysis. Moreover, the general expressions
in terms of theta functions are a convenient analytic basis for deriving important particular solutions.

In Sec. 9, we deduce periodic solutions described in terms of elliptic functions (cnoidal waves and their
superpositions) from the general formulas in Secs. 7 and 8 using the technique for reducing theta functions
of higher ranks to lower ones. In Secs. 10 and 11, we subject the general formula in Sec. 7 to a certain
degeneration procedure (we pairwise merge the branch points of the original Riemann surface), resulting
in convenient formulas for multisoliton solutions and solutions describing the interactions between solitons
and cnoidal waves. More precisely, restricting ourself to the case of the “easy plane” anisotropy for brevity,
we construct multisoliton formulas for the solutions of the “moving domain wall” type and describe the
interaction effect between a single moving domain wall and a cnoidal wave.

Summarizing our description of this paper, we note the following. We hope to demonstrate that the
developed scheme based on the inverse scattering method is the most appropriate technique for constructing,
classifying, and studying exact solutions of the LL equation.

We dedicate this publication to our friend Ramil Faritonovich Bikbaev, untimely deceased.

2. Basic theorem

The XXZ LL equation (J1 = J2, and we take J = diag(0, 0, ε) without loss of generality)

�St = [�S × �Sxx] + [�S × J �S] (2.1)

is the compatibility condition
Ut − Vx + [U, V ] = 0 (2.2)
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for the pair of linear differential equations

Ψx = UΨ, Ψt = V Ψ, (2.3)

where U and V are given by the expressions

U(λ) = −i
3∑

α=1

Sαwασα,

V (λ) = 2i

3∑

α=1

Sαw1w2w3w
−1
α σα − i

3∑

α=1

[S × Sx]αwασα,

(2.4)

w1 = w2 =
√

λ2 − a2, w3 = λ, a = i

√
ε

4
. (2.5)

If ε > 0, then we have anisotropy of the easy magnetization axis type. If ε < 0, then we have
anisotropy of the easy magnetization plane type. Both cases can be studied quite similarly. Pair (2.4) is a
simple degeneration of the U–V Sklyanin–Borovik pair for the XYZ LL equation if J1 = J2. We note that
the spectral parameter λ in the considered case ranges the two-sheet Riemann surface Γ of the function√

λ2 − a2 instead of the complex plane. Of course, we might introduce an appropriate change of the variable
λ such that U and V become rational functions of the spectral parameter. But we do not do this, because
in the selected uniformization (2.5) of the relations w2

α − w2
β = −(Jα − Jβ)/4, the following reduction of

pair (2.4) can be taken into account very naturally:

σ3U(λτ )σ3 = U(λ), σ3V (λτ )σ3 = V (λ), (2.6)

where λ → λτ denotes the involution transposing the sheets of Γ and
√

(λτ )2 − a2 = −
√

λ2 − a2. This
reduction (associated with the transposition of the sheets) can be easily taken into account in constructing
finite-gap solutions (see Sec. 7).

The principal object in constructing exact formulas for solutions of the nonlinear equations integrable
by the inverse scattering method is the function Ψ. Precisely this function is first constructed using its
analytic properties following from the form of U–V -pair. The formulas for solutions of the nonlinear
equations can then be constructed using this function. We formulate the so-called generalized Riemann
problem corresponding to Eq. (2.1).

Reimann problem. We must find a function Ψ(λ) defined on Γ, taking values in the set of 2×2
matrices, and having the following properties:

1. Two infinitely remote points ∞1,2 of the surface Γ in its standard realization by the two-sheet covering
of the plane of the variable λ (

√
λ2 − a2 → ±λ at λ → ∞1,2) are the essential singularity points of Ψ,

which in the neighborhood of these points has an essential singularity differentiable in x and t of the
form

Ψ(λ, x, t) =
∞∑

j=0

Φj(x, t)λ−je−iσ3λx+2iσ3λ2tCλm, (2.7)

where detΦ0(x, t) �= 0 and the matrix C is invertible and independent of x and t.

2. The function Ψ(λ) also has so-called regular singularities at the points a1, . . . , aN , i.e., Ψ(λ) is holo-
morphic and invertible at all points of the set Γ \ {∞1,2}, except the points a1, . . . , aN , independent
of x and t, in a neighborhood of which we have the representation

Ψ(λ) =
λ∼aj

Ψ̂kTj Cj , j = 1, . . . , N, (2.8)
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where Tj are diagonal constant matrices and Cj are invertible constant matrices (independent of x

and t). The matrix-valued function Ψ̂(λ) is holomorphic and invertible in a neighborhood of aj , where
k is a local parameter in the neighborhood of aj ,

k =

⎧
⎨

⎩
λ − aj , aj �= ±a,
√

λ ± a, aj = ±a.

We note that if Tj is a rational noninteger matrix, then the function Ψ(λ) is not single-valued on
Γ. In this case, the point aj is a branch point of the covering Γ̂ → Γ, and the function Ψ is already
single-valued on this covering surface Γ̂ and, as a function on Γ, is characterized by the property that
in passing around the point aj on Γ in the positive direction, Ψ(λ) is multiplied on the right by a
monodromy matrix,

Ψ(λ) → Ψ(λ)Mj , Mj = C−1
j e2πiTj Cj . (2.9)

3. Let there exist contours Li ∈ Γ and matrices Gi(λ), i = 1, . . . , M , independent of x and t. Then
the matrices Ψ+(λ) and Ψ−(λ) (the boundary values of Ψ from different sides of the contour Li) are
coupled by the linear relations along Li,

Ψ−(λ) = Ψ+(λ)Gi(λ)
∣∣
λ∈Li

. (2.10)

4. The reduction constraint
σ3Ψ(λτ ) = Ψ(λ)σ(λ) (2.11)

holds, where σ(λ) is independent of x and t.

5. The normalization conditions

∂

∂x
log Ψ1i(a) =

∂

∂x
log Ψ2k(−a),

∂

∂t
log Ψ1j(a) =

∂

∂t
log Ψ2l(−a)

(2.12)

hold for any i, k, j, and l.

Theorem 1. Let a function Ψ satisfying conditions 1–5 of the Riemann problem be constructed. Then

the logarithmic derivatives ΨxΨ−1 and ΨtΨ−1 have form (2.4) up to the terms proportional to the identity

matrix, where
3∑

α=1

Sασα = Φ0σ3Φ−1
0 , (2.13)

i.e., if

Φ0 =

(
A B

C D

)
, (2.14)

then

S1 =
CD − AB

AD − BC
, S2 = −i

CD + AB

AD − BC
, S3 =

AD + BC

AD − BC
. (2.15)

The functions Sj(x, t) defined by relations (2.13)–(2.15) satisfy the equality

3∑

α=1

S2
α = 1

and form a solution of XXZ LL equation (2.1).
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Proof. We first note that the logarithmic derivatives ΨxΨ−1 and ΨtΨ−1 are single-valued functions
on the surface Γ by virtue of properties (2.8)–(2.10), unlike the function Ψ itself. They have no singularities
at the points aj ,

ΨxΨ−1 =
λ∼aj

Ψ̂xkTj CjC
−1
j k−Tj Ψ̂−1 = Ψ̂xΨ̂−1,

and on the contours Li,
(Ψ+)xΨ−1

+ = (Ψ−)xΨ−1
−
∣∣
λ∈Li

.

Therefore, from asymptotic form (2.7) and because of the absence of singularities in the set Γ \ {∞1,2}, we
have the following representations of the logarithmic derivatives ΨxΨ−1 and ΨtΨ−1:

ΨxΨ−1 = λA1 +
√

λ2 − a2A2 + A3,

ΨtΨ−1 = λ2B1 + λ
√

λ2 − a2B2 + λB3 +
√

λ2 − a2B4 + B5,

where Ai and Bi are matrices depending only on x and t with

Tr(A1 + A2) = Tr(B1 + B2) = Tr(B3 + B4) = 0.

Further, it follows from reduction (2.11) that the matrices A1, A3, B1, B3, and B5 are diagonal and
the matrices A2, B2, and B4 are antidiagonal. Hence,

ΨxΨ−1 = −i

3∑

α=1

Sαwασα + A(x, t)σ3 + α(x, t)I,

ΨtΨ−1 = 2i

3∑

α=1

Pαw1w2w3w
−1
α σα + i

3∑

α=1

Qαwασα + B(x, t)σ3 + β(x, t)I.

It follows from normalization condition (2.12) that A(x, t) = B(x, t) = 0. Substituting asymptotic expan-
sion (2.7) in (2.3) and equating terms with like degrees of λ, we finally confirm formula (2.13) and the
equalities Pα = Sα and Qα = −[S × Sx]α. The theorem is proved.

Therefore, the function Ψ (and consequently the solution of the XXZ LL equation) is defined by the
following data of the generalized Riemann problem (the “scattering data”):

Λ = {a1, . . . , aN , Tj, . . . , TN , C1, . . . , CN , L1, . . . ,LM , G1(λ), . . . , GM (λ)}, (2.16)

where Tj and Cj , j = 1, . . . , N , are defined in (2.8) and λ ∈ Li, i = 1, . . . , M , is the argument of Gi(λ).
Further, we find exact expressions for Ψ with some particular data Λ and thus construct solutions of
Eq. (2.1).

Remark 1. Let the function Ψ satisfy the reduction

σ2Ψ(λ̄) = Ψ(λ)M(λ), (2.17)

where the conjugation anti-involution on Γ is naturally given as

(
λ,
√

λ2 − a2
)
→
(
λ̄,
√

λ2 − a2
)

and M(λ) is a matrix-valued function independent of x and t. Then the solution of Eq. (2.1) (defined
by (2.13)–(2.15)) is real.

148



Remark 2. Let the function Ψ(λ) satisfy conditions (2.7)–(2.12) and define the solution �S(x, t). Then
the function

Ψγ(λ) =

(
γ 0

0 γ−1

)
Ψ(λ), γ = const ∈ C, (2.18)

also satisfies a generalized Riemann problem. The corresponding solution �Sγ of Eq. (2.1) differs from �S

(we consider only real solutions, |γ| = 1) by a simple rotation of axes 1 and 2 in the plane of these axes (in
the plane perpendicular to the anisotropy axis 3). Obviously, the solutions �S and �Sγ are equivalent from
the physical standpoint. Further, the function Ψϕ(λ) = ϕ(x, t)Ψ(λ), where ϕ(x, t) is an arbitrary scalar
function ofx and t, also satisfies a Riemann problem. The corresponding solutions of Eq. (2.1) coincide:
�Sϕ(x, t) = �S(x, t).

Remark 3. There are some a priori constraints on the matrices σ(λ) and M(λ) involved in reduction
identities (2.11) and (2.17). In particular, successively applying two transformations (2.11) to Ψ(λ), we
obtain the relation

σ(λ)σ(λτ ) ≡ I. (2.19)

Successively applying two transformations (2.17) to Ψ(λ), we obtain the relation

M(λ)M(λ̄) ≡ −I. (2.20)

Successively applying transformations (2.11) and (2.17) to Ψ(λ), we obtain the relation

σ(λ)M(λτ ) + M(λ)σ(λ̄) = 0. (2.21)

3. External field

It is well known that a homogeneous external field directed along the anisotropy axis (axis 3 in our case)
does not destroy the integrability of a system. In this section, we construct a generalization of the Riemann
problem associated with Eq. (1.1) and formulated in Sec. 2. The XXZ LL equation with an external field
directed along the anisotropy axis is embedded into the proposed model.

Theorem 2. Let the function Ψ(λ, x, t) have properties 1–4 of the Riemann problem and satisfy the

normalization condition
∂

∂x
log Ψ1i(a) =

∂

∂x
log Ψ2k(−a) + i

∂

∂x
f(x, t),

∂

∂t
log Ψ1j(a) =

∂

∂t
log Ψ2l(−a) + i

∂

∂t
f(x, t)

(3.1)

for some indices i, j, k, and l. Then the logarithmic derivatives ΨxΨ−1 and ΨtΨ−1 are respectively equal

(up to terms proportional to the identity matrix) to

Uf = U +
i

2
σ3

∂f

∂x
, Vf = V +

i

2
σ3

∂f

∂t
,

where U and V are matrices (2.4). Zakharov–Shabat equation (2.2) for Uf and Vf leads to the equation

�St = [�S × �Sxx] + [�S × J̃ �S] + [�S × �H] − 2�SxS3
∂f

∂x
, (3.2)

where

J̃ = diag
(

0, 0, ε +
(

∂f

∂x

)2)
, �H =

(
0, 0,

∂f

∂t

)
.
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A particular case of Eq. (3.2) is physically interesting. It describes the nonlinear dynamics of a ferro-
magnet in a homogeneous external magnetic field �H(t) arbitrarily depending on t.

Corollary 1. If f(x, t) =
∫ t

H(s) ds depends only on t, then this Riemann problem corresponds to

the equation
�St = [�S × �Sxx] + [�S × J �S] + [�S × �H ], �H = (0, 0, H(t)). (3.3)

The elementary procedure for constructing solutions of Eq. (3.3) using solutions of Eq. (2.1) follows
from Corollary 1.

Corollary 2. If s solution �S(x, t) = (S1, S2, S3) of LL equation (2.1) is expressed in terms of A, B, C,

and D using formulas (2.15), then the quantities

Af = A exp
(∫ t

H(s) ds

)
, Bf = B exp

(∫ t

H(s) ds

)
, Cf = C, Df = D

define the function �Sf (x, t) (which is a solution of Eq. (3.3)) by the same formulas (2.15).

Of course, this purely algebraic fact can be verified directly. Obviously, the solution �Sf is real if �S and
H(t) are real.

4. Dressing procedure: General scheme

It is convenient to start this section with the proof of one auxiliary statement [19].

Lemma 1. Let Ψ(λ) be a 2×2 matrix function holomorphic in the neighborhood of the point λ = a,

which is a simple zero of detΨ(λ). Then representation (2.8) holds for the matrix Ψ(λ) in the neighborhood

of the point a with T = ( 1 0
0 0 ). In this case, any invertible matrix such that the first column of the matrix

C−1 belongs to kerΨ(a) can be taken for C.

Proof. Let C and T be as described in the lemma. The statement in the lemma is equivalent to the
holomorphicity and matrix invertibility of the function

Ψ̂(λ) = Ψ(λ)C−1(λ − a)
“−1 0

0 0

”

in some neighborhood of the point a. Let C−1 = (X, Y ). Then (because Ψ(a)X = 0)

Ψ̂(λ) = Ψ(λ)(X, Y )

(
(λ − a)−1 0

0 1

)
=
(

1
λ − a

Ψ(λ)X, Ψ(λ)Y
)

=

=
(

1
λ − a

[Ψ(a)X + Ψ′(a)X(λ − a) + · · · ], Ψ(a)Y + (λ − a)Ψ′(a)Y + · · ·
)

=

=
∞∑

k=0

(λ − a)kΨk,

and the function Ψ̂(λ) is consequently holomorphic in a neighborhood of a. After the holomorphicity of
Ψ̂(λ) is established, its matrix invertibility follows because the zero of detΨ(λ) at a is simple. The lemma
is proved.
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Now let Ψ0(λ, x, t) be a function satisfying all conditions in Theorem 1 and thus leading to some
solution �S0(x, t) of the LL equation. We let

Λ0 = {a0
1, . . . , a

0
N , T 0

1 , . . . , T 0
N , C0

1 , . . . , C0
N , L0

1, . . . ,L0
N , G0

1(λ), . . . , G0
M , m0}

denote the data of the generalized Riemann problem corresponding to Ψ0. Using Ψ0, we want to explicitly
construct a new function Ψ(λ, x, t) satisfying the same conditions 1–5 of the Riemann problem but with
a new set of data Λ = Λ0 ⊕ Λ′. Hence, having the known solution �S0(x, t) of the LL equation, we would
construct a new solution of it. We seek the function Ψ in the form

Ψ(λ, x, t) = f(λ, x, t)Ψ0(λ, x, t), (4.1)

where f is a 2×2 matrix function meromorphic on Γ and the simple poles at the points ∞1,2 are the only
singularities. We require that f satisfy the relation

σ3f(λτ )σ3 = f(λ). (4.2)

This equality together with the mentioned conditions for the singularities of f(λ) leads to its representation

f(α) =
3∑

α=1

qαwα(α)σα + (q0λ + p0)I + p3σ3, (4.3)

where the scalar functions qα(x, t) and pα(x, t) must still be defined. To determine them, we take the points
λ1, λ2 /∈ {a0

1, . . . , a
0
N} ∪ {a,−a} and two complex numbers A1 and A2. Let

Ψ(λj)
(

1
Aj

)
= 0, j = 1, 2, p3 = −aq0. (4.4)

These relations form a linear homogeneous algebraic system of five equations for six unknowns (the qα and
pα). Solving this system, we find the sought functions qα(x, t) and pα(x, t) up to a common functional
factor. Because of Remark 2 at the end of Sec. 1, this freedom is already inessential for us.

Theorem 3. The function Ψ(λ, x, t) defined by formulas (4.1), (4.3), and (4.4) satisfies all conditions

in Theorem 1. The corresponding data of the generalized Riemann problem differ from the original data

Λ0 in the number of regular singular points, which is increased by four,

{a0
1, . . . , a

0
N} → {a0

1, . . . , a
0
N} ⊕ {λ1, λ2, λ

τ
1 , λτ

2},

and by the shift m0 → m0 + I of the matrix m0 by the identity matrix. The corresponding (complex)
solution �S(x, t) of the LL equation1 is related to the seed solution �S0(x, t),

S = QS0Q
−1, Q =

3∑

α=1

qασα + q0I. (4.5)

Before proving Theorem 3, we prove the following lemma.

1We use the notation �S for the vectors (S1, S2, S3) and S for the matrix
P3

α=1 Sασα.
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Lemma 2. The zeros of det f(λ) as a function on Γ are simple and are located at the points λ1, λ2,

λτ
1 , and λτ

2 . The representation of form (2.8) with matrices T and C independent of x and t holds for the

function Ψ(λ) at all these points.

Proof. By formula (4.3), the function det f(λ) has two second-order poles at the points ∞1,2 on Γ. It
must therefore have four zeros. The first two vector equalities in (4.4) indicate that the points λ1 and λ2

must necessarily be among those zeros. Together with λ1 and λ2, the points λτ
1 and λτ

2 are necessarily zeros
of det f(λ), which follows from reduction identity (4.2). Finally, the last statement in the lemma follows
directly from Lemma 1 and from the fact that equality (4.2) yields the validity of reduction identity (2.11)
for Ψ(λ) with the same matrix σ0(λ) as for the seed function Ψ0(λ). The matrices T and C corresponding
to the points λj and λτ

j are

T =

(
1 0

0 0

)
, C =

(
1 0

−Aj 1

)

for λj and

T =

(
1 0

0 0

)
, C =

(
1 0

−Aj 1

)
σ0

for λτ
j . This ends the proof of the lemma.

Proof of Theorem 3. By Lemma 2, the function f(λ) is holomorphic and matrix invertible at all
the “old” regular singular points a0

j . Therefore, right multiplication of Ψ0(λ) by f(λ) does not destroy
its behavior at the points a0

j , i.e., relation (2.8) remains valid for Ψ(λ) at these points with the same
matrices T 0

j and C0
J . The same holds for the conjugation conditions on the “old” contours Lj , while new

discontinuity lines obviously cannot appear.
Further, asymptotic condition (2.7) is satisfied for Ψ(λ) with the matrix m = m0 + I, and (as noted

in the proof of Lemma 2) reduction identity (2.11) holds with the matrix σ(λ) = σ0(λ). The only new
singularities of Ψ(λ) are zeros of its determinant at the points λj and λτ

j , j = 1, 2. But the required
representation (2.8) with the matrices T and C independent of x and t is ensured by Lemma 2. Hence, all
conditions in Theorem 1 for Ψ(λ) are verified except the last one, which is normalization conditions (2.12).
We show that it follows from the scalar equation p3 = −aq0 of system (4.4). In fact, because conditions (2.12)
are satisfied for the seed function Ψ0(x, t, λ), the equalities

(Ψ0)1k(a) = α(Ψ0)2l(−a), αx = 0,

(Ψ0)1j(a) = β(Ψ0)2r(−a), βt = 0
(4.6)

hold for some k, l and j, r.
The matrix f(λ) (for λ = ±a) is diagonal. The equality p3 = −aq0 is equivalent to the relation

f11(a) = f22(−a). Therefore, for the same k, l and j, r as in (4.6), we have

Ψ1k(a) = f11(a)(Ψ0)1k(a) = αf11(a)(Ψ0)2l(−a) = αf22(−a)(Ψ0)2l(−a) = αΨ2l(−a).

Consequently,
∂

∂x
log Ψ1k(a) =

∂

∂x
log Ψ2l(−a).

Similarly,

Ψ1j(a) = f11(a)(Ψ0)1j(a) = βf11(a)(Ψ0)2r(−a) = βf22(−a)(Ψ0)2r(−a) = βΨ2r(−a).

152



Consequently,
∂

∂t
log Ψ1j(a) =

∂

∂t
log Ψ2r(−a),

i.e., normalization conditions (2.12) for the “dressed” function Ψ are satisfied for the same k, l and j, r as
for the seed function Ψ0. Theorem 3 is proved.

We note that taking the relation p3 = −aq0 into account, we can represent the matrix f(λ) in the form

f(λ) = D1(λ)
(
Q + d0R(λ)

)
D(λ), (4.7)

where d0 = p0 + aq3 and

D1(λ) =

⎛

⎝
1 0

0
√

λ+a
λ−a

⎞

⎠ , R(λ) =

(
1

λ−a 0

0 1
λ+a

)
, D(λ) =

(
λ − a 0

0
√

λ2 − a2

)
.

We can then write the vector equation of system (4.4) as

QXj = −d0R(λj)Xj , j = 1, 2, (4.8)

where
�Xj = D(λj)Ψ0(λj)

(
1

Aj

)
. (4.9)

We assume that two matrix functions X and Y are connected by the relation X ∼= Y if there is a singular
scalar function d(x, t) such that X = dY . From Eqs. (4.8), we then obtain the explicit representation for
the matrix Q (which appears directly in transition (4.5) from the old solution �S0 to the new solution �S) in
terms of the seed function Ψ0(λ) and the transformation parameters (λj , Aj):

Q ∼= V W−1, W = ( �X1, �X2), V =
(
R(λ1) �X1, R(λ2) �X2

)
. (4.10)

As mentioned in Sec. 1, the LL equation in the complex case is invariant under the gauge transformation

S →
(

1 0

0 δ

)
S

(
1 0

0 δ−1

)
, δ ∈ C \ {0}.

Therefore, we can say that by fixing the values λj and Aj , we select not a single solution of the LL equation
but a whole gauge class. Each representative in this class is characterized by its own value of the parameter
δ and is described by the function

S = QδS0Q
−1
δ , Qδ =

(
1 0

0 δ

)
Q. (4.11)

Hereafter, we are most interested in solutions corresponding to the special parameter value

δ = δ0 ≡

√
(λ1 + a)(λ2 + a)
(λ1 − a)(λ2 − a)

.

For the correspondent matrix Q0 ≡ Qδ0 , the expanded version of the representation

Qδ
∼=
(

1 0

0 δ

)
V W−1
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has the most symmetric form:

Q0
∼=
(

α1β2

√
λ2

2 − a2 − α2β1

√
λ2

1 − a2 α1α2(λ1 − λ2)

β1β2(λ2 − λ1) α1β2

√
λ2

1 − a2 − α2β1

√
λ2

2 − a2

)
, (4.12)

where we introduce the notation

(
αj

βj

)
≡ Ψ0(λj)

(
1

Aj

)
, j = 1, 2. (4.13)

The corresponding solution of the LL equation and the associated function Ψ are

S = Q0S0Q
−1
0 , (4.14)

Ψ(λ) ∼= D1(λ)

(
1 0

0 δ0

)
(
V W−1 − R(λ)

)
D(λ)Ψ0(λ). (4.15)

With these formulas, we end the description of the dressing procedure for the complex case and proceed
to discuss conditions on the parameters (λj , Aj) that preserve the realness of the vector �S in transforma-
tion (4.12)–(4.14).

We first note that for �S to be real, it suffices to satisfy the relation

σ2Q̄0σ2
∼= Q0. (4.16)

In fact, the realness condition for �S is equivalent to the equality σ2S̄σ2 = −S. By assumption, this equality
holds for �S0. From (4.16), we therefore obtain

σ2S̄σ2 = σ2Q̄0S̄0Q̄
−1
0 σ2 = Q0σ2S̄0σ2Q̄

−1
0 = −QS0Q

−1 = −S.

We now consider the realness condition directly.

Theorem 4. Let the seed solution �S0 be real and the seed function Ψ0 consequently satisfy iden-

tity (2.17) with some matrix M = M0. Then relation (4.16) holds in two cases:

a. where Im λj �= 0, λ1 = λ2, and

det
(

M0(λ1)
(

1
Ā2

)
,

(
1

A1

))
= 0 (4.17)

and

b. where a = ā (easy plane), Im λj = 0, |λj | < a, and

det
(

σ0(λj)M0(λτ
j )
(

1
Āj

)
,

(
1

Aj

))
= 0, (4.18)

where σ0(λ) is the matrix σ(λ) used in reduction identity (2.11) for the function Ψ0.
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Proof. We proceed with case a. Equality (4.17) means that the vectors

M0(λ1)
(

1
Ā2

)
and

(
1

A1

)

are proportional to each other. Recalling the a priori identity M(λ̄)M(λ) = −I, we verify that the vectors

M0(λ2)
(

1
Ā1

)
and

(
1

A2

)
.

are collinear. We have

M0(λ1)
(

1
Ā2

)
= κ

(
1

A1

)
, −

(
1

Ā2

)
= κM 0(λ̄1)

(
1

A1

)
, M0(λ2)

(
1

Ā1

)
= − 1

κ̄

(
1

A2

)
.

Therefore,

σ2Ψ̄0(λ2)
(

1
Ā2

)
= Ψ0(λ1)M0(λ1)

(
1

Ā2

)
= κΨ0(λ1)

(
1

A1

)
,

σ2Ψ̄0(λ1)
(

1
Ā1

)
= Ψ0(λ2)M0(λ2)

(
1

Ā1

)
= − 1

κ
Ψ0(λ2)

(
1

A2

)
,

(4.19)

which we can write in terms of αj and βj as

ᾱ1 =
i

κ
β2, β̄1 = − i

κ
α2,

ᾱ2 = −iκβ1, β̄2 = iκα1.

(4.20)

Taking √
λ2

1 − a2 =
√

λ2
2 − a2,

√
λ2

2 − a2 =
√

λ2
1 − a2

into account (see the rule for the action of the anti-involution λ → λ̄ on Γ in Sec. 1), we obtain the theorem
statement in case a directly from formula (4.12) through a simple verification with relations (4.20) taken
into account.

Proceeding to case b, we note that Re
√

λ2
j − a2 = 0 under the given conditions for λj . This means

that √
λ2

j − a2 = −
√

λ2
j − a2 =

√
(λτ

j )2 − a2, (4.21)

i.e., the involution λ → λ̄ acts on λj (points on the surface Γ) as the involution τ : λ̄j = λτ
j . Precisely this

circumstance is taken into account in condition (4.18) for the parameters Aj : taken in this form, they lead
to relations analogous to relations (4.19) in the preceding case:

σ2Ψ̄0(λj)
(

1
Āj

)
= Ψ0(λτ

j )M0(λτ
j )
(

1
Āj

)
=

= σ3Ψ0(λj)σ0(λj)M0(λτ
j )
(

1
Āj

)
= κσ3Ψ0(λj)

(
1

Aj

)
.

Hence, relations (4.20) are replaced with

σ2

(
ᾱj

β̄j

)
= κσ3

(
αj

βj

)
⇐⇒

β̄j = −iκαj ,

ᾱj = −iκβj .
(4.22)

The proof of the theorem in case b, as in case a, ends with a direct verification in formula (4.12) with the
first equality in (4.21) and relation (4.22) taken into account. This ends the proof of the theorem itself.
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Remark 4. Using the identity M(λ)M(λ̄) = −I, we can show that the realness condition forbids two
situations in the considered dressing procedure: a = ā (easy plane), Im λj = 0, |λj | > a and a = −ā (easy
axis), Im λj = 0. In fact, the points λj as points of the surface Γ are fixed points of the involution λ → λ̄

in both these cases. Therefore, assuming that σ2Ψ̄(λ̄) = Ψ(λ)M(λ), we obtain the contradiction

Ψ(λj)
(

1
Aj

)
= 0 =⇒ Ψ̄(λj)

(
1

Āj

)
= 0 =⇒ Ψ(λj)M(λj)

(
1

Āj

)
= 0,

consequently

M(λj)
(

1
Āj

)
= κ

(
1

Aj

)
=⇒ −

(
1

Āj

)
= κM(λj)

(
1
Aj

)
,

and therefore

M(λj)
(

1
Āj

)
= − 1

κ

(
1

Aj

)
=⇒ |κ|2 = −1.

Remark 5. As already mentioned, the “dressed” function Ψ given by (4.15) satisfies reduction iden-
tity (2.11) with the same matrix σ0(λ) as the seed function Ψ0(λ). As we now verify, a similar statement
also holds for realness reduction (2.17). More precisely, let the conditions in Theorem 4 hold. Then the
function Ψ corresponding to solution (4.12)–(4.14) satisfies identity (2.17) with the matrix M(λ) ∼= M0(λ).
In fact, considering the function Ψ̃(λ) = σ2f̄(λ̄)σ2Ψ0(λ) together with the function Ψ(λ) = f(λ)Ψ0(λ)2, we
can easily verify that under conditions (4.17) or (4.18), both these functions have the same set of Riemann
problem data (the function Ψ̃ satisfies the same vector equalities of system (4.4)). Therefore, Ψ̃(λ) = ΦΨ(λ),
and the matrix Φ is independent of λ. On the other hand, Ψ̃(λ) = σ2Ψ̄(λ̄)M−1

0 (λ), and therefore

Ψ̃ ←→ S̃ = S ←→ Ψ =⇒ S = ΦSΦ−1. (4.23)

Further, the functions Ψ̃ and Ψ satisfy reduction identity (2.11) with the same matrix σ0(λ). Therefore,

σ3Φσ3 = Φ ⇐⇒ Φ = diag(c, d).

Comparing the last relation with (4.23), we immediately conclude that c = d, i.e., Φ = cI, and consequently

σ2Ψ̄(λ̄) = cΨ(λ)M0(λ),

which is equivalent to M(λ) ∼= M0(λ).

5. Dressing procedure: Soliton solutions

The simplest application of the scheme proposed in the preceding section is for dressing two types of
“vacuum” Ψ functions:

Ψ0(λ, x, t) = e−iσ3λx+2iσ3(λ2−a2)t, �S0 = (0, 0, 1), (5.1a)

Ψ0(λ, x, t) = e−iσ1
√

λ2−a2(x−2λt), �S0 = (1, 0, 0). (5.1b)

As already mentioned in Sec. 1, the solutions thus obtained possibly contain all previously known solutions
of the LL equation expressed in terms of elementary functions. We again note that we do not pretend to
obtain any new physical results in this section. Our only purpose here is methodological: to confirm the
validity of the developed approach using the simplicity of description and scope of the known effects. In
this regard, assuming that all the facts below are well known to the specialist in ferromagnetism theory, we
omit numerous priority references, which the reader can find in [9] if necessary.

It is convenient to introduce the following “nonphysical” conventional terminology. We call solutions of
the LL equation obtained as a result of applying dressing procedure (4.12)–(4.14) once to seed solution (5.1a)
S3 solitons and solutions similarly obtained from seed solution (5.1b) S1 solitons.

2The factor
`

1 0
0 δ0

´

is included in f(λ).
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5.1. The S3 solitons. The matrices σ0(λ) and M0(λ) for seed solution (5.1a) are

σ0(λ) ≡ σ3, M0(λ) ≡ σ2.

Theorem 4 then leads to two types of conditions on the parameters (λj , Aj):

λ1 = λ̄2 ≡ μ, Im μ > 0, A1 = − 1
Ā2

≡ A, A ∈ C \ {0}, (5.2a)

Im λj = 0, |λj | < a, Aj = e2iϕj , ϕj ∈ R, j = 1, 2 (5.2b)

(the second type is possible only for a = ā). According to conditions (5.2a) and (5.2b), for the matrix Q0,
we have (see (4.12))

Q0
∼=
(√

μ̄2 − a2 + |E|2
√

μ2 − a2 (μ̄ − μ)Ē

E(μ̄ − μ)
√

μ2 − a2 + |E|2
√

μ̄2 − a2

)
, (5.3a)

Q0
∼=
(

i
√

a2 − λ2
2E1 − iĒ1

√
a2 − λ2

1 Ē2(λ1 − λ2)

E2(λ2 − λ1) iE1

√
a2 − λ2

1 − iĒ1

√
a2 − λ2

2

)
, (5.3b)

where

E(x, t) = Ae2iμx−4i(μ2−a2)t,

E1(x, t) = ei(λ2−λ1)x−2i(λ2
2−λ2

1)t+ϕ2−ϕ1 ,

E2(x, t) = ei(λ1+λ2)x−2i(λ2
2+λ2

1−2a2)t+ϕ2+ϕ1 .

Substituting (5.3a) and (5.3b) in (4.14), we obtain the explicit formulas for two types of S3 solitons
(the second type is possible only in the easy-plane case):

S3(x, t) = 1 − 4η2

|μ|2 − a2 + |μ2 − a2| cosh 2β(x, t)
,

S1 − iS2 = 4iη
√
|μ2 − a2|

e−iθ(x,t)
(
cosϕ coshβ(x, t) − i sinϕ sinh β(x, t)

)

|μ|2 − a2 + |μ2 − a2| cosh 2β(x, t)
,

μ = ξ + iη, ϕ =
1
2

arg(μ2 − a2),

β(x, t) = 2η(x − 4ξt) − log |A|,

θ(x, t) = 2ξx − 4(ξ2 − η2 − a2)t + arg A;

(5.4a)
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for the matrix Q0 from (5.3a) and

S1(x, t) = S0
1(x, t) cos θ2(x, t) − S0

2(x, t) sin θ2(x, t),

S2(x, t) = S0
1(x, t) sin θ2(x, t) + S0

2(x, t) cos θ2(x, t),

S3(x, t) = 1 +
(λ1 − λ2)2√

(a2 − λ2
1)(a − λ2

2) cos 2θ1(x, t) + λ1λ2 − a2
,

θ1(x, t) = (λ2 − λ1)
(
x − 2(λ2 + λ1)t

)
+ ϕ2 − ϕ1,

θ2(x, t) = (λ1 + λ2)
(
x − 2(λ2 + λ1)t

)
+ 4(a2 + λ1λ2)t + ϕ2 + ϕ1,

S0
1(x, t) = (λ2 − λ1) sin θ1(x, t)

√
a2 − λ2

1 +
√

a2 − λ2
2√

(a2 − λ2
1)(a2 − λ2

2) cos 2θ1(x, t) + λ1λ2 − a2
,

S0
2(x, t) = (λ2 − λ1) cos θ1(x, t)

√
a2 − λ2

1 +
√

a2 − λ2
2√

(a2 − λ2
1)(a2 − λ2

2) cos 2θ1(x, t) + λ1λ2 − a2

(5.4b)

for the matrix Q0 from (5.3b).
Solution (5.4a) is a solitary wave moving with the velocity v = 4ξ. This motion is accompanied by a

uniform rotation of �S in the plane (S1, S2) with the frequency

ω = 4ξ2 + 4η2 + 4a2 ≡ 4|μ|2 + 4a2. (5.5)

The velocity v and the frequency ω are two independent physical parameters, which together with the initial
position x0 = (log |A|)/2η and the initial rotation phase θ0 = argA uniquely characterize the considered
soliton solution. We note that in the easy-plane case a2 > 0, the rotation of �S is always present, while this
rotation might be absent in the easy-axis case (the solitary spin wave). The condition for the absence of
the rotation has the form ξ2 + η2 = −a2. Hence, the maximum velocity of solitary spin waves is 4

√
−a2. If

this value is exceeded, then �S must rotate in the plane (S1, S2).
Solution (5.4b) is a running periodic wave with the phase velocity vΦ = 2(λ1 + λ2). Similarly to

case (5.4a), there is rotation in the plane (S1, S2) with the frequency Ω = 4(a2 + λ1λ2). Because |λj | < a,
the rotation is unavoidable. We again note that this type of solution is possible only in the easy-plane case.
We mention the interesting fact that the S3 component of solution (5.4b) can be formally obtained from
the S3 component of solution (5.4a) by setting

η = i
λ1 − λ2

2
, ξ =

λ1 + λ2

2
(5.6)

in the latter. Moreover, under such conditions, the frequency ω transforms into Ω. Hence, relying only on
the information about the third component of �S and about the rotation frequency in the plane (S1, S2),
we might draw the wrong conclusion about the possibility that solutions of type (5.4b) periodic in x and
t also exist in the easy-axis case. With the complete system of formulas (5.4a), we avoid this risk because
the first two components of the vector �S become imaginary under conditions (5.6).

Formulas (5.4) show that S3 solitons also include breather-type solutions (immovable formations oscil-
lating in time)

S1(x, t) = 4η
√
|η2 + a2|cosh 2η(x − x0) sin(4(η2 + a2)t + θ0)

η2 − a2 + |η2 + a2| cosh 4η(x − x0)
,

S2(x, t) = −4η
√
|η2 + a2|cosh 2η(x − x0) cos(4(η2 + a2)t + θ0)

η2 − a2 + |η2 + a2| cosh 4η(x − x0)
,

S3(x, t) = 1 − 4η2

η2 − a2 + |η2 + a2| cosh 4η(x − x0)
;

(5.7)
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at ξ = 0 and

S1(x, t) = −4λ0

√
a2 − λ2

0

sin(2λ0x + θ1) cos(4(a2 − λ2
0)t + θ2)

(a2 − λ2
0) cos(4λ0x + 2θ1) − λ2

0 − a2
,

S2(x, t) = 4λ0

√
a2 − λ2

0

sin(2λ0x + θ1) sin(4(a2 − λ2
0)t + θ2)

(a2 − λ2
0) cos(4λ0x + 2θ1) − λ2

0 − a2
,

S3(x, t) = 1 +
4λ2

0

(a2 − λ2
0) cos(4λ0x + 2θ1) − λ2

0 − a2
.

(5.8)

for λ1 = −λ2 ≡ λ0 and |λ0| < a.
For all parameter values μ �= a and A ∈ C \ {0}, formulas (5.4a) describe the solutions of the LL

equation characterized by the large-|x| behavior

�S → (0, 0, 1), |x| → ∞. (5.9)

But in the easy-axis case, there is a bound for the parameters μ and A such that condition (5.9) is violated.
Assuming that a = −ā, we set

|A|2 = − 1
4γa2

|μ2 − a2|, γ > 0,

argA = −1
2

arg(μ2 − a2) + ψ, ψ ∈ R,

and let μ tend to a. Then formulas (5.4a) result in the formulas

S1(x, t) =
sin ψ

cosh(2|a| + Δ)
, S2(x, t) =

− cosψ

cosh(2|a| + Δ)
, S3(x, t) = tanh(2|a|x + Δ), (5.10)

where Δ = (log γ)/2. This solution is a classical “domain wall.” We have �S → (0, 0,±1) as x → ±∞.
In Sec. 5, we need the expressions for the matrix Q0 and function Ψ corresponding to solution (5.10).

The corresponding formulas are easily obtained by taking the limit in formulas (5.3b) and (4.15) and have
the forms

Q0
∼=
(
−√

γc0e
2|a|x+iψ i

ic0e
2iψ −√

γe2|a|x+iψ

)
, (5.11)

Ψ(λ) = D1(λ)Q0D(λ)Ψ0(λ), c0 = lim
μ→a

√
μ̄2 − a2

μ2 − a2
. (5.12)

5.2. The S1 solitons. Because

e−iσ1
√

λ2−a2(x−2λt) =
1
2

(
1 1

1 −1

)
e−iσ3

√
λ2−a2(x−2λt)

(
1 1

1 −1

)
,

we can take the function

Ψ0(λ, x, t) =

(
1 1

1 −1

)
e−iσ3

√
λ2−a2(x−2λt)

as Ψ0 (and this turns out to be convenient). The corresponding matrices σ0(λ) and M0(λ) are

σ0(λ) ≡ σ1, M0(λ) ≡ −σ2,
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and two types of realness conditions are

λ1 = λ̄1 ≡ μ, Im μ > 0, A1 = − 1
Ā2

≡ A, A ∈ C \ {0}, (5.13a)

Im λj = 0, |λj | < a, Aj = −Āj , j = 1, 2 (5.13b)

(the second type of conditions requires a = ā).
From representation (4.12) for the matrix Q0 in cases (5.13a) and (5.13b), we respectively obtain

Q0
∼=
(

C+

√
μ̄2 − a2 + C−

√
μ2 − a2 S+(μ̄ − μ)

S−(μ̄ − μ) C+

√
μ2 − a2 + C−

√
μ̄2 − a2

)
,

C± = coshβ(x, t) ± cos θ(x, t), S± = − sinh β(x, t) ± i sin θ(x, t),

β(x, t) = Re
(
2i
√

μ2 − a2(x − 2μt)
)

+ log |A|,

θ(x, t) = Im
(
2i
√

μ2 − a2(x − 2μt)
)

+ arg A;

(5.14a)

Q0
∼=
(

iẼ+
1 Ẽ−

2

√
a2 − λ2

2 − iẼ+
2 Ẽ−

1

√
a2 − λ2

1 Ẽ+
1 Ẽ+

2 (λ1 − λ2)

Ẽ−
1 Ẽ−

2 (λ2 − λ1) iẼ+
1 Ẽ−

2

√
a2 − λ2

1 − iẼ+
2 Ẽ−

1

√
a2 − λ2

2

)
,

Ẽ±
j = 1 ± Ej(x, t), Ej(x, t) = iγje

−2
√

a2−λj(x−2λjt), γj = Im Aj , j = 1, 2.

(5.14b)

The solutions of the LL equation themselves can be reconstructed from formulas (5.14) as

S = Q0σ1Q
−1
0 (5.15)

and have a rather combersome form for arbitrary μ and λj , which we omit here especially because all the
physical information can be easily obtained directly from formulas (5.14) and (5.15).

In the general position case, solution (5.14a) describes the soliton (�S → (1, 0, 0), |x| → ∞), localized
in x and moving with a velocity determined from the linear function β(x, t). This motion, unlike the trivial
rotation of S3 solitons, is accomplished by the time-precession of the vector �S. The precession frequency
can be calculated using the linear function θ(x, t). The corresponding breather solution (immovable bion)
is obtained from (5.14a) under the conditions Reμ = 0 and |μ| > |a| (in the easy-axis case). The formulas
for �S are significantly simplified in this case, and we can present them. At μ0 = iη, for η > 0 (easy plane)
and η > |a| (easy axis), we have

S1(x, t) =
η2 cosh2(kx + β0) − a2 cos2(ωt + θ0) − 2η2

η2 cosh2(kx + β0) + a2 cos2(ωt + θ0)
,

S2(x, t) = 2η2 sin(ωt + θ0) sinh(kx + β0)
η2 cosh2(kx + β0) + a2 cos2(ωt + θ0)

,

S3(x, t) = −2η
√

η2 + a2
cos(ωt + θ0) sinh(kx + β0)

η2 cosh2(kx − β0) + a2 cos2(ωt + θ0)
,

k = −2
√

η2 + a2, ω = 4η
√

η2 + a2, β0 = log |A|, θ0 = arg A.

(5.16)

We again emphasize the time dependence of bion (5.16), which is nontrivial compared with the S3 breather
(see relations (5.7)).
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We complete the analysis of formula (5.14a) with the following observation. There is a solution de-
creasing in t and oscillating in x in the easy-axis case. To obtain this solution, it suffices to set μ = iη,
0 < η < |a| in formula (5.14a). Then

β(x, t) = 4η
√
|a|2 − η2t + β0, θ(x, t) = 2

√
|a|2 − η2x + θ0.

The formulas for the solution itself are (for a = −ā)

S1(x, t) =
a2 cosh2(Ωt + β0) − η2 cos2(kx + θ0) + 2η2

a2 cosh2(Ωt + β0) + η2 cos2(kx + θ0)
,

S2(x, t) = − 2η2 sinh(Ωt + β0) sin(kx + θ0)
a2 cosh2(Ωt + β0) + η2 cos2(kx + θ0)

,

S3(x, t) = −2η
√
|a|2 − η2 cosh(Ωt + β0) sin(kx + θ0)

a2 cosh2(Ωt + β0) + η2 cos2(kx + θ0)
,

k = 2
√
|a|2 − η2, Ω = 4η

√
|a|2 − η2.

(5.17)

Proceeding to discuss S1 solitons, we note that the structure of formulas (5.14b) is much simpler than
that of formulas (5.14a). There are no oscillations in relations (5.14b). Essentially, these formulas describe
the interaction of two simpler solutions of the one-soliton type. This one-soliton solution can be obtained
from formula (5.14b) as a result of the limit transition

λ1 → a, A1 → 0. (5.18)

The matrix Q0 is then greatly simplified and becomes

Q0
∼=
(

iẼ−
2

√
a2 − λ2

2 Ẽ+
2 (a − λ2)

Ẽ−
2 (λ2 − a) −iẼ+

2

√
a2 − λ2

2

)
,

and we can write the solution itself as

S1(x, t) = − tanh
(
2
√

a2 − λ2(x − 2λt) + Δ
)
,

S2(x, t) = ∓λ

a

1
cosh(2

√
a2 − λ2(x − 2λt) + Δ)

,

S3(x, t) = ±
√

a2 − λ2

a

1
cosh(2

√
a2 − λ2(x − 2λt) + Δ)

,

(5.19)

where λ ≡ λ2, Δ = − log |γ2|, and the upper and lower signs respectively correspond to γ2 > 0 and γ2 < 0
in the equalities for S2 and S3. Solution (5.19) is a moving domain wall (�S → (∓1, 0, 0), x → ±∞).3

Relations (5.14b) might then be treated as describing the interaction of two domain walls. But developing
this standpoint further here seems to be unreasonable. We obtain the general N -soliton formulas for
solutions (5.19) in Sec. 10. It is therefore natural to defer studying the mutual interaction between S1

solitons of type (5.19) to Sec. 10.
All solutions considered above are characterized by either exponential or trigonometric behavior in x.

But the solutions of the LL equation with a power-law behavior in x (“rational” solitons) are also contained
in formulas (5.4) and (5.14a) as different limit cases.
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Fig. 1

5.3. Rational solitons in the easy-plane case. Let

η → 0, |ξ| < a (a2 > 0), θ0 = O(1), x0 = O(1) (5.20)

in formula (5.4a). Then ϕ → π/2 (see Fig. 1).4 More precisely,

ϕ =
π

2
+

1
2

arctan
2ξη

ξ2 − η2 − a2
=

π

2
− ξ

a2 − ξ2
η + o(η),

and consequently

cosϕ =
ξ

a2 − ξ2
η + O(η3), sinϕ = 1 + O(η2). (5.21)

Estimates of the other quantities in formulas (5.4a) can also be obtained simply:

|μ2 − a2| =
√

(ξ2 − η2 − a2)2 + 4ξ2η2 = a2 − ξ2 + η2

(
1 +

2ξ2

a2 − ξ2

)
+ O(η4),

|μ|2 − a2 = ξ2 − a2 + η2, θ = 2ξx − 4(ξ2 − a2)t + θ0 + O(η2),

sinh β = 2η(x − 4ξt − x0) + O(η3), cosh β = 1 + O(η2),

cosh 2β = 1 + 8η2(x − 4ξt − x0)2 + O(η4).

(5.22)

From relations (5.21) and (5.22), we find that solution (5.4a) in limit (5.20) transforms into a solution of
the form

S3(x, t) = 1 − 2(a2 − ξ2)
a2 + 4(a2 − ξ2)2(x − 4ξt − x0)2

,

S1 + iS2 = −
4i
√

a2 − ξ2
(
ξη/2 + i(a2 − ξ2)(x − 4ξt − x0)

)

a2 + 4(a2 − ξ2)2(x − 4ξt − x0)2
×

× e2iξx−4i(ξ2−a2)t+θ0 .

(5.23)

Again, this solution is a soliton moving uniformly and rotating uniformly in the plane (S1, S2). But unlike
the “exponential” case, there is a restriction |v| < 4a on the velocity.

5.4. Rational solitons in the easy-axis case. Now starting from S1 soliton (5.14), (5.15) and
assuming that a = −ā, we consider the limit

ε ↓ 0, μ = a + O(ε),
√

μ2 − a2 = εeiγ , log |A| = −ε Re(2ieiγx0), arg A = −ε Im(4|a|eiγt0),

3We again emphasize that this solution is obtained only in the easy-plane case.
4The choice of the cut in Fig. 1 agrees with the action of the anti-involution λ → λ̄ (see Sec. 2).
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Fig. 2

where γ, x0, t0 ∈ R. Obviously, the limit expression for the matrix Q0 in (5.14a) has the form

Q0
∼=
(

2e−iγ −4i|a|e−iγ
(
i(x − x0) − 2|a|(t − t0)

)

4i|a|eiγ
(
i(x − x0) + 2|a|(t − t0)

)
2eiγ

)
. (5.24)

Substituting this expression in (5.15), we obtain the formulas for the corresponding solution of the LL
equation:

S3(x, t) =
4|a|(x − x0)

1 + 4|a|2
(
(x − x0)2 + 4|a|2(t − t0)2

) ,

S1(x, t) − iS2(x, t) =
e−2iγ

[
1 − 4|a|2

(
(x − x0) + 2i|a|(t − t0)

)2]

1 + 4|a|2
(
(x − x0)2 + 4|a|2(t − t0)2

) .

(5.25)

Unlike (5.23), this is a breather-type solution and is characterized by completely rational behavior in both
variables. We again emphasize that a solution of type (5.25) exists only in the easy-axis case, while a
solution of type (5.23) exists only in the easy-plane case.

6. Dressing procedure: Interaction of soliton solutions

Essentially, our developed dressing procedure is inductive: after applying it once, we immediately obtain
a pair (�S, Ψ), which can be dressed again using the same formulas (4.12)–(4.15), now considering Ψ0 ≡ Ψ,
and so on. It is here essential that by virtue of Remark 5, the “reduction” matrices σ(λ) and M(λ) are
preserved for the whole iteration series. That is, we have the same set of conditions for the transformation
parameters (λj , Aj) at each step. Therefore, if a single application of the dressing procedure yields the
description and classification of all elementary excitations produced by the original “vacuum” (S0, Ψ0),
then all succeeding iterations allow describing all possible interaction processes between these elementary
excitations. In this section, we illustrate the power of this approach using an example of pairwise interaction
between S3 solitons.

6.1. Interaction of two S3 solitons of type (5.4a). The two-soliton solution corresponding to
the schemes in Fig. 2 can be obtained using two methods of double dressing:

(Ψ0, �S0)
∣∣
S0=(0,0,1)

(μ1,A1)−−−−−→ (Ψ1, �S1)
(μ2,A2)−−−−−→ (Ψ12, �S12), (6.1a)

(Ψ0, �S0)
∣∣
S0=(0,0,1)

(μ2,A2)−−−−−→ (Ψ2, �S2)
(μ2,A1)−−−−−→ (Ψ21, �S21). (6.1b)

It is obvious that �S12 = �S21 because these two solutions have the same set of Riemann problem data. To
calculate the effect of the action of the soliton (μ1, A1) on the soliton (μ2, A2), we proceed with (6.1a). We
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find the asymptotic behavior of Ψ1 under the conditions t → ±∞ and x − 4ξ2t = const. Assuming that
ξ2 < ξ1 for definiteness, we have

�X1 =
√

μ2
1 − a2A1e

−η1(x−4ξ2t)−4η(ξ2−ξ1)t

[(
0
1

)
+ o(1)

]
,

�X2 = (μ̄1 − a)e−η1(x−4ξ2t)−4η(ξ2−ξ1)t

[(
1
0

)
+ o(1)

]

in this limit (see relations (4.9), (4.10)). Consequently,

W = e−η1(x−4ξ2t)−4η(ξ2−ξ1)t[I + o(1)]

(
0 μ̄1 − a

A1

√
μ2

1 − a2 0

)
,

V = e−η1(x−4ξ2t)−4η1(ξ2−ξ1)t

[
⎛

⎜⎝

1
μ̄1 − a

0

0
1

μ1 + a

⎞

⎟⎠+ o(1)
]( 0 μ̄1 − a

A1

√
μ2

1 − a2 0

)
,

and hence

V W−1 =

⎛

⎜⎝

1
μ̄1 − a

0

0
1

μ1 + a

⎞

⎟⎠+ o(1). (6.2)

Substituting these relations in (4.15), we obtain the sought asymptotic behavior of Ψ1(λ): as t → +∞ with
x − 4ξ2t = const and ξ2 < ξ1,

Ψ1(λ) =
λ − μ̄1

μ̄1 − a

[⎛

⎝
1 0

0 δ0
λ − μ1

μ1 + a

μ̄1 − a

λ − μ̄1

⎞

⎠+ o(1)

]
Ψ0(λ). (6.3)

Similar calculations for x − 4ξ2t = const and ξ2 < ξ1 as t → −∞ result in

Ψ1(λ) =
λ − μ1

μ1 − a

⎡

⎣

⎛

⎝
1 0

0 δ0
λ − μ̄1

λ − μ1

μ1 − a

μ̄1 + a

⎞

⎠+ o(1)

⎤

⎦Ψ0(λ). (6.4)

Asymptotic behavior (6.3) shows that the second arrow in (6.1a) in the limit as t → +∞ with x−4ξ2t =
const becomes the simple dressing of the “zero” seed solution (�S0, Ψ0) characterized by the parameters

μ2, A+
2 = A2δ0

μ̄1 − a

μ1 + a

μ2 − μ1

μ2 − μ̄1
.

In other words, the solution �S12 has an S3 soliton of form (6.3) as an asymptotic form in this limit. This
soliton is characterized by the velocity v2 = 4ξ2, the rotational frequency ω2 = 4(ξ2

2 + η2
2 + a2), the initial

position

x+
02 =

1
2η2

(
log |A2δ0| + log

∣∣∣∣
μ̄1 − a

μ1 + a

μ2 − μ1

μ2 − μ̄1

∣∣∣∣

)
,

and the initial rotation phase

θ+
02 = arg A2 + arg δ0 + arg

(
μ̄1 − a

μ1 + a

μ2 − μ1

μ2 − μ̄1

)
.

164



Fig. 3

Similarly, from asymptotic form (6.4), we find that in the limit t → −∞ with x − 4ξ2t = const, the
solution �S12 tends asymptotically to an S3 soliton of form (6.3) characterized by the same velocity v2 and
the same frequency ω2 but with different parameter values x02 and θ12:

x−
02 =

1
2η2

(
log |A2δ0| + log

∣∣∣∣
μ1 − a

μ̄1 + a

μ2 − μ̄1

μ2 − μ1

∣∣∣∣

)
,

θ−02 = arg A2 + arg δ0 + arg
(

μ1 − a

μ̄1 + a

μ2 − μ̄1

μ2 − μ1

)
.

The action of the soliton (μ1, A1) on the soliton (μ2, A2) thus results in shifts of the mass center and
initial rotation phase in the plane (S1, S2):

Δx02 = x+
02 − x−

02 =
1
η2

log
∣∣∣∣
μ2 − μ1

μ2 − μ̄1

∣∣∣∣,

Δθ02 = θ+
02 − θ−02 = −2 arg(μ2

1 − a2) + 2 arg
μ2 − μ1

μ2 − μ̄1
.

(6.5)

To obtain the asymptotic behavior of the solution �S12 = �S21 as t → ±∞ with x − 4ξ1t = const, we
must proceed with relations (6.1b). In this case, we obviously find that the asymptotic form of the solution
�S12 as t → ±∞ is the S3-soliton of form (5.4a), which is characterized by the velocity v1 = 4ξ1 and rotation
frequency ω1 = 4(ξ2

1 + η2
1 + a2). The corresponding shifts of the mass center and the initial rotation phase

are described by formulas analogous to (6.5):

Δx01 =
1
η1

log
∣∣∣∣
μ1 − μ̄2

μ1 − μ2

∣∣∣∣,

Δθ01 = 2 arg(μ2
2 − a2) + 2 arg

(
μ1 − μ̄2

μ1 − μ2

)
.

Concluding the analysis of this interaction case, we give the expression for the shift of the soliton mass
centers in terms of the parameters vj and ωj:

Δx02 = −η1

η2
Δx01 =

1
2η1

log
2ω2 + 2ω1 − 16a2 − v1v2 −

√
4ω1 − 16a2 − v2

1

√
4ω2 − 16a2 − v2

2

2ω2 + 2ω1 − 16a2 − v1v2 +
√

4ω1 − 16a2 − v2
1

√
4ω2 − 16a2 − v2

2

.

6.2. Interaction of an S3 soliton of type (5.4a) with an S3 soliton of type (5.4b): The
easy-plane case. The scheme of the solution describing interaction of a type-(5.4a) S3 soliton with a
type-(5.4b) S3 soliton in the easy-plane case is illustrated in Fig. 3. This solution can be realized as the
double dressing:

(Ψ0, �S0)
∣∣
�S0=(0,0,1)

(μ,A)−−−→ (Ψ1, �S1)
(λ1,λ2,ϕ1,ϕ2)−−−−−−−−−→ (Ψ12, �S12). (6.6)

Assuming that ξ > (λ1 + λ2)/2 and repeating the corresponding discussion in the preceding subsection,
we again obtain formulas (6.3) in the limit t → +∞ with x − 2(λ1 + λ2)t = const and formulas (6.4) as
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t → −∞ with x − 2(λ1 + λ2)t = const. This allows concluding that the second arrow in (6.6) as t → ±∞
with x − 2(λ1 + λ2)t = const becomes the simple dressing (under conditions (5.2b)) of the “zero” seed
solution (�S0, Ψ0) characterized by the effective parameters

λj , ϕ±
j = ϕj ∓ arg(μ2 − a2) ± 2 arg(λj − μ), t → ±∞.

Hence, as t → ±∞ with x − 2(λ1 + λ2)t = const, the solution �S12 has a periodic S3-soliton of form (5.4b)
as its asymptotic form. This soliton is characterized by the phase velocity vΦ = 2(λ1 + λ2), the rotational
frequency Ω = 4(a2 + λ1λ2), and the initial motion and rotation phase values

ϕ±
2 − ϕ±

1 = ±2 arg
λ2 − μ

λ1 − μ
,

ϕ±
2 + ϕ±

1 = ∓2 arg(μ2 − a2) ± 2 arg(λ2 − μ)(λ1 − μ) + ϕ2 + ϕ1.

In other words, the action of an S3 soliton of type (5.4a) on periodic wave (5.4b) is described by the formulas

Δ(ϕ2 − ϕ1) = 4 arg
λ2 − μ

λ1 − μ
,

Δ(ϕ2 + ϕ1) = −4 arg(μ2 − a2) + 4 arg(λ2 − μ)(λ1 − μ).

(6.7)

In terms of the physical parameters (v, ω) of the soliton and (vΦ, Ω) of the periodic wave, we can write
formulas (6.7) as

Δ(ϕ2 − ϕ1) = 4 arg
vΦ + 2

√
v2
Φ/4 − Ω + 4a2 − μ

vΦ − 2
√

v2
Φ/4 − Ω + 4a2 − μ

,

Δ(ϕ2 + ϕ1) = −4 arg(μ2 − a2) + 4 arg
(

μ2 − 1
2
vΦμ +

1
4
Ω − a2

)
,

where

μ =
1
4
v + i

√
ω

4
− v2

16
− a2.

6.3. Interaction of an S3 soliton of type (5.4a) with a domain wall: The easy-axis case. As
shown in Sec. 5, domain wall (5.10) is the degenerate case (μ → a, A → 0) of S3 soliton (5.4a). Therefore,
the case of interaction we consider here can be studied based on two interacting S3 solitons in the limit

μ2 → a, A2 ≡ 1
2|a|√γ

√
μ̄2

2 − a2eiψ → 0 (6.8)

taken in the appropriate formulas. The scheme for the solution �S 0
12 corresponding to this case is illustrated

in Fig. 4.
The solution can be obtained as a result of the two sequences of dressing procedures and degenerations

(Ψ0, �S0)
(μ1,A1)−−−−−→ (Ψ1, �S1)

(μ2,A2)−−−−−→ (Ψ12, �S12)
μ2→a−−−−→
A2→0

(Ψ0
12,

�S 0
12), (6.9a)

(Ψ0, �S0)
(μ2,A2)−−−−−→ (Ψ2, �S2)

μ2→a−−−−→
A2→0

(Ψ0
2, �S 0

2 )
(μ1,A1)−−−−−→ (Ψ0

12, �S 0
12). (6.9b)

Analogously to the preceding cases, to calculate the effect of the action of the soliton on the domain wall,
we must compare the asymptotic forms as t → ±∞ with x = const. This asymptotic behavior can be
conveniently found from diagram (6.9a). Conversely, the action of the domain wall on the soliton (i.e., the
asymptotic form �S 0

12 in the limit t → ±∞ with x − 4ξ1t = const) can be more simply calculated using
diagram (6.9b).
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Fig. 4

6.3.1. Soliton action on a domain wall. We write the function Ψ1(λ) in the form (see formu-
las (4.1) and (4.4))

Ψ1(λ) = f(λ)Ψ0(λ) =

(
λ(q0 + q3) + p0 + p3 (q1 − iq2)

√
λ2 − a2

(q1 + iq2)
√

λ2 − a2 λ(q0 − q3) + p0 − p3

)
e−iσ3λx+2iσ3(λ2−a2)t. (6.10)

Substituting this function for Ψ0 in formulas (4.12) and (4.13) (the second arrow in (6.9a)) and taking
limit (6.8) (the third arrow in (6.9a)), we obtain explicit expressions for the elements of the matrix Q0

corresponding to the solution �S 0
12:

Q0
11 = −Ψ11(a)Ψ22(ā)

√
γ 2|a|eiψc0,

Q22 =
1
c0

Q0
11,

Q0
12 = −2i|a|

(
Ψ1(a)

)
11

2|a|√γeiψc0(q1 − iq2)e|a|x + 2i|a|Ψ11(a)
(
Ψ1(ā)

)
11

,

Q0
21 = 2i|a|

(
Ψ1(a)

)
22

2|a|√γeiψc0(q1 + iq2)e|a|x + 2i|a|[Ψ1(a)]22
(
Ψ1(ā)

)
22

c0e
2iψ ,

(6.11)

where

c0 = lim
μ→a

√
μ̄2 − a

μ2 − a
|c0| = 1. (6.12)

We now let t → +∞ with x = const. We can then use asymptotic form (6.3) for the function Ψ1(λ), which
leads to a simplification of formulas (6.11):

Q+
0
∼=

⎛

⎜⎜⎝
−
∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣e
2|a|x√γeiψc0 i

ic0e
2iψ −

∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣e
2|a|x√γeiψ

⎞

⎟⎟⎠ . (6.13)

In the considered limit, we have �S1 → (0, 0, 1). Therefore, the asymptotic solution �S 0
12 has the form

�S 0
12Q

+
0 σ3(Q+

0 )−1, t → +∞, x = const.

Comparing matrix (6.13) with representation (5.11) for the matrix Q0 of the domain wall, we conclude that
the asymptotic solution �S 0

12 as t → +∞ with x = const is the domain wall with the parameters

γ+ = γ

∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣
2

, ψ+ = ψ. (6.14)

Analogously, substituting asymptotic form (6.4) in (6.11), we conclude that as t → −∞ with x = const,
the solution �S 0

12 is again the domain wall but with the parameters

γ− = γ

∣∣∣∣
μ1 − a

μ1 + a

∣∣∣∣
2

, ψ− = ψ.
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Hence, the effect of the action of S3 soliton (5.4a) with the velocity v1 = 4 Reμ1 and frequency
ω1 = 4|μ1|2 + 4a2 on domain wall (5.10) is described by the relations

Δ+ − Δ− = 2 log
∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣, ψ+ = ψ−. (6.15)

6.3.2. Action of a domain wall on a soliton. The result of the action of the first two arrows
in (6.7) is described by formulas (5.10) and (5.12). These are a domain wall and the corresponding function
Ψ, which are characterized by the parameters γ and ψ. Let t → +∞ with x−4ξ1t = const. Then x → +∞,
and formulas (5.10) and (5.12) yield

Ψ0
2(λ) =

(
c0(λ − a) 0

0 λ + a

)
e−iσ3λx+2iσ3(λ2−a2)t, �S 0

2 = (0, 0, 1). (6.16)

Hence, the third arrow in (6.9b) becomes the simple dressing under conditions (5.2a) with the effective
parameters

μ1, A+
1 = A1

μ1 + a

μ1 − a

1
c0

.

Therefore, as t → +∞ with x − 4ξ1t = const, the solution �S 0
12 has an asymptotic form of S3 soliton (5.4a)

with the parameters

v1 = 4ξ1, ω1 = 4|μ1|2 + 4a2, 2χ = arg c0,

x+
0 =

1
2η1

log |A1| +
1

2η1
log
∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣, θ+
0 = argA1 − 2χ + arg

μ1 + a

μ1 − a
.

(6.17)

We now let t → −∞ with x−4ξ1t = const. Then x → −∞, and instead of (6.16), we have the formulas

Ψ0
2(λ) =

√
λ2 − a2

(
0 e−iψ−iχ

e−iψ+iχ 0

)
e−iσ3λx+2iσ3(λ2−a2)t, �S 0

2 = (0, 0,−1). (6.18)

We let Q0
sw denote the matrix Q0 corresponding to the S3 soliton �Ssw with the parameters μ1 and

A1. It is easy to verify that the matrix Q−
0 (obtained as a result of dressing function (6.18) with (4.12)) is

associated with Q0
sw by the relation

Q−
0 = TQ0

swT, T =

(
0 e−i(ψ+χ)

ei(ψ+χ) 0

)
.

For the solution �S 0
12 as t → −∞ with x − 4ξt = const, we hence have

�S 0
12 = TQ0

swT

(
−1 0

0 1

)
T (Q0

sw)−1T = TQ0
swσ3Q

0
sw =

= TSswT =

(
−S3,sw (S1,sw + iS2,sw)e−2i(ψ+χ)

(S1,sw − iS2,sw)e2i(ψ+χ) S3,sw

)

Therefore, as t → −∞ with x−4ξt = const, the solution �S 0
12 becomes S3 soliton (5.4a) rotated through

180◦ in the plane (S2, S3) (i.e., (S1, S2, S3) → (S1,−S2,−S3)) and characterized by the parameters

v1 = 4ξ1, ω1 = 4|μ1|2 + 4a2,

x−
0 =

1
2η1

log |A1|, θ−0 = arg A1 − 2χ− 2ψ.
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Hence, the effect of S3 soliton (5.4a) passing through domain wall (5.10) is described by the relations

(S1, S2, S3) → (S1,−S2,−S3),

Δx0 = x+
0 − x−

0 =
1

2η1
log
∣∣∣∣
μ1 + a

μ1 − a

∣∣∣∣,

Δθ0 = θ+
0 − θ−0 = arg

μ1 + a

μ1 − a
+ 2ψ.

(6.19)

We note that unlike the interaction of two S3 solitons, there is an obvious absence of symmetry in for-
mulas (6.15) and (6.19) describing the interaction of the domain wall with the soliton. In particular, the
soliton shift is half the domain wall shift.

With this, we complete the demonstration of applying the dressing procedure to the problem of the
interaction between elementary solutions of the LL equation. We only note that by taking appropriate limits
in the obtained formulas, we can simply describe the interaction processes involving rational solitons (5.21).
Finally, the interaction of the S1 solitons can be studied quite similarly. But the approach based on the
degeneration of finite-gap solutions of the LL equation turned out to be more effective in this case. This
approach is developed in Sec. 10.

7. Finite-gap solutions

In this section, we construct general finite-gap solutions of the XXZ LL equation. They correspond to
the generalized Riemann problem data

Λ1 = {a1, . . . , a3g, T1, . . . , T3g, C1, . . . , C3g, L1, . . . ,Lg, G1, . . . , Gg},

ai =

⎧
⎨

⎩
Ei, i = 1, . . . , 2g,

μi−2g, i = 2g + 1, . . . , 3g,

Ti =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
0 0

0
1
2

⎞

⎠ , i = 1, . . . , 2g,

⎛

⎝−1 0

0 0

⎞

⎠ , i = 2g + 1, . . . , 3g,

Ci =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝−1 −1

−1 1

⎞

⎠ , i = 1, . . . , 2g,

I, i = 2g + 1, . . . , 3g,

Li = [a2i−1, a2i], Gi = σ1, i = 1, . . . , g.

(7.1)

We construct the function Ψ satisfying reduction (2.11) with the matrix σ(λ) = σ1:

σ3Ψ(λτ ) = Ψ(λ)σ1. (7.2)

Hence, data (7.1) are specified on one sheet of the surface Γ. In accordance with reduction (7.2), they define
the data Λ2 on the other sheet of the surface Γ. The complete data of the generalized Riemann problem
are determined as the sum Λ1 ⊕ Λ2. Using the usual terminology, Li are the cuts on the Riemann surface,
Ei are the branch points, and μi are the poles of the Baker–Akhiezer function.

The function Ψ is not single-valued on Γ. According to (2.9), the monodromy matrices Mi correspond-
ing to the points Ei are

Mi = C−1
i σ3Ci = σ1. (7.3)
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Fig. 5. The surface bΓ.

Fig. 6. The surface Γ0.

The function Ψ becomes single-valued on the surface Γ̂ (shown schematically in Fig. 5) that is a cover of
the surface Γ with the branch points Ei. In the case of the Korteweg–de Vries equation, the nonlinear
Schrödinger equation, and others, the surface Γ (the surfaces where the appropriate U–V -pair is defined)
is simply a complex plane. In this case, the Riemann surface Γ̂ (where the Baker–Akhiezer function is
defined) is its two-sheeted cover (similarly to our case), i.e., a hyperelliptic surface.

Further, the function Ψ(λ) can be defined by the vector Baker–Akhiezer function �ψ(λ) =
(
ψ1(λ), ψ2(λ)

)

using the formula

Ψ(λ) =

(
ψ1(λ) ψ∗

1(λ)

ψ2(λ) ψ∗
2(λ)

)
, (7.4)

where ψ1(λ) and ψ2(λ) are single-valued functions on Γ̂ and ψ∗(λ) = ψ(λ∗). Here, λ → λ∗ is the involution
of the surface Γ̂ transposing the sheets 1 ↔ 2 and 3 ↔ 4. This structure of Ψ is suggested by monodromy
data (7.3). It is interesting whether Ψ satisfies reduction (7.2). First, we naturally define the involution
λ → λτ of Γ̂ by carrying the involution of Γ (which transposes the sheets 1 ↔ 3 and 2 ↔ 4) onto Γ̂. In
terms of ψ1 and ψ2, we can write reduction (7.2) as

ψ1(λτ ) = ψ1(λ∗), ψ2(λτ ) = −ψ2(λ∗). (7.5)

To construct the functions ψ1(λ) and ψ2(λ), we consider the auxiliary hyperelliptic surface Γ0 of genus
g (shown schematically in Fig. 6) and two functions on it: the single-valued function ψ1(λ) and the function
ψ2(λ), λ ∈ Γ0, changing its sign when it crosses the closed contour l passing through the points a and −a

(shown by the wavy line in Fig. 6),
ψ+

2 (λ) = −ψ−
2 (λ)

∣∣
λ∈l

, (7.6)

where ψ+
2 (λ) and ψ−

2 (λ) are the values of ψ2(λ) on the respective upper and lower bounds of the contour.
The functions ψ1 and ψ2 thus constructed can be determined simply on the surface Γ̂, representing the
natural domain of the analytic extension of ψ2(λ).
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We let ψ1 and ψ2 denote the values of ψ1(λ) and ψ2(λ) on the first sheet of Γ0 and ψ∗
1 and ψ∗

2 denote
their values on the second sheet. We assume that the values of ψ1(λ) and ψ2(λ) on the first sheet of Γ̂ (see
Fig. 5) coincide with their values on the first sheet of Γ̂0 (see Fig. 6). The first and second sheets of Γ̂ are
joined on the cuts [E2i−1, E2i]. Therefore, analytically extending ψ1(λ) and ψ2(λ) through these cuts, we
obtain their values on the second sheet of Γ̂. These values are equal to ψ∗

1 and ψ∗
2 . The values on the third

sheet of Γ̂ can be obtained by extending from the first sheet through the cut [−a, a] = l, where ψ2(λ) (as a
function on Γ0) changes its sign in accordance with (7.6). Therefore, the values of ψ1(λ) and ψ2(λ) on the
third sheet of Γ̂ are equal to ψ∗

1 and −ψ∗
2 . Analogously, they are equal to ψ1 and −ψ2 on the fourth sheet

of Γ̂.
Obviously, the functions ψ1(λ) and ψ2(λ) thus constructed on Γ̂ satisfy reduction (7.5), and the function

Ψ(λ) defined by them using (7.4) consequently satisfies the required reduction (7.2).

Theorem 5. Let the functions ψ1(λ) and ψ2(λ) have the following properties as functions on Γ0:

1. The asymptotic equalities

ψ1(λ, x, t) = (A + A1λ
−1 + · · · )e−iλx+2iλ2t, λ → ∞+,

ψ1(λ, x, t) = (B + B1λ
−1 + · · · )eiλx−2iλ2t, λ → ∞−,

ψ2(λ, x, t) = (C + C1λ
−1 + · · · )e−iλx+2iλ2t, λ → ∞+,

ψ2(λ, x, t) = (D + D1λ
−1 + · · · )eiλx−2iλ2t, λ → ∞−,

(7.7)

hold, where A, B, C, and D are unknown functions of x and t and where ∞+ and ∞− are two infinite

points on Γ0 on the respective upper and lower sheets.

2. The functions ψ1(λ) and ψ2(λ) are meromorphic on Γ \ {∞±} and have the nonspecial pole divisor

D = μ1 + · · · + μg

3. The function ψ1(λ) is single-valued on Γ0, and the function ψ2(λ) satisfies relation (7.5).

4. The values of ψ1(a) and ψ2(−a) are independent of x and t.

Then the function Ψ(λ) defined on Γ̂ by the functions ψ1(λ) and ψ2(λ) using formulas (7.4) and the

procedure described above satisfies both the generalized Riemann problem with the data Λ = Λ1 ⊕ Λ2

(see (7.1)) and reduction (7.2). Moreover, the first coefficient Φ0 of expansion (2.7) in the neighborhood of

the infinite point is given by formula (2.14), where A, B, C, and D are defined by equalities (7.7).

Proof. The proof of this theorem is simple, and we do not present it.

Hence, to construct finite-gap solutions of Eq. (2.1), it remains to construct functions ψ1(λ) and ψ2(λ),
λ ∈ Γ0, satisfying the conditions in Theorem 5.

We define canonical objects of the finite-gap integration on Γ0 (details of this material are given in [21]).
We select a canonical basis of the cycles ai and bi, i = 1, . . . , g, such that the cycle

∑
a = a1 + · · · + ag

passes around the cut [−a, a], i.e., coincides with the contour l.
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Let dUi(λ), i = 1, . . . , g, be the corresponding normalized basis of Abelian differentials (with the
normalization

∮
ai

dUj = δij) and B be the period matrix of the surface Γ0. Let

θ[α, β](z|B) =
∑

m∈Zg

eπi〈B(m+α),m+α〉+2πi〈z+β,m+α〉 (7.8)

be the Riemann theta function with the characteristics α, β ∈ Rg,

θ[0, 0](z|B) ≡ θ(z|B), z ∈ C
g.

We also define two normalized second-kind Abelian integrals (with zero a-periods) Ω1(λ) and Ω2(λ) by
their asymptotic forms at ∞±:

Ω1(λ) → ∓(λ + b + . . . ), Ω2(λ) → ±(2λ2 + c + . . . ), λ → ∞±. (7.9)

Let V, W ∈ Cg be the vectors of their b-periods.
The functions ψ1(λ) and ψ2(λ) are given by the standard formulas:

ψ1(λ) =
θ(U(λ) + Ω + D)

θ(U(λ) + D) θ(U(a) + Ω + D)
ei(Ω1(λ)−Ω1(a))x+i(Ω2(λ)−Ω2(a))t,

ψ2(λ) =
θ[0, n](U(λ) + Ω + D)

θ(U(λ) + D) θ[0, n](U(−a) + Ω + D)
ei(Ω1(λ)−Ω1(−a))x+i(Ω2(λ)−Ω2(−a))t,

(7.10)

where n = (1/2, 1/2, . . . , 1/2),

U(λ) =
(∫ λ

p0

dU1, . . . ,

∫ λ

p0

dUg

)
, Ω =

1
2π

(V x + Wt),

and D ∈ Cg is an arbitrary vector in general position that is an Abelian map of the divisor D up to the
vector of Riemann constants. It is easy to see that the function ψ2(λ) is not single-valued: passing the cycles
b1, . . . , bg, i.e., crossing the contour l, it changes sign as prescribed by the conditions in Theorem 5. The
function ψ2(λ) can be brought to a more convenient form if we take into account that the β-characteristics
reduces to only a shift of the argument of the theta function and that U(a) − U(−a) = n because

dU(λ∗) = −dU(λ),
∫
P

a

dU = 2n.

We have

ψ2(λ) =
θ(U(λ) + Ω + D + n)

θ(U(λ) + D) θ(U(a) + Ω + D)
ei(Ω1(λ)−Ω1(−a))x+i(Ω2(λ)−Ω2(−a))t. (7.11)

Further, if we take the branch point of the surface Γ0 as the initial integration point, then we obtain
the equality

Ωj(a) = Ωj(−a), (7.12)

because ∮
P

a

dΩj = 0, dΩj(λ∗) = −dΩj(λ), j = 1, 2.
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We thus construct the function Ψ(λ). The quantities A, B, C, and D in (7.7) are given by

A =
1

f(∞+)
θ(U(∞+) + Ω + D)ei(−b−Ω1(a))x+i(c−Ω2(a))t,

B =
1

f(∞−)
θ(U(∞+) + Ω + D + r)ei(b−Ω1(a))x+i(−c−Ω2(a))t,

C =
1

f(∞+)
θ(U(∞+) + Ω + D + n)ei(−b−Ω1(−a))x+i(c−Ω2(−a))t,

D = − 1
f(∞−)

θ(U(∞+) + Ω + D + n + r)ei(b−Ω1(−a))x+i(−c−Ω2(−a))t,

where f(s) = θ(U(s) + D) θ(U(a) + Ω + D), r =
∫∞−

∞+ dU , the integration is over a path on Γ0 crossing the
contour l, and the parameters b and c are defined by relations (7.9).

We clarify the negative sign in the expression for D. The point is that if the value of ψ2 on the first
sheet of Γ̂ is equal to B, then D is the value of this function on the second sheet of Γ̂ (see (7.4)); adding
the integral r along a path crossing the contour l to the arguments of the theta function yields the value
of ψ2(λ) at the infinite point of the third sheet of Γ̂ (because this path relates sheets 1 and 3 rather than 1
and 2). The values of ψ2(λ) on sheets 2 and 3 differ in sign.

We note that expressions (2.15) for the spins are invariant under the transformation A → αA, B → βB,
C → αC, D → βD (or, equivalently, Ψ can be multiplied from the right by an arbitrary diagonal matrix).
After appropriate simplifications using equality (7.12), we obtain the following theorem.

Theorem 6. The general finite-gap solutions for XXZ LL equation (2.1) are defined by formulas (2.15),
where

A = θ(Ω + D), B = θ(Ω + D + r), C = θ(Ω + D + n), D = −θ(Ω + D + r + n), (7.13)

n = (1/2, . . . , 1/2), D ∈ Cg, and Ω = (V x + Wt)/2π. Here, the theta function is defined by the Riemann

surface Γ0 given by

ω2 = (λ2 − a2)
2g∏

i=1

(λ − Ei),

whose cycle
∑

a = a1 + · · · + ag encircles the cut [−a, a], and

r =
∫ ∞−

∞+
dU,

where the integration path crosses the cycle
∑

a.

Remark 6. It is easy to show that if we select a canonical basis such that the contour l is l =∑g
i=1(βiai + αibi), αi, βi ∈ Z, then

A = θ(Ω + D), B = θ(Ω + D + r),

C = θ

[
α

2
,
β

2

]
(Ω + D), D = −θ

[
α

2
,
β

2

]
(Ω + D + r),

(7.14)

where the integration path crosses the contour l.
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Remark 7. We see that the formulas for solutions depend on the choice of the basis of cycles. It may
therefore seem that the solution is defined not only by the Riemann problem data Λ given by (7.1), i.e., by
the branch points of the divisors of the poles of ψ, but also by the canonical basis of cycles on Γ0 on which
it depends. We give a simple argument showing that this is not the case. In fact, although the formal
realization of the function Ψ depends on the choice of the basis of cycles, it is nevertheless obvious that Ψ
can be uniquely constructed using the data Λ. Indeed, let Ψ and Ψ̃ correspond to Λ. Then

ΨΨ̃−1 = ϕ(x, t)

(
γ 0

0 γ−1

)
, γ = const,

which follows from the holomorphicity of the function on C, normalization (2.12), and reduction (2.11).
We do not distinguish such functions (see Remark 2 in Sec. 1). Therefore, the solution of the LL equation
defined by Ψ using formulas (2.14) and (2.15) is unique. This simple argument also shows that the solution
defined by a hyperelliptic surface Γ0 depends only on the branch points of Γ0 and is independent of the
method for constructing the cuts between them.

Different choices of cuts and the basis of cycles on the surface Γ0 are convenient in different cases (see
Secs. 8–11 below). In such cases, we obtain the same solutions of the LL equation.

Remark 8. To find the vector of b-periods of Ω, we can conveniently use the following simple fact
(see, e.g., [25]). Let z be a local coordinate in a neighborhood of the point P0 ∈ Γ (z → 0 as P → P0)
and the basic holomorphic differentials be written in the form dU = f(z) dz in the neighborhood of P0.
Then the normalized second-kind Abelian integral with a single singularity at the point P0 of the form
Ω(P ) = z−n + O(1) as z → 0 has a vector of b-periods equal to

Ω = − 2πi

(n − 1)!
dn−1

dzn−1
f(z)

∣∣∣∣
z=0

. (7.15)

For the hyperelliptic surface Γ given by

ω2 =
2g+2∏

i=1

(λ − Ei)

with the normalized basis

dUi =
1
ω

g∑

j=1

cijλ
g−j , i = 1, . . . , g,

we find that the second-kind Abelian integrals Ω1(P ) and Ω2(P ) with singularities (7.9) have the vectors
of b-periods V and W given by

Vk = −4πck,1, Wk = 8πi

(
ck,2 +

ck,1

2

2g+2∑

i=1

Ei

)
, k = 1, . . . , g. (7.16)

8. Selection of real finite-gap solutions

We select the real solutions among the general finite-gap solutions obtained in Sec. 7. We do not
present the rather cumbersome rigorous proof that we have found all real solutions (this proof is based on
the requirement to satisfy reduction (2.17)). Instead, we use a technique originally proposed in [27] for the
sine-Gordon equation and based on analyzing only the final formulas for the solutions in terms of Riemann
theta functions.

We first note a simple algebraic fact, which can be easily verified by direct calculation.
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Fig. 7. The basis of cycles s on the Riemann surface Γep: the parts of cycles on the lower sheet of

the Riemann surface are depicted by dashed lines.

Lemma 3. Formulas (2.15) define the real solution of equation (2.1) if and only if the relation

DC̄ = −BĀ (8.1)

is satisfied.

The function Ψ corresponding to real solutions of Eq. (2.1) satisfies reduction (2.17). Consequently,
the surface Γ0 has a conjugation anti-involution. The second restriction on the solution parameters (on the
vector D in this case) follows from Remark 2 in Sec. 1, Theorem 6, and Lemma 3:

|γ|4 =
θ(Ω + D + n + r)θ(Ω + D + n)

θ(Ω + D + r)θ(Ω + D + n)
= const > 0, (8.2)

i.e., |γ|4 is a positive constant independent of x and t.
We present a detailed analysis of these two constraints first in the case of an anisotropy of the easy-

plane type (ε < 0). We consider the surface Γep (shown together with the basis of cycles in Fig. 7). Let
there be μ+ν more pairs of the branch points on the real axis in addition to the pair of the branch points a

and −a, let μ pairs of them belong to the segment [−a, a], and let Γep have g−μ−ν more pairs of conjugate
branch points.

The conjugation anti-involution τ(λ, ω) = (λ̄, ω̄), which does not transpose the sheets of Γep, acts on
these cycles as

ai = τai, bi = −τbi, i = 1, . . . , μ,

ai = −τai, bi = τbi, i = μ + 1, . . . μ + ν,

ai = −τai, bi = τbi + τai, i = μ + ν + 1, . . . , g

(8.3)

(the equality holds in the homology group H1(Γ, Z)), the normalized holomorphic differentials are conse-
quently transformed under the anti-involution τ according to the rule

τ∗dUi(λ) = dUi(τ(λ)) = dUi(λ̄) = dUi(λ), i = 1, . . . , μ,

τ∗dUi(λ) = dUi(τ(λ)) = dUi(λ̄) = −dUi(λ), i = μ + 1, . . . , g.
(8.4)

The period matrix therefore has the following structure:

ReBij = 0 for i, j = 1, . . . , μ, for i = μ+1, . . . , μ+ν and j = μ+1, . . . , g, and for i, j = μ+ν+1, . . . , g,
i �= j,

ReBij = 0 for i = 1, . . . , μ and j = μ + 1, . . . , g, and
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ReBii = −1/2 for i = μ + ν + 1, . . . , g.

We let z =
(

z′

z′′

)
, z′ ∈ Cμ, z′ ∈ Cg−μ, denote a g-dimensional vector, where z′ are the first μ coordinates of

z and z′′ are the last g − μ coordinates. The theta function defined by the matrix B given above has the
symmetry

θ(z) = θ

(
z′

z′′

)
= θ

(
−z̄′

z̄′′ + λ

)
, λ =

1
2
( 0, . . . , 0︸ ︷︷ ︸

ν

, 1, . . . , 1), λ ∈ R
g−μ. (8.5)

It is easy to verify that the components of the vector Ω =
(

Ω′

Ω′′

)
satisfy the conditions Re Ω′ = 0 and

Im Ω′′ = 0 and and the integral r calculated along the path s, τs = s (see Fig. 7), is equal to

r =
(

r′

r′′

)
=
∫

s

dU(λ) =
∫

τs=s

dU(λ̄) =
(

r̄′

−r̄′′

)
, Im r′ = 0, Re r′′ = 0. (8.6)

Using relation (8.5), we rewrite condition (8.2) as

|γ|4 =
θ
(

Ω′+D′+n′+r′

Ω′′+D′′+n′′+r′′

)
θ
( Ω′−D′

+n′

Ω′′+D′′
+n′′+λ

)

θ
(

Ω′+D′+r′

Ω′′+D′′+r′′

)
θ
( Ω′−D′′

Ω′′+D′′
+λ

) = const > 0, (8.7)

where D =
(D′

D′′

)
and n =

(
n′

n′′

)
. This can be satisfied only if

(
D′ + n′ + r′

D′′ + n′′ + r′′

)
=
(

−D ′

D ′′ + λ

)
+ M + BN, M, N ∈ Z

g, (8.8)

which implies N = 0, ν = 0, λ = n′′,

D′ = D′
0 −

1
2
(r′ + n′ + δ), ReD′

0 = 0, δ ∈ Z
μ/2Z

μ,

D′′ = D′′
0 − 1

2
r′′, ImD′′

0 = 0,

(8.9)

where the vectors D′
0 and D′′

0 are arbitrary. In this case, |γ|4 = 1.
Therefore, the surface Γep is described by the equation

ω2 = (λ2 − a2)
2∏

j=1

(λ − ej)
g−μ∏

i=1

(−ci + λ)(λ − c̄i),

Im ci �= 0, ej ∈ R, |ej | < a.

(8.10)

Moreover, we have 2μ topologically different solution components (which cannot be transformed into each
other during the dynamics with respect to the dynamical variables). These components correspond to the
2μ different possible choices of the vector δ of zeros and ones in (8.9).

Remark 9. Using the addition theorem for theta functions (see, e.g., [25]),

θ(z1|B) θ(z2|B) =
∑

2α∈Zg/2Zg

θ[α, 0](z1 + z2|2B) θ[α, 0](z1 − z2|2B), (8.11)

and formulas (2.15) and (7.13), we can easily show that solutions defined by the vectors δ1 ∈ Zg and
δ2 = 2n′ − δ1 differ only by the transformation (S1, S2, S3) → (S1,−S2,−S3) reducible to the choice of
axes. We do not distinguish these solutions (although they evolve differently in the presence of an external
field; see Sec. 3). Consequently, the number of components of solutions is in fact halved and is equal to
2μ − 1.
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Fig. 8. The Riemann surface Γea.

The easy-axis case (ε > 0) can be considered similarly. The corresponding Riemann surface Γea is
shown in Fig. 8. In addition to the points −a and a, this surface has ν more pairs of conjugate branch
points and g−ν pairs of real branch points. The equalities

ai = −τai, i = 1, . . . , g, bi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τbi − τai +
g∑

k=1

τak, i = 1, . . . , ν,

τbi +
g∑

k=1

τak, i = ν + 1, . . . , g,

B = −B̄ + J, Jij = −1, i �= j, Jii =

⎧
⎨

⎩
0, i = 1, . . . , ν,

−1, i = ν + 1, . . . , g,

θ(z) = θ(z̄ + λ), λ =
1
2
(0, . . . , 0︸ ︷︷ ︸

ν

, 1, . . . , 1);

r0 = −r̄0 − 2n, n =
1
2
(1, 1, . . . , 1), Re r0 = −n,

where r0 denotes the integral r along the path s in Fig. 8 and Ω ∈ Rg. Similarly to the easy-plane case,
condition (8.2) necessarily leads to the equality

D + n + r = D̄ + λ + M + BN, M, N ∈ Z
g, (8.12)

and in this case,

|γ|4 = e2πi〈N,n〉, 〈N, n〉 =
g∑

i=1

Nini =
1
2

g∑

i=1

Ni. (8.13)

Two cases are possible.

1. If ν = g, λ = 0, N = 0, then |γ|4 = 1. The vector D is determined by

D = D0 −
1
2
r, D0 ∈ R. (8.14)

2. Let ν < g. We take the real part of (8.12) and obtain

0 = λ + M + ReBN = λ + M +
1
2
JN, −M = λ − 2〈N, n〉n +

1
2
LN, (8.15)
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where
L = diag(1, . . . , 1︸ ︷︷ ︸

ν

, 0, . . . , 0).

In the second equality in (8.15), a vector with integer-valued coordinates is in the left-hand side, and we
have (LN)i = 0 and λi = 1/2 for i = ν + 1, . . . , g in the right-hand side. Consequently, the number 〈N, n〉
is half-integer. As a result, we obtain |γ|4 = −1 from expression (8.13), and there is no real solution.

Hence, the surface Γea defining the real solutions is given by

ω2 = (λ2 − a2)
g∏

i=1

(λ − ci)(λ − c̄i), Im ci �= 0, (8.16)

and the following theorem is thus proved.

Theorem 7. For the finite-gap solutions of XXZ LL equation (2.1) given in Theorem 6 to be real, it

is necessary and sufficient that the Riemann surfaces Γep and Γea be given by the respective Eqs. (8.10)
and (8.16), the vector D be defined by the respective conditions (8.9) and (8.14), where r =

∫
s dU , and the

integration paths s be as shown in Figs. 7 and 8 for ε < 0 and ε > 0.

9. Simplest finite-gap solutions in terms of elliptic functions

The simplest nondegenerate finite-gap solution is the solution in the case g = 1. We consider the
surfaces Γep (Figs. 9a and 9b) and Γea (Fig. 10).

As already mentioned in Remark 7 in Sec. 7, although the formal representations of the finite-gap
solutions of the LL equation do depend on the choice of cuts and a basis of cycles on the surface Γ0, the
solutions themselves are defined only by the branch points of Γ0. In what follows, it is convenient to use
different representations of Γ0. In this regard, we note that the surfaces Γep with the basis of cycles shown in
Figs. 9a and 9b, for instance, are equivalent to the surfaces with the basis shown in the respective Figs. 11a
and 11b.

In all cases, there is the only holomorphic differential

du(λ) = N
dλ√

(λ2 − a2)(λ − E1)(λ − E2)
,

where (E1, E2) = (c, c̄) or (E1, E2) = (e1, e2). The constant N can be found from the normalization
condition

∮
a1

dU = 1. The period of the curve Γ0 equals B =
∮

b1
dU . The periods V and W of the

second-kind integrals are defined by equalities (7.16), whence

V = −4πiN, W = 4πiN(c + c̄).

The integral r = 2s0 can be calculated directly. Hence, the solution �S(x, t) = �QX(x− vt) of genus g = 1, as
usual, has the form of a cnoidal wave (a periodic running wave). For the surfaces shown in Figs. 9a and 10,
we obtain the wave

A = θ[0, 0](2iN(−x + vt) + d − s0|B),

B = θ[0, 0](2iN(−x + vt) + d0 + s0|B),

C = θ

[
0,

1
2

]
(2iN(−x + vt) + d − s0|B),

D = −θ

[
0,

1
2

]
(2iN(−x + vt) + d + s0|B), d ∈ R

(9.1)

178



a b

Fig. 9. The Riemann surfaces Γep of genus 1 with the basis of cycles.

Fig. 10. The Riemann surface Γea of genus 1 with the basis of cycles.

with the velocity
v = c + c̄, (9.2)

and the real period in x

X =
i

2N
. (9.3)

Using Γep (Fig. 9b), we construct solutions �Q+
X(x − vt) and �Q−

X(x − vt) corresponding to different
choices of δ ∈ Z/2R in formula (8.9). It follows from Remark 9 in Sec. 8 that these solutions differ by the
trivial transformation (S1, S2, S3) → (S2,−S2,−S3), and �Q+

X(x− vt) is also given by expressions (9.1) with
d = d0 + 1/4, where d0 is an arbitrary imaginary number. This is a cnoidal wave with the velocity

v = e1 + e2 (9.4)

and the real period

X = i
B

N
, N ∈ R. (9.5)

Using formula (8.11), we easily obtain the representation for �Q:

Q1 =
θ[0, 0](z|2B) θ[0, 0](2s0|2B)

θ[0, 1/2](z|2B)θ[0, 1/2](2s0|2B)
=

θ3(z) θ3(2s0)
θ4(z) θ4(2s0)

,

Q2 = i
θ[1/2, 0](z|2B)θ[1/2, 0](2s0|2B)
θ[0, 1/2](z|2B)θ[0, 1/2](2s0|2B)

= i
θ2(z) θ2(2s0)
θ4(z) θ4(2s0)

,

Q3 =
θ[1/2, 1/2](z|2B)θ[1/2, 1/2](2s0|2B)

θ[0, 1/2](z|2B)θ[0, 1/2](2s0|2B)
=

θ1(z) θ1(2s0)
θ4(z) θ4(2s0)

,

(9.6)

where z = 4iN(−x + vt) + 2d and

θ1(z) = θ

[
1
2
,
1
2

]
(z), θ2(z) = θ

[
1
2
, 0
]
(z), θ3(z) = θ[0, 0](z), θ4(z) = θ

[
0,

1
2

]
(z)

179



a b

Fig. 11. The Riemann surfaces Γep equivalent to the surfaces shown in Fig. 9 with the basis of cycles.

a b

Fig. 12. (a) Symmetric surfaces Γep and (b) symmetric surfaces Γea.

are Jacobi theta functions [29].
We note that the solutions �QX(x − vt) = (Q1, Q2, Q3) and �Q±

X(x − vt) = (Q±
1 , Q±

2 , Q±
3 ) satisfy the

conditions

�QX

(
x +

X

2
− vt

)
= (Q1,−Q2,−Q3), �Q±

X

(
x +

X

2
− vt

)
= (−Q±

1 ,−Q±
2 , Q±

3 ).

The solution �QX(x − vt) is constructed using the Riemann surface defined by the “free” boundaries of the
domains c and c̄, and �Q±

X(x−vt) is similarly defined by the boundaries of the domains e1 and e2. Using the
curve Γ0 with the boundaries of the domains −c and −c̄, we construct the solution �QX(−x− vt), and using
Γ0 with the boundaries of the domains −e1 and −e2, we construct the solution �Q±

X(−x − vt)) describing
exactly the same wave moving toward the wave �QX(x − vt).

Formulas (9.2) and (9.4) demonstrate that if c = −c̄ (if e1 = −e2), then we obtain stationary periodic
solutions with periods (9.3) and (9.5), denoted by �QX(x) (as �Q±

X(x)).
Certainly, solutions of type (9.1) and (9.6) can be easily found by direct substitution of �S(x − vt) in

formula (2.1). But we note that in addition to solutions (9.1) and (9.6), we have found the corresponding Ψ
functions, which allow applying the “dressing” procedure (see Sec. 4), i.e., constructing solutions describing
the interaction of the cnoidal waves �Q with solitons, breathers, and domain walls.

The solution constructed using the curve Γ0 of genus g = 2 is a two-phase solution describing the
interaction of two cnoidal waves �QX1(x − v1t) and �QX2(x − v2t). In the general case, it is expressed in
terms of two-dimensional Riemann theta functions. It was shown in [30], [31] that in some cases, multiphase
solutions that are not degenerate (i.e., not reducible to the interaction of the cnoidal waves and solitons)
can also be expressed in terms of elliptic functions. Several different methods for selecting solutions written
in terms of lower-dimensional elliptic and theta functions among general finite-gap solutions were proposed
in [27], [30], [32], [33]. A scheme based on reducing the multidimensional theta functions corresponding to
Riemann surfaces with rich automorphism groups was given in [32].

We consider the simplest such surfaces of genera g = 2 and g = 3. The curves Γep and Γea (see Fig. 12)
given by

ω2 = (λ2 − a2)(λ2 − c2)(λ2 − c̄2) (9.7)
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have the involution φ : (λ, ω) → (−λ,−ω),5 i.e., the surface Γ0 is a cover of the curve Γ0/φ of genus g = 1.
This is a branched two-sheet cover. The general scheme for reducing the theta function of such covers is
given in the appendix. In the notation in the appendix, Γ̂ = Ĉ, the surface C = Ĉ/ϕ is given by

ω2
1 = z(z − a2)(z − c2)(z − c̄2), (9.8)

and the fixed points of the involution φ are λ = ∞ on both sheets (n = 1). The cycles are A1 = a1, B1 = b1,
A2 = a1′ , and B2 = b1′ . The normalized holomorphic differentials of Ĉ are

dU1 = u1 =
−αλ + β

ω
dλ dU2 = u1′ =

−αλ − β

ω
dλ.

The normalized holomorphic differential v of the curve C given by (9.8) is

v = u1 − u1′ =
2β

ω
dλ =

β

ω1
dz, z = λ2. (9.9)

The normalized Prym differential

w = u1 + u1′ = −2αλ

ω
dλ = − α

ω2
dz (9.10)

is also an elliptic differential. It is defined on the curve Cπ given by

ω2
2 = (z − a2)(z − c2)(z − c̄2). (9.11)

The curves C and Cπ (see Fig. 13) in the easy-plane case are shown together with the basis corresponding
to the differentials v and w (the figures for the curve Γea are quite similar).

The constants α and β can be found from the normalization conditions

∮

A

v = 1,

∮

A

w = 1, (9.12)

where we integrate over the A cycles of the respective surfaces C given by (9.8) and Cπ given by (9.11).
The period matrix of the curve Ĉ is (see formula (A.4) in the appendix)

B =
1
2

(
Π + T Π − T

Π − T Π + T

)
, T =

∮

B

v, Π =
∮

B

w. (9.13)

It defines the theta function represented according to relation (A.8) in terms of the one-dimensional theta
functions:

θ((z1, z2)|B) = θ[0, 0](z1 + z2|2Π) θ[0, 0](z1 − z2|2T ) +

+ θ

[
1
2
, 0
]
(z1 + z2|2Π)θ

[
1
2
, 0
]
(z1 − z2|2T ) =

= θ3(z1 + z2)|2Π) θ3(z1 − z2)|2T ) + θ2(z1 + z2|2Π) θ2(z1 − z2)|2T ), (9.14)

5We note that φ does not transpose the sheets of Γ0.
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a b

Fig. 13. (a) The curve C and (b) the curve Cπ.

where θ3 and θ2 are the Jacobi theta functions. The quantities V , W , and r0 (see Theorem 6 in Sec. 7)
also have a certain symmetry. It follows from identity (7.16) that

V = 4πiα

(
1
1

)
, W = 8πiβ

(
1

−1

)
. (9.15)

For the integral r0, we have

r0 =
∫

s

d�U =
∫

s

(
u1

u1′

)
=
∫

φs

(
φ(u1)
φ(u1′)

)
= −

∫

φs

(
u1′

u1

)
= −

∫

s

(
u1′

u1

)
,

whence

r0 = s0

(
1
−1

)
, s0 =

∫

l

w, (9.16)

where the contour l is shown in Fig. 13a. Substituting relations (9.14)–(9.16) in (7.13), we obtain the final
expressions for the solution �S(x, t) = �QX,τ (x, t) (see (2.15)):

A = θ3(z1|2Π) θ3(z2 − s0|2T ) + θ2(z1|2Π) θ2(z2 − s0|2Π),

B = θ3(z1|2Π) θ3(z2 + s0|2T ) + θ2(z1|2Π) θ2(z2 + s0|2Π),

C = θ3(z1|2Π) θ3(z2 − s0|2T )− θ2(z1|2Π) θ2(z2 − s0|2Π),

D = −θ3(z1|2Π) θ3(z2 + s0|2T ) + θ2(z1|2Π) θ2(z2 + s0|2Π),

(9.17)

where z1 = 4iαx + d1, z2 = 8iβt + d2, s0 is integral (9.16), and the quantities d1, d2 ∈ R are arbitrary. In
deriving this formula, we take condition (8.9) (μ = 0) and the fact that n = (1/2, 1/2) into account. The
quantities α and β are defined from formulas (9.9), (9.10), and (9.12), where v and w are the differentials
of the curves C given by (9.8) and Cπ given by (9.11), whose periods are given by (9.13).

The solution �QX,τ (x, t) given by (9.15) is a standing wave periodic in x with the period X = 1/4iα and
periodic in t with the period τ = 1/8iβ. It describes the nontrivial interaction of two waves �Q(x − vt) and
�Q(−x− vt) (see (9.2)), running towards each other with equal velocities. Each of the quantities A±C and
B ±D is just the product of two functions with one of them depending only on x and the other depending
only on t. In that sense, solution (9.17) is an analogue of the known Lamb ansatz [31] for the sine-Gordon
equation.

Another interesting solution in the easy-plane case corresponds to Γep (see Fig. 14). This solution can
be analyzed quite similarly to the case considered above. As a result, we obtain four (2μ = 4) standing
waves describing the interactions of various pairs of waves �Q±

X(x− vt) and �Q±
X(−x− vt) (we obviously have

four combinations) given by expressions (9.17) with

z1 = 4iαx + d1 +
δ1

2
, z2 = 8iβt + d2 +

δ2

2
,

182



Fig. 14. The symmetric surface Γep of genus 2.

where d1,2 are arbitrary numbers, Re d1,2 = 0, and δ1,2 can take the values 0 and 1.
It follows from Remark 9 in Sec. 8 that only two solutions are essentially different, for instance, those

corresponding to the choices δ = (0, 0) or δ = (1, 0), i.e., solutions describing the interaction of the waves
Q+ and Q+ or Q+ and Q−. Two other standing waves differ from them trivially.

We also note that the solution describing the interaction of the stationary wave �Q(x) with the cnoidal
wave �Q(x − vt) corresponds to the genus-2 surface given by the equation

ω2 = (λ2 − a2)(λ − c)(λ − c̄)(λ2 + d2), d ∈ R,

which does not have the additional symmetry. This interaction is therefore more complicated and is de-
scribed by two-dimensional theta functions.

Finally, we consider the special solution of genus g = 3 corresponding to the surface Ĉ given by

ω2 = (λ2 − a2)(λ2 − c2)(λ2 − c̄2)(λ2 + d2), d ∈ R. (9.18)

As can be seen from Fig. 15 (everything is quite similar in the easy-axis case), the solution corresponding
to this surface describes the interaction of the three waves �Q(x), �Q(x− vt), and �Q(−x− vt). Surface (9.18)
has the involution φ : (λ, ω) → (−λ, ω), which does not transpose the infinite points ∞+ and ∞− and acts
on the basis of the homology group H1(Ĉ, Z) (see Fig. 15) as shown in the appendix. Here, C = Ĉ/φ, i.e.,
the surface C is given by

ω2
1 = (z − a2)(z − c2)(z − c̄2)(z + d2), (9.19)

where ĝ = 3, g = 1, n = 2, and the fixed points are 0 and ∞. The normalized differential of the surface C

is
v = u1 − u1′ =

αλ

ω
dλ =

α

2ω1
dz, z = λ2,

and the normalized Prym differentials are given by

w1 = u1 + u1′ =
β1λ

2 + γ1

ω
dλ =

β1z + γ1

2ω2
dz,

w2 = u2 =
β2λ

2 + γ2

ω
dλ =

β2z + γ2

2ω2
dz,

(9.20)

where ω2
2 = z(z − a2)(z − c2)(z − c̄2)(z + d2). It hence follows with equality (7.16) taken into account that

the vectors V and W are

V = −2πi

⎛

⎜⎜⎝

β1

2β2

β1

⎞

⎟⎟⎠ , W = 4πi

⎛

⎜⎜⎝

α

0

α

⎞

⎟⎟⎠ . (9.21)

According to (A.4), for the b-period matrix, we obtain

B =

⎛

⎜⎜⎝

(Π11 + T )/2 Π12 (Π11 − T )/2

Π12 2Π22 Π12

(Π11 − T )/2 Π12 (Π11 + T )/2

⎞

⎟⎟⎠ . (9.22)
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Fig. 15

An analysis similar to (9.16) shows that the integral

r0 =
∫

s

d�U =
∫

s

⎛

⎜⎜⎝

u1

u2

u1′

⎞

⎟⎟⎠ = −
∫

φs

⎛

⎜⎜⎝

u1′

u2

u1

⎞

⎟⎟⎠ = −
∫

s

⎛

⎜⎜⎝

u1′

u2

u1

⎞

⎟⎟⎠−
∫

−2b2+a2

⎛

⎜⎜⎝

u1′

u2

u1

⎞

⎟⎟⎠

(the path s is shown in Fig. 15) is equal to

r0 =

⎛

⎜⎜⎝

s0

−1/2

s0

⎞

⎟⎟⎠+

⎛

⎜⎜⎝

Π12

−2Π22

Π12

⎞

⎟⎟⎠ , s0 =
∫ 0

∞
v. (9.23)

Performing the necessary calculations (see (A.8)), we finally find that for any real d1, d2, and d3, the
solution of Eq. (2.1) given by formulas (2.15) is determined by the quantities

A = θ

[(
0,

1
2

)
, (0, 0)

](
z1

z2

∣∣∣∣2Π
)

θ[0, 0](z3 − s0|2T ) +

+ θ

[(
1
2
,
1
2

)
, (0, 0)

](
z1

z2

∣∣∣∣2Π
)

θ

[
1
2
, 0
]
(z3 − s0|2T ),

B = θ

[(
0,

1
2

)
, (0, 0)

](
z1

z2

∣∣∣∣2Π
)

θ[0, 0](z3 + s0|2T ) +

+ θ

[(
1
2
,
1
2

)
, (0, 0)

](
z1

z2

∣∣∣∣2Π
)

θ

[
1
2
, 0
]
(z3 + s0|2T ),

C = θ

[(
0,

1
2

)
,

(
0,

1
2

)](
z1

z2

∣∣∣∣2Π
)

θ[0, 0](z3 − s0|2T ) +

+
[(

1
2
,
1
2

)
,

(
0,

1
2

)](
z1

z2

∣∣∣∣2Π
)

θ

[
1
2
, 0
]
(z3 − s0|2T ),

D = θ

[(
0,

1
2

)
,

(
0,

1
2

)](
z1

z2

∣∣∣∣2Π
)

θ[0, 0](z3 + s0|2T ) +

+ θ

[(
1
2
,
1
2

)
,

(
0,

1
2

)](
z1

z2

∣∣∣∣2Π
)

θ

[
1
2
, 0
]
(z3 + s0|2T ).

(9.24)
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Fig. 16. Degeneration into the multisoliton solution: the surface Γep.

Here,
z1 = −2iβ1x + d1, z2 = −2iβ2x + d2, z3 = 4iαt + d3.

This solution is periodic with the period τ = 1/4iα in t, and the dependence on x is complicated and
nonperiodic.

Similarly, for any curve of genus ĝ = 2g+n−1 having an involution with the fixed points ∞+ and ∞−,
the dynamics in x is confined to the (g+n−1)-dimensional Prymian Π, and the dynamics in t is confined
to the g-dimensional Jacobian T .

10. The N -soliton solutions in the “easy plane” case

We consider the curve Γep shown in Fig. 16 together with the basis of cycles and subject the branch
points Ej , j = 1, . . . , 2g, to the limit transition

E2k−1, E2k → λk ∈ (−a, a), k = 1, . . . , g, λ1 < λ2 < · · ·λg. (10.1)

In this case, the curve Γep degenerates into a curve of genus zero (the Riemann surface of the function√
λ2 − a2), and the holomorphic differentials dUν(λ) degenerate into differentials with singularities at the

points λk:

dUν(λ) → dU0
ν (λ) =

ϕ0
ν(λ)√

λ2 − a2
∏g

k=1(λ − λk)
dλ,

where

ϕ0
ν(λ) =

g∑

k=1

c0,k
ν λg−k.

The polynomials ϕ0
ν(λ) are defined by the normalization conditions

δν
μ =

∫

aμ

dU0
ν (λ) = −2πi res

(
dU0

ν (λ); λμ

)
=

= − 2πi√
λ2

μ − a2
ϕ0

ν(λμ)
1∏

k �=μ(λμ − λk)
,

and consequently

ϕ0
ν(λ) = c0,1

ν

∏

k �=ν

(λ − λk), c0,1
ν =

i
√

λ2
ν − a2

2π
= −κν

2π
, κν =

√
a2 − λ2

ν > 0. (10.2)

Therefore, the differentials dU0
ν (λ) can be written in the form

dU0
ν (λ) = − 1

2π

κν√
λ2 − a2(λ − λν)

dλ. (10.3)
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By virtue of (10.3), the limit values for the coefficients c0,2
ν are

c0,2
ν = −c0,1

ν

∑

k �=ν

λk =
1
2π

κν

∑

k �=ν

λk, ν = 1, . . . , g.

Hence, for the components of the vectors V and W , we have

Vν → V 0
ν = −4πic0,1

ν = 2iκν ,

Wν → W 0
ν = 8πi

(
c0,1
ν

g∑

k=1

λk + c0,2
ν

)
= −4iκνλν .

(10.4)

We now proceed to calculate the limit values for the b-period matrix of the basis d�U . Let ν > μ. Then

Bνμ → B0
νμ = 2

∫ a

λν

dU0
μ = − i

π
log

γμ − γν

γμ + γν
, γν =

√
a − λν

a + λν
> 0. (10.5)

By the symmetry of the matrix B for ν < μ, from (10.5), we obtain

B0
νμ = − i

π
log

γν − γμ

γν + γμ
. (10.6)

for B0
νμ. The diagonal elements of B do not have finite limits. Simple calculations show that

Re(iBνν) =
1
π

log |E2ν+1 − E2ν | + O(1),

i.e.,
Re(iBνν) → −∞ (10.7)

for the considered limit.
It remains to discuss the behavior of the vectors r and D. For the vector r, we have

rν → 1
2πi

r0
ν + 1, r0

ν = −4πi

∫ ∞+

a

dUν(λ) = −2 log
iγν + 1
iγν − 1

. (10.8)

We note that Re r0
ν = 0. The vector D is a free parameter, and we can prescribe its behavior at limit (10.1)

however we like. Let
Dν =

1
2
Bνν +

1
2πi

η0
ν + o(1), (10.9)

where η0
ν are still arbitrary complex numbers. This completes the calculations of the limit values for all

parameters in formulas (7.13), and we can now write the limit expressions for the corresponding solutions
of the LL equation.

We represent the exponent in the definition of the series of the function θ(Ω + D + lr + kn) at l = 0, 1
and k = 0, 1 in the form

πi

g∑

ν=1

Bννmν(mν + 1) + 2πi
∑

ν>μ

Bνμmνmμ +

+
g∑

ν=1

mν

(
Vνx + Wνt + η0

ν + lr0
ν + kπi + o(1)

)
.
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At limit (10.1) by virtue of (10.7), only terms corresponding to the vectors m from the set of vertices {0,−1}g

of the cube [0,−1]g remain in the total infinite sum included in the definition of θ(Ω + D + lr + kn).
Therefore, taking formulas (10.4)–(10.8) into account, we conclude that in limit (10.1), (10.9), we have
θ(Ω + D + lr + kn) → θl

k(x.t), where

θl
k(x, t) =

∑

m∈{0,−1}g

exp
{∑

ν>μ

log
∣∣∣∣
γν − γμ

γν + γμ

∣∣∣∣
2

mνmμ

}
+

+
g∑

ν=1

mν(−2κνx + 4κνλνt + η0
ν + lr0

ν + kπi). (10.10)

The solutions of the LL equation obtained as a result of taking the considered limit are described by the
formulas

A = θ0
0(x, t), B = θ1

0(x, t), C = θ0
1(x, t), D = −θ1

1(x, t). (10.11)

The conditions for the vector η0 ensuring the realness of solution (10.11) are the last to be explored.
Because all the quantities γν , κν , and λγ are real and r0

ν are purely imaginary, conjugating θl
k(x, t) means

only simply replacing η0
ν with η0

ν and r0
ν with −r0

ν in the right-hand side of (10.10). Hence, it is easy to
understand that relation (8.1) in the considered case is equivalent to the requirement

η0
ν − η0

ν = πi + r0
ν + 2πiz, z = 0,−1. (10.12)

Therefore, formulas (10.10) and (10.11) under condition (10.12) describe real solutions of the LL
equation that can be parameterized by 2g real parameters (λγ , Re ην), ν = 1, . . . , g. For g = 1, we obtain
the simple soliton constructed above in Sec. 5 by the “dressing” method:

θl
k = 1 + e−2κx+4κλt−η0−lr0−πik,

and consequently

S1(x, t) = − tanh
(
2
√

a2 − λ2(x − 2λt) + Δ
)
,

S2(x, t) = ∓λ

a

1
cosh

(
2
√

a2 − λ2(κ − 2λt) + Δ)
,

S3(x, t) = ±
√

a2 − λ2

a

1
cosh(2κx − 4κλt + Δ)

,

(10.13)

where Δ = −Re η0 and the signs plus in S3 and minus in S2 correspond to the choice z = −1 in (10.12). For
g > 1, formulas (10.10) and (10.11) describe the processes of interactions between g simple solitons (10.13).
A simple standard analysis (see, e.g., [34]) of the sum in the right-hand side of (10.10) as t → ±∞ with
x − 2λjt = const shows that the jth soliton with the velocity λj and phase Δ−

j as t → −∞ has the same
velocity λj but the phase

Δ+
j = Δ−

j + 2
g∑

ν=j+1

log
∣∣∣∣
γj − γν

γj + γν

∣∣∣∣− 2
j−1∑

ν=1

log
∣∣∣∣
γj − γν

γj + γν

∣∣∣∣

as t → +∞.
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Fig. 17. The surface Γep in the case of ptl degeneration: complex branch points.

11. Interaction of a simple soliton with a cnoidal wave: The
“easy-plane” case

We consider the “partial” degeneration of the curve Γep in the preceding section assuming g = 2:

E1 → E2 → λ0 ∈ (−a, a), E3 = Ē4 ≡ c, Im c �= 0. (11.1)

The “limit” curve is shown in Fig. 17. Unlike the situation in Sec. 10, the genus of the limiting curve does
not reduce to zero. Also, one of the two holomorphic differentials remains holomorphic in this limit:

dU1(λ) → dU0
1 (λ) =

c0,1
1√

(λ2 − a2)(λ − c)(λ − c̄)
dλ,

dU2(λ) → dU0
2 (λ) =

c0,1
2 λ + c0,2

2

(λ − λ0)
√

(λ2 − a2)(λ − c)(λ − c̄)
dλ,

(11.2)

The normalization conditions in this limit are

c0,1
1 =

(∫

a1

dλ√
(λ2 − a2)(λ − c)(λ − c̄)

)−1

,

c0,1
2 λ0 + c0,2

2 = − 1
2πi

√
(λ2

0 − a2)(λ0 − c)(λ0 − c̄),

∫

a1

c0,1
2 λ + c0,2

2

(λ − λ0)
√

(λ2
0 − a2)(λ0 − c)(λ0 − c̄)

dλ = 0.

(11.3)

We hence obtain the representations for the components of the vectors V and W

V1 = 4πiN, V2 = −2iκ̂0,

W1 = −4πiNv, W2 = −4iκ̂0λ̂0,
(11.4)

where

N = c0,1
1 =

(∫

a1

dλ√
(λ2 − a2)(λ − c)(λ − c̄)

)−1

, v = c + c̄, λ̂0 = λ0 +
v

2
+ Λ0,

Λ0 = −
(∫

a1

λdλ

(λ − λ0)
√

(λ2 − a2)(λ − c)(λ − c̄)

)
×

×
(∫

a1

dλ

(λ − λ0)
√

(λ2 − a2)(λ − c)(λ − c̄)

)−1

,

κ̂0 = −2πc0,1
2 = 2π

1
2πi

√
(λ2

0 − a2)(λ0 − c)(λ0 − c̄)
λ0 + Λ0

.
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In the limit, the vector r and the elements B1j of the b-period matrix are also expressed in terms of elliptic
integrals:

r → r0 =
∫

s

dU0(λ), B0
1j =

∫

b1

dU0
j (λ), j = 1, 2.

Unlike the situation in Sec. 10, only the element B22 of the b-period matrix tends to i∞. Therefore, a
condition of type (10.9) can be naturally imposed on the second component of the vector D, keeping the
first component bounded:

D1 ≡ d0, D2 =
1

2πi
η0 +

1
2
B22 + o(1), d0, η0 ∈ C. (11.5)

As a result, in this limit, the original sum over m ∈ Z
2 in the series for θ(Ω +D+ lr + kn) is replaced with

the sum over m ∈ Z × {0,−1}, and we obtain the formula for θl
k(x, t) = lim θ(Ω + D + lr + m):

θl
k(x, t) = θ3

(
2iN(x − vt) + d0 + lr0

1 +
k

2

∣∣∣∣B
0
11

)
+

+ θ3

(
2iN(x − vt) + d0 + lr0

1 +
k

2
− B0

12

∣∣∣∣B
0
11

)
e−2bκ0(x−2λ̂0t)−η0−2πilr0

2−kπi. (11.6)

We now discuss the problem of real solutions. The conjugation anti-involution τ in the considered
realization of the curve Γep transposes the sheets and acts on the cycles aν and b1 as τaν = aν , ν = 1, 2,
and τb1 = −b1 + a1. Using the same arguments as in Sec. 8, we conclude that all cj

ν are real and the
quantities N , v, κ̂0, and λ̂0 are consequently also real. For the b-period matrix and the vector r, we have

B̄0
11 = −B0

11 + 1, B̄0
12 = −B0

12, r̄ν = rν , ν = 1, 2. (11.7)

Therefore, considering C̄ = θ0
1(x, t), we obtain

C̄ = θ3(2iN(x − vt) − d̄ 0|B0
11) +

+ θ3

(
2iN(x − vt) − d0 − B0

12|B0
11

)
e−2bκ0(x−2λ̂0t)−η0+πi.

Assuming that
− d0 = d0 + r0

1 , −η0 = −η0 − 2πir0
2 − πi, (11.8)

we easily obtain the equality C̄ = B. It is easy to verify that relations (10.8) also ensure that the equality
Ā = −D is satisfied, i.e., the corresponding solution of the LL equation is real.

We now summarize. We set

d0 = −id − 1
2
r0
i ≡ id − s, η0 = Δ − iπr0

2 − iπ

2
, B0

11 = B,

where Δ and d are arbitrary real numbers and s = r0
1/2. A real solution of the LL equation is then given

by
A = θ0

0(x, t), B = θ1
0(x, t), C = θ0

1(x, t), D = −θ1
1(x, t), (11.9)

where

θl
k(x, t) = θ3

(
2iN(x − vt) + id − s + 2ls +

k

2

∣∣∣∣B
)

+

+ θ3

(
2iN(x − vt) + id − s + 2ls +

k

2
− B12

∣∣∣∣B
)

e−2bκ0(x−2λ̂0t)−Δ+iπr0
2+iπ/2−2πilr0

2−kπi.

189



Fig. 18. The surface Γep in the case of partial degeneration: real branch points.

Solution (11.9) can be interpreted as describing the interaction of a simple soliton characterized by the
velocity λ̂0 with the cnoidal wave �QX(x− vt) with the real period X = i(2B− 1)/2N and phase velocity v.
We describe this process in more detail. It follows from relations (11.9) that the presence of the soliton is
significant only in the narrow strip in the plane (x, t) around the “soliton” ray x − 2λ̂0t = 0, as expected.
In the regions

Ω+ = {(x, t) : κ̂0(x − 2λ̂0t) � 0}, Ω− = {(x, t) : κ̂0(x − 2λ̂0t) � 0},

in particular, as x → ±∞ with fixed t (as t → ±∞ with fixed x), formulas (11.9) transform into formu-
las (9.1) for the unperturbed cnoidal wave:

A = θ3(2iN(x − vt) + id − s|B),

B = θ3(2iN(x − vt) + id + s|B),

C = θ4(2iN(x − vt) + id − s|B),

D = −θ4(2iN(x − vt) + id + s|B)

(11.10)

in the region Ω− and
A = θ3(2iN(x − vt) + id − s − B12|B),

B = θ3(2iN(x − vt) + id + s − B12|B),

C = −θ4(2iN(x − vt) + id − s − B12|B),

D = θ4(2iN(x − vt) + id + s − B12|B)

(11.11)

in the region Ω+ (in comparing formulas (11.10) and (11.11) with (9.1), we must take Remark 7 in Sec. 7
into account).

The action on the cnoidal wave thus has two effects: the phase shift (i.e., shift of the parameter id)

B12 = B21 =
∫

b2

dU0
1 (λ) = −2

∫ λ0

−a

N dλ√
(λ2 − a2)(λ − c)(λ − c̄)

and the rotation (S1, S2, S3) → (−S1,−S2,−S3) through 180◦ in the plane (S1, S2). On the other hand, as
formulas (11.9) and (11.4) show, the “cnoidal” background only adds 2Λ0 to the free soliton velocity 2λ0.

Remark 10. Considering the curve Γ′
ep with all real branch points (see Fig. 18) instead of the curve

shown in Fig. 17, we again obtain formulas (11.6) for the complex solution of the LL equation. We need only
take c̄ → b, Im c = Im b = 0, everywhere. Analyzing the realness conditions only differs from the already
considered case by the fact that now τb1 = −b1 and consequently B0

11 = −B0
11 instead of what we have

in (11.7). The last circumstance only leads to changing the conditions for the parameter −d0 = d0+r0
1−1/2,

i.e.,

d0 = id − 1
2
r0
1 +

1
4

= id − s +
1
4
,

and this in turn means that we must substitute id → id + 1/4 in formulas (11.9)-(11.11).
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Appendix: Branched two-sheet covers and reduction of
Riemann theta functions

In this appendix, we give results concerning the reduction of the Riemann theta function contained
in [35].

Let Ĉ
π→ C be a two-sheet branched cover of genus ĝ = 2g + n− 1 of the compact Riemann surface C

of genus g. Let Q1, . . . , Q2n ∈ C be the branch points of this cover. We let φ : Ĉ → Ĉ denote the involution
with fixed points Q1, . . . , Q2n transposing the sheets of the cover (C = Ĉ/φ). The canonical basis of the
homology group H1(C̄, Z)

a1, b1 , . . . , ag, bg, ag+1, bg+1, . . . , ag+n−1, bg+n−1, a1′ , b1′ , . . . , ag′ , bg′ (A.1)

can be selected such that πa1, πb1, . . . , πag, πbg is the canonical basis of H1(C, Z):

aα′ + φaα = bα′ + φbα = 0, α = 1, . . . , g,

ai + φai = bi + φbi = 0, i = g + 1, . . . , g + n − 1.
(A.2)

Here, φaα denotes the cycles obtained from aα under the action of φ. For the corresponding normalized
holomorphic differentials

u1, . . . , ug, ug+1, . . . , ug+n−1, u1′ , . . . , ug′ ,

the equalities
uα(x) = −uα′(φ(x)), ui(x) = −ui(φ(x)), x ∈ Ĉ (A.3)

are satisfied (here α = 1, . . . , g and i = g + 1, . . . , g + n − 1).
The holomorphic differentials on the surface C normalized in the basis πa1, πb1, . . . , πag, πbg are vα =

uα − uα′ , α = 1, . . . , g, and the expressions

wα = uα + uα′ , α = 1, . . . , g, wi = ui, i = g + 1, . . . , g + n − 1,

determine g+n−1 linearly independent normalized Prym differentials. We have

vα(φ(x)) = vα(x), wβ(φ(x)) = −wβ(x).

It follows from formulas (A.3) that the period matrix of Ĉ has the form

B =

⎛

⎜⎜⎝

(Παβ + Tαβ)/2 Παi (Παβ − Tαβ)/2

Πiα 2Πij Πiα

(Παβ − Tαβ)/2 Παi (Παβ + Tαβ)/2

⎞

⎟⎟⎠ , (A.4)

where α, β = 1, . . . , g,i, j = g + 1, . . . , g + n − 1, T is the period matrix of the surface C (composed of
the differentials vα in the basis πa1, πb1, . . . , πag, πbg), and Π is the symmetric matrix of the dimension
(g + n − 1) × (g + n − 1) given as

Π =

(
Παβ Παj

Πiβ Πij

)
=

⎛

⎜⎜⎝

∫

bβ

wα
1
2

∫

bj

wα

∫

bβ

wi
1
2

∫

bj

wi

⎞

⎟⎟⎠ . (A.5)
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We consider the theta function with zero characteristics defined by matrix (A.4):

θ(z|B) =
∑

m∈Zĝ

eπi〈Bm,m〉+2πi〈z,m〉, (A.6)

where 〈 · , · 〉 is the usual scalar product. We let S = (s1|s2|s3) denote a ĝ-dimensional vector, where s1

and s3 are g-dimensional vectors, and s2 is a (n−1)-dimensional vector. Let t = (t1|t2) be a (g+n+1)-
dimensional vector, where t1 is a g-dimensional vector and t2 is a (n−1)-dimensional vector.

We note that if the vector k ranges over the whole lattice Zĝ and δ̂ = (δ|0|δ), where δ ranges over all
possible vectors consisting of the numbers 0 and 1/2, then the vector

m = N(k + δ), N =

⎛

⎜⎜⎝

I 0 I

0 I 0

I 0 −I

⎞

⎟⎟⎠ , (A.7)

also ranges over Zĝ (the dimensionality of the blocks in N coincides with the dimensionality of the blocks
in B in (A.4)). Therefore, the sum over m in formula (A.6) can be replaced with the sum over k and δ:

〈Bm, m〉 = 〈BN(k + δ̂), N(k + δ̂)〉 = 〈NBN(k + δ̂), (k + δ̂)〉.

It is easy to see that NBN is the block matrix,

NBN =

(
2Π 0

0 2T

)

(in particular, the positive definiteness of the imaginary part of Π follows from this). Consequently,

〈Bm, m〉 + 2〈z, m〉 = 〈NBN(k + δ̂), k + δ̂〉 + 2〈Nz, k + δ̂〉 =

= 〈2Π(k1 + (δ|0)), k1 + (δ|0)〉 + 〈2T (k2 + δ), k2 + δ〉 +

+ 2〈(z1 + z3|z2), k1 + (δ|0)〉 + 2〈z1 − z3, k2 + δ〉,

where k = (k′
1|k′′

1 |k2), k1 = (k′
1|k′′

1 ), and z = (z1|z2|z3). Substituting this in expressions (A.6), we obtain
the representation of the ĝ-dimensional theta function in terms of the finite sum of the products of the
g-dimensional and (g+n−1)-dimensional theta functions:

θ((z1|z2|z3)|B) =
∑

δ∈ 1
2 Zg/2Zg

θ[(δ|0), 0]((z1 + z3|z2)|2Π) θ[δ|0](z1 − z3|2T ). (A.8)
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