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Preface

In recent years mathematical physicists have developed a new line of investi-
gation in the theory of nonlinear differential equations. It was discovered that
there exists a wide class of nonlinear equations which can be solved analytically.
The now classical approach used for their integration is the inverse scattering
method. Starting in 1974 a periodic version of this method was developed which
revealed remarkable relations between the spectral theory of operators, algebraic
geometry, the theory of Abelian functions and Riemann surfaces. In this vol-
ume we systematically study this subject, mainly the solutions corresponding
to the so-called finite-gap initial data of the Korteweg - de Vries equation, the
nonlinear Schridinger equation, the Kadomtsev-Petviashvili and the sine-Gordon

equations as well as a few others appearing in various branches of mathematical
and theoretical physics.

~ January 1994 The Authors
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1. Introduction

In the mid 19th century Jacobi, Abel, Weierstrass and especially Riemann for-
mulated a beautiful theory of algebraic and Abelian functions. In the domain of
mathematical physics this theory was first used by K. Neumann, Kowalewski and
others. However, after the famous work by Kowalewski on the new integrable
case of the rotation of a rigid body around a fixed point in a gravitational field,
the theory of Abelian functions was developed mostly without any real connec-
tion to mathematical physics. A few remarkable treatise by Drach, Burchnall and
Chaundy, and Baker, written between 1919 and 1928, were soon forgotten and
their content was rediscovered only around 1975 in connection with the emer-
gence of the theory of the so-called finite-gap solutions of nonlinear equations of
the type of the Korteweg - de Vries equation (KdV). This theory was developed
by several groups in the USSR and the USA, namely, Novikov, Dubrovin and
Krichever in Moscow, Matveev and Its in Leningrad, Lax, McKean, van Moer-
beke and M. Kac in New York, and Marchenko, Kotlyarov and Kozel in Kharkov.
This theory includes an effective solution of the inverse spectral problems for
linear operators with periodic and almost periodic coefficients and results in ex-
plicit formulas for eigenfunctions of such operators as well as solutions of the
KdV-like equations expressed by in terms of multi-dimensional theta functions.
Moreover, it allows one to obtain non-trivial results in the algebraic geometry of
Riemann surfaces.

In this volume we have considered a numerous specific applications including
the theory of the classical top, the description of the Peierls-Fréhlich problem,
which is one of the important problems of solid state physics as well as the

investigation and numerical realization of the finite-gap theta function formulas
based on the use of automorphic functions.

L1 The History of the Search for Periodic Solutions
of the Korteweg - de Vries Equation
The Korteweg-de Vries equation (KdV)
du; =6uug + Ugyy (1.D

was derived at the end of the 19th century to describe the motion of solitary
waves on shallow water. The simplest solutions of (1.1) have the form u(z — vt).
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To find them it is sufficient to solve the classical problem of inversion of the
elliptic integral. That is, by setting u = u(x — vt), we find an ordinary differential
equation for u:

—dvuy =6uuy +ugry . (1.2)
After an elementary integration we have

—4vu =3ul+uy, +C
Multiplication by 2u, and one more integration yield

—dpu? =243 + ui +2Cu+ C;

or
ug =/ —2u3 — dvu — 2Cu — C;
and hence,
T dr
z(u) = / +Cy . (1.3)
2 —dvrt+ 207+ G,

To find u as a function of z is the classical inversion problem for the elliptic
integral. Its general solution is a double-periodic meromorphic function u =
—2p(z)+~ of the complex variable z, the so-called Weierstrass elliptic function,
and + is a constant. Both depend on the parameters C, C, C;.

In 1967 Gardner, Green, Kruskal and Miura [1.3] discovered a remarkable
method of integrating the KdV equation for fast decreasing initial data which
is known as the inverse scattering method. This method is closely related to
the spectral theory of the Schrodinger operator L with the potential u(z,t). The
starting point for this relation, known as the Lax representation for the KdV
equation, was discovered by Lax [1.4] in 1968:

'aL =[L, Al, L=- 4 —u(z,t) ,

ot dz? 14
&2 3 d d (14)

A=5 *z("az*z;“) :

Using the Lax representation the eigenvalues of the operator L may be shown
to be independent of ¢. In the case of fast decreasing data, the Lax representa-
tion allows us to deduce a simple evolution rule for the scattering data of the
operator L, i.e., for the reflection coefficients and normalizing factors [1.5]. The
now well-known procedure of reconstructing a potential from its scattering data
(developed earlier by Gelfand, Levitan, Marchenko, Faddeev and others) allows
us to transform the evolution of the scattering data into the solution of the KdV
equation.
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In the case of the initial potential u(z, 0), corresponding to a reflection coeffi-
cient equal to zero (the last condition is invariant with respect to KdV dynamics)
the inverse problem can be solved exactly and leads to an important class of
solutions of the KdV, to its N-soliton solutions. They have the form

g
u(:v,t)=2—a?1ndetM ,

2./P:P; i+
Mij = 6i5 + > -exp (%—éﬁ ; (13)

P,'+Pj
=P — Plt+&o, i,j=1,...,N, Pi>0, P; # P;

In (1.5) N is the number of negative eigenvalues \; of L, P; = 24/—A\; and the
€0 are arbitrary real constants. For a more complete treatment of such solutions
including the interaction of IV solitary waves, see [1.5]. An elementary purely
algebraic approach to the study of the multisoliton solutions interacting with an
arbitrary background solution is developed in [1.6].

The immediate application of the inverse spectral method to the periodic
initial data was not possible, because, for a long time, there were no effective
methods for solving the inverse spectral problem for linear operators with peri-
odic coefficients. It is well-known that the spectrum of the Schrodinger operator
with a periodic potential has a zone-structure, i.e., it consists of a sequence of
segments [Eor41, Fors2], k = 0,1,..., of absolutely continuous components of
the spectrum separated by gaps (lacunas)

(_OO)EI)) (-E27E3)) vee (&k, E2k+1), U

The length of the kth gap tends to zero as k — oo for all continuous periodic
potentials. It can happen that the number of lacunas in the spectrum of the
Schrodinger operator is finite. The corresponding potentials are called finite-gap
potentials.

The role of finite-gap potentials for the analysis of the KdV equation was
independently (and from different view-points) discovered by Novikov, Matveev,
Lax and Marchenko [1.7-11]. It occurred that all finite-gap potentials can be de-
scribed as solutions of the stationary higher KdV equations (Novikov’s equations
[1.7]). Then, Matveev noticed that in a paper by Akhiezer [1.12] the description
of some special class of finite-gap potentials was reduced to the Jacobi inversion
problem on the two-sheeted Riemann surface X of an algebraic curve

2g+1

p? = H \A—E; (1.6)
j=1

where the E’s are the boundaries of the nondegenerate gaps. This inverse prob-
lem was solved by Akhiezer for g = 1, i.e., for the case of an elliptic curve. An
important observation of Akhiezer was that the pair of Bloch solutions ) 2(z, A),
¥1,2(0, A) = 1 for the finite-gap potentials under consideration may be interpreted
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as elements of the analytic function ¥(z, P), P € X, with g poles P; which do

not depend on z. In the neighborhood of the point A = oo this function has the
asymptotic behavior

P(z, P) ¥ exp(izV}), A=n(P) ,

and w(P) is the canonical projection of the point P € X onto the complex
plane. These two conditions — pole structure and asymptotics at infinity — define
¥ (normalized by (0, P) = 1) uniquely.

Analysis of Akhiezer’s paper, performed independently by Dubrovin [1.13,
14] and Its and Matveev [1.15, 16], showed that it is possible to generalize
Akhiezer’s approach, and to solve the related Jacobi inversion problem explicitly.
Historically, the main point in this analysis is the study of the spectral problem
with zero boundary conditions. Let us denote by A; the eigenvalues of the Sturm-
Liouville problem with the periodic potential u(z) = u(x +7T') and zero boundary

conditions, lying in nondegenerate gaps. By A;(7) we denote the eigenvalues of
the problem

Y
o2 tuery==2v,  yl,=vl,r =0

also lying in nondegenerate gaps:

Ei B2 M Bs Ei ... By Eyy Ny Epgn o

The functions A;(7) are periodic with period T and are related to the potential
u(7) by the following trace formula:

g 2g+1
u(r) =2 M\ - ) E; . (L.7)
i=1 j=1

The quantities A;(7) may be found from the solution of the Jacobi inversion

problem. The final expression for this potential () with a continuous spectrum
is of the form

u(x)=2£21n0(Va:+D)+c ,
dz (18)
1 .
6@)= ), exp{5(Bkk)+(p,k)}, peC’
keZz’

first found in [1.15, 16]. B is the period matrix of the Riemann surface X of
the curve (1.6) and E; are the boundaries of the continuous spectrum of the
corresponding Schrodinger operator. All objects entering (1.8) are described by
simple explicit formulas, which are presented in Chap. 3. Independently, the
reduction to the Jacobi inversion problem in the spectral analysis of the finite-
gap Hill’s equation has been found by McKean and van Moerbeke [1.17]. Later
an infinite-gap case was investigated by McKean and Trubowitz [1.20].
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For the potential to be a solution of the KAV equation, D(t) must be a linear
function of ¢

D) =DO0)+W t ,

where the vector W is completely determined by the boundaries of the spectrum,
see Dubrovin [1.14]. Naturally, these solutions were called the finite-gap solutions
of the KdV equation.

Solutions of the Schrodinger equation with the potential of the form (1.8)
may be constructed explicitly. The associated formula

6(Jow+Us+D)-0(D) |

exp(f1(P)z)
6(fw+D) 8Ws+D) PR (1.9)
P=@XN ,

where £2;(P) is an Abelian integral of the second kind, to be defined in Chap. 3,
was found by Its and applied in [1.18] to solve the KdV equation. For the sub-
sequent development of the theory this formula proved to be very important.
Moreover after the papers [1.21-23] by Krichever the -function itself has be-
come the main tool of the theory. We now wish to end our historical remarks

related to the first steps of the theory created around 1975 (see also [1.1, 2]) and
turn to the contents of this volume.

P(z, P) =

1.2 Outline of the Content of This Book

Chapter 2 contains some preliminaries related to the theory of Riemann surfaces,
theta functions, Abelian integrals, and automorphic functions. It is written in a
self-contained manner to enable the reader, possessing a minimal knowledge of
elementary complex analysis, to understand the contents of the next chapters and
to use these tools in further investigations. For further details the textbooks by
Farkas and Kra [1.24], Fay [1.25] and Mumford [1.26] could be consulted.

Chapter 3 describes the application of the analysis of in Chapter 2 to the
integration of the Korteweg-de Vries and Kadomtsev-Petviashvili

+3uyy = (duy — 6uuy — Ugsy), (1.10)

equations. Historically (1.1), (1.10) were the most important examples of appli-
cations of the methods of algebraic geometry in the 1970’s. In our exposition we
do not follow the historical development. First, following the idea of Krichever
[1.21-23], we derive the linear partial differential equations for the so-called
Baker-Akhiezer functions. Next we use the fact that the conditions of compat-
ibility of these linear partial differential equations lead to nonlinear evolution
equations for their coefficients. Explicit expressions of the Baker-Akhiezer func-
tions in terms of the Riemann theta functions, generalizing (1.9), enable one to
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compute also the coefficients of associated linear partial differential equations
(PDE) and, hence, to solve the related nonlinear evolution equation. In such a
way, we get quickly a multi-parametric family of solutions of the Kadomtsev-
Petviashvili equation generated by an arbitrary compact Riemann surface (a re-
sult first obtained by Krichever). Specifying the surface and the parameters of the
construction, we arrive at the solutions of the Korteweg-de Vries equation and
Boussinesq equation expressed in terms of the multi-dimensional Riemann theta
functions. Generally speaking, the obtained solutions are complex-valued and
have pole singularities at some points. In order to make the solutions real-valued
and non-singular, we have to impose some complementary restrictions on the
parameters of the construction found by Dubrovin and Natanzon [1.27] for the
Kadomtsev-Petviashvili equation. This is realized for both (+) possibilities of
(1.10), usually referred to as KP2 and KP1 equations. In the next part of Chapter
3 we discuss the spectral properties of the solutions of the KAV equation. More
exactly, we discuss the spectral properties of the Schrodinger operator, where the
potential is given by the theta function solution of the KdV. We establish that
the real, non-singular, z-periodic solution u(z, t) of the KdV equation, generated
by the hyperelliptic curve (1.6), being considered as a potential function for the
Schrodinger operator L = —8% — u(z,t) in Ly(—o0, 00), leads to a very specific
spectral structure. Namely a number of energy gaps in the continuous spectrum of
L is finite, despite the fact that for generic periodic potentials we have an infinite
number of energy gaps. In the same section we also prove that the inverse state-
ment is true. All finite-gap periodic potentials may be represented in the form of
the second derivative of the logarithm of the Riemann theta function. The matrix
B generating this theta function is a matrix of the B-periods of the hyperelliptic
Riemann surface X defined by (1.6). In (1.6) ¢ is the number of the energy gaps
coinciding with the genus of the Riemann surface; E; are the boundaries of the
continuous spectrum. We show that the so-called Bloch solutions of the finite-gap
periodic Schrodinger operator have the same analytic properties as the projec-
tions of the Baker-Akhiezer function (1.9) on the upper and lower sheets of the
Riemann surface X. Sometimes the g-gap periodic potential may be expressed
in terms of elliptic functions. This rather non-trivial phenomenon is discussed
in generality in Chapter 7. In Chapter 3 we prove only that the Lamé potential
u(z) = —g(g + 1) - p(x), where p(x) is a Weierstrass elliptic function, creates
exactly g gaps in the continuous spectrum of operator L. Following a derivation
due to Hermite, we show that the associated Bloch solutions are expressed in
terms of elliptic functions. We include the almost-forgotten remarkable contribu-
tion of Drach in which he was the first to isolate the “integrable” Sturm-Liouville
equations with the following property: there exists a fundamental system of so-
lutions 1, such that a product 3 (x, A)i2(z, A) is a polynomial of degree g in
A. This property is in particular necessary and sufficient for distinguishing the
g-gap periodic potentials from the periodic potentials of the general position, as
was shown by Its and Matveev [1.15, 16]. Various steps of the work of Drach
were rediscovered around 1974 by Dubrovin, Gelfand and Dikii, and by Its and
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Matveev in connection with analysis of finite-gap solutions of the KdV equation
55 years later. The solution of the inverse spectral problem for finite-gap periodic
potentials using [1.15, 16] completes Chapter 3.

The fourth chapter extends the methods of algebro-geometric integration on
the nonlinear evolution equations with matrix Lax pairs. Namely, the nonlinear
Schrédinger equation ( NS equation)

iYe + Yoz — 20ly'y =0, o=l , (1.11)
and the sine-Gordon equation (SG equation)
vz = —4sinv (1.12)

are analyzed thoroughly. Actually, the same methods are successfully applied to
the numerous nonlinear systems having very different physical origin. But the NS
and SG equations seem to be the most important equations with regard to physical
applications and are at the same time the simplest from a technical viewpoint.
Particularly, we can say that the NS equation has the same degree of universality
as the KdV equation both from a mathematical and physical viewpoint. In this
connection it seems to be quite natural that it was the second (after the KdV
equation) evolution equation discovered to be integrable by the inverse scattering
approach, as it was first shown by Zakharov and Shabat [1.28] in 1971. The
inverse scattering program for the SG equation was realized two years later by
Ablowitz, Kaup, Newell, Segur [1.291, Faddeev, Zakharov, Takhtajan [1.30] and
Takhtajan [1.31]. The algebro-geometric integration of the NS and SG equations
was realized by Its, Kozel and Kotlyarov [1.19, 32] in the spirit of the same
spectral approach as applied to the KdV equation. At the same time Dubrovin
[1.13] considered general matrix U — V pairs and associated linear systems in
an algebro-geometric framework. Here we present the modern version of the
algebro-geometric solution of (1.11,12) based on the notion of the vector-valued
Baker-Akhiezer function introduced by Krichever [1.22].

Most attention in this chapter is concentrated on the special problems related
to the matrix nature of the associated U-V systems. The first of these problems
is the necessity to take into account the reduction restrictions on the Baker-
Akhiezer functions isolating U-V pairs under consideration from the related gauge
classes. Associated reduction restrictions may be divided into two different types:
involutions accompanied by holomorphic transformations of the spectral variable
A and antiinvolutions A — X. The account of the reductions of the first type
leads to the appearance of algebraic curves with non-trivial involutions and some
coverings over algebraic curves. Reductions of the second type — antiinvolutions
— are basically the same as for the scalar case when we try to isolate smooth
and real solutions of the KdV or the KP equations. The main problem here is
to transfer the reduction restrictions on the parameters specifying the finite-gap
solution, given by a non-special divisor D on the algebraic curve X. In the
KdV case and in the NS case with ¢ = 1 this problem is trivial by virtue of
the possibility of identifying the points of the divisor D with the eigenvalues
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of some self-adjoint Sturm-Liouville problem. The absence of such a possibility
in the general case, in particular, in the NS case with ¢ = —1, and in the
sine-Gordon case, considerably changes the situation. In the work of Kozel and
Kotlyarov [1.32] it was realized that associated conditions in terms of the divisor
D for the NS case with o = —1 and for the sine-Gordon case take the form of
complicated nonlinear systems of algebraic equations. Later Cherednik presented
an algebro-geometric interpretation of the Kozel-Kotlyarov conditions exhibiting
the same level of effectiveness. A qualitative jump in the solution of the (real)
problem was given by Forest and McLaughlin [1.33)], Dubrovin and Natanzon
[1.35], Belokolos and Enol’ski [1.34] (SG case) and by Dubrovin and Novikov
[1.36] (NS case), who realized that it is more convenient to isolate the real
solutions in terms of A(D) — the image of D on J(X) — the Jacobian of the
associated Riemann surface X. It is important to mention that A(D) appears in
the theta function representations of the finite-gap solutions in a universal and
natural way. In terms of A(D) the problem transforms to a classical question
of algebraic geometry: the description of real and imaginary components of the
Jacobian in a real algebraic curve. However, it is necessary to mention that the
detailed study of A(D) does not solve all problems in the theory of real finite-gap
solutions. In particular, in the Hamiltonian aspect of the theory, the structure of
the divisor D itself is of major importance. That is why, despite the fact that
the reality problem is solved on the level of the explicit formulas for the finite-

gap solutions, its Hamiltonian aspect is still interesting and not yet completely
understood.

The nonlinear systems studied in Chap. 4 are the simplest from the point
of view of algebraic geometry. We hope that their detailed study will lead the
reader quickly and naturally to the understanding of the main tools and tricks
of the method, which are used later for a study of more complicated integrable
matrix systems arising in Chap. 6. The Hamiltonian aspect of the theory of finite-
gap solutions of the NS and SG equations does not appear in our discussion.
In particular, the dynamics of the zeros of the Baker-Akhiezer function and
the problem of the action-angle variables on the variety of the real finite-gap
solutions are not described. The interested reader may find corresponding results
in the article by Novikov [1.37].

Finite-gap solutions describe the nonlinear interaction of several modes. De-
spite the existence of an explicit theta function representation of these solutions,
an appropriate approach in using them in numerical computations was developed
only recently, see Chap. 5. All main physical characteristics of the finite-gap so-
lutions (wave numbers, phase velocities, amplitudes of the interacting modes) are
defined by the compact Riemann surface X. Such a parametrization is compli-
cated and seems to be rather ineffective for the investigation of the solutions and
for numerical computations. Probably this fact is one of the principle obstacles
in practical applications of the finite-gap solutions.

Several papers deal with the problem of the effective construction of the theta
function solutions. Dubrovin and Novikov [1.38] suggested “an algebro-geometric
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effectivization”. The papers by Nakamura and Boyd [1.39-41] are devoted to a
“physical effectivization”. All these papers are based on the substitution of the
theta-function formulas for the solutions into a nonlinear equation. Here the spec-
tral origin of the parameters is “forgotten” and they are determined directly from
the equation. The 2-phase solutions of the KP equation were investigated by Se-
gur and Finkel [1.42] in the framework of the algebro-geometrical effectivization
method. One should note that the substitution technique is applicable only for the
construction of 2-phase solutions for 1 + 1 integrable nonlinear evolution equa-
tions (and for the construction of 3-phase solutions of 2 + 1 KP-like equations).
Let us also mention that a portrait of the 2-phase solutions of the KdV equation
appeared in the book of Mumford [1.26], and that the periodic solutions of the
KdV equation were studied numerically by Osborne and Segré [1.43], exploring
the Dubrovin-Drach equations for the Dirichlet eigenvalues for arbitrary genus.

The theta functional genus 2 solutions of the KP equation were compared
by Hammack, Scheffner and Segur [1.44] with experimental gravitation water
waves generated in a basin. The experimental waves were found to be described
by them with reasonable accuracy.

A universal (in relation to the number of interacting phases and to the type
of the nonlinear equation) approach to the effectivization problem, suggested
by Bobenko [1.45-48], is presented in Chap. 5. It is based on the Schottky
uniformization theory of the Riemann surfaces. The advantage of this approach
lies in the fact that all the principal ingredients of the formulas for the finite-gap
solutions (holomorphic differentials, period matrix, vectors of B-periods, etc.)
are expressed in terms of the uniformization parameters with the help of the
Poincaré theta series. In this way all the physically important real solutions are

effectively described. The corresponding plots can be found in Chap.5 and in
[1.47].

Chapter 6 deals with applications of theta functions to some problems of
classical mechanics. First applications of the Jacobi theta functions to the classical
top date back to Euler in the 18th century. Euler solved the equations of motion
of a rigid body around its center of mass. The multi-dimensional theta functions
were first applied by C. Neumann in 1859 while solving the equations of motion
of a particle constrained on a sphere under the action of a quadratic potential.
The most famous mechanical system of this kind is the Kowalewski top [1.49],
which was in the focus of interest in the 19th century.

Despite the discovery of numerous examples of finite dimensional systems
integrable in terms of multi-dimensional theta functions, there was at that time
no general approach to solving the equations of motion of these systems. Each
time the success in integration was based on finding a rather non-trivial change
of variables leading to a Jacobi inversion problem. After Kowalewski the most
important results in this direction were obtained by Kotter [1.50 - 52].

In Chap. 6 we solve the equations of motion of classical tops with the help

of finite-gap integration theory. Such an application of the modern theory gives
the possibility to obtain important new results even for the classical tops [1.53,
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54, 55]. Some of the formulas for the solutions presented in here are simpler
than the classical ones.

The theory of finite-gap integration for finite dimensional systems is based
on the representation of the equation of motion in Lax form

2 L)+ L), 4] =0

When the Lax representation is found, all the machinery of finite-gap integration
theory may be used. At the same time the construction of the Lax representation
for the concrete system is a transcendental problem, solved, however, now for
all famous tops studied in classical papers. The recent results in this direction
are various Lax pairs for the Kowalewski top. One of them found by Reymann
and Semenov-Tian-Shanski [1.79] is used in Chap. 6 for the integration of the
equations of motion.

It should be mentioned that there now exists a direct approach to solving
integrable systems with two degrees of freedom. This approach was devised by
Adler and van Moerbeke [1.56]. It is based on the study of singularities of the
solutions and goes back to fundamental ideas of the Kowalewski paper [1.49],
inspired by a letter of Weierstrass [1.57], who first proposed the idea of finding
the integrable cases by analyzing the singularities of the solutions. With the help
of the direct approach, the geometry of algebraic curves and Abelian tori arising
in various problems of classical mechanics, was investigated in [1.58-62], where
important isomorphisms of several tops are found. The advantage of the direct
approach is that it starts directly from the equations of motion without an a priori
knowledge of the Lax representation. However, the theta function formulas were
not derived in this way.

As in Chaps. 3 and 4 the main instrument used in constructing solutions
is the Baker-Akhiezer function. The essential difference with the corresponding
results of Chaps. 3 and 4 is that in Chap. 6 we obtain the general solution of
the problem instead of a particular family of solutions. It is interesting that in
some cases the Baker-Akhiezer function itself appears to be very useful for the
description of dynamics. The motion in the laboratory frame is described in this
way (Sect. 6.9).

It is worth mentioning also that the Lax representations of all classical systems
considered in Chap. 6 have non-trivial reduction groups. This in turn implies that
the associated spectral curves represent complicated coverings and that the Baker-
Akhiezer function has specific analytic properties. As a final result we have a
more complicated integration procedure.

Chapter 7 describes the solution of the following problem: what are the re-
strictions on the Riemann surfaces which allow reduction of the multi-dimensional
Riemann theta functions to the theta functions of the lower genera? For the first
time it was pointed by Belokolos and Enol’ skii [1.34], that the solution of this
problem is closely related to the study of the reduction of the Abelian integrals
to elliptic integrals. The possibility of expressing the solutions of high genus by
means of one-dimensional theta functions is important for many reasons. First of



1.2 Outline of the Content of This Book 11

all, such solutions are the simplest possible from the point of view of numerical
calculations. Another point is that such solutions are closely related to different
finite dimensional dynamical systems and the description of different physical
phenomena. The particular significance of the obtained solutions lies in the fact
that they may satisfy some complementary restrictions of physical importance.
In particular, 3-gap generalizations of the Bianchi-Lamb ansatz presented in this
chapter satisfy the periodicity requirement with respect to the space variables.
The content of this chapter is based mainly on works by Belokolos and Enol’ skii
[1.63, 64], Babich, Bobenko and Matveev [1.65, 66] partially reviewed in [1.67].

Following Igusa [1.68] the chapter starts with a formulation of the Poincaré
theorem on complete reducibility, which is a further development of the Weier-
strass reduction theory of multi-dimensional theta functions to Jacobi theta func-
tions. The finite-gap solution of an algebro-geometrically integrable equation is
reducible to Abelian functions of lower genera if the associated algebraic curve is
a covering over an algebraic curve of a lower genus. The derived solution turns
out to be quasi-periodic. To obtain periodic solutions (elliptic solitons [1.69])
one has to impose an additional commensurability condition on the components
of the winding vectors.

It is shown that in the case of hyperelliptic curves all reduction conditions
can be expressed by demanding some of the theta-constants to vanish. Special
varieties in moduli space — such as Humbert varieties (see, €.g., van der Geer
[1.70]) are considered.

Elliptic potentials of the Schrédinger equation are considered in this chapter
and the necessary and sufficient conditions for the elimination of such potentials
from the general theta functional formula for finite-gap potentials are given,
some examples of the elliptic potentials [1.69, 71] are derived deductively and
all characteristics of the corresponding coverings are computed.

There are numerous applications of the finite-gap integration theory in physics
and mathematics. One of them, in condensed matter physics as suggested by
Belokolos [1.76, 77] is dealt with in Chap. 8. An exact description is presented
for the Peierls state, which is a collective bound state of electrons and phonons
in a one-dimensional conductor. In particular it is proved rigorously that in the
Peierls state the phonons produce a finite-gap potential for the electrons. It is
shown also that the Peierls state is a lattice of solitons (polarons) at low densities
of electrons and a charge density wave at high densities of electrons. Therefore
two basic concepts of solid state physics merge here. The rigorous theory of
Frohlich conductivity due to the uniform motion of the Peierls state is also
developed. Thus we have one more exactly solvable one-dimensional many-

body problem similar to that considered by Bethe, Lieb and Wu, Wiegmann and
some others.

The material for this book has been prepared over a long period of time.
Originally it was supposed to be the work of authors based in Leningrad and Kiev.
The basic part was indeed prepared during the “Leningrad-Kiev” period, when
the contact between the authors was rather close. But in the end the collaboration
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was international in character. Now the USSR does not exist any more, Leningrad
changed its name back to the historical one, St. Petersburg, and now the authors
reside not just in different cities but even in different countries. To make it easier
for the reader to contact the competent author with questions or suggestions, we
now give a list indicating who feels responsible for which chapter:

Naturally, Chapter 1 has been delt with by the complete team of authors.
Chapter 2 falls into the responsibility of Bobenko, Enol’ski and Its.
Chapter 3 resulted from the joint efforts of Bobenko, Its and Matveev.
Chapter 4 was prepared by Its and Matveev.

Chapters 5 and 6 are due to Bobenko.

Chapter 7 was written by Belokolos and Enol’Iski.

Chapter 8 emerged from the work of Belokolos.

For their support of our work we are grateful to our Russian and Ukrainian
Institutes: the St. Petersburg Branch of the Steklov Mathematical Institute, St.
Petersburg State University and the Institute of Metal Physics of the Ukrainian
Academy of Sciences. The work of Bobenko was partially supported by the
Alexander von Humboldt-Stiftung and by the Sonderforschungsbereich 288 “Dif-
ferentialgeometrie und Quantenphysik”. Its completed his part of the book when
visiting the Department of Mathematics of Clarkson University. Enol’ski wrote
some his final texts in Copenhagen and in Edinburgh. He acknowledges finan-
cial support from the Laboratory of Applied Mathematical Physics of the Danish
Technical University n Lyngby and of the Department of Mathematics of the
Heriot-Watt University in Edinburg. We all appreciate very much the efforts of
Alfons Stahlhofen who read the proofs carefully and suggested many improve-
ments. For their help at various stages in the preparation of this book we are
grateful to M. Babich, L. Bordag, M. Bordag and A. Smirnov.



2. Riemann Surfaces and Theta Functions

In this chapter we present some useful information on Riemann surfaces and
theta functions. A detailed account of the points discussed below is given by
Hurwitz and Courant [2.1], Forster [2.2], Farkas and Kra [2.3], Krazer [2.4],

Krazer and Wirtinger [2.5), Igusa [2.6], Fay [2.7], Mumford [2.8], Griffith and
Harris [2.9].

2.1. Riemann Surfaces

A Riemann surface X is a connected two-dimensional topological manifold
with a complex-analytic structure on it. The latter implies that for each point
P € X there is a homeomorphism ¢ : U — V of some neighborhood U 5 P
onto an open set V C C, and it is defined so that any two such homeomor-
phisms ¢, ¢ with U N T # () are holomorphically compatible, i.e., the mapping
pop™l: GUN U)— eUnN {7), called a transition function, is holomorphic. In
what follows, the homeomorphism ¢ will be referred to as a local parameter. Any
set {¢:} of holomorphically compatible local parameters such that the appropri-
ate neighborhoods {U;} cover the entire manifold X is called a complex atlas
of the Riemann surface X. The union of the atlases that correspond to the same
complex-analytic structure on the manifold X, i.e., to the same Riemann surface
X, is again an atlas. This property is violated if the atlases making up a union
belong to different complex-analytic structures or, which is equivalent, to differ-
ent, yet topologically identical Riemann surfaces. The number of nonequivalent
complex structures on a given two-dimensional manifold, or, equivalently, the
number of conformally nonequivalent Riemann surfaces topologically isomor-
phic to the same two-dimensional manifold is directly linked to the fundamental
topological characteristic of orientable two-dimensional manifolds — the genus.
We discuss this point in greater detail below.

The simplest examples of Riemann surfaces are any open subset of a complex
plane C, the complex plane C itself and an extended complex plane CIP! = CU
{oo} with complex-analytic structures naturally introduced on them. Non-trivial
examples of Riemann surfaces are provided by nonsingular algebraic curves, i.e.,
sets of points in €* defined by equations such as

P, V=0, (Ve @.1.1)

where P is the polynomial in its arguments that satisfies the condition
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Furthermore, the curves (2.1.1) essentially exhaust all compact Riemann sur-
faces. A complex-analytic structure is introduced on the algebraic curve (2.1.1)
as follows: the variable X is taken to be a local parameter in the neighborhoods
of the points where 9P /0u # 0, and the variable y is a local parameter in the
neighborhoods of the points where P /0 0. The holomorphic compatibility
of the local parameters introduced results from a complex-analytic version of the

implicit function theorem [2.1]. In the important special case of a hyperelliptic
1
curve

N

W=T[A-E), NeN, E;€C, Ej#E, jk=1,...,N, (.12
j=1

the choice of local parameters can be additionally specified. Namely, in the
neighborhoods of the points (uo, Ao) with Ao # E; Vj, the local parametrization
is defined by the homeomorphism (g, A) — A; in the neighborhood of each point
(0, E;) by the homeomorphism

Wh — A=

Fig. 2.1. Riemann surface of genus two realized by the action of the Schottky group on the 4-
connected region in CP!

We now consider another fundamental example of a Riemann surface. Let
A be a region of an extended complex plane, with a group G of holomorphic
transformations acting discontinuously on it. The discontinuity of the action of
the group implies that for VP € A there exists a small neighborhood U 5 P such
that gUNU =0, Vg € G, g # I. In this case we can introduce an equivalence

1 When N = 3 or 4, the curve (2.1.1) is called elliptic.
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relation between the points A : P ~ P' & Jg € G, P' = gP and consider
the quotient space A/G. This is a Riemann surface with a complex structure
introduced as follows: Let {U,, } denote a system of neighborhoods covering A
such that Vg € G, gU,, NU,, = (. The appropriate neighborhoods on the quotient
space are w(U,), where 7 : A — A/G is the natural projection associating
each point P € A to its equivalence class. The local parameters are defined as
on = (7 |u,) . Next we note that 7(U,,) N 7(Up,) # 0 < Ignm € G:

Un N gnmUm 7 0.

This yields the holomorphic compatibility of the appropriate local parameters ¢,
and ¢, ie.,

bmOPn = Gum|,

Let F' be a 2N-connected region in CIP!, bounded by closed nonintersecting Jor-
dan curves C4, Cj,---,Cn, C) (Fig. 2.1). The linear fractional transformation
Onz = (nz + Br)/(ynz + 6,) maps the exterior of C,, into the interior of CJ,.
A system of generators o1,---,0N induces a Schottky group G, ie., a group
free of relations. The limiting set of the group, A(G), is a closure of the set
of fixed points of elements of G. Its complement 2(G) = CP! \ A(G) is the
domain of discontinuity of the group, i.e., the domain on which the group acts
discontinuously. Therefore, 2(G)/G is a Riemann surface.

C, ~ ¢

Fig. 2.2. Riemann surface of genus two realized as a Riemann sphere with handles

Let F be a fundamental domain of G, i.e., a domain that contains exactly
one point of each orbit of G. This proposition implies that (1) FNgF = 0,Vg €
G,g#1 (2) UgecgF = £2(G). The Riemann surface 2(G)/G may therefore
be regarded as the fundamental domain F' with identified boundaries C,, ~ Ci.
Pasting pairwise 2N curves C,, with C!, on a Riemann sphere, we see that the
resulting Riemann surface is compact and equivalent to a sphere with N handles

(Fig. 2.2). The number of handles g is called the genus of the Riemann surface.
The following general theorem holds:
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Theorem 2.1. Any compact Riemann surface is topologically equivalent to a
sphere with a finite number of handles.

For any Riemann surface X the notion of a function being holomorphic
on some open subset U C X is well-defined. More specifically, the mapping
f: U — Cis said to be holomorphic if the local representation of the mapping
f, 1.e., the mapping fo goj‘l 1 ¢j(U; NU) — C, is a holomorphic function in the
usual sense for any local parameter ¢ ; with U; N U # 0. Thus, a function which
is defined on the hyperelliptic curve (2.1.2) and holomorphic in a neighborhood
of the point (uo, Ao) with Ao = E; can be represented by a convergent Taylor
series in integral powers of the variable (A — E;)!/2.

The theory of holomorphic and, more generally, meromorphic functions (an
exact definition will be given below) are the main objects of study in the theory
of Riemann surfaces. The content of the following analysis is largely dependent
on whether the Riemann surface under study is a compact topological variety
or not. We shall henceforth assume the Riemann surfaces under consideration to
be compact, unless otherwise stated. As far as algebraic curves are concerned,
we assume them to be compactified by joining points at infinity. Thus, for the
hyperelliptic curve (2.1.2) there are two points at infinity when N = 2¢ + 2, and
one such point when N = 2g + 1. In the first case, infinitely remote points will
be denoted by the symbols oo and oo™, and in the second case by the symbol
oo. The points co* are distinguished by the conditions

P=(u,)) = 0oF & X > 00, p~ £A]

)

and the local parameter in the neighborhoods of both points is given by the
homeomorphism

(4, A) = A~
Similarly, the point oo is distinguished by the condition
P=(p,2) =00 & A — 00, p o~ AW/

and the local parameter in its neighborhood is A~1/2,

A cycle on a Riemann surface is an oriented closed curve (not necessarily
consisting of a connected component). The cycles can be added and subtracted
(by changing orientation), so that the structure of an Abelian group may be
introduced on them. Let us define the following equivalence relation: the cycle
is equivalent to zero, if it is a boundary of a domain on a Riemann surface (with
orientation taken into account). Two cycles are equivalent if their difference
equals zero. The above Abelian group factorized under this equivalence relation
is said to be the first homology group of the Riemann surface X and is denoted
by Hi(X, Z).

We assign to every intersection point of the cycles «; and ~, the number 1 if
the intersection is as in Fig. 2.3, and —1 if the intersection is as in Fig. 2.4. The
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Fig. 2.3. Cycle intersection index Fig. 2.4, Cycle intersection index
mov=1 Moy =-—1

cycle intersection index < 0 v, = —y; o v is the sum of these numbers taken
over all intersection points. The notion of an intersection index is extended to
the elements of H(X, Z).

A basis in Hy(X,Z) is a set of cycles v,...,72, such that any cycle ~,
except a zero one, can be represented as a non-trivial integral combination of
them. A canonical basis of the cycles of a Riemann surface X of genus ¢ or
a canonical basis in H;(X,Z) is a basis of a1, b1,...,a,,b, cycles such that
An08m =0, bro0by, =0, a,o0by, =d8ym. It is obvious from Fig. 2.2 that
such a basis always exists (and its choice is not unique). The canonical bases of
cycles for the Riemann surfaces exemplified in the present section are given in
Figs. 2.1, 5. In Fig. 2.5, the parts of the cycles that lie on the upper sheet are
indicated by solid lines, and those on the lower sheet by broken lines. The cycles
by, in Fig. 2.1 run from the point z,, € C, to its equivalent o,z, € C}. Note
that it follows from Fig. 2.5 that a hyperelliptic Riemann surface has genus g if
the number NV in (2.1.2) is equal to N =2g+1 or N =2g + 2. We conclude by

noting that the examples of Riemann surfaces discussed in this section are of the
most general character.

Theorem 2.2. Any compact Riemann surface can be represented as an algebraic
curve.

Theorem 2.3. Any compact Riemann surface can be represented as A/G,

where A is a domain in CP' and G is a discontinuous group of conformal
transformations.

The latter representation is said to be the uniformization of a Riemann surface.
A Riemann surface can be uniformized in different ways, depending on the choice
of A and G.

Both of the above theorems were proved within the context of the Riemann
surface uniformization theory developed in the 19th century. The following prob-
lem was used as a starting point: Suppose that we have an algebraic curve
P(u, A) = 0 which defines multi-valued functions A(u), w()\) via the appropriate
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Fig. 2.5. Canonical bases of cycles for the Riemann surface of genus g. The parts of the cycles that
lie on the upper sheet are indicated by solid lines and those on the lower sheet by broken lines

mappings (g, A) — A, (u,A) — u. A new variable z must be found such that
A(z) and p(z) are single-valued functions of z and P(u(z), A(2)) = 0 is fulfilled
identically. The problem was solved in terms of the discontinuous groups of con-
formal transformations of a complex plane, which were invented by Poincaré.
For a detailed account of the results produced by this beautiful theory we refer
the reader to the Appendix and [2.10]. In Sect. 2.3, we shall discuss the simplest

non-trivial example of uniformization that served as a starting point in developing
the theory.

2.2 Coverings

A natural generalization of the concept of a holomorphic function on a Riemann
surface is the notion of a holomorphic mapping of one Riemann surface into
another. Namely, the mapping f of a Riemann surface X into a Riemann surface
X is said to be holomorphic if any function ¢ o f o =1 (local notation of
the mapping f), where @, o are arbitrary local parameters of the corresponding
Riemann surfaces, is holomorphic in the usual sense. Non-constant holomorphic
mappings of Riemann surfaces are holomorphic coverings. Let f : X — X be
a holomorphic covering. We give its basic general properties:

(a) f is a surjective map

(b) every point P € X can be associated with the positive integer n > 1, which
can be characterized as follows: for any neighborhood V of the point P there
are neighborhoods U7 C V of the point P and U of the point f(P) such that
for any point P € U, P # f(P) the set f~1(P) N T consists precisely of n
elements. The number n is the multiplicity with which the mapping f takes
the value f(P) at the point P, and it is denoted by n(f, P). The number
of points at which n > 1 is finite, and they are called branch points of the
covering f. The number v = n(f, P) — 1 for the branch point P is referred
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to as a branch number of f at P. If there are no branch points, the covering
is said to be unramified.

(c) For any point P € X, the set f~1(P) consists of a finite set of elements;
moreover, the number
N=3pc -1y ™S, P) is independent of the choice of the point P and is
called the number of sheets of the covering f.

In the situation when there is a holomorphic covering f : X — X, the
following alternative terminology is often used: the surface X is called a cover,
the surface X is a base of a cover, and the mapping f a projection.

The consequence of the property (b) is that, for every point P € X which
is not a branch point of the covering f, there exists a neighborhood U such that
the restriction f |5 is a homeomorphism. From this and property (c) it follows
that when the covering f : X — X is unramified, every point P € X has a
neighborhood U such that

Fay=o; ,

5=1

where U; N U = 0 and all restrictions f |5, are homeomorphisms.

The notion of a holomorphic covering can be extended to the case when a
covering surface is not compact. In that case the property (b) remains valid, the
number N can take infinite values, and the property (a) should be included in
the definition of a covering. In the unramified case, the definition of a covering
also involves the property given at the end of the preceding paragraph.

There is an expression that makes it possible to calculate the genus of a
cover, in terms of the genus of the base. Let P, ..., P; be branch points of an
N-sheeted covering X — X, and 1, ..., v branch numbers for these points, and

let g be the genus of X. Then the genus g of X is given by the Riemann-Hurwitz
formula

g=N@g-D+1+3 Zu. : (2:2.1)

=1
An example of a holomorphic covering is the mapping
m(P)=A, P=(yA)

of the hyperelliptic Riemann surface (2.1.2) onto CPP!. This is a ramified two-
sheeted covering. The points Q; = (0, E;) are its second-order branch points.
The procedure of “crosswise pasting” two copies of the complex plane C with
a system of cuts enabling one to extract a single-valued branch /J[(A — E;)
is commonly used to interpret geometrically the covering = (see Fig. 2.5). The
construction is a classical Riemann surface of the multivalued function u()\).
Among unramified holomorphic coverings there are special universal cov-
erings, i.e., unramified holomorphic coverings for which a covering surface is
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simply-connected. The important point in Riemann surface theory is that for
any compact Riemann surface X there is a canonical technique of construct-
ing a simply-connected, generally noncompact Riemann surface X, that covers
X holomorphically. The surface Xy is called a universal covering of X. The
canonical technique of constructing Xy is as follows: we chose a point Py € X,
and for another arbitrary point P € X we denote by n(F, P) a set of homo-
topical classes of curves ypp, on X that begin at Py and end at P. Note that
the curves ypp, and 4pp, are homotopic if the closed curve vp pofy;},o can be
contracted in X to a point. Then the universal covering Xy is defined as the set
{(P,y): P e X,~ € n(P,P)}, and the projection fo : Xo — X is given by
the equality fo(P,v) = P.

Finally, we define another important class of coverings. Suppose that a group
of holomorphic homeomorphisms (conformal automorphisms) G : X — X acts
on the Riemann surface X. We note that for surfaces X of genus g > 2 the order

of the full group G of automorphism of X is finite and can be estimated by the
Hurwitz formula ([2.3]):

ordG < 84(g—1) . 2.2.2)

If G is a finite group of automorphisms of X, then the quotient X/G is a
Riemann surface and the covering is said to be normal. The complex structure
X/G is introduced by the condition that the projection 7 : X — X/G, which
associates each point P € X with its equivalence class, is holomorphic. In the
neighborhoods of the points which are not fixed for any transformation ¢ € G,
the local parameter is defined similarly to the quotient A/G in Sect. 2.1. If
U, C X are such neighborhoods that U,, N gU,, = 0, Vg € G, then n(U,,) are
neighborhoods on the quotient, and

D =pno (7" lU,.)—l 2 m(Un) — 0n(Uy)

are local parameters. The neighborhoods #(U,) and =(U,,) intersect only if

there is g, € G such that U, N g, U, # 0. The transition functions of this
intersection are holomorphic

B 08, = om0 g 0 07

Let P, be a fixed point of some elements ¢ € G (the set of such element is
called the stabilizer of Py, Gp, =g € G : gPy = ), and let U be a neighbor-
hood of Py which is invariant with respect to Gp,. The local parameter in the
neighborhood #(U), which is ord G p,-sheetedly covered by U, is defined by the

product of the values of the local parameter ¢ at all equivalent points lying in
U:

s= ][] pogo(rly), pP)=0
9€Gp,

Although the mapping (7 |y)~! is ord G p,-valued, & is a homeomorphism of
w(U) into some neighborhood of a complex plane. In the local parameters chosen,



2.3 Elliptic Curves 21

all the transformations g € G p, have the form @ 0 g 0 ™! = zhy(2), hy(0) # 0,
and the projection

Borop =GP H hy(2)
gEGP,

describes the ord G p,-sheeted holomorphic covering U — U/Gp,, so that P is
a branch point of the order ord Gp, of the covering X — X/G.

2.3 Elliptic Curves

The equation
P=48 - gl —g =40 —e)\ — )\ —e3) (23.1)

where ¢, g3, €;, €1 + ez + e3 = 0 are some constants, defines an elliptic curve.
Any Riemann surface X of genus 1 can be reduced to the form (2.3.1).

We now fix some point Py € X and consider the mapping given by the
integral

P

P A . (2.3.2)

P, H

First of all we note that this mapping is holomorphic, because the differential
d)\/p is holomorphic at all points of X. Indeed, in the neighborhood of A = e;
the local parameter is equal to ¢ =1/A — e; and d\/u = constdy; in the neigh-
borhood of \ = oo, ¢ = 1/+/X, we have d\/p ~ —dy and the holomorphicity is
obvious at all the other points.

Since it depends on the path of integration, the mapping (2.3.2) of the Rie-
mann surface X onto the complex plane is multivalued. Every point P € X is
mapped into an infinite number of points of a complex plane that differ from
each other by 2wn +2w'm, n,m € Z, where

w= [ R o= [ (233)
a M b M

We define a group G of shifts z — z +2wn + 2w’'m. Its fundamental domain
F' is the parallelogram represented in Fig. 2.6 (in the next section we show in
particular that w, w' and Im(w’ /w) are always different from zero). Thus, (2.3.2)
is the holomorphic mapping between Riemann surfaces of genus 1, X — C/G.
Furthermore the derivative of this mapping is always different from zero. This
means that (2.3.2) defines an unramified cover. Obviously, this cover is one-
sheeted, see (2.3.3). Consequently, the mapping (2.3.2) is a biholomorphic map
of the universal covering of X onto the whole complex plane, X and C/G are
the same Riemann surface, consequently, the functions on X may be represented
by the functions on C which are invariant under the action of the group G, i.e.,
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2m' b

20

o
Fig. 2.6. Fundamental domain for elliptic curve

they are doubly periodic functions. Meromorphic doubly periodic functions are
said to be elliptic.

The simplest elliptic function is the Weierstrass p-function

1 ' 1 1
1 ~ . (234
p(2) 27 nz;, { (z = 2nw — 2mw'?  Q2nw +2mw')? } 239

The prime for the summation sign implies that the summation is taken over all
pairs of integers n and m which do not vanish simultaneously. It is easy to show
that the series (2.3.4) converges and defines a doubly periodic function with a
singularity at z = 0 such as p(2) = z2~2 + O(z?). p(z) satisfies the differential
equation

®'(2))? =4p°(2) — g2p(2) — g5, (2.3.5)
where
' 1
g2 =60 nz;‘ 2nw + 2mw')t
’ 1 (2.3.6)

!
g =140 ;n 2w + 2mw'ys

Comparing (2.3.4) and (2.3.5), we see that the representation
(1, A) = (p'(2), p(2))

uniformizes an elliptic curve, with oo corresponding to the point z = 0 (we set
Py = 00). Formulas (2.3.6) determine the connection between ¢», g3 and w, w'.
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2.4 Functions, Differentials and Integrals
on Riemann Surfaces

2.4.1 General Properties of Functions on Riemann Surfaces

Meromorphic functions, i.e., non-constant holomorphic mappings f : X —

CP!, constitute a meaningful object of analysis on Riemann surfaces. The local
notation

f@)=fop ()

of a meromorphic function f in any local parameters ¢ is a meromorphic function
of the variable z € ©(U) in the usual sense. The general properties of holomor-
phic coverings (Sect. 2.2) imply that the meromorphic function f takes every
value ¢ € CP! the same finite number of times (with the multiplicity taken into
account). The points Py € f~!(oo) are said to be poles of the function f. In the

neighborhood of any Py € X, the meromorphic function f can be represented
as a convergent Laurent series:

(o o]

> cilz =), z=p(P), 20 =p(Po), 2.4.1)
j=—N

where ¢ is a local parameter, the number N > —oo and does not depend on a
specific choice of .

Remark 24. In that which follows we shall often use the variable z to locally
describe functions and differentials without stating specifically that z = ©(P) and
z0 = o(Po).

The point P, is an N-multiple pole (zero) of the function f if and only if
N < 0(N > 0) in the representation (2.4.1).

Concluding we would like to describe the general properties of meromorphic
functions on Riemann surfaces by recalling:

Proposition 2.5. Any two functions f and g, meromorphic on the Riemann
surface X, are connected by an algebraic relation,

Q(f,9) =0,

where @ is a polynomial of its arguments. Theorem 2.2 given in Sect. 2.1 is a
corollary of this proposition.

Corollary 2.6. The following three assertions are equivalent:

(a) the Riemann surface X is hyperelliptic, i.e., it can be given by (2.1.2).

(b) there is a meromorphic function on X that defines the 2-sheeted covering
of the sphere CP!.
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(c) there is a function on X that has its unique singularity — a second-order pole
— at some point Fp.

Without dwelling at length into the proofs for Proposition 2.5 and Corol-
lary 2.6, we note that the projection

m: (g, A) = A

may be taken as the function appearing in item (b), when the hyperelliptic curve
X 1is given by (2.2). To simplify the notation, this projection will sometimes be
identified with the variable itself. For the same reason the expressions

1/(A—E))

or, for odd N, ) itself may denote the function that satisfies condition (c).

2.4.2 Abelian Differentials

In addition to the notion of a function on a Riemann surface, we introduce the
notion of an Abelian differential. An Abelian differential on the Riemann surface
X is a meromorphic 1-form w, given on X. This implies that we can write w
locally as f(z)dz, where f(z) is a meromorphic function of z in its domain.
For any Abelian differential, the notion of a pole and that of a zero are defined
correctly, along with the notions of multiplicities and that of a residue:

res (w; Pp) =c—1, w(P)= Z cj(z — 20) dz

Remark 2.7. A generalization of the notion of an Abelian differential is the

notion of a differential of weight (p,q), p € @, ¢ € Q as an object that can be
represented in any local parameter in the form

f(z, 2)(dz)P(dz)*

Abelian differentials are usually divided into three kinds: holomorphic differ-
entials (first kind), meromorphic differentials with residues equal to zero at all
singular points (second kind), and meromorphic differentials of the general form
(third kind). For differentials of the third kind the relation holds that

Y resw)=0. (2.4.2)
over all
singular points
The question of whether Abelian differentials exist for an arbitrary Riemann
surface is answered by the following classical theorem due to Riemann:
Theorem 2.8. Let X be a Riemann surface of genus g. Then

(a) The dimension of the space of differentials holomorphic on X is equal to g.
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(b) For any finite set of points P;, P; € X, there is an Abelian differential
which is holomorphic on X \ {P;} and has, at the points P;, the poles with
arbitrary preassigned principal parts that satisfy only the condition (2.4.2).

Remark 2.9. The principal part &, of a differential w at the point P is defined
in a natural way after the local parameter has been fixed:

oo -1
w= Z cj(z — 20) dz, Op = Z cj(z — 20)' dz
j:—N ]="'N

In the case of hyperelliptic curve (2.1.2), the Abelian differentials that appear
in the propositions of Theorem 2.8 can easily be constructed within the format
of explicit formulas. Thus, taking the choice of local parameters into account, it
is easy to see that the basis in the space of Abelian differentials on the Riemann
surface (2.1.2) is formed by

0=NId\ p, j=1,...,9 , (2.43)

where g is the surface genus equal to N/2 — 1 for even N, and to (N —1)/2 for

odd N. This illustrates item (a) of Theorem 2.8. In Sect. 2.7 we will present some

constructions which can be regarded as an illustration of item (b) of Theorem 2.8.
For any function f, given on a Riemann surface X, the formula

4 (P) = [d’;‘z)] dz, 2= o(P), f(2) = fou™l(2) |

where ¢ is an arbitrary local parameter, defines an Abelian differential. The
inverse question, i.e., the question of a primitive function for an arbitrary Abelian
differential leads to a new object — an Abelian integral.

Any Abelian differential w on the Riemann surface X satisfies the closure
condition,

dw=0.

Therefore, locally, a primitive function for the differential w always exists and
can be defined by the formula

P
AP) = / w (2.4.4)

Py

for any simply-connected domain on X that involves (in the case of third-kind
differentials) no singularities of the differential w. Formula (2.4.4) considered
on the whole surface X, with its genus being non-trivial, defines, in general, a
multivalued function called an Abelian integral. The division of Abelian differen-
tials into the three kinds can be naturally extended to Abelian integrals. Locally,
Abelian integrals of the first kind are holomorphic functions, Abelian integrals
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of the second kind are meromorphic functions, and Abelian integrals of the third
kind have logarithmic singularities:

c—
w:(...+_1+...)dz = =---+c_lnz+--.
z

The Abelian differential w can be restored from the Abelian integral {2 using the
obvious equation df2 = w.

2.4.3 Periods of Abelian Differentials

We fix the choice of a basis for a- and b-cycles on X. The specific features of
any multivalued Abelian integral (2 of the first or second kind are completely
described by its A- and B-periods or cyclic periods

Aj=/ ds?, BJ-=/ e, j=1,...,9 , (2.4.5)
a; bj

which are also called A- and B-periods of the differential df2. At every point
P € X, the Abelian integral {2 takes an infinite set of values, any two of which
differ from each other by a quantity independent of P, and is expressed as

/d.Q = Z(ijj +njAJ-) s
~ -

J

where + is some cycle on X, for which the decomposition

¥ = Z(mjbj + njaj)
J
with respect to basis cycles is valid. Thus, we can speak about the value taken
by an Abelian integral at the point P € X modulo its period. For example,
2(Py) =0 (modulo the periods)

If £2 is an Abelian integral of the third kind, it is necessary, in order for the
character of its multivaluedness to be completely described, to supplement the
set of cyclic periods (2.4.5) with a set of polar periods,

c,~=/ 2, j=1,...n | (2.4.6)
;

where «; is the cycle homological to zero and containing in itself the point P;,
i.e., the j-th pole of the differential df2. Obviously,

c; = 2mires (df2, P;)

and, by virtue of (2.4.2)
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Y ¢i=0 . (2.4.7)

over all
singular points

We let 5( denote the surface obtained by removing all a- and b-cycles from

X. Let a},a; and b}, b} be the left and the right edges of the appropriate cuts.

The manifold .;( is a manifold with a boundary:

° g
0 X=) (a}+b} —aj —b7) . (2.4.8)
j=t

Any Abelian integral 2(P) of the first or second kind is single-valued on .i' .
It is sufficient to require that the integration path in (2.4.4) should not intersect

a- and b-cycles. At the boundary of the surface X, the branch (2(P) satisfies the
boundary conditions:

2.49)

which allow it to be continued to a single-valued function on the universal
covering of X.

To distinguish a single-valued branch on a third-kind Abelian integral, it is
necessary to draw additional cuts v; on the surface X that run from P to P,
where P; are the singular points of the Abelian integral under consideration.
Equations (2.4.6) are then complemented with the equalities

Q(P)lv - Q(P)lyr' =c; . (2.4.10)

For any pair‘of Abelian integrals £ and {2', we have the following equality
from (2.4.8,9)

g
/ 2'd02 = (AyBy — AcB}) . (2.4.11)
o k=1

0X
Applying the residue theorem to its left-hand side, we obtain the Riemann
bilinear relations for the periods of Abelian integrals:
g
@ ) (AiBx— ABp=0 (2.4.12)
k=1

when {2 and {2’ are integrals of the first kind;
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g —
1 dr 1
.o ! , — .
(ii) §k=1:(AkBk ~ AxB}) = 2mi— =

Ql(z)lz=zo 5 (2.4.13)

when (2’ is an integral of the first kind, {2 is an integral of the second kind with

a single pole at P, and the local parameter in the neighborhood of P, is chosen
so that

=[(z—20)""+0)]dz , n>1;

g n
@) S (ALBy— AxBY)=2m c;2'(P;)
2_: ; Y (2.4.14)

—2ch]/ o',

=1

when 2’ is an integral of the first kind, 2 is an integral of the third with
no more than logarithmic singularities at the points P;, j = 1,...,n > 1 and
c; =res(df2, P;).

Remark 2.10. ‘The integration contours in (2.4.14) are chosen to be disjoint from
the basic a- and b-cycles. In other words in the right hand side of (2.4.14) at all
points P; we take values of the same single-valued branch of the integral £2'.

The Riemann bilinear relations also involve the formula

2iSo(X) = / 2d0 = Z( ArBy+ ALBy) (2.4.15)

k=1
aX

where (2 is an Abelian integral of the first kind, and S g(_;( ) is the area of .;(

under a conformal mapping given by the 1ntegra1 2. From (2.4.15) it follows
that the following inequality

g
iZ(AkBk —A;By) >0 (2.4.16)
k=1

is valid for cyclic periods of any non-constant Abelian integral of the first kind.

Simple consequences of the Riemann bilinear relations (2.4.16) are the fol-
lowing propositions that complement the main existence theorem for Abelian
differentials (Theorem 2.8) with natural uniqueness conditions.

Proposition 2.11. There is no non-zero Abelian differential of the first kind

whose A- or B-periods are zero, or all the periods of which are purely imaginary
or purely real.
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Proposition 2.12. Any Abelian differential of the second or third kind with zero
A-periods (B-periods) or with all purely imaginary (purely real) cyclic periods
is uniquely defined by its principal parts at the singular points.

Remark 2.13. Ordinarily, when normalizing Abelian differentials (integrals) of
the second or third kind, we choose the condition that all the A-periods be zero.
Such Abelian differentials (integrals) are said to be normalized.

2.4.4 Period Matrix. Jacobian Variety

Proposition 2.11 enables one to introduce for any Riemann surface X the basis
of holomorphic differentials {w;}%.;, normalized by the condition

/ Wik =27ri5]‘k, j,k=1,...,g s (2.4.17)

which is dual to the basis of a- and b-cycles. In the hyperelliptic case (2.1.2),
the following explicit formula is valid for the differentials:

g g -
° PULY )N
wj=ZcJ-ka=ZCjk , J=L...,9 ,
k=1 k=1 K (2.4.18)

ik =2mi(A D

where the matrix A is defined by the equality
Ajk=/ ‘f)ja hk=1...,9
Ak

The nondegeneracy of the matrix A is a consequence of Proposition 2.11.

An important characteristic of any Riemann surface X is the matrix of B-
periods of the basis {w;},

Bjk=/bwk, hk=1,...,9
j

The Riemann bilinear relations (2.4.12) and (2.4.16) allow us to conclude that
the matrix B is symmetric, i.e.,

Byj=Bj, ViFk=1,...,g (2.4.19)
and its real part is negatively defined

ReB <0 . (2.4.20)
Under a change of basis of a- and b-cycles,

(a'j7 b]) - (alja bl')7
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the matrix B transforms according to the following rule:

B — B' =2ri(aB +27ib)(cB +2nid)™! (2.4.21)

where the integral g x g-matrices a, b, ¢ and d are defined from the decompositions

9 9

a;- = Zdjkak + chkbk y

= o j=1,....q (2.4.22)
b;- = Z bjkak + Z ajkbk

k=1 k=1

According to the formula

a b 0 I al T\ _(0 I

¢ o) (o) w)=(5 )
they define an element of the group Tr(2¢g, Z) (in the German literature you find
instead of the Tr usually an Sp). We denote by S, /Tr(2¢g, Z) = U, the quotient of
the space of all g x g-matrices that satisfy (2.4.19), (2.4.20) by the action (2.4.21)
of the group Sp(2g, Z). The set U, is called a modular Siegel variety. In the case
of small genera, g = 1,2 and 3, the varieties ¢/, coincide with the manifold of the

moduli M, of algebraic curves, i.e., the set of classes of conformally equivalent
Riemann surfaces of genus g. For ¢ > 4, we only have the inclusion

M, CU, (2.4.23)
This follows, for example, from a comparison of the dimensions:

dimM,;=3¢g-3,9g>1
dimlUy = g(g+1)/2

An effective description of the inclusion (2.4.23), or, equivalently, determining
the conditions that distinguish from the whole set of symmetric g x g-matrices
with a negative real part those matrices which correspond to Riemann surfaces is
the subject of the classical Schottky problem. Much progress has recently been
made in solving this problem. This has been stimulated in part by the development
of the algebro-geometric methods in the theory of nonlinear equations that we
discuss in the present book.

Let B be a period matrix of the surface X. We use it to define a lattice A in
C?,

A={2riN+BM,N,M € Z°} = OZ*, I = @2xil; B)
and introduce in C? the equivalence relation

Z~7 &Z-Z €A
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The quotient of €7 by this equivalence relation is a g-dimensional complex torus
and called a Jacobian variety, or a Jacobian J(X) of the curve X,

J(X)=C/A

This notion makes it possible to consider correctly and globally Abelian integrals
of the first kind on X:

P
/ wj, j=1,...,9
Py

More specifically, the formula

P P P
X3P w= (/ wl,...,/ wg) e J(X) (2.4.24)
Py

Py by

correctly defines the Abelian mapping with basis point Py of the Riemann surface
X into its Jacobian variety J(X). The Abelian mapping is usually denoted by

P
/ w = A(P) .

Py

2.4.5 Divisors

The Abelian mapping (2.4.24) can easily be extended from the points of X to
more general objects called divisors. A divisor D on the Riemann surface X is
the formal sum of a finite number of its points with integral coefficients

D=) nP, P,eX, neZ . (2.4.25)

The number ). n; is referred to as the degree of the divisor D, deg D. The

Abelian mapping of the divisor D into the Jacobian J(X) is defined by the
formula

P; P; P;
A(D) = Zni / w= (Zn,/ Wi, .. ,Zn,-/ wg) € J(z)
i Po i Po i Po

Another classical problem in the theory of functions on Riemann surfaces is the
Jacobi inversion problem, i.e., the problem of constructing a mapping inverse to
the Abelian mapping. The solution of this problem and the role of theta functions
in finding it will be discussed in Sect. 2.5.

The set of all divisors on the Riemann surface X forms an Abelian group
Div(X) with respect to the naturally defined operation of addition. In Div(X),
we introduce in a natural way the notion of a positive divisor

D>0¢ D=) nP, n;20Vi ,
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and a partial ordering of divisors
DD &D -D>0

The divisor of a function f, given on X, is defined as the sum (2.4.25) where
P; is a zero or a pole of f, and n; is an appropriate multiplicity. Moreover, it is
assumed that n; > 0, if P; is a zero, and n; < 0, if P; is a pole. The divisor of
f is denoted by (f). The divisor (w) of the Abelian differential w is defined in

a similar way. For any function f and the Abelian differential w, the following
equalities are valid:

deg(f) =0, degw)=2g—2 . (2.4.26)

We note also that the divisor (f) of any function f can be decomposed as a
difference of two positive divisors: the divisor of zeros of the function f and the
divisor of its poles. The same is true for the divisors of Abelian differentials.

The divisor D € Div(X) is said to be a principal divisor if there is a function
f on X such that D = (f). By virtue of (2.4.26), all principal divisors have a
zero degree. Moreover, the following holds:

Theorem 2.14. (Abel’s theorem). Let D € Div(X) and deg D = 0. Then the
divisor D is principal if and only if

A(D)=0.

In other words, the sets of points (P,..., Py) and (@Q4,...,Qn) are sets of
the zeros and poles of some function meromorphic on X if and only if for any
Abelian differential w of the first kind

N P;
Z / w =0 (modulo the periods).

=1

Two divisors D, D' € Div(X) are said to be equivalent if their difference is
a principal divisor. All divisors of Abelian differentials are equivalent, because
the quotient of any two Abelian differentials is a meromorphic function. The di-
visors of Abelian differentials are said to form a canonical class, and the divisors
themselves are called canonical ones. We note that by virtue of Abel’s theorem,
any two equivalent divisors are mapped into the same point of the variety J(X).
In particular, all canonical divisors have the same image under Abelian mapping.

The function f (Abelian differential w) is said to be divisible by the divisor D
if (f) > D((w) > D). We denote by Fp a linear space of functions meromorphic
on X and divisible by the divisor D. Similarly, we introduce a space df2p
for Abelian differentials. The most important result of the classical theory of
functions on Riemann surfaces is the
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Theorem 2.15. (Riemann-Roch Theorem). Let D € Div(X), where X is a
Riemann surface of genus g. Then

dim F_p —dim df2p=1—-g+degD . (2.4.27)

The relation (2.4.27) implies that when the genus of the Riemann surface X
is non-trivial, the analysis on it is essentially different from the standard (g = 0)
complex analysis. In particular, there are very rigid restrictions on the location
of the singularities of meromorphic functions. Thus, the Riemann-Roch theorem
implies that any set of k£ < ¢ points which is in general position on a Riemann

surface of genus g cannot be a set of poles for a meromorphic function. Indeed,
let

D=> Pj,k<g, Pj€X, Pi#P; . (2.4.28)

j=1

Then, the space d{2p can be identified with the space of solutions to the following
linear system:

g

Y cwilP)=0, j=1,....,k , (2.4.29)

=1

where {w;} is an arbitrary, but fixed basis of holomorphic differentials. In the
general position,

Therefore, dim {2p = g — k and, in virtue of (2.4.27),
dim F -D = 1

i.e., the only function divisible by the divisor —D is a constant. The last statement
amounts to the fact that there is no meromorphic function for which the divisor
D (or any part of it) is a divisor of the poles.

The arguments in the preceding passage allow us to introduce the notion of
speciality and non-speciality for positive divisors of degree < g. The divisor
D, D > 0,deg D < ¢ is said to be special (non-special), if dim F_p > 1
(dim F_p = 1). We have thus clarified that the non-special divisors are divisors
of the general position. In the case of huperelliptic curve (2.1.2), the notion of a
“general position”, or a “non-speciality”, can easily be specified by considering
the explicit form of appropriate holomorphic differentials. Namely, simple rea-
soning related to the Vandermond determinant leads us to the conclusion that the
non-speciality condition for the divisor (2.4.28) is given by the inequalities

m(P) #w(P), jF#I (2.4.30)

which, obviously, can always be achieved by a “little stirring”.
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Remark 2.16. Turning again to the system (2.4.29), we can also introduce the
notion of speciality and non-speciality for positive divisors of degree > g: the
divisor D, D > 0, deg D > g is special (non-special), if dim Fl.p > 1 — g+
deg D (dim F_p =1 — g +deg D). In what follows, however, we shall use the
terminology in point only for divisors of degree < g (unless otherwise stated).

Among special divisors we distinguish divisors such as kP, k < g, P» € X.
The point P, involved here is called a Weierstrass point of the surface X. The

number n of Weierstrass points on the surface X of genus g > 2 satisfies the
Hurwitz inequality

29+2<n<(g—1Dg(g+1)

where the equality n = 2¢g'+ 2 is attained if and only if X is a hyperelliptic
surface. When X is realized canonically by (2.1.2), the Weierstrass points are
evidently all branch points, i.e., the points @); = (0, E;), and the points at infinity
for odd N.

Here we conclude our review of the general properties of functions and differ-
entials on Riemann surfaces. In Sects. 2.7, 8 we will again return to this theory,
more precisely, to its aspects related to the explicit construction of functions with
prescribed singularities on Riemann surfaces. It is this constructive aspect of the
theory that underlies the apparatus developed in the subsequent chapters and en-
ables the construction and study of the class of algebro-geometrical solutions to
nonlinear evolution equations.

b

2.5 Abelian Functions and Theta Functions

The algebraic-geometrical solutions of completely integrable nonlinear equations
and integrable finite-dimensional dynamical systems are expressed by Abelian
functions which, in turn, are constructed using theta functions. In this section we
give the initial information on Abelian tori and functions on them.

Let V € €7 be a complex vector space of dimension g, and A a discrete
lattice of maximal rank 2g. The complex torus T' = V/A is called an Abelian
torus if there is an Abelian function (ie., a meromorphic function in g complex
variables that has 2¢ independent periods) with period lattice A.

Theorem 2.17. (Riemann’s Condition.) Let IT = (E, F') be (g x 2¢g)-matrix that
defines the lattice A, (A=EN+FM, N,M € Z?; E, F are (g X g)-matrices).
Then the torus V/ A is Abelian if and only if there is an integral skew-symmetric
(29 x 2g)-matrix @ such that

nQ'nT=0, mJIQ'a%) >0 . (2.5.1)

The period matrix IT is dependent on the choice of a basis both in A and on
V. When the lattice basis changes, the matrix IT is multiplied from the right by
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a unimodular (2¢ x 2g)-matrix C, II — IIC. When the basis changes in V, it is
multiplied on the left by a complex nondegenerate (¢ x g)-matrix D, IT — DII.

Theorem 2.18. There is such a basis of A that

0 .
Q=Q5=(_A6 %’), As =diag (5y,...,8,), 6 €Z 2.52)

with the divisibility & | &, -- - | §, taking place.

Let IT = (E, F) in this basis. We denote the columns of the matrix F by E,,
a=1,...,g. Then, choosing a new basis eq = E, /(27ié,) in V, i.e., performing
a transformation with the matrix D = A; E~127i, we have the period matrix

II =Q2mils, B) . (2.5.3)

This period matrix is referred to as a normalized one.
Theorem 2.19. There are bases in A and in V such that IT = (27i4;s, B).

The Riemann conditions (2.5.1) and (2.5.2) are rewritten for a matrix of that
kind as follows:

B=BT ReB<0 . (2.5.4)

The numbers §; are called elementary divisors of polarization of the torus 7.
The polarization is said to be principal if §; = 1 for all 2.
The Abelian torus T*, defined by the lattice

I =51, A;'BAYYH (2.5.5)

is dual to an Abelian torus with the lattice (2.5.3) [2.11].
Abelian functions are constructed by means of theta functions. If B satisfies
(2.5.4) then a theta function is defined by its multi-dimensional Fourier series

6(z; B) = Z exp {-;—(m, Bm) + (m,z)} , (2.5.6)
m € Z°

where (-,-) stands for the Euclidean scalar product. Every point e € € is
written uniquely as

e = (S’,E”) (27;I>’ E’, E” € Ry,

where

! ] '

[e] = e'l _[e1r---r8y
- el - el el
1,-0-, g
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is the characteristic of e. We shall denote it as [e]. For every such characteristic

we define on €Y x U, a theta function with the characteristic 8[€](z; B), using
the formula

flel(z; B) = exp {%(s',Bs') + %(z + WiE",EI)}

1
X 0(z + wie" + ie'B; B)

= Z €Xp {‘%((m +€’/2), B(m+ 6’/2))
m € Z¢

+{(m+¢€'/2), (z + wie"))}

(2.5.7)

When the dependence on B is obvious we shall sometimes use the abbreviation
8(z). For the characteristic [8], §', 8" € Z9, from (2.5.7) it follows that

fle +261(z; B) = (;)G[e](z; B), 0[el(—z; B) = |e|blel(z; B) , (2.5.8)

where (;) = exp{ri(e’,6")} and |e| = (i) Thus, there are with accuracy

to the sign, 229 theta functions when the characteristics [e], €', €' € Z9, are
integral. The theta function 6[e](z; B) is even if the characteristic [¢] is even,
ie., |e| = 1, and odd if the characteristic [¢] is odd, ie., [¢| = —1. Among 2%
theta functions, 29-1(29 + 1) are even and 29-1(29 — 1) are odd.

The characteristics [¢], for which ¢, €]/ or 1,i, j =1,...,g are called half-
period characteristics. We shall henceforth be concerned only with characteristics
of this kind, unless otherwise stated. The characteristics form a group with respect
to summation, and, for brevity, we write the summation of the characteristics
multiplicatively [e1]+- - - +[ex] = [e1 - - - €]. For Jacobi theta functions (i.e., for
g = 1) there are 4 characteristics, with one of them being odd [i] and the other

1

three even: [g] , [O] , [(1)] For reference, we give the comparison of notations

1 B B
0[ ](z; B)=-% (2 271'1) [ ](z,B) U3 <2m 57—5) y
B B
H(Z’B) V4 (2 2 1> H(z’B) V2 (2 i 27ri>‘

In another notation which we shall also use the fourth Jacobi theta function
94 is denoted by 9. The functions

6[e] = 6[€1(0; B),
6;,...;, [el = (0" )0z, - - 0z;,) Olel(z; B)|z=0
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non-identical to zero on U, will be called theta constants. The even characteristic
[€] will be called a non-singular (singular) one, if grad,6[e](z; B)l, »70=0).
When g = 1,2, all the characteristics of half-periods are non-singular.

The theta function (2.5.7) has the periodicity property

6(z +2mey; B) = 0(2; B),

1 (2.5.9)
6(z+ f; B)=exp| —5Brx — 2 | 0(2; B), k=1,...,9,
k 2

where ey, ..., e, are basis vectors in the space CY with coordinates (ex); = 6k;»
k,j=1,...,g and fy,..., f,, are vectors with coordinates f, = Bey. For the

integral vectors n', n' € ZY the equalities of (2.5.9) are generalized to the
formula

-

! 1
6 [Z,] (z +27in' + Bn'; B) =exp { - E(Bn", n')

, (2.5.10)
— (z,n") +mi({e', n') — (¢", n"))}o [z] (2; B)

Equality (2.5.10) is called the transformation property of a theta function.

Using the theta functions (2.5.6), we construct Abelian functions with respect
to A =2mZ9 @ BZ?; namely, the function

He(z +a; B)
flz) =2 : (2.5.11)
[]6c +b:; B)

=1

where the vectors a;, b; € €Y are such that ", a; = Y ., b; (modulo 27iZ9)
is meromorphic on T' = €?/A. This is because the denominator is not identical
to zero and the condition on a; and b; provides, by virtue of the transformation
properties (2.5.10), that the function (2.5.11) is invariant under a shift by an
arbitrary vector of A.

In addition to the transformation property (2.5.10), the theta function has the
modular property as a function on €9 x U,. To formulate this we denote by
Tr(2g, R), where R is the set of real numbers, a group of symplectic matrices of

degree 2g with coefficients in IR, whose elements are written as ¢ = (z Z
with a, b, ¢, d being square matrices of degree g with coefficients in R that

satisfy the conditions o7 (_OI é) o= (_OI é) The following formula

transforming the theta function (2.5.7) holds:

8lo - €] (2mi((cB +27id) ) 2; o - B) = kdet(cB + 2rid)'/?

X eXp {‘;' Z [2i2; X (8/8B;;)log det(cB + 2mid)| }9 Le,"] (z: B), (2.5.12)

i<y
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where
o - B = 2wi(aB + 27ib)(cB + 2wid) ™! | (2.5.13)
" n dT “bT . T
o e=E"e Jr 1 +diag (cdT, abT) (2.5.14)

k is a constant independent of z, B and the symbol “diag” means that diagonal
elements only should be taken away from the matrices (cd”), (abT). Formula
(2.5.12) is referred to as the modular property of a theta function.

A modular form relative to Tr(2g, R) is a holomorphic function f on U, that
satisfies the equation

f(o- B)=det(cB+d"f(B) |, : 2.5.15)

where the number n is called a weight. These forms can be constructed using
theta constants [2.11].

2.6 Addition Theorems for Theta Functions

In this section we present two addition theorems for theta functions and some of
their corollaries. The first theorem is a Riemann theta formula that “dominates
in the labyrinth of quadratic biquadratic relations on theta functions” [2.12].

Theorem 2.20. (Riemann Theta Formula.) Let Ao be some group of charac-

teristics of order 29~™ and By = {[]||a||8||aB| = 1, [a] € Ao} a conjugate
group of characteristics of order 29*™. Then, for all characteristics [{],[n] and
the half-period characteristics [p], [o] the following equality holds:

om Z |¢na| ( ) G[napa](u + w; B) 0[napl(u — w; B)

[al€eAo
X Ol pacl(v + z; B) f[nal(v — z; B)

—ienl 3 |ncm( )o[mpo](uu,B)
[Bl€By

x 0[¢{Bpl(u — 2; B)0[{pol(v +w; B) 0[(Bl(v — w; B) ,

(2.6.1)

where u, v, w, z € €9, In particular, when m =g,

290[npol(u + w; B) 6[npl(u — w; B) 8[nol(v + z; B) 8[n](v + z; B)

Z |ne| ( ) Ole pol(u + z; B) 0lepl(u — 2; B)
[e]

X 8[ec](v + w; B) §[e](v — w; B)

(2.6.2)
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The Riemann theta formula yields many relations between theta functions and
theta constants. For example, we underline here the remarkable Jacobi formula,

6 [ﬂ =(i/2)6 [8] 0 [ﬂ 0 [(1)] , (2.6.3)

for which “only isolated generalizations have been found and it remains a tan-
talizing and beautiful result, but not well understood” [Ref. 2.8., vol. 1, p. 66].
One of the generalizations is the Rosenhain formulas for g = 2,

1
D(6,,62)(B) = :EZ 6le1]10[e2]0[e3)0[e4] (2.6.4)
where [g;] = [61620::2), 1 =1,2,3,4, |6;]=—1, 5 =1,...,6 and where
D([81],...,[6,1)(B) := det (A(O[b:],... ,0[69])/6(z1,...,zg)|z=0) .

If B is a B-matrix of a hyperelliptic curve of genus g < 5, there is the following
generalization of formula (2.6.3):

g

D(I8:1],...,[6,1)(B) = + (51;) blerl6les] - Olegal (2.6.5)
where the characteristics [1],...,[6,], [€1],...,[€442] form a special fundamen-
tal system. In particular this implies that the characteristics [81],...,[8,] are odd
and the characteristics [e1],. .., [€4+2] are even. All characteristics are essentially
independent, i.e., for any 1 < < ... < i2x < g where k < 0, the comparison
[6:,8:,...6:,, #I[0] holds, and azygetic, i.e., forany 1 <: < j < k < g the
equality |6;|16;]|6:]|6:6;6x| = —1 holds. The other generalizations of formula
(2.6.3) and some new results are discussed by Fay [2.12] and Igusa [2.11].

The other addition theorem that we use is the Koizumi formula [2.13]

N-1

D00 BY = 2p .
gg[e( )](z( )’ B) = zp:g [p(o) + (0 )] (y(o), NB)

(1)

P +2p —2ppN_

X Z 0[ D N l] (ym;N(N - DB)
pi,i=N-1..2 p

0P +2py 1 —2pN_
xoL” pzml,, PN 2] (¥ (V - DV —2)B)

- (N=2)r
p +2p3 —2ps| . (-2,
] p(N -2)n (y ’ 6B )

F (N—1)
P +2pa| (N,
| pN-Dn ] (y ;2B)

(2.6.6)

x 6

x 6

where p, p; are complete sets of the representatives Z9/N, Z9/(N —1), 1 =
N-1,...2.
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0 N-1 0 N-1
(52,00 5 D) = (50, 2D
0 N-1 0 N-1
(P, YD) = (9, DY 1,
(LY N-Dn 0 N-Dn
(pj) ,...,pg )>=(e(j ,...,eg- ))T,

and the matrices T and T* = (T1)7T are equal to

(1 -V -1 1 e 0 0\
1 1 —(N=-2) .-« 0 0
1 1 1 e 00
T=]: : : PR
1 1 1 e =20
1 1 1 e 1 =1
\ 1 1 1 1)
N1 -N-1 0 e 0 0 \
N-1 N}V =11 —(N -D! e 0 0
N1 N I{((N-D? (N=-D'WV-21 . 0 0
=\ : : : S :
N1 NIWWN=-D' W-DY(WwN-21 ... =371 0
Nl N Y{(N-D' W=-DWwV=-2" ... 61 271
\N-l NIW-DTT W-D)Y(WN-21 ... 6! 2-1/

For N =2, (2.6.1) is the well-known second-order addition theorem

01e91(z; B) 1e1(z; B)

1 (O] (s
_ €+ +2pl o .
) ZP:G[ conycam  |FTHETED) 2.6.7)

p [%(e(o)’ — e +2p

0) .
e _ (Mn ](z —z2B)

In what follows we shall use a special case of the formula (2.6.7):

0 [ ﬁ‘i 7] (20 + 2@; B)# [Z] =V - 2@; B)

(2.6.8)
= (-1)¥he m 22;2B) 46 {“ § '5] (22%;2B)
F v B

as well as the inversion of the formula

6 [a] (2z";2B)6 [ﬁ ] 22P;2B) =277 (~1){*
! ! - (2.6.9)

p [: + ﬂ] =0+ 2@; By g {0‘ ; 5] =0 _ 2@ By,

+e€
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We mentioned here only the two addition theorems that are referred to in
our further discussion. Let us note that the theory of theta functions employs
other remarkable addition theorems such as the Frobenius addition theorem for
hyperelliptic theta functions [2.8], the trisecant Fay formulas for the Riemann

theta functions [2.7] and their generalizations, “irrational” Schottky-Frobenius
addition theorems [2.14], etc.

2.7 Construction of Functions and Differentials
on a Riemann Surface Using Theta Functions

In this section we consider an algebraic curve X of genus g and describe two
classical methods of constructing on it meromorphic functions and meromorphic
Abelian differentials, as well as periodic functions with essential singularities.
The first method involves giving the divisors of zeros and poles of a meromorphic
function, and the second is concerned with giving the principal parts of the poles.

Both methods are based on using the fundamental Riemann theorem on theta
divisor.

Theorem 2.21. (Riemann Theorem.) Let the curve X be equipped with a canon-

ical basis (a,b) € Hi(X,Z) and K = (Kj,...,K,) be a vector of Riemann
constants,

_2mi+Bjj 1 P N
K== ‘2wiz([,,“'(P) “’J>, j=l,...,9, (7.1

i Po

that depends on the point Py and the basis (a,b). Let { = ((1,...,{y) €
J(X) be a vector such that the Riemann theta function, defined by F(P) =

6 ( i) ; w—-¢—-K; B), does not vanish identically on X. Then:
(1) The function F'(P) has on X exactly g zeros P,..., P, that give a solution
to the Jacobi inversion problem

g Py
Z/ wj=C, 7=1,...,9 ; (2.7.2)
1YPo :

k=
(1) The divisor D=P; +---+ P, is nonspecial;
(iii) The points Py, ..., P, are defined from (2.7.2) uniquely up to a permutation.

Corollary 2.22. For the nonspecial divisor D = P, + --- + P,, the function
FP)=26 (f;;w — A(D) - K; B) has on X exactly g zeros P = Py,..., P,.

To construct a meromorphic function f on X by its divisor, it would be
instrumental to have on X a holomorphic function that vanishes if and only if
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P =@, P,Q € X and thus generalizes the function z — y on C\ {co}. Since
there is no such function on a Riemann surface of genus g > 0 we replace it by
introducing on X Fay’s prime-form E(P, @), i.e., a (—1/2,—1/2)-differential
form holomorphic on X x X [2.7, 8] (Sect. 2.4):

5’ P ‘
6[6"] (/(; w; B)
hs(P) hs(Q) ’

where [6] is a non-singular odd characteristic and h%(P) = Z::{’ 0;[61w;(P).
The Riemann theorem on theta function zeros yields the basic property of the
form E(P,Q); namely, it vanishes if and only if P = @J; moreover, the zero is
of first order. Formula (2.7.3) immediately gives the other properties E(P, Q) =
—E(Q, P); if we choose in the neighborhood of P, ) € X such a local coordinate

z that hK2(P) = dz(P), h3(Q) = d=(Q) then

AP) Q) |,
NCECTE )

and, finally E(P, @) is invariant under by-passing of a-cycles and is multiplied
by exp (—(1 /2)Bii F fg w,-) when the b;-cycle is by-passed by the coordinate
P (upper sign) and by the coordinate ¢} (lower sign) in the exponent.

We use the prime-form to construct meromorphic functions and the main
differentials on X (e.g., [2.7, 8]).

@) Let D =), P — Y %, Q; be a divisor of a meromorphic function f,
i.e., a divisor that satisfies the condition of the Abelian theorem (Sect. 2.4) Then

P, P,
f(P)= H g((P, Q,)) 2.1.5)

E(P,Q) = 2.73)

E(P,Q) = o [(z(P) - 2(Q)Y]} , 2.7.4)

is a single-valued meromorphic function w1th a divisor of zeros, ) P; and a
divisor of poles, ) Q;.

(b) Let us construct differentials of the third kind df2p,_q,(P) that have zero

a-periods, a simple pole Py with residue 1 and a simple pole ()¢ with residue
—1. We set

E(P7 PO)
E(Pa QO)

Indeed, [ df2p,—q,(P)=0,i=1,...,g and we have on local coordinates

dp,_q,(P)=dpln (2.7.6)

d2p,—q.(P) = dpIn(2(P) — 2(F))
— dp In(2(P) — 2(Qo)) + holomorphic differential

»

with this yielding the statement about residues.
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(c) Let us construct a differential of the second kind df2¢g(P) with zero

a-periods and the only second-order pole at the point Q). For this purpose we
consider the 2-form

d(P,Q)=dpdoIn E(P,Q) . @2.1.7)

This form has zero a-periods and is decomposed, in local coordinates, into a
series by the formula

4P, Q) = dz(P)dz(Q) _
(2(P) — 2(Q))
The second-kind differential that we look for is defined as

d2(P, Q)
dQ

To derive finite-gap solutions of completely integrable equations, we need
to describe meromorphic functions and functions with essential singularities in
terms of the principal parts of the poles. The above method of constructing mero-
morphic functions does not serve this purpose, because it involves the condition
of the Abel theorem. So, using the Riemann theorem on the zeros, we describe

another technique. First, we construct on X a meromorphic function with g +n
poles, where n > 1.

+0(1)dz(P)dz(Q) . (2.7.8)

df2o(P) =

Proposition 2.23. Let D be a non-special divisor of degree g and D’ an arbitrary
positive divisor of degree n. A meromorphic function ¥(P) on X with g + n
poles in D+ D' is defined by the formula

6 (fpw+W - D; B)
G(ff;w-—D;B)

where 2(P) = f 11; df2, df2 is a normalized Abelian differential of the third
kind with poles in D' (with residues —1), the vector W = (Wq,...,W,) =
( fbl aq,..., fb, df2) is a vector of b-periods, the vector D = A(D) + K, where
A(D) is an Abelian mapping and K is a vector of Riemann constants; the
integration path in the integrals 2(P) and [}, w is chosen to be the same.

Y(P) =

exp 2(P) , (2.7.9)

Proof. From Corollary 2.22 and (2.7.9) it follows that the function (2.7.9) really
has poles only in D + D'. Therefore, we have to show that the function (2.7.9)
does not change when P goes around the arbitrary cycle v € Hy(X,Z). We
denote by M., a monodromy operator that corresponds to going around the
cycle v = Y ] (Nia; + M;b;) = (N,a) + (M, b), where N, M € Z?9 are the
coefficients of decomposition of + in the basis (a, b) in H1(X, Z). Then, in virtue
of the transformation property of the theta function (2.5.10), we have
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6 (Jpw+W - D+BM +21iN; B)

M [P(P)] =
! 0 (Jpw— D+BM +27iN; B)

x exp (2(P) + (W, M)) = U(P)

which completes the proof.

We now construct on X functions with essential singularities. These functions
are the generalization of the exponential function exp z on C which is analytic
in C and has an essential singularity at z = co. Contrary to this if g > 1, then in
addition to essential singularities, the functions have poles as well.

We fix on X an arbitrary, but finite number of points ¢},...,Q, and define
local parameters z; so that z;(Q;) = co. We associate every point ); with an
arbitrary polynomial ¢;(z;). Next, let Py +- - -+ P, be an arbitrary positive divisor
on X\{@1,...,Q@,} of degree g. We denote by L(D; Q1,...,Qn, q1,---,4n) @
linear space of functions ¥(P) on X and satisfying the conditions

(1) The function ¥(P) is meromorphic on X \ {@1,...,Q,} and has poles only
at the points of the divisor D= P +---+ P;

(2) In the neighborhood of every point @, j = 1,...,n the following estimate
holds:

T(P)exp {—q;[z;(P)]} =0() . (2.7.10)

Theorem 2.24. The space L(D; Q1,...,Qx, q1,---,4g») is one-dimensional for
the non-special divisor D € X and the polynomials ¢;, j = 1,...,n with suffi-
ciently small coefficients. Its basis is described explicitly by

6 (Jpw+V - D; B)
6 (fpw - D; B)

where {2(P) is a normalized Abelian integral of the second kind with poles at the
points ()q,...,Qy, the principal parts of which coincide with the polynomials
q;(2;), 3 =1,...,n, V is a vector of the b-periods of the integrals of {2(P), i.e.,

Vj=/dQ(P), j=1,...,9 , (2.7.12)

b;

Y(P) =

exp 2(P) , (2.7.11)

D = A(D)+ K, where A(D) is an Abelian transformation and K is a vector of
Riemann constants, and the integration path in the integrals

4 P
2(P) = df2(P) and / w
Po Po

is chosen to be the same.

Proof. The function (2.7.11) has, by Corollary 2.2, poles exactly at the points
of the divisor D and, by construction, essential singularities at the points
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Q1,...,Q,. We show that the function (2.7.11) is single-valued. This is equiv-
alent to the ¥ (P) being invariant when the point P goes around an arbitrary
cycle vy € Hi(X,Z). Let v = (N,a) + (M,b) = Ef=l(N,~a,- + M;b;), where
N;,M; € Z, 1,5 = 1,...,¢9 and (a,b) is the basis in Hi(X,Z). We denote
by M., a monodromy operator that corresponds to the cycle v being traversed.
Using the transformation property of the theta function (2.5.10) we have

[pw+V - D+BM+21iN; B)

a
Myl (P)) =— (J#w - D+BM +2riN; B)

x exp (2(P) + (V, M)) = y(P).

Next, let ¥ be an arbitrary element of the space L. Then, the ratio ¥/%,
is a rational function L with a divisor of poles that coincides with the divisor
D' =P+ ++ P, or zeros of the function %(P), for which, by virtue of (2.7.11)
the following comparison is valid:

ADY-AD)=V . (2.7.13)

For sufficiently small vectors V (i.e., for sufficiently small coefficients of the
polynomials q), the theta function in the numerator of (2.7.11) does not vanish
identically. Consequently, its pole divisor D' is non-special, so that ¥/¥; is a
constant (Sect. 2.4).

Remark 2.25. Non-special divisors are divisors of the general position; therefore,
in Theorem 2.23 we can replace the requirement that the coefficients of the

polynomials ¢; be small with the requirement that the “polynomials be of general
form”.

Corollary 2.26. Let D be a non-special divisor and ¢;,z = 1,...,n are poly-
nomials of the general form. Then, if for ¥ € L(D;Q1,...,Qn, G15---,qn)

the symbol O(1) is replaced by o(1), at least in one of the estimates (2.7.10),
T(P)=0.

Throughout this section we treated the functions f(P) depending on P € X.
Finally, we consider an arbitrary meromorphic function f on X and a set of ¢
points of general position (non-special divisor) D = P +- - - + P,. We define the
symmetric function S;(f;D),:=1,...,g¢, as

g g
SIfsD) =) FPD,-.., S(f; D) = [[ £(P)
=1

i=1
Since the Jacobi inversion problem is solvable for all divisors D, and is uniquely

solvable for almost all D, the functions S;(f; D), i =1,..., g are functions of the
points ¢ = ((1,...,(y) of the Jacobian J(X), i.e., 2¢g-multiple periodic functions
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with a period lattice {27iM + BN }. Since these functions are Abelian, they are
expressed via theta functions. In particular, the following equality is valid:

1
5D =g 3 [ FPon-
k Yok

P
- ) resf(P)dlno(/ w—A(D)—K;B).
Py

F(Qr)=oc0

(2.7.14)

2.8 Hyperelliptic Curves

In this section we examine a hyperelliptic curve X of genus g and describe the
relevant meromorphic functions on it. Let the hyperelliptic curve X be in the form
(2.1.2) and equipped with the basis (a, b) in H;(X, Z), as indicated in Fig. 2.5.
We normalize the basis in the space of holomorphic differentials (2.4.2), w =
(Wi, - -« ,wg), wi = Y. ¢ijAIIdA/p such that the Riemann matrix IT = 2#il; B).
We denote by A; the quantities A; = A(Q;,Q1), 7 = 1,...,2g9 + 2, where
A(P, Q) is an Abelian mapping, and write down the characteristics [A;] of the

points
0 0 1 0 --- 0
[Al]”[o 0]? [AZ]"[O 0o ... 0} )
1 0 0 --- 0
[A3]—[1 1 0 .- 0]7 ’
11 - 100 0]
[A2kn] =
1 - 01 0 ’
R ; 4 2.8.1)
k
(1 1 110 ---0
[A2k+2]— \1 0 -.- 0 1J 0 . 0_ ’ ’
Y
11 - 1 00 - 0
[A,29+1] = -1 0 - 0] ) [A2g+2] = [1 0 . 0]

The calculation of the vector of Riemann constants (2.7.1) is simplified in
the present case of a hyperelliptic curve. It results in K being a half-period, with
the characteristics given by

[K] = Z [A;] (mod2) |, (2.8.2)

|Ail=—1
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which, in the homology basis shown in Fig. 2.5, yields

g g-1 1
k1= [0 07t

We associate each of 49 half-periods with one of 47 partitions of the numbers
I={1,...,2g +2} into two groups

I= Im U (I/Im) = {ih"w Z.g+1——2m} U {jl')'"a jg+1+2m} ’

where m = 0,1,..., [(g + 1)/2]. Each of the partitions is associated with the
characteristic

g+l—2m
le(ln)] = ([A ( Z Qi —(g+1— Zm)Ql)} + [I(]) (mod 2). (2.8.3)

k=1

The number m in (2.8.3) is the multiplicity of the zero of 0[¢](z; B) for z = 0.

29 +1

For m = 0, there are ( g ) even non—singhlar characteristics

g

g+l
[e] = (}:{Aikmxl) (mod2)

k=1

2g+2
for m =1 there are ( I 1) singular characteristics
g —_—

g—1
[6] = (Z[Aik]ﬂK]) (mod2)

k=1

+
and at last for m > 1 there are 29+2 singular characteristics
g+1—2m

g+l —-2m
[n]=( > [Ai,,1+[K]> (mod2)

k=1

the parity of which is the same as that of the number m and for which the theta
function 9[n](z; B) has an mth order zero at z = 0.

In particular, for genera g = 1,2 there are no singular characteristics, for
genus g = 3 there is one even singular characteristic of the vector of Riemann
constants [ K']. We note that for g > 2, the characteristic [ K] is always singular
and the theta function 6[K(z; B) at z = 0 has zero of the order m = g/2 if ¢
is even, and (g + 1)/2 = m if g is odd. On the other hand, the vanishing of the
theta constants to the mth order represents a complete set of the condition that

distinguish the B-matrices of hyperelliptic curves in ;. More specifically, the
following holds:
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Theorem 2.27. [Ref. 2.3, p. 309]. In order for the matrix B of a curve X to

be a B-matrix of a hyperelliptic curve, it is necessary and sufficient that

(a) in the case ¢ =4 or 6 there is one half-period on which the theta function
has zeros of order 2 or 3;

(b) in the case of an even genus g > 8, there are two half-periods on which the
theta function has a zero of order ¢/2;

(c) in the case of an odd genus ¢ > 3, there is one half-period on which the
theta function has a zero of order (¢ + 1)/2.

We now use the theta functions to construct meromorphic functions on the
hyperelliptic curve X = (u, A). The simplest of them is the coordinate A, which is
a meromorphic function of the second order. We specify the notation as follows:
the curve X is represented as

2g—1
=x0-D JTa-x (2.84)

=1

where Aq,..., A2y are different points in €\ {0,1}, with 7(Q1) = 0, 7(Q2) = 1,
m(Q2j+1) = Aj, 7 =1,...,29 -1, m(Q2442) = 0o. We equip the curve (2.8.4) with
the basis (a,b) € Hy(X, Z) represented in Fig. 2.5 and consider the function

100 0 F
o238 ([)
F(P) = . 2.8.5)
602[100 o](/”, )
01 0 0 w; B

The numerator of the function (2.8.5) is not identically zero. Indeed, e.g., when
P = @, we use (2.8.1) to find that the numerator is 6 [O 00 .- 0

110 -~ 0p
... 100 0 --- 0.,
where the characteristic 110 ... 0l odd and generated by the par-
tition {1,2,5,7,...,2g+1} U {3,4,6,..., 2g +2} with m = 0 [see (2.8.3].
Next, at P = ()1, f(P) has a second-order zero, because the odd characteristic
1 00

11 0 o |» 2ppearing in the numerator, is non-singular, i.e., it corre-
sponds to the partition I} U (I \ I;) with I; = {5,..., 29 + 1}, while the even
non-singular characteristic [ (1) (1) 8 8 in the denominator corresponds
to the partition Iy U (I \ Jo) with Io = {2¢+2,5,7,...,2g+1}. At P = Q2442
the function (2.8.5) has a second-order pole, because under this substitution the
theta constants appearing in the numerator and denominator are inverse to those
considered above, in view of (2.8.1).

We note that the numerator vanishes at g points @1, Qs, Q7,-..., Q24+, and
the denominator at g points Q2442, @s, Q7,. .., Q24+1. By the Riemann theorem,
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these are the only zeros of the numerator and the denominator. We can easily see
that f(Qx) # 0 and is finite at the ambiguity points Q, k =5,...,2¢ + 1. Thus,
the function (2.8.5) has only a second-order zero at P = (); and a second-order
pole at P = (Q2442. By finding the constant ¢ from the normalization condition
f(@Q2) =1, we finally obtain that the coordinate is expressed via theta functions

as
@2[0 00 0] 1 0 0 0 PM,B
01 0 0 110 0 2
A= - . (2.8.6)
000 0 100 0
2 2 .
9[1 10 0]9[0 10 0] (/f’B)

Formula (2.8.6) can be used to derive an expression in even theta constants for
the projections \; = w(Q)2+;) of the branching points at : = 1,2, 4,...,2g9 — 2.
In particular, substituting P = )3 into (2.8.6) yields

P [0 00 0} P [0 0o -- 0}
01 0 --- 0

A = 0 0) 0 : (2.8.7)
02 0 00 0 02 00 --- 0
1 10 0 1 0 -.- 0

We can also obtain expressions in even theta constants for \; when ¢ =
3,5,...,2g9 — 1. To avoid the need for evaluating indeterminacies in the ex-
pression for f(P), we must choose appropriate characteristics in (2.8.5).

We note that the possibility of expressing the numbers A; via theta functions
in different ways indicates the existence of numerous relations between them.
Some of these relations will be given below.

Other useful formulas for meromorphic functions can be obtained by cal-
culating the residue for the case of interest in (2.7.12). Let the curve X be
given by ,uz = Hfi’; 1()\ — E;)and D = P; +--- + P, be a nonspecial divisor.
As basis point Py (lower bound in the Abelian mapping), we choose a point
Q2442, T(Q2442) = 0.

We consider the function f = A, f : X — C. According to (2.7.14), we have

P
Sl(A,D)=c-—res)\d1n9(/ w—-AMD) - K; B).
Q2942

To calculate the residue, we take X = 1/2% = oo as a local parametér in the

neighborhood of the point Q,42. For normalized holomorphic differentials w
and the Abelian transformation we have the decompositions

w(P)= (U +0(z?)) dz, AP)=Uz+o(z*) |, (2.8.8)

where the vector U = (Uy,...,Uy) = —2(c11,. .., c14). Then
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P
dlnG(/ w—AMD) - K, B)=dz[6—Uln0(A(1J)+K; B)

Qag+2

+ I8 (AD) + K; B)z+0o(zD)]

where 9y = )7, U;0/0z; is the operator of differentiation in the direction U.
We finally obtain

P, P,
SI(A;D)=—8,211n9((/ +...+/ )w+K; B)+C (2.8.9)
Q2942 Q2942

where the constant C is defined from the formula (2.7.12).
We also consider the function f =In(A — Ey), 1 < k < 2g — 1. In this case
we obtain

g
\J (AP} — Ex)
=1

J
Q P P
6 / o /++/ w—K: B (2.8.10)
Py Py P,
Q2942 51 P, ’
9 ] w — / +...+/ UJ—K;B
Po PO Po

where hj are constants.
We cons1dcr a hyperelliptic curve X = (u, A) that has no branching at infinity,
p = k_l (/\ Ey),and let D = P +---+P,_,, be adivisor of degree g—n+1,

n < g. Furthermore, let {i1,...,7,} and {]1, ., Jn} be two sets of numbers in
{1, 2,...,2g +2}. Then, the following formula [Ref. 2.5, p. 776] is valid:

= h

0|K+Y A; | (AD); B
gt MPy) — i le: “‘d( % B
H H /\(Pz)— = c—p—H (2.8.11)

0|K+Y A | (AD); B)

where c is a constant independent of D. Formula (2.8.11) yields for n = ¢
P
0|K+T8,4;,] (Jpw B)
P
9 [K +3 Ajk] (fpo w; B)
. \/(A —Ei)--A—E;) (2.8.12)

A—E;)--A—-E;)

[ Ein—Ei) Bin—E) [(Bjpa—Ei) (Ejp—E)
(Ei;n1—E;,) (Eijn—E;,)) \| (Ej,n—Ej) (Ejs1—E;j)
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and forn=1,

B P L [xP)-EB;
0[K+Aj]((/Po+---+/Po)w,B) H A(P,)—Ek
P, P, =k

0[K+Ak]((/ +---+/ )w; B)
Po Po m_, _Ek

m#i, k

(2.8.13)

where « is a primitive 8th root of unity.

Formula (2.8.11) can also be used to derive the important Thomae formulas
[Ref. 2.5, p. 774]:

0'letN =det ¢ [ (EB:-E) ] E—-E» , (2.8.14)
i,g(ego k,deI\Ig
i<y k<l

1
Glet =gcdet & [[ &E:-Ep [[ Ee-ED

m,nel keI
m#n k#l

4
g
x (Zd.-,-s,-_l(rl)) , i=le,g,

=1

(2.8.15)

where ¢ = ||¢;;|| and d = ¢! are (g x g)-matrices and c;; normalization constants
of holomorphic differentials, S;_;(J;) symmetric functions,

So(h) =1, $ih) =Y Ei,..., Sl = [] E;.

i€l JEIL

We have shown above how the projections E; of the branch points of the
curve X are expressed in terms of theta constants. Let us show now how the

normalization constants c;; of holomorphic differentials can be expressed in terms
of theta functions.

Proposition 2.28. Let B be such a hyperelliptic point that there is a set M =
([81],..., [64]) of odd non-singular characteristics satisfying the condition

D(M)(B) = det (3(8[81),..., 616,1)/0(z1,..., 2,)| o) #O . (2.8.16)

Then, the following formulas are valid:

cji =( D(M))detcllzzv,, I En-E)"
m,,el(r)
m<n (2.8.17)
x I @E-Esiad, jk=1,...,4

k,ler(")\rg')
k<l
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where D;, are the co-factors of the matrix || D(M)(B)||, and I r \ o,
r =1,..., g are the partitions of sets I = {1,...,2¢+2} = {iﬁ’”’, i yu

seey g__l
{ jfr),... , j;%} that correspond to the characteristics [61],...,[8,]).

Proof. Let M be a set of characteristics that satisfy the condition (2.8.16) and
Ifr), r=1,...,g be a set of partitions I = {1,...,2¢g +2} into two groups Ifr)
and J \lf") that correspond to these characteristics. Using (2.8.15), we can obtain
the following equality for [61]:

g

Yeibilon =g det [ (B B

J=1

m,nGI{r)
m<n
x I &-Ey/*siai
k,er(')\Ii')
k<l
With & fixed, we write another g— 1 equation for the characteristics [82],.. ., [6,4].

Formulas (2.8.17) are then derived using the Kramer rule.

Remark 2.29. Equation (2.8.17) can be improved by calculating D(M)(B) in
even theta functions with the help of a generalized Jacobi formula (2.6.5).

Appendix 2.1 Uniformization of Riemann Surfaces

In this appendix we give the basic points of the theory of uniformization of
Riemann surfaces that will be useful in our further discussion (for more details
see, for example, [2.1,9].

We study three domains on CP! that will be denoted by A={CP!,C, H},
where H is the upper half-plane H = {z |Im z > 0}.

Lemma A.1.1. All holomorphic homeomorphisms g : A — A are of the form

(@ A=CP', g2= 218 o5 _py=1,0a,6,7,6¢cC,

vz +6
b A=C, gz=az+f§ 2.A.1)
© A=H, gz=225 06 _py=1, 0,81 6¢cR.

yz+§6’

The linear fractional transformations (2.A.1) include
(a) elliptic transformations |a +6| < 2, a+8 € R,
(b) parabolic transformations |a+ 6| =2, o+ € R,
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(c) hyperbolic transformations |a+46| > 2, a+6 € R,
(d) all the others are loxodromic, a + 6 ¢ R.

Hyperbolic transformations are sometimes classified together with loxodromic
ones. Parabolic transformations have one fixed point, the other transformations
have two.

Let Py be a point of the Riemann surface X. We consider the set of all
oriented closed curves (cycles) passing through Py. A cycle is homotopic to zero,
if it can contract to a point, and two cycles are homotopic, if their difference
is homotopic to zero. The corresponding group 71 (X, P) is called a homotopic
group. It is easy to see that 71 (X, Pp) is isomorphic to (X, Py), so that we can
consider m1(X). Just as we choose the homology group basis (Sect. 2.1), we can
also choose a basis of m;(X) for a compact Riemann surface X of genus g, with
the defining relations as follows:

~17-1 —17-1 _
arbya; b ---agbgay bg =1.

The universal covering of X (Sect. 2.2), which we denote by X , 1s itself a
Riemann surface, with the complex structure defined by the condition that the

projection 7 : X - Xis holomorphic. The action of the group 7;(X) on X
can be defined as

g(P,v)=(P,v0g), g€ m(X,R) .

If X is a compact Riemann surface, then it is a discontinuous group of holomor-
phic transformations that have no fixed points. We denote this group by G,.

The universal covering of X is simply connected and thus conformally equiv-
alent to one of the following domains.

Theorem A.1. (Riemann.) Any simply connected Riemann surface is holomor-
phically homeomorphic either to CIP!, or to C, or to H.

G, induces the action on A of the discontinuous group of holomorphic
transformations that have no fixed points G = fG.f~!

a.ox L. acc

! 1

X=X/G, AlG
Therefore the Riemann surface X is holomorphically equivalent to A/G (X =
A/G).

The groups G for CP! and C can easily be enumerated. In the case of CP!,
this group consists of one identical transformation, and in the case when A =C,
it is determined by one or a pair of shifts

z— 242w, z—z+2'
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Consequently, X in these cases is either CP!, or a cylinder, or the torus discussed
in Sect. 2.3. There are more interesting examples of G for A = H. Notice that
every element o € 7;(X) generates A = faf~! € G.

Theorem A.2. Any compact Riemann surface X of genus g > 2 can be repre-
sented as X = H/G, where G : H — H is a group of hyperbolic transformations
with generators A;, B;, 1 =1,..., g that satisfy the relation

ABIAT'BI - A B, AT B =11

There is a generalization of this theorem that enables us to uniformize the
Riemann surface X of genus g with n boundaries X7,..., X, and m branching
points Pp,..., P, with branch numbers v1,..., v, (infinite ones are included).
In this case we add to @ and b in 7(X) the generators cy,...,c, that describe
the circulation along Xi,..., X,, and the d,..., d,, that correspond to the
circulation around Pi,..., Py, where dj 1l = ... = ¢¥m*1 = 1, Furthermore, the
generators satisfy the relation

arbiay b7 - agbgar b ey v cpdy o d = 1

As before, the appropriate elements A;, B;, C; of the group G are hyperbolic;
they have no fixed points in H. Conversely, since d; has the fixed point P;, the
transformations D = faf~! are elliptic (v # oo) and each of them has exactly
one fixed point in H. If v = oo, the corresponding transformation D is parabolic.
The defining relation for this group is as follows:

ABIAT' BT - AgB AT BICy - CiDy - D =1

n+l _ = v+l _
Dl =... = prmtl = |

The groups G, generated as G : H — H, are called Fuchsian groups of the
first kind if n = 0, and of the second kind if n # 0.. They have an invariant circle
(real axis). The more general groups of transformations with complex coefficients
a, B, 7, 6 that act on CPP! are called Klein groups. The important characteristic
is the limiting set of the group A(G), which is a closure of the set of fixed points
for the group transformation. Its complement is the discontinuity domain 2(G).
For Fuchsian groups, the inclusions A(G) C R, H C {2X(G) are valid.

We fix one of the branches of the projection 7 : X — X such that 7~1X
is simply-connected in X; then F' = f(z~1X) is a simply-connected domain in
H. Moreover,

1. FNgF=0Vge G, g#I

2. U gF=H
geG

F is the fundamental domain of the group G. More generally the fundamental
domain of a Klein group is defined as a domain that satisfies the above two
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conditions where H is to be replaced by £2(G). The fundamental domain can be
chosen in many ways. This point is treated in more detail in Chapt. 5.

There are Fuchsian groups of the first and second kind. For Fuchsian groups
of the first kind A(G) = R, and F' has no segments that lic on the real axis.
These groups are used to uniformize Riemann surfaces without boundaries. For
a Fuchsian group of the second kind, the domain F' has segments that lie on the
real axis, and A(G) C R is a Cantor set. The Fuchsian groups of the second kind
are used to uniformize the Riemann surfaces with boundary cycles.

The remarkable Poincaré metric (dz?® + dy?)/y® can be introduced on H 3
z = ¢ +1iy. The circles which are orthogonal to the real axis are geodesics of
this metric. The Poincaré metric is invariant under the transformations (2.A.1),
so that it can be projected onto H/G.

The analytical functions are said to be automorphic if they are invariant under
the discontinuous group G of conformal transformations

fg2)=f(z)Vg € G

The consequence of the uniformization theorem is that the notion of an analytical
function on a Riemann surface is equivalent to that of a function automorphic
under the action of uniformizing group. The basic tools of constructing automor-

phic functions are automorphic forms. The analytic function f which obeys the
transformation law

f(g2) = f(2)(yz + &)"

is called an automorphic form of weight (—n). They can be constructed effec-
tively. A Poincaré theta series of the dimension (—2!) is an automorphic form
of weight (—2!) defined by

6(z) =Y  H(g2)(yz+87

9€CG

where H(z) is an analytic function. If H(z) is bounded, the series is absolutely
convergent for [ > 2. Theta series of lower dimensions are also convergent
for some of the groups G. For example, a theta series of dimension (—2) is
convergent for a Fuchsian group of the second kind.



3. Finite-Gap Solutions
of the Kadomtsev-Petviashvili
and the Korteweg - de Vries Equations

In this chapter we show how the theta function constructions on Riemann surfaces
may be applied to solve nonlinear evolution equations of physical interest. The
main tool of the theory is the so-called Baker-Akhiezer function, which solves
the linear partial differential equations with “finite-gap” coefficients.

3.1 Differential Equations for the Baker-Akhiezer Functions

We have seen above (Sect. 2.7) that the function ) given by (2.7.11) is — in
the presence of only one essential singularity — described up to a multiplicative
constant with the following set of parameters:

1) X, a compact Riemann surface of genus g,

2) P, € X, a marked fixed point,

3) a fixed choice of the local parameter p = k~! near the point P,, with the
property that k — oo as P — P,

4) Q(k), a polynomial,

5) D= P +...+ P, a non-special divisor on X.

Let us now suppose that the polynomial Q)(k) linearly depends on the com-
plementary parameters z,y,t,.... We show that in such a case ¢ satisfies some
linear partial differential equations with respect to these variables.

We first consider the simplest, but simultaneously the most important, exam-
ple of such a type:

Q(k) = kx + Ky + k¢

All considerations below will be independent of the actual structure of the poly-
nomial (k) and may be easily extended to include the general case.

It will be helpful to list the general analytic properties of +(z,y,t, P) as a
function defined on X which also depends on z, y, t:

(1) 9(z,y,t, P) is meromorphic on X\P,,, and at the point P, it has an
essential singularity of the form
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P(z,y,t, P)=[1+0(k Hlexp(ke + K’y +k°t), P~ Py . (@3.11)

(2) The divisor of the poles D is non-special D = P, +...,+P,; (D does not
depend on z, y and t).

As in Sect. 2.7 1 is uniquely determined by the conditions (1) and (2), and
may be explicitly constructed by means of

0 (fp.,w+Us+Vy+Wt+D)6(D)
Y(z,y,t, P) =

6 (fp, w+D) 68Uz +Vy+Wt+D) (3.12)
x exp(1(P)z + Da(P)y + (P)t)

’

where §2;(P) are normalized Abelian integrals of the second kind with singular-
ities at the point P, fixed by the conditions

.Q,'(P)——)ki+0(1), P—-)POO? i=172’3,
and
g b
Dn=—2/ wn — Ky .
k=1 Y Po

The b-periods of these integrals are denoted by

Un=/ s, Vn=/ ash, Wn/ dsh
b bn bn

Formula (3.1.2) possesses the same structure as (2.7.11). To see that (3.1.2)
actually coincides with (2.7.11) it is sufficient to remark that the b-periods of the
normalized Abelian integral 2(P) with the unique singularity at P, given by
2 — Q(k), P — P, are equal to

/ dR2=Upz+Vy+Wet
bn

because {2 = 21z + fhy + 3t. A complementary theta functional factor with
respect to (2.7.11) provides the normalization (3.1.1).

Theorem 3.1. The function v(z, y, t, P) satisfies the following system of PDEs:
Oy = Loy, Op=1Lsyp (3.1.3)
and the operators L, and L3 are given by the formulas
Ly= +u, L[3=08 +v,0; +v

Here u, vy, vy are coefficients independent of P which are determined by the
following conditions:
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(8, — L) = O(k~Yexp(kz + k?y + k°t)

3.14
(8; — L) = Ok~ Yexp(kz + K2y + k°t), P — Py -14)

Proof. The function (0y — L)y possesses the same analytic properties (1) and
(2) as the function ), except for different asymptotic behaviour at the marked
point. But the function ) is uniquely determined by its analytic properties and
consequently we have

(ay - LZ)d) = 0

by the uniqueness of the Baker-Akhiezer function (see Theorem 2.24 and Corol-
lary 2.26). The second of the equations in (3.1.3) may be proven in the same
way.

Substituting the asymptotic series

b = {1 +3 €y, t)k“"} exp(kz + K2y + k%) (3.1.5)

n=1

into the system (3.1.3) and equating the coefficients of the leading powers of k
gives the following expressions for u, vy, vy:

u=—2,, v1=-3& v2=36— e 622) - (3.1.6)

We now turn to the derivation of the expression for u(z,y,t). For this cal-

culation we need the following asymptotic formulas for the Abelian integrals
.Qii

0 k- % +O(k™2), & — k- Ek% +O(k™2)
_C_‘3,_
k
The constant coefficients ¢, ¢y, ¢c3 are uniquely determined by the choice of the
surface X, the point P,,, and the local parameter & at this point. However, one
needs to know only the value of the constant ¢, since ¢; and ¢3 do not contribute
anything to the explicit formula for &;,.
Comparing (3.1.5) with the explicit representation (3.1.2) for ¢ we get

kB —-=24+0k™)

o[ 0(J5 w+Uz+Vy+Wt+D)o(D)

- —(ex + ay + est)p|
9([me+1)) Uz + Vy+Wt+ D)

where the partial derivative of the log is to be taken at p = 0. Hence

9 9 d
&’=—6—z'—8_1; logé / wtUz+Vy+Wit+D || —c . (3.1.7)
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It follows from (2.4.13) that in a neighborhood of P,, Abel’s mapping is of the
following form:

P
[ wn=—Uap+ 06D
P

Consequently in (3.1.7) one can replace differentiation with respect to p by differ-

entiation with respect to z. Finally we arrive at the following exact representation
for u:

w(z,y,t) = 20%logd(Uz + Vy + Wi+ D) +2c . (3.1.8)

The coefficient v, can also be expressed in terms of theta functions, and we omit
the related expression.

We remark that (3.1.8) may be rewritten as
u=20,,0,,U;U;logh(z) +2¢, z=Uz+Vy+Wt+D

Now it follows from the last formula that u, as a function of 2z € €Y, is the
Abelian function defined on the torus with a periodic lattice generated by the
columns of the matrix IT = (I, B), Bpm = fb" wm,. Therefore, u(z, y, t) represents
a restriction of some Abelian function on the direction 2 = Uz + Vy+ Wt+ D.
Such functions are often called quasiperiodic. Already at this step we arrive at a
valuable result: for some linear equations with coefficients explicitly expressed in
terms of multi-dimensional theta functions we have constructed a one-parameter
family of solutions also expressed by means of Riemann theta functions. It now
becomes clear that the constructions of the previous chapter lead quite naturally

to the explicit integration of the linear partial differential equations with their
quasiperiodic coefficients.

3.2 Solution of the Kadomtsev-Petviashvili Equation

Our next task is to show that the function constructed above satisfies the
Kadomtsev-Petviashvili equation

3 0 1
Zuyy = B [ut — Z(Guuz + uzm)] 3.2.1)

usually referred to in the literature as the KP equation. The KP equation is a nat-
ural two-dimensional integrable generalization of the KdV equation. It describes
various physical phenomena, in particular, two-dimensional shallow water-wave
propagation.

The KP equation may be considered as the compatibility condition for the
system (3.1.3). Indeed, imposing on % the requirement 1, = 1,; we get

(Lp¢ — L3y + LyLs — L3Ly)yp =0
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The operator in parentheses is an ordinary differential operator of finite order in
the variable x and (P) represents a one-parameter family of functions belong-
ing to its kernel. Since the kernel is always finite-dimensional, the operator in
parentheses is identically equal to zero, as are the coefficients of the derivatives
with respect to z of the same orders. More explicitly, we have

—V1y t Vigg +2't)2:,7 —3uy, =0

?

) (3.2.2)

Ut — V2y T V2gz — Uggr — VilUg = 0

Let us remark that the first of these identities also follows from (3.1.6),
which implies 2v; = 3u. Differentiating the third of these equalities by z, and
substituting into it vo, given by the second equality of (3.2.2), we get (3.2.1).

Thus we have the following proposition:

Theorem 3.2. An explicit formula for the solutions of the KP equation is given
by

w(z,y,t) = 20210gd(Uz + Vy + Wi+ D) +2¢ (3.2.3)

where D € €Y is an arbitrary vector. These solutions are quasiperiodic. They
are the so-called finite-gap solutions.!

The solution (3.2.3) depends on the Riemann surface X, the point P, € X,
the vector D € €7, and the local parameter k at the point P,,. The dependence on

the local parameter is the most evident. The transformation of the local parameter
given by

k—ak+B8+vk '+ 072 (3.2.4)

where «, 3, v are arbitrai'y complex numbers (a # 0), leads to a different family
of solutions of the same KP equation. These new solutions are obtained by the
following transformations of z, y, f, u which leave the KP equation (3.2.1)

invariant:
r — ar+2afy+ (3aﬂ2 + 3a27)t ,
y — o’y +3a2Bt
t — ot
2

(3.2.5)

b

U — o

u—2a" 1y

! This name has been explained in the Introduction. More details are given in Sect. 3.5.
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3.3 Real Non-Singular Solutions
of the KP1 and KP2 Equations

For applications in physics it is important to single out real and smooth solutions
from the whole variety of exact solutions obtained. There exist two different
variants of the Kadomtsev-Petviashvili equation which cannot be reduced to each
other by real-valued change of variables. Equation (3.2.1) is usually referred to in
the literature as KP2. It is also often called the stable variant of the KP equation.
The change of variables

z—ir, y—oiy, t—it 3.3.1)

transforms the KP2 into the (unstable) KP1 equation

3 0 1
Zuyy = B (ut - Z(6uu,; — ux“)> . (3.32)

Both KP1 and KP2 equations may be applied to the description of various
interesting phenomena in plasma physics and hydrodynamics. In these applica-
tions the most interesting solutions from the view point of physics are usually
the real non-singular ones.

To describe real and smooth solutions we start with some preliminary results
on real Riemann surfaces (only these Riemann surfaces give rise to the real
solutions of KP1 and KP2).

A Riemann surface X is called a real Riemann surface if it admits an anti-
holomorphic involution (anti-involution for short): 7 : X — X, 72 = 1. The fixed
points of the anti-involution 7 form connected components which are called the
real ovals of the involution 7. Let n be the number of ovals 0 < n < g+1. These
ovals will be denoted by Xo,...,X,—1. Two distinct situations are possible

(1) the surface X is of decomposing type, i.e., the real ovals decompose X into
two components X, and X_, X_ = 7X,, X4 = X/7 are the surfaces of the
genus h =(g+1 — n)/2 with n boundary curves, (g +1 — n) = 0 (mod 2);

(2) the surface X is of nondecomposing type, i.e., the ovals do not decompose
X, and X/7 is a non-orientable surface.

An M-curve is a Riemann surface with the maximal possible number of ovals
n=g+1.

Now let X be an M-curve. Take the basis of cycles such that P,, € Xo;
b-cycles are taken to coincide with the ovals X;: b; = X;;

Tb]'—_-bj, Ta; = —ay, j=1,...,g . (333)

Taking the local parameter k to satisfy the condition 7*k = k we have

2wiby = ] wy = / Ty = —/ ' = wy =T . (3.3.4)
ag TAj

ay
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Quite similarly one could check the formulas

T™df; =de2;, t=1,2,3

’

taking into account that the RHS and LHS represent differentials of the second
kind with the same singularities. The equalities above prove the reality of the
matrix B and of the vectors U, V, W,

/ =/ T*wz=/w1=3kz ,
by by by
/77 / _T*dle:/ oy = U,
b by b

Suppose the vector D is also real. We show that the solution of the KP2 con-
structed above is smooth and real-valued. The reality follows directly from
the reality of the B-matrix and the reality of the argument of the theta func-
tion in (3.2.3). The singularities of u(z,y,t) are situated at the zeros of
Uz + Vy + Wt + D), but there are no zeros for z,y,t € R. Indeed, we
have

(3.3.5)

O Uz+Vy+Wt+ D)

= Z exp (—lz-(Bm,m) +{Uz+Vy+Wt+ D,m))
meZ?

=1+ Z exp ( (Bm m)) {exp(Uz + Vy + Wi+ D, m)

meZd
m120

+exp(—(Uz + Vy + Wi+ D, m))}

=1+2 Z exp ( (Bm m)) chiUz +Vy+Wt+ D m) >0
nel,
In the last transformation we have grouped together the terms corresponding to
the vectors m and —m. The prime means that the summation is taken over all
Z9 except m = (0,...,0). It can also be proven that the conditions for the reality
of the solutions of the KP2 equation obtained this way are not only sufficient
but also necessary.

On the compact Riemann surface of decomposing type we can always fix a
basis of cycles [3.1] a1, b1, ..., Gn, bp, Gpsts bhats - s G215 b2ky Q2R415 D2Re1s

ooy

Whsn—1> 2hen—1 in such a way that aop+r = Xk, k= 1,...,n — 1 — are real
ovals of X,
a.-,b,-EX+, TO; = Gi+h Tb,'=—b,'+h, i=1,...,h R (336)
TAh+j = O2h+j, Thonej =—=bapej, j=1,...,n—1 e

Theorem 3.3. [3.2]. For smoothness and reality of the solutions (3.2.3) of the
KP1 and KP2 equations [for KP1 it is necessary to make the change (3.3.1) in
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(3.2.3)] it is necessary and sufficient that for the triple (X, P, k) and the vector
D the following conditions are satisfied:

(1) The Riemann surface X admits an antiholomorphic involution 7 : X — X,
72 = 1, where 7Py, = Py, and 7*k = k.

(2) The set of all fixed ovals of the involution + decomposes the surface X into
two pieces X* and X .

(3) If P, € Xy and the basis of cycles is of the form (3.3.6), then the vector
D for the KP1 equation is an arbitrary vector of the form

D=¢€EmT tecCt, neR™ . (3.3.7)

(4) For the KP2 equation there is an additional topological restriction for the
surface X: it must be an M-curve. If a basis of cycles of the form (3.3.6) is
chosen (h =0, n = g+1), then D is an arbitrary vector with purely imaginary
coordinates. If the basis of cycles is such that 7a; = —a;, 7b; = b;, then D
is an arbitrary real vector D € RY.

Remark 3.4. The bases of cycles (3.3.3) and (3.3.6) are related by the modular
transformation (2.4.22,5.12). With the help of this transformation, we find a

reformulation of the conditions imposed on the vector D in the new basis (see
also Sects. 5.5, 6).

It is necessary to remark that the solutions constructed above make it possible
to build the solution of a general periodic problem. More exactly the following
proposition as proved in [3.3] holds:

Theorem 3.5. For any |t| < Tp, and an arbitrary smooth periodic solution
u(z,y,t) of the KP2 equation there exists a sequence un(z,y,t) of finite-gap
solutions, converging uniformly along with all derivatives to u(z,y,t) on the
whole (z, y) plane.

3.4 Reduction to Korteweg - de Vries
and Boussinesq Equations

It may happen that one of the Abelian integrals {2, §2; is single-valued, i.e., a
meromorphic function on X. In such a case both the a- and b-periods of these
integrals are equal to zero.

Let, for example, £2, be a meromorphic function with a pole of second order
at the point P, but without other singularities. In such a case (Corollary 2.6)
the Riemann surface X turns out to be hyperelliptic, and P,, must be one of
the branch points of X. In this case V = 0 and the solution (3.2.3) of the KP
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equation depends only on the x and ¢ variables. In the case under consideration
the dependence of ¥ (z,y,t, P) on y becomes purely exponential, i.e.,

¥(z,y,t, P) = ™ PVo(e,t, P)
and the function ¢ satisfies the Schrodinger equation

Ro(z,t, P) +ulz, )p(z,t, P) = 2(P)p(z,t, P) . (3.4.1)
It is also evident that in this case u(z,t) is the solution of the KdV equation:

4u; =6uuy, + ugyy

: (3.4.2)
u(z, ) = 20%10g0(Uz + Wi+ D) +2¢ . (3.4.3)

Now we discuss these solutions in some detail. Let X be the Riemann surface
of the M-curve, realized as a two-sheeted covering of the complex plane:

2g+1

w2=T[O0-E), EieR, Ei<E<..<Bya . (3.4.4)
=1

Fix P, to be a point over infinity on X which is a branch point of the projection

X - X/n, m: (u, A) = (—p, A). Take a local parameter k at infinity to be of the
form k =iV, then {2, = — . In this case also

P g g—1
@) = [ oy, oy =it *

...+cg
dx
E, 2p

and the constants c; are defined by the normalizations

/ df =0

J

Tl_l_e curve (3.4.4) admits two involutions: 7, defined above and also (g, A) =
(=1, A). The latter is antiholomorphic and has g+ 1 fixed ovals over the intervals

[—o0, E1], [E, E3), ..., [Eag, Eng41]. Under the action of 7, the local parameter
k and the basis of cycles shown on Fig. 3.1 transform as follows:

™k=k, Tap=0an, Tb,=-b,
T*Wp = —Wy, T*dE;=d; (3.4.5)
TJ: = _Un> —W—; = _Wn

As in the KP2 case and the basis (3.3.6), the vector D is purely imaginary with
respect to the basis (3.4.5).

We have constructed all real and smooth finite-gap solutions of the KdV
equation.

We note in addition that from the exact representation (2.4.18)
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Fig. 3.1. Homology basis for the curve (3.4.4)

g —k
Wy = E -—-—;—-d)\
k=1

of the normalized holomorphic differentials of the curve (3.4.4), with the help

of (2.4.13) we get the following expressions for the coordinates U,, W, of the
vectors U and W:

2g+1
U, =2icp1, Wy=-2i (cnz +cnt Y By /2)
k=1

Quite similarly, if there exists a meromorphic function on X with the same
singularity at P, as {23 (i.e., with a third order pole and without other singu-
larities), then W in (3.2.3) vanishes and the dependence of i) on the variable ¢
becomes purely exponential:

P(z,y,t, P) = PPz, y, P) .

In this case u(zx,y,?) is independent of ¢ and satisfies the nonlinear Boussinesq
equation

Juyy + —(-9—(6uu:c +Uggr) =0

Oz
Let us consider a curve X3,
4
p=T[0-Ey

=1

representating the simplest example of the so-called trigonal curves. The curve
X is called trigonal if there exists a meromorphic function with a third order
pole at some point Py of X and without other singularities. Such a point must be
a Weierstrass point. We recapitulate the general definition of Weierstrass points.
If some meromorphic function on X admits a pole at Py of order less than or
equal to the genus of the surface, and there are no other singularities, the point
is called a Weierstrass point. The number N of the Weierstrass points satisfies
the Hurwitz inequality
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29+2< N <g(g®-1)

and N = 2¢g + 2 if and only if X is a hyperelliptic curve. In the case of a
curve X3 of genus 3 the number of Weierstrass points may be equal to 16 or 20
and is defined by the choice of the moduli E;. In particular the branch points

P; = (0, E;) are Weierstrass points. The local parameters 7; at the points P; are
defined as follows:

T = \4/ )\ —_ E,'
It is evident that the functions

[T (A - Ey)
_k#i
13
have exactly one pole of third order at the point P; and no other singularities. All
Weierstrass points of X3 were found in [3.4, 5]. Another remarkable property of
the curve X3, proved in [3.4], is that the associated Riemann theta function splits
into a sum of two terms, each term being a product of three one-dimensional
theta functions. The B-matrix of the curve X3 may be explicitly computed with
the matrix elements expressed in terms of complete elliptic integrals. In Chap. 7

the general nature of such reductions of multi-dimensional theta functions will
be discussed in detail.

fi

3.5 Spectral Properties of the Finite-Gap Solutions

Taking ¢ = 0 in (3.4.1) we get the integrable linear Schrédinger equation

with the potential

u(z) = 2—dQ—Z-log6’(U:c +D)+2c . (3.5.2)
dz

As a function of z =iUz € RY the potential is a periodic function with a period
lattice 277Z¢, i.e., a function on the real torus RY /27 Z7. Since iU € RY the
function u(z) is obtained by the restriction of this function to a straight line on
the torus. Therefore u(z) is a quasiperiodic function.

The fundamental system of solutions of the Schridinger equation is obtained
by taking the (z, P) on the upper and lower sheets of the curve X:

cpi(r,/\)=ZEf£iw+U“D) 8(D)

NPr)
[ w+D)#Uz + D) (3.53)

Py =(xu,r), Pi=nP_
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Theorem 3.6. The function ¢(z, P) has exactly one pole and one zero on each
real oval Ov; of the surface X, lying over the gaps (Ov; — [E2;, E2;41] under
the projection (u, A) — A).

Proof. The proof will be divided into a number of steps. We start with the
following:

Lemma 3.7. For an arbitrary purely imaginary vector D the function 6( fo‘z w+
D) has exactly g zeros.

The result of the Lemma is a simple consequence of the fact that because
(D) #0, 6( f:: w+ D) can not be identically equal to zero. Hence it has exactly
g-zeros on X. Now to verify that 6(D; B) # 0 it will be convenient to apply the
modular transformation of theta functions described in Sect. 3.3. We therefore
obtain §(D; B) = cd(D'; B'YD € R?, c#0. The fact (D’; B') > 0 was proved
in Sect. 3.3. The next step is to prove the following:

Lemma 3.8. The divisor D = ) P; of zeros of 6( foi w + D) is invariant with
respect to the action of antiholomorphic involution 7 : 7D = D.

To prove this result it is sufficient to apply the identity

([ wr2)-o([[50)-o([wo0)

It follows that all the points P; of D may be divided into pairs P, 7P or,
alternatively, are situated on the real ovals Ov;.

The points P; may be determined from the equality

g

b
Z/ wn=-Dp—Kn, n=1,...,9 |, (3.5.4)
i=] vV ° ,

were K is a vector of Riemann constants which may be constructed in the
hyperelliptic case by (see Chap. 2 and also p. 14 of [3.1]):

1< _
K, = 3 ;Bm- +mi(n —2) . (3.5.5)

By virtue of 7D = D, the unique possibility of obtaining a purely imaginary
D, in (3.5.4) is to choose each of the points P; to lie on the real ovals Ov;.
This completes the proof of the Theorem.

The fraction in (3.5.3), containing theta functions in its numerator and de-
nominator, is obviously quasiperiodic in the z-variable but the behaviour of the
exponential in (3.5.3) depends essentially on the choice of A.
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Lemma 3.9. Choose P,(P.) in (3.5.3) to lic on the upper (lower) sheet of the
surface X, i.e., on the sheet fixed by the condition Rek < O(Rek > 0), k = iv
in a neighborhood of infinity. Then

) Aeé&=[E, EblU[Es Es]U...U[E2g41,00]

=W (P)eR, P=(u,l)

2) A e PC\& = Refi(P) <0
Ref1(P-) >0

b

Proof. The first statement of the Lemma follows from the fact that if A € &,
then 7P = n P. Indeed, by virtue of the last equality, we have

P P
.(21(P)=/ d.(21=/ ™d =

E, E,

TP TP P
ds =/ diy = —/ df = -1 (P)
E, E, E,
This completes the proof of the first statement of the Lemma. For the proof
of the second statement of the Lemma it is sufficient to take into account that
all b-periods of the integral §2,(P) are purely imaginary. Hence Re §2;(P;) and
Re £2;(P-) are well-defined harmonic functions on &, £ = PC\&;. The asymp-
totics 21(P) ~ ivA, P — oo and the choice of the sheets of X imply that
for sufficiently large absolute values of A\, Py = (fpu,A), Ref21(Py) < 0,
Ref2,(P-) > 0.

Combining the first statement of the Lemma, Ref2(Ps) =0 for Py € & =
0€, and the maximum principle, the second statement is proven.

From the last Lemma and quasiperiodicity of the fraction involving theta
functions in (3.5.3), we conclude that &; coincides with the continuous spectrum
of the Schrédinger operator (3.5.1), in Ly(R)

=~ —u(2)

dz?
with the quasiperiodic potential defined by (3.5.2). Thus the meaning of the name
“finite-gap” potential becomes clear.
A knowledge of the explicit solutions of the Schrédinger operator enables

one to construct explicitly the spectral matrix of L. Recall the corresponding

definitions [3.6]. Let 6(z, \), o(z, A) be solutions of (3.5.1) fixed by the condi-
tions

©'(0,)=6(0,))=1, ©0,))=60,))=0

Denote the vector composed from 8 and ¢ by ¢:

_ [ 6=z,
(P(IL', A) - ((P(:E, A))
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Put the completeness relation in the form
o0
ax—w=/ oy, Nde Ve, )

where the matrix g()) is called a spectral matrix [3.7]:

o [EO) 1Y)
“”‘(m» a»)

The coefficients are given by

1 1
(V= —-7;/0 Im [m1(u+io) — mz(#-i-io)] du

1 m(p + io) + ma(p +i0)
N = 2 /0 Im [ml(#+io) - m2(#+io)] p (3.5.6)

C()\)=__1. /Alm[ ma(p +ioym(u +io) ]d#
T Jo

m1(u +10) — ma(p +1i0)

?

where mj () are the so-called Weyl-Titchmarsh functions defined by

d
m12(A) = -d—¢1 202, N, zo
T
Here 1 » are Weyl solutions of the Schrédinger equation fixed by the conditions

",bl(o,)\)= 1, "«/’1(1:) >‘) € LZ(O, OO), MA#O
¢2(0,A) = 17 ¢2($7 A) € L2(_0070)7 Im)\#O

In terms of the spectral matrix, the spectrum of the Schrddinger operator may
be described as the support of the measure dg()). Recall also that the spectrum
is called absolutely continuous if for all values of A there exists the locally
summable derivative dg/d), ie.,

o do(N)

dp(A) = ——=d\

o) = —=d
The second statement of Lemma 3.9. proves that Weyl solutions 1 2 coincide
with @.(z,A) and ¢_(z, ) respectively. Hence, for Weyl functions mj 2(}),
corresponding to the potential (3.5.2), the following representation holds:

d(P.,.(II), A) m2()\) = d(p—(:‘% )‘)

?
dz |, dz |,

’

mi(A) = (3.5.7)

The formulas (3.5.7) together with (3.5.3) give the exact expressions for the
Weyl! functions of the Schrédinger equation in terms of theta functions. But it
is possible to derive alternative representations for m;» involving the branch
points. Such representations are more natural from the spectral analysis point of
view. Recall that, as shown above, the E; are the boundaries of the continuous
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spectrum of L. Let the \; be the projections of the poles of p(z, P), P € X, on
the A-plane. By virtue of Theorem 3.6, we have exactly g A’s, each of which is
situated in the corresponding gap of the continuous spectrum.

F; <A S Eyjn, j=1,...,9 . (3.5.8)

The desired expressions for m; » may be obtained by considering the follow-

ing combinations of ¢4 (z, A) and their derivatives with respect to « at the point
z =0

Wiz = os(z, el (@, ) F @iz, Np—(, V)|

Wi as a function of P € X has a divisor of poles D + wD. The zeros of Wi
are placed at the points E;. These properties, combined with the asymptotics

W1=—2i\/x+..., P - oo

b

allow one to construct W1 in a more explicit form

Wi(P) = H]—l(’\ %k P=(uA . (3.5.9)

In contrast with W7, W> is correctly defined as a function of A and has exactly

g simple poles at the points A; and a zero at A = oco. The last statement may be
checked by substituting the expansions

& ) +ivA
A D) = (1+—==+... z 3.5.10
e )Aqw( Rt (3.5.10)
into W,. Hence for W, the following formula holds:

2f(>\)
Wa(X) = S.11

ﬂ»=ﬁv*+hv4+m+n
At the same time we have the obvious equalities
W1 =my —m, W2=m2+m1

Now from (3.5.9) and (3.5.11) we obtain the following representations of the
Weyl functions:

FO)+i4)
VP ACAL SR
nMM:fO)lM» G2
_'?:1()\"‘ /\j) .

In (3.5.12) u()) is defined as a single-valued branch of the function
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2g+1
[To-£»
j=1

fixed on C\&, by the condition: u(A\) > 0 if X lies on the upper side of the cut
[E2g41,00]: ImA = +0.

The equalities (3.5.7) enable one to reconstruct the polynomial f(\) from a
knowledge of the points A;, E;. We remark that mi()\) and my()) represent a
restriction of the single-valued function m(P) defined on X by the formula

fO) +ip d
m(P) = =¥—————= —p(z,P)| , P=(,A) . (3.5.13)
A v L I g
It was proved above that m(P) has exactly g poles Pr(ug, k), k=1...,¢. This
statement does not contradict (3.5.13) if the equalities

FQwr) = Hpp = Fip(Ax) (3.5.14)

occur, and the sign +(—) corresponds to the case of Px lying on the upper
(lower) sheet of the surface X. The system (3.5.14) determines the polynomials
f(X) uniquely. At the same time, (3.5.14), combined with the inequalities (3.5.8),
shows that f()) is a polynomial with real-valued coefficients.

Formulas (3.5.12) realize the desired representation for the Weyl functions
of the operator (3.5.1,2). Now from the link (3.5.6) between Weyl functions and
the spectral matrix function

(6N )
“”‘(m» &»)

of the operator £, we deduce the two following consequences:

Lemma 3.10.

(1) 8()) is an absolutely continuous function.
(2) the matrix elements of dg/d)\ are equal to

at (1 IE.0-N)
L O !
dx
\ 03 A€ ]R\gl
(1O
Z_K _ T3 a0y Ach (3.5.15)
(1 g
%=ﬁ2ﬂ'u(>\)’ A€ &
\ 0, A€ ]R\gl
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where the function g(A) is defined by the relation

= Ll . 3.5.16

Note that from (3.5.14) it is clear that the right-hand-side of (3.5.16) is a
polynomial of degree g + 1,

g = A+

Equalities (3.5.15, 16) enable us to define more exactly the spectrum of the
operator £. The spectrum of £ is absolutely continuous and coincides with &;.
Going further, we can conclude from (3.5.12) that the projections A; of the
poles of the Baker-Akhiezer functions represent the eigenvalues of the operator
L either on the half-axis [0, +o00) (the sign “+” in (3.5.14)) or on the half-axis
(—00, 0] [the sign “-” in (3.5.14)] with the Dirichlet boundary condition at = = 0.

Remark 3.11. The projections \;(z) of the zeros of the Baker-Akhiezer function
may also be interpreted in a reasonable way from the spectral point of view.
Consider, along with the finite-gap u(z), the shifted potential

Uzo(z) = u(z + x0)

It may be interpreted as a finite-gap potential determined by the same curve X
and the divisor D,, = D+ Uz. Associated numbers )\f° defined as projections
of the zeros of ( foi w+ Dzo) coincide with A ;(z)|;=¢,. Hence Aj(zo) are the
Dirichiet eigenvalues of £ either on the half-axis [xg,+o00) (the zero of p(z, P)

corresponding to A;(zo) is on the upper sheet) or on the half-axis (—oo, zo] (if
the corresponding zero is on the lower sheet).

Remark 3.12. Consider the zeros X,-, j=1,...,g+1 of the polynomial g()):

g+l

gV =[x -Xp . (3.5.17)

3=1

By virtue of (3.5.12, 16), the points Xj are the zeros of the Weyl functions m;()\)

or my(A). Hence each X,- is an eigenvalue of the L-operator with the Neumann
boundary conditions at the point z = 0 on the semi-line [0, +00) or on the semi-

line (—o0,0]. The reality of all X,- is evident. Applying Abel’s theorem to the
function m(P) (Sect. 2.4.5) we conclude that its zeros Q; satisfy the equality

gtl Qs 9 P;
Y o

=1
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The same considerations as in the proof of Theorem 3.6 lead to the following
inequalities for A;:

XISEI, EZjSXjSEzjn, j=1,...,9 . (3.5.18)

The spectral properties of the Schrodinger operator £ established above may
be summarized as follows:

Theorem 3.13. Let X be an arbitrary hyperelliptic M-curve

2g+1
”2=H(A—Ei)7 EiE]Ra E1<E2<--~<E29+1 ’

i=1
g > 0, and let D be an arbitrary vector with pure imaginary components. Then

(1) the function u(z), ¢ € R defined by (3.5.2) is a real valued, smooth,
quasiperiodic function with basic periods T} = 27i/U;.

(2) the spectrum of the Schrodinger operator £ = —d?/dx?* — u(z) on the whole
real line is absolutely continuous and equals

& = U?:ol [E2j41, Eajeal U[E2g41,00]

One of the most remarkable aspects of the theory is that the inverse statement
is also true. It can be proven that each real, smooth, quasiperiodic potential u(x)
with a finite-gap, absolutely continuous spectrum may be represented in the form
of (3.5.2) with an appropriate curve X and divisor D. The reconstruction of X
and D from the spectral data of £ is almost evident. Nevertheless all details of
the proof of the last statement are given in Chap. 8. The important particular
case of purely periodic potentials is considered in the next section.

Now it is possible to interpret the right-hand-side of (3.4.3) as the solution
of the KdV equation with the initial condition u(z), quasiperiodic in z, with
the finite-gap (in the sense of the spectral theory) spectrum of the operator £ =
—8% — u(z). We remark that the Weyl solutions corresponding to the “KdV-
shifted” L-operator £ = —82 — u(z, t) are of the form

0(f£*w+U:c+Wt+D)

6 (Jrw+Wt+D)
o 06 (Wt+ D) Pz

O Uz+Wt+ D) ’
Pi::(:t,-l',A)’ y = mP_

Qozb(xa)\at) =

From this it is clear that the algebro-geometrical parameters X, D € J(X) of
quasiperiodic, finite-gap potentials depend on ¢ in the following way

X =const, D(t)=D0O)+ Wt . (3.5.19)
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The spectral parametrization of the same data by the numbers (};, E;), yields
. 2g+1

d oy 22T - BTEE) )
’ odi Hk;rj()\j — Ak)

dt
To derive (3.5.20) it is sufficient to represent D(¢) in the form

(3.5.20)

’

9 P(t)
Diy=-> [ w-K, w(Put) =M
k=1 J oo

and to differentiate the second of the relations (3.5.19) with respect to ¢ and solve
the obtained linear system with respect to d;/dt.

Remark 3.14. From the relation
D(z,t)=D0,0)+Uz+ Wt

it is not difficult to deduce the following autonomous system of differential
equations for \;(x,t) (Dubrovin’s equations): (3.5.20) and
R 2y (3.5.21)
Oz Hk#j()‘j - /\k)

The system (3.5.20, 21) describes the dynamics of the functions A; with
respect to the shift of the potential and the KAV flow. The system (3.5.20-21)
represents the KdV equation in the space of parameters (E;, A;). Let us note that
the solution u(z,t) of the KdV equation may be constructed from this data by

g 2g+1
u(z, ) =23 Ai(z,)- Y E; , (3.5.22)
=1 =1

which may be easily deduced from the substitution of the expansion (3.5.10)
for the functions ¢ (z,A) in (3.5.9). From the spectral viewpoint, the identity
(3.5.22) is the first of the so-called trace formulas. In the following section
we shall discuss more thoroughly these relations and their role in the creation
of the method of finite-gap integration. With this step we finish the discussion
of spectral properties of the finite-gap solutions of the KdV equation. In the
following chapters we shall restrict ourselves to consider purely algebraic aspects
of the theory for the integrable systems related to the matrix differential operators,
taking into account that all the spectral aspects may be treated in complete
analogy with the KdV case. Particularly for the NS and SG models all the
algebro-geometric ingredients of the theory have the same spectral interpretation

with the unique difference that the Schrodinger equation must be replaced by the
one-dimensional Dirac system.
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3.6 Spectral Properties of the Schrodinger Operator
with a Finite-Gap Periodic Potential

In this section we consider some properties of the Schriodinger operator with a
real periodic potential. Some of them are well-known (see textbooks [3.6-8]). The
main result proven below is the statement inverse to Theorem 3.13 of Sect. 3.5
in the particular case of periodic potentials. We show that each smooth periodic
potential, with a finite number of energy gaps, is described by the formula (3.5.2).
The associated curve X is defined by the boundaries of the energy gaps, and the
divisor D by the eigenvalues of the Dirichlet problem. In other words we solve
explicitly the inverse spectral problem for the Schrodinger operator with the
finite-gap periodic potential. Historically, the formula (3.4.3) for exact solutions
of the KdV equation was first derived in this manner.

3.6.1 Monodromy Matrix
and Bloch Solutions of the Hill Equation

Let the potential u(x) be real and periodic with the period T'; u{z + T') = u(x).
Introduce a system of fundamental solutions ¢, 6 of the Schrodinger equation

L = A
00, =0, ¢, 0,)=1, 680,)=1, 6,0,\)=0

The solutions of the system shifted on the period of the potential may be
decomposed as follows:

oz + T, A) = mne(z, A) + ma16(z, A)
0(z + T, ) = mppp(z, A) + mpnb(z, \)

?

M= (mu mlz) _ (%(T, A 0(T, A))
ma1 My e(T,N) 6T, ’

det M =1

?

where M is called a monodromy matrix. The property det M = 1 follows from
the fact that the Wronskian of two solutions of £ = A\ is independent on z,
and hence may be computed at z = 0, taking into account the definition of ¢ and
0.

The fundamental system of the solutions 1); 2, reducing the monodromy ma-
trix to diagonal form, is often called a Bloch (or Floquet) system. Bloch solutions
evidently satisfy the condition

Y12z + T, N) = 01 21 2(2, )

where g, , are the eigenvalues of the monodromy matrix. By virtue of det M =1
we have p; 0> = 1. The explicit form of p; 7 is obtained immediately by solving
det (M — oI) =0:
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o12=FQ) £ VF2(\) =1, F(\)=Tr M/2

The map F 4+ +/F2? — 1 transforms the interior of the interval [—1,1] to the
boundary of the unit circle in the complex plane. The values F' = %1 correspond
to 012 = 1. Hence in the case |F'| < 1 the Bloch solutions are bounded on the
whole real axis, and the corresponding values of A form the continuous spectrum
of the Schrodinger operator £. It is well-known that this spectrum represents a
sequence of real segments divided by spectrum-free lacunas (or gaps). The length
of the gap tends to zero when its number tends to infinity. In general the number
of gaps is infinite.
The Bloch solutions may be represented in the form

P12 =0(x, N) +mi2p(z, )

@z (T, \) — 6(T, \) + 2/ F2()) — 1
mi2 = )
’ 2¢(T, N)

where m; 5 are the Weyl functions. The Weyl functions are well defined (Sect.
3.5) for arbitrary continuous potentials u(x). In the periodic case they can be
determined by the above formulas.

We denote the boundaries of the continuous spectrum of the operator £ by
E;, ordered in a natural way: E; < E» <... < Epg4 <.... Hence the spectrum
of £ is the union of intervals [Ey, E,],...,[Eag—1, Ezgl,.... The eigenvalues
A; of the Dirichlet problem y(0) = y(T) = 0, for the Schrodinger equation
Ly = )y, are situated in the closures of the energy gaps, i.e., in the integrals
[E2, Es),...,[Ezg, Eaguil,. .. .

For the degenerate gaps we have \; = Ey; = Ep;1. In the general case
the Lyapunov inequalities Ep; < \; < Ep;q are satisfied. It is important to
notice the invariance of the numbers E; with respect to the shift of the potential
w(z) — w(z +7), 7 € R. The monodromy matrix, as well as the Dirichlet
eigenvalues \;(7), are not invariant with respect to the same shift. It is not
difficult to prove that by varying 7 from 0 to T', we force each ); to run twice
along the closure of the gap [E»;, F»i11], and on the ends of the gap 0, A; = 0.

Later on we need to use the differential equation describing the dependence
of the elements of the monodromy matrix M on the shift parameter 7. Since
the eigenvalues of the monodromy matrix are invariant with respect to 7, the
associated equation may be represented in the form

oM
5 = [4,M] (3.6.1)

where the bracket means the matrix commutator. An explicit form of this differen-
tial equation may be derived as follows. Let o(7; z, A), 6(7; =, A\)be the solutions
of Schrodinger equation with the potential u(z + 7) fixed by the conditions

e(1;0,A) =0, @ (r;0,2)=1, 6(r;0,\) =1, 0,(r;0,))=0
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The solutions ¢(0; = + 7, A), 6(0; z + 7, A) from another fundamental system for
the same equation. The connection between these two systems of solutions is
given by the formula (we omit the dependence on A in notations)

0(t; ) = ¢ (0; 7)O(0; = + 7) — 0,(0; T)p(0; z + 7)
(15 2) = 6(0; M0; £ + 7) — (0; T)OO0; z + 7)

?

Differentiation of this formula gives the equalities

02(; ) = 0(0; 7)0,(0; 2 + 7) — 0, (0; T (02 +7)
@z(152) = 6(0; ) (0; z + 7) — p(0; 7)0,(0; = + 7)
Differentiating the above equalities with respect to = and putting then z = T

one can easily obtain the following system of linear differential equations for the
elements of the monodromy matrix M(7):

0rp(1; T) = 9o (s T) = 0(7; T)
0,01, T) = 0,(1; T) + A+ w(m))p(T; T)
Orpe(T;T) = —=0,(1; T) + (—u(T) — Np(13T)
0r0:(1; T) = (A + w(T)) e (1; T) — 6(7; T))

(3.6.2)

One may rewrite the right-hand-side of (3.6.2) in commutator form to derive
(3.6.1), but we do not need an explicit form of the matrix A.
Subtracting the second equation of the system (3.6.2) from the third and

substituting the result into the first equation differentiated with regard to 7, we
have

Bp(r; T) = =28,(r; T) + 2(—u(r) — Nep(r3 T)

Differentiating the last equation by 7 and taking into account the first and the
fourth of the equations (3.6.2) we find

Bo(r; T) = 4(—u(r) — Nrp — 2u'(1)p(r; T) . (3.6.3)

The last equation is the principal result of this section. It is not included in
standard textbooks and in the context discussed above was first derived in the
work [3.9].

. There are many interesting points related to this equation. Thus, Hermite

observed [3.10] that the product y;y, of an arbitrary pair y;, y2 of solutions of
the equation

—y" —u(n)y =Xy

satisfies (3.6.3). This simple fact has remarkable consequences in applications to
the finite-gap potentials discussed below.

At the end of this section let us write down the identities for the eigenvalues of
the Dirichlet problem obtained by substraction of the three first Gelfand-Levitan-
Dikii trace formulas [3.11, 12] for shifted and original periodic potential:
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u(r) — u(0)

2Ok = Xe(0) == ,

k=1
> u"(0) —u"(r)  wd(r) — u3(0)
guim = NO) ==+ — ,

(o]

PRCHOEPHOIE

k=1

u"'(1) — u'"(0)
> (3.6.4)

+ % [u(m)u" (1) — u0)u" (0)]

i v) _ ,,IV)
+ 3 [u () —u (0)]

+ ;—3 [u(r) — u(0))]

3.6.2 Finite-Gap Potentials
and the Gelfand-Levitan-Dikii Trace Formulas

We start from the trace formulas of the preceding section. If the potential has
exactly g non-degenerate gaps in the continuous spectrum we shall call it a finite-
gap potential. For such a potential only g terms in the LHS of the trace formulas
(3.1.4) are different from zero. In particular, if all the gaps are degenerated from
the first trace formula, we conclude that «(7) = u(0). In other words, each smooth
periodic 0-gap potential is a constant.

Quite similarly, admitting that there exists only one non-trivial gap, we can
eliminate the associated eigenvalue \;(7) from the first two trace formulas and
find that the potential u(7) satisfies the same nonlinear ordinary differential equa-
tion as 2p(7)+c, i.e., the differential equation for the Weierstrass elliptic function.

Using higher trace formulas, we can, in principle, derive an ordinary differen-

tial equation describing an arbitrary finite-gap potential, but this is not convenient
and we do not follow it below.

In addition, we remark that from the first trace formulas it is clear that in the

one-gap case the length of the gap is equal to half of the difference between the
maximal and minimal values of the potential.

We also mention that by applying the Gelfand-Levitan-Dikii trace formulas
to the g-gap potential, one can derive the following important relations:
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29+1

> utn =40, 2 DI

=1
2g+1

. " 1'&
ZA%<T>=-"jT’+“§T>-§LEz ,

=1 k=1

g
3 —
Z )\i T
1=1

'2<r)

3 29+1
+ —U(IV)(T) + = Z E}

where E; are boundaries of nondegenerate gaps.

3.6.3 Criterion for the Periodic Potential to be Finite-Gap

It is well-known that (7; T'), A) is an entire function of order 1/2. Its zeros are
the eigenvalues A;(7) of the Sturm-Liouville problem. When the number of gaps
is finite and equal to g, the function ¢ admits the following obvious factorization:

A= A7)

o1 T, A) = (0; T, )\)Hm

(3.6.5)

The last formula shows that all dependence of ¢(r; T, A) on 7 is concentrated in
the polynomial factor

g
Se(r, N =[O = xi(r)) . (3.6.6)

=1

Hence the existence of the periodic solution of the equation (3.6.3), which is
a polynomial of X\ of the form (3.6.6), is the necessary condition for the Hill
operator to have exactly g gaps in the continuous spectrum.

Next we show that this condition is also sufficient. By virtue of Hermite’s
lemma mentioned above, the functions 13, %2, 13, where the 1, , are the
Bloch solutions of

—y” - U(T)y = )‘y 3

form (for the spectral parameter A in “general position”, i.e., unequal to the
boundaries of the spectrum) a fundamental system of solutions of (3.6.3). If A
is not the boundary of a degenerate gap, (3.6.3) has only one periodic solution,
which is the product 1. Since both ¢ and S, are periodic in 7 the equality

@(7, A) = 54(r, )C(N)

with some 7-independent function C()) holds. It means that the number of
moving eigenvalues \;(7) is finite and is equal to g, i.e., there are exactly ¢g non-
degenerated gaps in the continuous spectrum of the corresponding Hill operator.
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Substituting the polynomial S, into (3.6.3) and equating the coefficients,

one can find that the g-gap periodic potential satisfies the ordinary nonlinear
differential equation

LUJLY¥1=0, L= +2ud,+0:u) ,

and J is the operator of indefinite integration J = 1. In the theory of the KdV
equation the operator J L is often called the generating operator.

3.6.4 Charles Hermite and the Lamé Equation

Here we apply the considerations of the previous subsection to the particular
case of the Lamé potential u(r) = —N(N + 1)p(7). Taking p(7) = z as a new
independent variable, Hermite represented the Lamé equation in so-called alge-
braic form and remarked that the associated equation (3.6.3) for the product of
two solutions of Hill’s equation admits a polynomial solution in the z variable.
Hermite calculated explicitly the coefficients of that polynomial [3.10]:

N

INEN =D elpm) —e)N

2=0

CO=1a 61=P(w), 62=p(w')) eg=p(w+w')
The coefficients ¢, are determined by the recurrence relation

4r (N—— r+1/2) 2N —r+ e,

= (N —r+1){12e2(N — r)(N — r +2) —4ea(N? + N — 3) +4)}erq

—2(N —r — 1)(N —r+2)er —ex)ea — e3)2N — 2r + 3)e, 2

The structure of these formulas shows that ¢, are polynomials in \ and hence
fn(r, X) is a polynomial in ) of degree N, periodic in the 7 solution of (3.6.3).

The criterium proved in the previous subsection shows that the Lamé potential
is a periodic potential having exactly N gaps. Since there is not a zero A = )g
of fy which is independent of , all gaps are non-degenerate.

Hermite himself ignored this spectral interpretation of the Lamé potential, but

he succeeded in calculating explicitly the Bloch eigenfunctions in the following

way: let 11, 2 be a pair of Bloch solutions normalized so that 111, = f with
the Wronskian equal to W. We have

K= w =¢11:_")b21:=__d_10 (_w_l)
N iy 1 ¢ dz 1

and hence

% = exp (/x W/de:c)

So we have the following formulas for vy, 1,:
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¥i = fN% = fN exp (/ W/ fn dw) ;
1 =/ fn(z)exp (W/ 2 / dz/ fN(fc)) ;
Py =/ fn(z)exp (—W/Z/ dm/fN(:z:)> ,

T
01,2()) = exp (iW/Z /o dz/ fN(a:))

Unfortunately, these beautiful Hermite formulas are not presented in textbooks
discussing the Lamé equation. These usually contain only the expressions for
the so-called Lamé polynomials, — the solutions corresponding to the boundaries
of gaps. The only exception known to the authors is Akhiezer’s paper [3.13]
reproducing Hermite’s and Markov’s considerations of the Lamé equation.

The Lamé potential is as well of interest in the context of reduction of multi-
dimensional Riemann theta functions to elliptic functions. In Chap. 7 we describe

some explicit constructions of the elliptic finite-gap potentials discovered quite
recently.

3.6.5 Analytical Properties of the Bloch Functions
and the Inverse Spectral Problem for Finite-Gap Potentials

First we show that in the finite-gap case Weyl functions have an extremely simple
structure:

m12) = (QUV/2 £iv/Pegu ) /840, %)
g |
S V=TI - A, Qo= 32
=1
2g+1
PV = JJOA - Ed)

=1

)

0 (3.6.7)

To prove this formula we use the factorization (7; T, A) = c(A)S,(, A), of ¢
and the first of the equations in (3.6.2)

02(73 T, A) = (73 T, Mlreo = 8ro(15 T, Mr=0 = e(N)8r Sg(7, V| =0
From the last equality we have (7 = 0)
(pz(m; T, A) — 0(r; T, X)) [20(7; T, A) = Q(N) /254(0, \)

The zeros of the entire function F2()\) — 1 coincide with the boundaries of the
continuous spectrum. The degeneracy of the gap, i.e., the equality Ey; = Eppyg,
corresponds to a double zero of F2()\) — 1; the same A\ must be a simple zero of
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(73 T, A). From the factorization of these entire functions into infinite products
it follows that

F2() —1
P*(N)

The constant ¢ may be determined by substituting the asymptotics for ¢, 6, ¢,
at infinity [3.9]. Thus we find that ¢ = —1. This completes the proof of the
representation (3.6.7) for my 2(}).

From this representation it is clear that the Bloch solutions 1 2(z, A) may
be considered as two branches of the single-valued function (z, P), defined

on the Riemann surface of the square root |/ Pg.1(A). We consider the analytic
properties of this function.

From the representation

12 = €xp (ﬂ:—;—log (F()\) +F2O) — 1) x1.2(z, A)) ,

x12(z,A) = x12(z+T, )

= qPagr1(N)/ 520, ))

we see that 111 is a periodic solution of (3.6.3) for A # E;. From the condition
¥1.2(0,A) = 1 it is evident that for A # E;

P1ypa(z, X) = Sz, NS, (0, )

The same equality is valid for all A due to the analyticity of the LHS and RHS for
all \. Consequently the zeros of (z, P) are the points of the Riemann surface
/ Pag+1(X) situated above A;(z), and the poles are the points situated above

2;(0). Finally, from the first terms of the “high energy” asymptotics of ¢ and 6
we have

bz, P) = V2 [1+o(1)], A — oo

So far we have verified that the Bloch solutions of the finite-gap periodic
potential may be considered as two branches of the function (z, P) taken on the
upper and lower sheets of the corresponding Riemann surface, and that (z, P)
possesses all the analytical properties of the Baker-Akhiezer function discussed
above. Hence (z, P) may be reconstructed by the explicit formula (3.5.3), and
the finite-gap potential u(z) itself is given by (3.5.2). It is important to remark

that for the purely periodic case, the numbers E; are restricted to satisfy the
transcendental relations

U= mjeZ , (3.6.8)
T

meaning that the periods T; = 27:/U; of the function (3.5.2) (which is gener-

ically almost periodic) are commensurable. The entries m; have the following

topological interpretation. When = moves from 0 to T, the point \;(x) runs

m-times along the real oval of the curve X lying above the jth gap [Es;, E»ju1l.
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It is necessary to notice that there is no criterion which is more effective than
(3.6.8) in distinguishing the numbers E;, corresponding to the purely periodic
potentials, from the general situation. Another form of the solution of this problem
is given in [3.7], where the boundaries of gaps of purely periodic finite-gap
potentials are represented in the form of the Schwartz-Christoffell integrals.

3.6.6 Jules Drach and General Finite-Gap Potentials

In 1919 the French mathematician Jules Drach, studying the cases of the general
reduction of the group of rationality of the Sturm-Liouville equation

y"' =[p(x)+hly

found a large class of integrable cases characterized by the following properties
of the solutions of the associated Riccati equation:

o+ 92 =p+h
The Riccati equation admits two solutions g1 2 of the form
R+
2R °

where {2 is a polynomial in h of order 2n + 1 with constant coefficients. The
function R satisfies the third order linear differential equation

012 = R=h"+Rih" 1 +...

?

R" —4R'(p+h) —2Rp' =0 | (3.6.9)

which produces for determination of ¢ an ordinary differential equation depend-

ing on n arbitrary constants ¢y, ..., c,. Taking into account the existence of the
first integral of this equation

(R —2RR" +4R*(p+h) =2 (3.6.10)
let us factorize R

R=(h—w)(h—w)-(h—wy)
From this factorization we get

R’ wi w!
LA W n_ 6.11
R how TR Con (3.6.11)

Now, taking into account that the zeros h = w; are also the roots of R? -0
by virtue of (3.6.10) we conclude that at h = w; one of the factors R’ + /12,
R' — v/£2 must be equal to zero. Comparing with (3.6.11), we obtain

6,’&)2 1

Vi (wi—wy) (Wi —wn)’

1=1,...,n



3.6 Spectal Properties of the Schrodinger Operator 85

and 2; = 2(w;), €; = +1.

The last result represents just Dubrovin’s differential equations, if we iden-
tify w; with the Dirichlet eigenvalues for the shifted potential. Substituting the
polynomial R into (3.6.10), we get

w1+w2+---+wn=—c1+<p/2

The functions w; now obviously form a solution of the Jacobi inversion problem.
By solving this problem, we can deduce (which was not, however, realized
by Drach) representation (3.5.2) for Drach potentials ¢ which, of course, are
nothing but the finite-gap potentials discussed in this chapter. Drach also noted
that in a general position these potentials are not periodic but almost periodic.
He also observed that the fundamental system of solutions of the associated
Sturm-Liouville equation is described by the formula

y12 = VRexp [i\/ﬁfj—;] ,

naturally generalizing Hermite’s result of the previous subsection. We have re-
produced here, almost literally, the principal part of the work by Drach [3.14]. It
is amazing that this remarkable work containing the constructions rediscovered
in connection with the study of the KdV equation by Dubrovin, Its, Matveev,
Gelfand, Dikii is referred to very early in the modern literature. Its existence
was mentioned in an article by Ehlers and Kndrrer [3.15], devoted to Darboux
transformations of the finite-gap potentials.



4. Vector Valued Baker-Akhiezer Functions
and Finite-Gap Solutions
of the Nonlinear Schrodinger
and the Sine-Gordon Equations

4.1 Finite-Gap Solutions
of the Nonlinear Schrodinger Equation

The nonlinear Schrédinger (NS) system defines the evolution of two different
complex valued functions y(z,t) and y*(z,1):

lys + Yoz —2y*y* =0

—iy; +Yee — 2yy*> =0 @D
The NS system reduces to the famous nonlinear Schrédinger equation

iy, + Yoz — 20|y[fy =0, o =1 (4.12)
under the constraint

y* =0 . (4.1.3)

The Lax representation for the NS equation, first found in 1971 by Zakharov
and Shabat [4.1], may be easily generalized to include the NS system. The most
useful form of the Lax representation is the zero-curvature equation

U =V, =[V),UWN], reC . 4.1.4)
In the case of the NS system, U and V are 2 x 2 matrices defined by

_ 0 iy _(1 0
U(/\)——l)\a'3+(_iy* o>’ 03-(0 __1) ,

. (4.1.5)
V(A)=2)\U()\)+(_lyy “yw)

-y;  lyy*

The zero curvature equation is equivalent to the consistency condition of the
associated linear system:

vy 4.16
U =V¥, =00zt . (4.1.6)
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The 2 x 2 matrix valued function ¥()\) satisfying (4.1.6) plays a crucial role in
the construction of algebro-geometric (finite-gap) solutions of the NS system in
complete analogy with the scalar (KdV) case.

The first step of our strategy is to find the most general analytical properties
of ¥ satisfying (4.1.6) with some matrices U and V having the prescribed form
(4.1.5). This may be accomplished by using the following two propositions:

Lemma4.1. Let%()\) be a2 x2 matrix function holomorphic in some punctured

neighborhood of infinity on the Riemann sphere, smoothly depending on z and
t, with the following asymptotic expansion at infinity:

T(A,z,1) =

I+ Z Ty (z, t))\"“] exp(—idzos — 2iN%to3) C(A) , (4.1.7)
k=1

where C()\) is some #- and z-independent invertible matrix. Assume also that

(4.1.7) allows differentiation by terms with respect to z and ¢. Then the following
asymptotics holds:

o =UW +o(1l7H

. . (4.1.8)
GO =VA)+o(A7), M| = 0 ,
with U and V expressed in terms of the coefficients ¥y
U\ = —idoy +ilo3, ¥1]
N 3 +ilo3, %] 4.1.9)

V) = —2i03)\* +2i)[o3, W] + 2i[03, Wa] — 2i[o3, ¥1 1%

The proof of Lemma 4.1 is straightforward. It is sufficient to substitute the
asymptotic series for ¥, ¥,, ¥, into the LHS of (4.1.8) and compute the terms
non-vanishing at infinity.

Lemma 4.2. Let ¥()), satisfying the conditions of Lemma 4.1, be an exact
solution of the system (4.1.6) with the matrix valued polynomials U(A), V())
defined by (4.1.9). Then the matrices U and V are of the form (4.1.5) with y
and y* proportional to non-diagonal elements of the matrix ¥;(z, 1)

y(z,t) =2(P12, y*(z,t) =2 . (4.1.10)
The functions y and y* form the solution of (4.1.1).

Proof. The first part of the statement of Lemma 4.2 may be proved by checking
the identity

. : _{ -yt —ye
2i[o3, ¥,] — 2i[o3, 011 = ( —y? iyy*) . 4.1.11)
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This can be done by substituting (4.1.7) in the first equation of (4.1.6) and
equating the coefficients of A~! on both sides. Thus we get the relation

i[o3, ¥] —ilo3, 011 = —¥,

Now it turns out that

. : 0 -y
(2i[o3,P2] — 2i[o3, Y1]¥1)gp = (—y* g ) )

where the subscript OD denotes the off-diagonal part of the matrix on the left-
hand-side.

Taking into account the equality

(2i[o3, ¥a] — 2i[03, !11¥1)p = (—2i[o3, 11¥1)p =

_(-iyy* O
- 0 iyy* )

where the subscript D denotes the diagonal part of the matrix, and adding it with
the previous one, we get (4.1.11).

The second part of the statement of Lemma 4.2 may be checked even more
simply. Cross differentiation of (4.1.6) gives

{U:(N) = Ve () = [V), TN} EN =0

for all A € C.

In a neighborhood of infinity, the matrix ¥ is invertible. This follows from
the validity of the expansion (4.1.7). Right multiplication of both sides of the
last equation on the matrix ¥~! shows that the zero curvature equation holds in
the neighborhood of infinity. Taking into account the polynomial dependence of
U and V on A, we conclude that the same equation is true for all A € C, Q.E.D.

Remark 4.3. The constraint (4.1.3) would be realized if we impose on ¥ the
complementary restrictions

TN = o1 (A) o1(N) (=1 |, 4.1.12)
T =N o)), (e=-1) , (4.1.13)

0 1 0 —i
D=\ 00) 0 2T ¢ ’

and o7 2()\) are some invertible ¢- and z-independent 2 x 2 matrices. We shall
discuss this remark more thoroughly in Sect 4.3.

The next step of the finite-gap integration of the NS system is an explicit
construction of the function ¥()\) based on the vector valued Baker-Akhiezer
function. Let X be an arbitrary hyperelliptic surface of genus g > 1 defined by
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2g+2

=[O -E)=Pya), E;€C Ej#E, j#k . (41.14)
j=1

As previously, we use capital letiers P,(Q, ..., to denote the points lying

on X, which correspond to different pairs (A, 1) of complex numbers satisfying
(4.1.14). Recall also that the standard projection = : X — CP! is defined by

m(P)=X, P=(u)
The projection 7 defines X as a two-sheeted covering of CPP!. There are
exactly two points oo € X, with the property m(cot) = 0o € CP!:

+

Pooot & Aooo, p— A9

We now introduce some basic objects, which are related to the curve (4.1.14).

1. Let (a;, b;) be some canonical basis of oriented cycles in Hy(X, Z), with
the standard intersection matrix J

-(%a)
i.e., the intersection indices of the cycles ay, by are
a; 0bj =b;j = —bjoa;, ajoar=bjobr=0
2. The differentials vy = u~'M9~*d), k=1,...,g form a basis in the space

of holomorphic 1-forms defined on X. Their linear combinations w;

g

w]'-_— E Cjkl/k ’

k=1

satisfying the conditions

f wj=27r16kj y
Gk

will be referred to as the normalized basis of holomorphic differentials. The
normalization condition for the given choice of aj defines the coefficients ¢
uniquely.

3. The matrix of the B-periods of the curve X and the associated theta-
function are defined as follows:

Bk =f wj
b

6(p) = Z exp{2~1(Bm,m) + (p,m)} ,

meZ’¢
(P,9)=pmq+---+pyq,, peC’
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4. The Abelian integrals £21(P), {%(P), 1(P), P € X which are fixed by
the following conditions:

a) ?{dn,:o, Vij o,

b) 2(P)=+(\+0(), P — oot
H(P)=+£2N+0(1), P—oo* |,
2B(P)=t(ogA+0(1)), P — oo, A=n(P)

c) §2;(P) have no singularities at the points different from oo¥.

)

5. An arbitrary divisor D with deg D = g of general position, i.e.,

g
D=Y P;, mP)FE;, j#k=n(P;)Fn(P)

=1

The vector-valued Baker-Akhiezer function ¥(P, z,t) = (i;) is uniquely
determined by two conditions. The first of these conditions describes the analytic
structure of 1 on X/{oo*}:

L. 4(P) is meromorphic on X/{oo*}. Its divisor of poles coincides
with D.

The second condition describes the asymptotic behavior of 4 at co*, and shows
that ) has essential singularities at co*.

I. PP = K (1)) + 0(,\—1)] exp(—idz — 2i)\%t) |

P— oo™, A=7(P)

Y(P) = a) [(‘1)) + 0(,\-1)} exp(Ae +2i02%%) |

P — oo", A=n(P), aeC

b

(4.1.15)

As in the scalar case (Chap. 3) v(P) is uniquely determined by the conditions I
and II and may be explicitly constructed by the formulas
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P
0 (/ w+iVm+th—-D> (D)

Pr(P) =———
0 (/Oo- w—D) 6(iVz+iWt— D)
X eXp {ia;()l(P) + it (P) — %E:c + %Nt} ,
b (4.1.16)
6 (/ _w+iV:c+th-—D—r> 6D —r)
¥2(P) =a\Jwo

P
9(/ w—-D) iVz+iWt— D)

X exXp {iwﬂl(P) +it82(P) + —;—Em —~ %Nt + 93}

The vector-valued parameters appearing in (4.1.16) are defined as follows:
w=(w1,-°°7wg) )

V=W,..., V), V}-=/d91 ,
bj

)

oot 9 P 9
=/ w , D=2/_w+K, D= P ,

(o ol ]-‘—-"l [}

W =(Wy,..., W), Wj=/d{22
b;

5=1

1 1 P
Kj—Wl+§BJJ—§;;‘/ak [/oo-w]}wk(P)

The quantities E, N, and wy are determined by the second terms of the
asymptotic expansions of the integrals §2;(P) at the points co¥:

2 (P)=+\—E/2+0()), P— oot

2(P)=+2X +N/2+0(1)), P — oot |,

B(P) = +(log A — (1/2)logwo +o(1)) , P — oo

?

Due to the fact that the divisor D is in a general position, the vector D € J(X)
is also in a general position. The vector D may be taken almost arbitrarily as
a defining element in the construction of 1 instead of D. The term “general
position” must then be understood in that sense that the associated Riemann
theta function 6 (U(P) — D), P € X does not vanish identically.

The proof of formulas (4.1.16) for ;(P) is exactly the same as for the scalar
case (compare with the proof of the formulas (2.7.11) in Chap. 2). The formulas
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for 1), may be proved by taking into account the relation (2.4.14) between B-
periods of the integrals of the third kind and holomorphic differentials. When
applied to the integral (23, this relation reads

oot
/d93=—/ wj=—rj
b; oo~

This relation makes it possible to verify that ¢, (P) is also a single-valued func-
tion on X. The other steps in the proof are also identical to the considerations
performed in the scalar case.

Remark 4.4. Formulas (2.4.13) from Chap. 2 lead immediately to an alternative
description of the vectors V', W and the constant E:

M

1/;- = chl , W] = 4(Cj2 + Cj]C/Z)

1S 2g+2 (4.1.17)
E—C—EJZ:; a})\wj, c—JZl:E .

We fix some simple connected neighborhood U of the point A = oo on CcP'
which has no branch points. Then for each A € U, 7~!()\) contains exactly two
points denoted by P* € X so that P¥ — oo when A — oo. For A € U the
matrix function

(N = (Y(P"), $(P7)) (4.1.13)

is correctly defined.

Now, let us check that the ¥()) defined by (4.1.18) satisfies all requirements

of Lemmas 4.1 and 4.2. By virtue of (4.1.15), ¥()\) has the following asymptotic
behavior at infinity:

W(A):<I+2Wk)\"‘)exp{—i)\xag 2i) tag}( \ é) . (4.1.19)

k=1

It is possible to differentiate the asymptotic expansion (4.1.19) in any order
with respect to the variables z and ¢ by virtue of the analytical structure of the
function ¥, given by the explicit formulas (4.1.16). Furthermore, this expansion
is uniformly convergent with respect to x and ¢ in an arbitrary compact domain.
Hence, ¥()) fulfills all conditions of Lemma 4.1. Now, considering the first two
terms of the expansion (4.1.19) we can calculate the matrix polynomials U(\)
and V()\) in accordance with (4.1.9). As we verified, Lemma 4.1 holds for the
matrix function ¥()\) defined by (4.1.18). Therefore the estimates

oA =UQ)+0(1/))

G0 =VO)+0A/N), A— oo (4.1.20)
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hold for the derivatives of ¥.
The vector functions f, ,

F1(P) =9 (P)-UN¥(P) ,
F2(P)=9(P)-V(N)Y(P), I=n(P)

are meromorphic on X \ {oo®}, their divisor of poles equals D. Let us study the
asymptotic behavior of f, , when P tends to oot. We consider first f,(P). Its
asymptotics at oo* clearly coincides with that of the first column of the matrix
function Fi(X) = @,(A) — UN)¥(A). For Fi(\) we get from (4.1.20)

A = [Z.0710) - UW] PO =

. 0 exp(—idz — 2i\20)
=0/ (aA exp(idz +26)%%) 0 ) (A = c0)

In other words, we have

£1(P) = O(D)exp(idz +2iX*t), P — oo*
F1(P) = o) exp(—irz — 2iX*t), P — oo™

’

Looking similarly at ¥;(A) — V(A\)¥(X) we get the same estimates for f,(P).
So in complete analogy with the scalar case all requirements of Theorem 2.24
are valid for each component of the vector function f, ,. Taking into account
Corollary 2.26 we conclude that

Fi(P)=f(P)=0.
The equality 7(P*) = 7(P ™) enables us to rewrite the last equation in the form

(A -UNFN)=0
T (A) — V)TN =0

)

(4.1.21)

and hence all requirements of Lemma 4.2 are, fulfilled.

Remark 4.5. One can find some intrinsic motivation to use the tools of algebraic
geometry in the proof of (4.1.21) for ¥. The background for this motivation lies
in the fact that the concept of the non-special divisor gives a simple way to
transform the asymptotic estimates similar to (4.1.20) into exact equations of the
type (4.1.21). Together with the hypothesis of the possibility of the analytical
continuation of the matrix elements of ¥ on the compact Riemann surface, com-
pleted by exact formulas involving multi-dimensional theta functions, this allows
the construction of exactly solvable linear matrix problems. The source of this
is, in principle, absolutely independent from the preliminary study of periodic
spectral problems, although it leads quite naturally to the consideration of all ob-
jects which historically emerged as a product of studies of the periodic problems
for the Hill and Dirac operators.
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To complete the solution of the NS system within the algebro-geometric
approach, we need to calculate explicitly the matrix coefficient ¥; in (4.1.19)
starting from exact formula (4.1.18) for ¥, and then refer to (4.1.10). Finally we
get the following solutions of the NS system:

0iVz+iWt— D +r)

0iVz +iWt — D)
4o iV +iWt— D —r)

y(z,t)=A exp(—iEz +iNt)

y*(z,t) = A 0aVe+TWi—D) exp(iEz — iNt) (4.1.22)
_ 26(D)
A= (D —7)

Equation (4.1.22) describes a family of exact finite-gap solutions of (4.1.1) de-
pending on 3¢+3 complex-valued parameters. These parameters are 2g+2 branch

points E; € X, a g-dimensional vector D € J(X), (or a divisor D), and a com-
plex number 4, A #0.

4.2 Finite-Gap Solutions of the Sine-Gordon Equation

The zero curvature representation of the sine-Gordon equation
Ve = —4sinv 4.2.1)

known since 1973 [4.2-4] is of the form (4.1.4) with the matrices U()\) and V()
defined by the formulas

. 0 —ivg/2
U()\)———l)\cr3+(_ivz n 6 ) :

1 ] c, 4.2.2)
VO = 1 (—1cosv sin v )

—sinv icosv

First we formulate propositions similar to Lemmas 4.1 and 2 thus fixing the
analytical properties of the corresponding matrix ¥-function:

Let Xy be a punctured neighborhood of the point A = 0 on CIP' and T, be
a punctured neighborhood of the point A = oo; both of them are invariant with
respect to the action of the involution A — —\. On the union Yy U X a2 x 2
matrix valued ¥-function is defined. We suppose that ¥ smoothly depends on
the complementary parameters z,t (¥()\) = ¥()\, z,t)) such that
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(1.) The following asymptotic expansion holds:

T\, z,t) = (1 + Z Wy (z, t)X‘")

k=1
X exp(—izAo3) C(\), A — o0

Y

o0 4.2.3)
T\, z,t) = Polz, 1) (I + quk(x, t)Ak)

k=1

xexp{:Aita3} D), A—0 |

(2.) We have the following reduction requirement:
U(A) = 1P (—=A) a(N)
In (1)-(2) o()), C()), D()\) are invertible matrices independent of z and t¢.

Lemma 4.6. The function ¥ with the properties described above satisfies the
following asymptotic estimates:

TN =UN+01/)), A— oo

?

1 424
o (N)=V(\)+01), A-0
with
U()\) = ——i)\0'3 + i[0'3, !Pl] 5
1 . -1 4.2.5)
V(A) = XW ) "/1 = _1¢003¢0 ’
and the identities
UAN)=aU(=Nor , '
4.2.
V) =01V(=No1 . (4.2.6)

Proof. Substituting the expansions (4.2.3) into left-hand-side of (4.2.4) we see
that (4.2.4) is true. The identities (4.2.6) are the direct consequences of the
condition 2 and of the uniqueness of the asymptotic expansions (4.2.4).

In addition to the conditions of Lemma 4.6, let the function ¥ be a solution

of the linear equations
(N =UNFN) , 4.2.7)
Ty (A) = V(ANF(N)

?

with matrix coefficients defined by (4.2.5). Then the following Lemma holds:
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Lemma 4.7. Under the conditions formulated above the matrices U()\) and
V(A) may be represented in the form (4.2.2) with

v(z,t) = arcsin (¥1(z, 1)),

and the (generically complex valued) function v so defined satisfies the sine-
Gordon equation (4.2.1).

Proof. Substituting the first of (4.2.3) into the second equation of the system
(4.2.7) we get

Vi =¥,

Therefore, introducing the functions y(z,t) = 2 (¥1(z, t))12,
y*(z,t) =2 (W (z,t)),; we get the relations

*

V=2, 0n=% . (4.23)

From formulas (4.2.5) we have the relations

TrVi=0, detVi=1

b

which together with (4.2.8) enable us to represent the matrix V; in the form

Vi = (-i\/ 1+ (1/Dyey; ye/2 >
yi/2 iv1+1/Dyy;

The reduction identities (4.2.6) mean that the equalities y = —y* are satisfied

and hence it is possible to represent the matrices U(A) and V() in (4.2.7) in the
form

. 0 iy
U(/\)——1A03+(iy 0> ,

VO = 1 (—1cps v sinv ) ’ 4.2.9)
A\ —smv 1cosw

v = arcsin (y;/2)

To complete the proof it is sufficient to notice that the equality y = —v,/2
follows from the zero curvature equation (4.1.4) for the matrices (4.2.9). The

proof of the zero curvature equation itself is absolutely analogous to the one of
Lemma 4.2.

Remark 4.8. The way to isolate real valued solutions of the sine-Gordon equa-
tion (4.2.1) will be discussed in Sect. 4.3. Here we restrict ourselves to the remark

that as in the case of NS the reality of v is equivalent to the reduction restriction
(4.1.13) which is complementary to (4.2.6).
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Now, we turn to the explicit construction of ¥()\) by the methods of algebraic
geometry. The necessity of satisfying the reduction requirement (2.) introduces

in the corresponding construction some new aspects with respect to the case of
the NS.!

Consider the Riemann surface X of genus g > 1, generated by the equation

[3 29 (o]
=210 -E)
# J.l____!( ) (4.2.10)

EjEC, Ej#Ek, 77k

The points of .;( and associated two-sheeted covering of the (i)—plane will be
denoted by P and

The points E;, 0, oo, i.e., the branch points of the covering  are, as usual,

identified with their projections on the (K)-plane. Now, fix the basis of a- and
b-cycles, to which we have associated a normalized basis of the holomorphic
differentials w; and Riemann theta function defined by the matrix of the B-

periods: Bj = fbj wy. We construct on .30( a cycle £ such that the points {0, 00},
and {E;} lie on different parts of CP' divided by 7 (£) and that the equality

g
L= 6ia;, &==%1,0 (4.2.11)

=1

in H\(X, Z) is satisfied. For different £ see Remarks 4.10, 12.

Equality (4.2.11) also imposes some restrictions on the choice of the cycles
ak, b which are nevertheless not very stringent (see Remark 4.3). On the surface
X, cut along the cycle £, it is possible to determine (nonuniquely) a single-valued
branch of the function \/7°_r Fix in some way such a branch and denote it by

A(IOJ). Its boundary values on different sides £* and £~ of £ satisfy the equality
Mer = =2~ -

! In our consideration of the S-G case it is possible to modify the initial U-V pair so that the necessity
of the indicated reduction is removed [4.5]. But we do not follow this simplest way, because there
are many similar situations, particularly the ones treated in this volume in the chapter devoted to

tops, where it is impossible to do without such a reduction simply by the choice of appropriate
U-V pairs.
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Now, let us cut X along £ and join two copies of the obtained surface with
a cut along £ in order to get the Riemann surface X on which the function

X becomes single-valued if it is continued on the second copy of X with the

change of the sign. Now we fix on .;( the Abelian integrals of the second kind
by the conditions:

(a.) faj dy=0,Vji=1,...,9, k=12
(b.) £2; has a unique singularity, a pole at oo, and 2, has a unique pole at the

point 0 with the principal parts given by
Q(P)=r+0(l), Pooo ,
BP)=r"1+0(1), P—0

where ) is a value of the fixed branch of )\(103).

Now, we fix an arbitrary non-special divisor D with degD = g and define

the vector valued Baker-Akhiezer function ¢(I°’) = (:/;;) of the S-G model by

the conditions

(a.) z,b(;’) is single valued and analytic on 5( cut along L,

(b.) in the neighborhoods of the points oo and 0, ¢(1°3) has an essential singularity
described by the formulas

W(P) = K}) + o(l.)] exploizV3) |

Pooo, M=n(P) . (42.12)

¥(P) = OW)exp(—it/V V)
PH0, \=n(P) . (4.2.13)

(c) ¥(P) on X /{L, 00,0} is meromorphic with the divisors of poles equal to
D

(d.) The boundary values 9= of 4 on £ are related by the equality
v =03, (4.2.14)

i.e., the first component of ¢ has no jump on £, and the second component

o
changes the sign when its argument crosses £. As usual ¢(P) may be constructed
explicitly by means of the theta functions and Abelian integrals:
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©

P
7] (/ w—i(Vw+Wt)—D)
$i(P) =

e

(D)

" — exp {—im 2(P) — itﬂg(]o))} ,
6 (1(2/'::; +Wt)+ D) 4215

P
0 (/ w—i(Vm+Wt)—D—i7rA)
$a(P) =

=

6(D) e e
(Ve + Wi+ D+ind) P {_wnl(P ) — it8H(P )} ’

where as before

g
V; = dh, W‘=/ df, D= / w+K, D= pP; ,
J by 1 J b 2 Z Z J

and the vector A € Z7 is defined by

1
A=z [ A=A, 4

or, taking (4.2.11) into account by

We need to comment on the second of the formulas (4.2.15) only. To check it

we have to verify that the function ‘(/)(103) given by the right-hand-side of (4.2.15)
satisfies the conditions (a.) and (d.). The final condition is equivalent to the in-

variance of ), with respect to the movement of P along b-cycles nonintersecting
L and the change of the sign to the opposite value with respect to the movement
along b-cycles intersecting £. Denote the monodromy operator corresponding to
one-pass along the cycle b; by M ;. Then from (4.2.15) we get
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P
9 (/ w—i(Vm+Wt)—D—i7rA+BAj) 6(D)

M;[ipa(P)] = :
0 (/ w — D+BAJ~) 0i(Vz+Wit)+ D+inA)
X exp {—iml(f)) _it(P) —iz(V, A;) — it(W, Aj)}
with

Aj =(Aj1""7 Ajg), AJ% =6ji
Now, from the transformation property (2.5.10) of the theta functions we obtain
M ;[ (P)] = Y2(P) exp(in(A, A;)) = 2(P) exp(iné;)

The indicated behavior of ¢»(P) follows now from the fact that the cycle b;
intersects £ if in (4.2.11) the associated é; is different from zero.

From the Riemann bilinear identities (2.4.13) for the periods of Abelian
integrals we also have the following relations:

29
Vi=2c;, Wj=-2cjo/vm, po=]]Ei (4.2.16)

j=1
and the coefficients c;; are defined by

09—k

wj:zcjk/\ di
A K

It has already been noted that 1/;1(10’) is single-valued on )% ; ¢2(I°’) is two-
valued. On X both become single-valued and 1, is extended over all X in the
same manner as the function A.

We denote the points of X by P,
P=B,N =N

and the function 1(P), continued on X by e(P). The surface X is of genus
2g — 1. It may be viewed as a two-sheeted covering of X, or as a two-sheeted

covering of the ()\)-plane, or as a four-sheeted covering of the (R)—plane. The
related covering mappings are given by
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m: X =X, AN =N
m: X — CP, rz(u,;\,A)=)\ ,
m i X — C]Pl, 7r3(u,§\, A) =§\

All these coverings except m; are ramified. The branch points of 7, are the points
projected to £./E;. The branch points of w3 are the points projected to E;, 0,
and oo. The surface X may be described by

2
j=1

(]
In contrast to X on X there exist two infinity points and two zero points, each

situated on its copy of X. We shall denote these points by co* and 0% respec-

tively. In the realization of (4.2.17) the points co* are exactly the same as in the
previous example:

Po oo e dooo, p XY, p=ip' ~ X9
Similarly,
Po0te o0, potyp, p=:~tM/p .

The function 1(P) defined on X yields, by virtue of (4.2.12-13), the following
asymptotic estimates:

H(P) = K 321) +o(1)] exp(Fiz)), P — oot |
4.2.18)
Y(P) = [(:IT:T;) +o(1)] exp(Fit/)), P — 0 ,

where the quantities m and n may be easily calculated from the exact formulas
(4.2.15): '

0iVz+iWt+D+ird) 6(D)
8iVz+iWt+D) 6(D+ird) ’
8(iVz +iWt+ D) (D)
0iVe+iWt+ D +inA) (D +inA)

m(z,t) =

4.2.19)
n(z,t) =

In deriving (4.2.19) we have taken into account that on the first copy of X
forming X we have

ot 1
/ﬂw=/ w=:t—/w=:|:i7rA
oo oot 2 L

Now we define the matrix valued function ¥()\) by
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T(N) =% (} __11) (H(PY), B(P-))
4.2.20
_1 ( V1P +p2(PY) , i (P7)+¢a(P7) ) | )
2 \ P1(PY) —Pa(PY) , P1(P7) —4a(P7) )

where m(P*) = A, and

P¥ ot Ao oo

PEL0E A0

see also (4.1.18). In contrast with the similar object in the NS case the function
(4.2.20) is defined on the union of two simple connected domains — the neigh-
borhood of 0 and oo on the A-plane, invariant with respect to the involution
A — —J, and not containing the images of the branch points of the covering ;.
Let us show that the constructed function satisfies all conditions of the Lemmas

4.6 and 4.7. In terms of the matrix-valued function ¥()) the asymptotic relations
(4.2.18) take the form

T\ = (I+ D w—k) exp(—izhos), A — oo

(X)) = o (I + de") exp(—ito3/A), A—0 (4.2.21)
oo = l{m+n , m-n
" 2\m-n , m+n

As in the NS-case, the asymptotic series on the right-hand-side of (4.2.21) are

uniformly convergent and may infinitely often be differentiated term by term with
respect to z and ¢. So far we have checked the first conditions of Lemma 4.6 for

T(A).
On the surface X, the involution
PP (1)) — (1A, —N)

interchanging the sheets of the covering m is defined. By construction, the func-
tion 1(P) satisfies the relation

PY(PT) = o39(P)
In addition (co®)” = co¥. Hence, for ¥()\) we get the relations

1
r=3 (1 L) wen, v

]

1
2 (} _11) o3 (Y(P7), $(P*)) (4.2.22)
1

(1)t L) o0 =i

Thus @()) satisfies the second condition of Lemma 4.6 with o()\) = o,.
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We now define the rational matrix valued functions U()) and V() by

U\ = —ido3 + i[0'3, ]
V) = —ix"1@o3 85!

?

?

so that the estimates
TP TN =UN) +0(1/N), A ,
1() N +0U/, A = o0 4.223)
TP N =VO)+0(1), A =0 |

hold. Then we consider the vector functions

so=(o ) (1 4) (m-vw) (4 L)
a0=(o (1 L) (F-vw) (1 L)ee o @220

A =m(P)
The formulas (4.2.24) define f , as single-valued vector functions on the surface

X. It is easy to show that they are also single-valued on X, ie., on the factor
X /7. Indeed, the identity (4.2.22) leads directly to the following relations:

U = —oo1, Do=01Po0;

for the coefficients of the expansions at the points co and 0. Thus we conclude
that U()\) and V() satisfy the relations
U(=N) =01UNo1, V(=) =01V(Na

Combined with the relation

11 (1 1
B\1 1)\ ) o

these reductions prove the invariance of f; , with respect to the action of = and

o
hence a single-valuedness of f , as defined on X.
Further consideration reproduces in general the considerations of Sect. 4.1.

As functions depending on 1.5 the f; o are meromorphic and have poles at points
which form a non- spemal divisor D. To understand the asymptotic behavior of

Fipat P—> 0o Or P—> 0 it is sufficient to look at their behavior on the covering,
i.e., to study the behavior of f; ,(P) for P — oo* or P — 0*. This reduces to
the calculation of the asymptotics of the first columns of the matrices

A= (o 3) (1 L)) @w-vowe)

and
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ro= (g ) (] 1) @ -vore)

when A — oo and A — 0. By virtue of the estimates (4.2.21, 23) and the
estimates

7o) =0Q)
TT I =0(1/)), X — oo

?

following from (4.2.21) we get

(1 1 exp(—iz ) 0

Fl,Z()‘)" (}\ _)‘) O(l/)‘) ( 0 CXP(ICI}A)) ’ A— 00 ’
(1 1 exp(—itA™1) 0

Fia() = (A —A) O(l)( 0 exp(it)\'l)) » A0

Now, recalling that at P — oo*, A = +\/§, we see that the relations
(o] 1 . -] o
F1a(P) = ( g;(f)) ewt-ieV3), Pooo

f1a(P) = (O((ll))) exol-itV3), B0
hold. The obtained information about the functions f, , implies
f1=0, f,=0

As in the NS case, we deduce that all conditions of Lemma 4.7 for ¥()\) are
satisfied.

Remark 4.9. The same a priori motivation of the described construction as in
the NS system case may be repeated without difficulties.

Now for the calculation of the solution v(z,t) of (4.2.1.) we use (4.2.5)
showing that

exp(—iv) =m/n

From this relation and (4.2.19) we get the following exact representation for the
finite-gap solution v(z,t) of the sine-Gordon equation:

6((Vz+Wi)+ D +irQ)

#) = 2il
v(@,1) = il — e W+ D)

(4.2.25)

Remark 4.10 a. Let us denote by « the path from oo to 0 which is one-half
of £. We chose £ in such a way that o and 7o, where 7 is the hyperelliptic

o
involution on X comprise £ = a —ma. We could choose the cycle £ in a different
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way (denote it by £/) adding to £ a small cycle around ;\= 0. The intersection
numbers of a with £ and L/ are (a,L) =0, («,L/) = 1. Replacing £ by L/

]

we change the sign of the local parameter at A= 0. Therefore if v(z,t) was a
solution generated by £ then £/ determines the solution

v(z,—t)+7.

Remark 4.10 b. Formula (4.2.25) describes the solutions of the SG equation
in light-cone variables. For the construction of the solution of the SG equation
written in laboratory coordinates, i.e.,

Uy — Uz FSINu=0 | (4.2.26)
it is sufficient to put
+t t—
u(z,t) =v (“'4 .3 w) . (4.2.27)

4.3 Reality Conditions. Reduction of the NS System
to the Nonlinear Schriodinger Equation

Reality conditions in the finite-gap integration are understood as reduction con-
straints related to the existence of the antiholomorphic involution of the “spectral”
variable A : A — X. In the NS and sine-Gordon cases considered below the “re-
ality” conditions impose the constraints (4.1.12) and (4.1.13) on the solutions of
the auxiliary linear system.

In contrast to the “constructive” reduction (2) (see Lemma 4.6) we can re-
alize the conditions (4.1.12) and (4.1.13) only by the appropriate choice of the
parameters E;, D in the exact formulas (4.1.22) and (4.2.25)

4.3.1 NS Equation. Reduction y* =7y

let E; e Rand Ey < E; < ... < Epgn1 < Epgyp. The associated Riemann
surface X is real, ie., X admits the anti-involution 7 : (u,A) — (&, A). The
basis (ax, bx) of H1(X) may be chosen so that

T(a;) =aj, 7(bj)=-b; . (4.3.1)

The last equalities are understood modulo cycles homological to zero.
An example of such a basis is shown in Fig. 4.1. The Riemann surface
X is realized as a two-sheeted covering of the complex plane. The segments
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LE211, Enis2] are the transition lines from the upper to the lower sheet of the
surface X. The dotted lines denote the parts of the cycles located on the lower
sheet of the surface X. The infinity points oo* and oo™ are placed on the upper
and lower sheets of X, respectively.

Fig. 4.1. The homology basis for the curve p? = H29+2()\ — E;) with

J=1
Ey < B3 < --- < By < Epgna.

The individual action 7* of 7 on the holomorphic differentials v; is depicted
by

TV =U;j

and hence the matrix A

Akj=/ Vi

i

satisfies the condition Im A = 0. The coefficients cjk in wj = Y, ¢jxvy form the
solution of the system

Z Cik Akl = 27I'i5j1

From the reality of the matrix A it follows that all ¢;; must be purely imaginary,
i.e., Recj; = 0. Hence for the normalized differentials w; we get

TW; =W, 4.3.2)
and consequently,
Vi==V;, Wj=-W; . (4.33)

In the case under consideration the matrix of the B-periods is real

—Ejk=/—¢5k=”/7*wk=—/ wk=/wk=Bjk ) 4.3.4)
b b; (b;) b;

J
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The integration paths in the definition of the Abelian integrals r;, w; do not
intersect the cycles a;, b;. Particularly

oot
ry = / wj = th Wi
oo~ —0o0 cp

where the path of integration cp is shown in Fig. 4.1. ¢p is invariant with respect
to the action of 1, i.e.,

T(cp) = cp

and hence the vector  is purely imaginary:
Ti=-—-r; . (4.3.5)
The integrals §2; allow the following representations:

P
02,(P) = / ae;

Erg42
AL Nc/2 g
o/ d\+

df = —————u—"—-— ZC Vi

j=1
+2 +1 g
dﬂ2=4)‘g — A2 —dN9 dA+Zc]1/] ’
K =
2g+2
c=> Ej, d {Zﬁ 2ZEEk} ,
J= i<k

by, L,
df{) = 7 d\+ chvJ-
j=1

The constants c;? are determined by the normalization conditions

/d!)k:O, k=123 j=1,...¢

Now in complete analogy with the proof of (4.3.2) we can find the transformation
law for the differentials df2; with respect to the action of 7*:

T*(d$2) = di
The constants E, N, and wy may be defined as follows:

U o, — ZA} A=n(P) ,
P—roo

N = P [ / df, — 4,\2] , A=w(P) (4.3.6)

logw():—PEer[/ ng——Zlog)\] , A=m(P)
oo cp
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From the relations 7(cp) = cp and 7*(df2;) = d2;. derived above it is now clear
that the constants E, N, log wp are real valued:

E=E, N=N, logw=logw & wo>0 . 4.3.7)

For example, by virtue of the definition of E and the relation 7*(P) = P, we get

E=— lim U ml—zx]=— lim U T*d.Ql—Z)\]
P—oot | Jep P—oot | Jep

- _ lim U d91—2A]=E
P—oot { Jr(cp)=cp

Taking into account (4.3.3-5, 7), the equality
y*(z,1) = y(z,?)
as applied to (4.1.22) then gives rise to the identity

8(i(Vz+Wit)— D —r) 8(i(Vz + W) — D)
9(i(Vz+Wt)—D —r) 6(i(Vz + Wi) - D)

This identity is self-contained only under the condition

|A|2 = 4wy

D=D+2riN+BM, N,McZ’ . (4.3.8)

By virtue of (4.3.8) the representation of |A|* written above may be transformed
to the following form:

|A? = 4woexp(r, M) . 4.3.9)

Taking into account the relations Im B = 0, Re r = 0 one may insert M =0 into
relation (4.3.8).

The resulting reduction constraints (“reality” conditions) in terms of the vector
D and the number A take the form
ImD=xN, NeZ |, (4.3.10)

A=2/pe? . 4.3.1D)

Remark 4.12. The vector D is defined up to the addition of elements of the
lattice A = {27iN + BM, N,M € Z%}. As a consequence for the fixed
numbers E; the whole variety of the finite-gap solutions of the “repulsive” NS

equation
iyt + Yz — 2|y|2y =0

constructed above splits into 29 convex components. Each component is fixed
by the choice of the vector > N € Z{§, in (4.3.10). The component IV = 0 is of

> N € Z§, means that N; =0 or 1 for all j.



110 4. Vector Valued Baker-Akhiezer Functions

special importance. The related solutions of the NS equation are clearly smooth
functions of space and time variables. This follows from the inequality

exp {%(Bm,m) +(i(Vz+Wt)— D, m)} >0

VmeZ’, z,teR

Fig. 4.2. The homology basis for the curve y? = ;gz(A — Ej), Eagy1 = Fga2, k=0,..., g.

4.3.2 NS Equation with Attraction. Reduction y* = —3

Let X be a hyperelliptic surface defined as above by a polynomial Pag.2()) with
real coefficients with one difference: the zeros of the polynomial Prg12(N) are
now complex valued and ordered as follows:

-Ebk+1=E2k+27 k=07”')g

The canonical basis of the cycles aj, b; is chosen (see Fig. 4.2.) to satisfy

(@) =—a;, () =bj+) a, (4.3.12)
ki

where 7 stands for the same involution as above. The replacement for the con-
ditions y* = y by y* = —7 leads to a purely imaginary matrix Aj, ie., the
coefficients c; turn out to be real. Consequently the equalities (4.3.2) and (4.3.3)
are replaced by

Wi =T, (4.3.13)

Vi=V; ,

W;=W, . (4.3.14)
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Next, we show that the structure of the B-matrix is also different from the
repulsive case:

_B-jk=/wk=/T*wk=/ wk=/wk+2/wk
b; b; 7(bj) b;

= Djk +27l'i25k1 y

4]
ie.,
011 1 1
— ] 1 01 ... 11
B=B+27riBy, By= NP . . (4.3.15)
1 11 1 0

The behavior of the differentials df2; with respect to the action of 7* remains
unchanged:

*dQ = df2;

)

as in the repulsive case. The path cp needed to define the constants F, N, and
wo transforms as follows:

g
T(cp)=cp — Zak+l

k=1

This is the reason why (4.3.7) goes now over into

E E+Z/ o — /d.(h:E—/dQl ,
k=1
N=N- Z/ d92+/d92—N+/d92 :

k=1
log wo-log wo+2/ d.Q3 —-/d.Q:;-—-long—/d.(h ’
k=1
/d[)l,g =0, /dﬂg =27i
l I
Consequently,
E=E, N=N, Imlogw=m&w <0 . (4.3.16)

For the components of r» we get instead of (4.3.5)

7,= lim w;= lim f Wi =T: — / W
J J J J E : J
P—oot cp P—oot r(cp) = Jax

=r; —2xi

(4.3.17)
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Although the behavior of the B-matrix under the action of complex conjugation
is more complicated than in the repulsive case, the identity

6(p) = 6(p) (4.3.18)

still holds. In our case the relation (4.3.18) may be easily checked using the
evident identity
m, m>

1
cXp E <27{'l

= exp {i:rrz (ka) mj} = exp {ZWikamj} =1
J k7 k>;

In complete analogy with the derivation of the relations (4.3.8-9) from formulas
(4.3.13-17) we get

— et O

1
0
1
1

OH'—AH

1
1
0
1

8i(Vz+Wit)—D —r) 8 (i(Vz+Wt)+D)

|A|2 = —4(.0() - — " ’
0((Vz+Wt)+D—r) 6((Vz+Wt)— D) (4.3.19)

D=-D+2riN+BM, N, MecZ° |,

|A* = —4wpexp{—(r, M)} . (4.3.20)

The vectors IN and M have to satisfy some complementary restrictions. From
(4.3.19) and (4.3.20) we have

N=(1/)BoM, BIM€2Z’ & > mj=2n;, m€Z ,
j=1, 7k
g

ij=2n0, noEZ y
j=1

and hence
M=2M, , Mope€ /Al
This yields
ReD=BrM,, Br=ReB, MoycZ’ |,
) (4.3.21)
A =2+/—woexp(ip)exp{—(Rer, Mo)}, ¢ €R .
We can rewrite the last restriction on D in the form
D=D0+BMO, RCD():O

B M belongs to the lattice A of periods of the theta functions. Therefore the
solution y(z,t) parametrized by D is the same as the solution yo(z,t) obtained
by the change D — Dy (for which My =0), ¢ — o,
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g
cp0=<p+7r2 mo; , Mo =(mo1,..., mog)
J=1

So, in the attractive case, the whole variety of the finite-gap solutions with fixed
branch points contains one convex component only. This component is eliminated
from the solutions of the NS system by demanding

ReD=0, A=2y/—wgexpiyp) . (4.3.22)

Each of the constructed solutions of (4.1.2) is a smooth function of = and ¢

for z,t € R. From the exact representation (4.1.23) it is evident that the unique
possible singularity of y is the pole

C

(z — zo()"™

Substituting the leading term into (4.1.2), we see that ¢ must be equal to zero.

y(mat)z nEZ, ceC

4.3.3 Sine-Gordon Model. Reality Condition v =%

Let X in (4.2.25) be a more general curve than in the NS case. Namely, suppose
that the branch points may be subdivided into two families:
(a.) E;, 1 <3 <2k, are real and ordered in the following way:

EE<E<..<E<0 ;
(b.) Esk+j, 7 =1,...,2(g — k), are complex-valued and
Erkrj = Egkejn

The entire number ¥ may be chosen arbitrarily between k =0 and & = ¢. In the
case k = 0(k = g) there are no branch points of the type (a.) [type (b.)].

On such a surface we can always construct the canonical basis of the cycles
(see Fig. 4.3 a for an example of such a basis) satisfying the conditions

m(a;)=—a;, j=1,...,9 ,
T(b;)=b;, j=1,....,k , (4.3.23)
7(b;)=bj —a;, j=k+1l,...,¢

[1t should be noted that the relations 7(u, ;\) = (—{, j\) and T*\/—o- = ——\/§ are
valid.] For the bases shown in the figure, the proof of the third of these conditions
may be understood from Fig. 4.4,

Starting on (4.3.23) and repeating the calculations, absolutely similar to NS

case, we get the following relations for the principal parameters of finite gap
solutions (4.2.25):

Vi==V;, Wj=-W; . (4.3.24)
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- -

]

[+
Fig. 4.3a. The homology basis for the curve p? =\ H?io(’\ —E;),

El <Ez<'~'<E2k<0,E‘2k+j=Elk+j+l,j=1,---;2(9"'k)

\

Fig. 4.3b. The choice of cuts and cycles for the small-amplitude regime

Bi=Bj, j<k ,
- ) ) (4.3.25)
sz=Bj1+27r16j1 s ) >k .
Formula (4.3.25) indicates that in the SG case we have to replace (4.3.18) by

8(p) = 6(p +irAo) ,

4.3.26
Ay=(0,...,0,1,1,..., 1) ( )
Finally, let us choose £ as shown in Fig. 4.3 a, i.e.,
g
ﬁ = Z ag
k=
and hence
A=(1,1,...,1) . (4.3.27)

Now we consider the reality conditions for v(z,t). It is evident that the real-
valuedness of v(z,t) is equivalent to the following relation:
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9((Vz+Wt)+D) |*_
((Vz+Wit)+D+irAd)| b (4.3.28)

Using (4.3.23-26), this relation may be rewritten in the form

9G@(Vz +Wt)+D) 6 (i(Vz+Wt)+ D +irAo) _
0((Ve+Wit)+D+irA) 6 (i(Ve+ Wi)+ D +indo +ird)

and leads to the following restriction on the structure of the vector D:

ImD=-72£A1+1rN, NeZ® |
44, =(,...,1,0,...,0) . (4.3.29)
A g
k

The solution (4.2.25) is invariant with respect to a translation of D on the lattice
vector A:

D — D+2xsiN+BM . (4.3.30)

The imaginary part of the matrix B is by virtue of (4.3.25) of the form

S \}k

Y

Hence, using the appropriate transformation (4.3.30), we can always construct a
vector IV in (4.3.29) in such a way that N; = 0, for all j > k+ 1. So the final
form of the restrictions on the vector D is:

ImD = %Al +7N | 4.3.31)

where N = (e1,..., €, 0,...,0), ¢; = 0,1, 5 = 1,..., k. Accordingly, with
(4.3.31), the whole variety of real finite-gap solutions of the SG equation cor-

responding to the fixed Riemann surface X may be subdivided into 2F convex
components. We remark that all constructed solutions are smooth functions of z
and ¢. The last conclusion is an immediate consequence of the equality (4.3.28),
and the fact that the theta functions entering in (4.3.28) are entire functions of z
and t.

It is rather convenient to describe the small-amplitude regime using a different

choice of cuts and cycles, see Fig. 4.3b. The cycles and +/\ at Fig. 4.3b are
transformed according to

Taj=a;, Tbj=—bj+a;, ™VA=—-VX.
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o0

Fig. 4.4. Graphical proof of 7b; — b; = —a;

For the antiholomorphic involution 77 (where 7 is the hyperelliptic involution)
we have the same transformation law of cycles as before (4.3.23):

7r7'aj=—aj, 7r7'bj=bj——aj,

but \/i is transformed in a different way:

(7r‘r)*\/§ =—\/—§ :

Instead of repeating the calculations for this case, we remark, that the transfor-
mation

T > 7T, \/-;: — i\/§ , ’ (4.3.32)

yields for the case of Fig. 4.3b the same transformation laws as before in the

case of Fig. 4.3a. The change of coordinates with \/; in (4.3.32) is equivalent
to the complex transformation

r— -z, t—it, (4.3.33)

which preserves the form of (4.2.1). If we make the substitution (4.3.33) in
(4.2.25), we see that the condition of real-valuedness (for the solution of the
sine-Gordon equation) goes over into

6vs-wi+D) |,
8(Vz — Wi+ D+7id)|
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Using the same method as above and the fact that the theta function is an even
function we obtain

D+ D =ri(A - Ay) . (4.3.34)
In the case under consideration with A = A, it yields
Re D=0

and

0V —-Wt+D+7iA)

v(z,t) = 2ilog —r S T Dy

(4.3.35)

for the solution of the sine-Gordon equation of this kind of spectral curve, i.c.,
for small-amplitude waves for small cuts in Fig. 4.3 b.

4.4 Degeneracy of Finite-Gap Solutions.
Multi-Soliton Solutions

Here we discuss for the NS model the limit structure of the finite-gap solution
formula due to the degeneration of the associated algebraic curves, leading to
curves with nodes and cusps. The simplest degeneration leads to the construction
of so-called multi-soliton solutions in the representation given by Hirota. Next
we show that the consideration of more complicated degenerations gives the
possibility of finding solutions with interesting and previously unknown proper-
ties. An alternative way to describe some of these solutions is the application
of dressing procedures, the so-called Darboux transformations to the finite-gap
background. Here we do not compare these two approaches although such a
comparison is also of some interest because the formulas obtained for the same
objects are different. At first we discuss the simplest case when the genus of the
curve X degenerates to become equal to zero in the limit case.

In such a limit a finite-gap solution transforms to a multi-soliton. We start
here from the general formulas for the NS system. The constraint y* = +7 will
be realized at the last step by taking an appropriate choice for the parameters in
a degenerate version of our formulas.

We consider an arbitrary curve X of the form (4.1.14), take some value o > 0

and put

Ey=—FEyu=—a

The basis of cycles is chosen as shown in Fig. 4.5
Now, we consider the limit

Bk Eake1 = Ak, k=100, 9, A # ;. (4.4.1)
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Fig. 4.5. Homology basis of cycles for an arbitrary curve of the form (4.1.14)

For a moment we do not impose any complementary restrictions on the positions

of the points A;. In the limit (4.4.1) the function p = |/Ps4.2()) transforms to
the function po()\) defined by

9
o) = V3 = [T = 2w
k=1

The square root in 4o is determined by by the condition /A2 — a2 > 0, when \
is lying on the upper side of the cut joining « and +oo on the upper sheet of the
curve Xo (i.e., the Riemann surface of the function /A2 — a?2). It is necessary
to remark that each cycle a; is placed on the upper sheet of the curve X, and
surrounds the point A; clockwise. The b;-cycle transforms to a curve starting
from the point A; on the upper sheet, then crossing the cut [, +00], going to the
lower sheet and returning to the point );, following the lower sheet. Now, the
limit form of the normalized Abelian differentials w; is 3

0
¥
VA2 —aZ [T, (0 = M)

0 — 0 y9-1 0 yg-2 0
SOJ(A)—CJIA +C12)\ +...+ng

wi(N) = ax

The functions cp‘}()\) may be determined from the normalization conditions:
27iby; = / w) = —2mires (w], Ak)
ak

Thus we get

3 In the calculations performed in this and the next section it will be convenient to admit traditional

inaccuracy, denoting the points of Xo and their projections on the complex plane by the same
character .
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0 0 0 —
i = [ -x), Si=—y/N—a?=-ik; . (4.42)
4]

According to (4.4.2), the differentials w(} may be cast into the form
0

0)) = ot
W2 VTKZPQ_A»dA. (4.4.3)

Now from (4.4.2) the limiting values of c(]’.2 are
c(J)-z = —c(])-l z Al =ik; Z Al
7 4]
Hence, the limits of the vectors V' and W are given by (compare with (4.1.17))

Vi — VJp = 2021 = =2ik; ,

444
W; — W) =4i (n,-z,\,-n,-ZA,> = —4ir;); . (@49

7

The Abelian integrals §2;, 7 = 1,2,3 are (in the limit considered here) equal to

0=V -a? |

D) =22/)2 -2

20 =log (,\ +/22 - a2) —loga
Now we can easily get the following expansions for 29()\) when )\ tends to
infinity:

BN =T 2 20+...

D) =+2X% —a?+0(1) ,

() = +(log A — log a/2 + o(1))

From the above we conclude that in the limit (4.4.1) the constants E, N, wp g0
to

E—-E'=0, N—-N'=-2d%, w—uwl=ad?/4 . (4.4.5)

Now let us calculate the limit values of the elements of the matrix B. First of
all we remark that

Ao Ao d\
o o« A=AV a2

)‘j — )\0 —
}‘J +a AO +a (4.46)
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The integration path in (4.4.6) is supposed to lic on the upper sheet of the surface
Xo and not to go across the points A;. Also the principal branch is taken for the
logarithm in (4.4.6) and

A—a VX —a?
Ata  Ata

is used to avoid uncertainties.
Starting from this point we consider A; to be ordered according to

Red; >Redy, j>k

Under this assumption the limit values BO,c of the matrix elements Bjyi, j # k,
are given by the formulas:

B° —2/w—210g 7’, >k,
ik Aj k Tk 7] !

ng=32j=2/w—2log 7", j<k

+7; ’ 4.4.7)
\j—a ,//\ — a?
A + Aj+a
In the limit (4.4.1) we easily obtain for the diagonal elements of the matrix B

the asymptotic estimate

Re Bjj = 210g |E2j+1 - _E21| + 0(1) . (448)

We conclude that in the considered limit

ReBj; - —oc0, 3=1,...,9 . 4.4.9)

The final step we have is to study the behavior of the vector ». Turning to (4.4.6)
we find

0 oot 0 v; —1
T — TS =2/ w; = —2log - . (4.4.10)
! I o 7 7j+1

We now discuss what happens with the theta functions defining the solutions
(4.1.22) in the limit case. To obtain a reasonable answer we need to specify the
behavior of the arbitrarily chosen vector D. From now on we assume

1
D;= 5Bjj+2nj (4.4.11)

to hold where the quantities n; (7 = 1,..., g) are supposed to be chosen arbitrarily
but to be invariant with respect to variations of the branch points E; .* Formula

4 The above form of D arises quite natural from spectral approach considerations.
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(4.4.11) enables one to represent the exponents in the exponentials entering in
the definition of 8(iVz +iWt — D —er), e = —1,0, 1 in the form

3 ZBHm,(mJ 1+ ZBkaJmk
i<k
+ ij(iVj:c +iW;t — 2n; —er;)
j
From (4.4.9) it is clear that only the terms corresponding to the vectors 1, whose
coordinates m ; take the values 0 and 1, may give a non-zero contribution to the
series forming the Riemann theta function of the degenerated surface. Taking into
account (4.4.4-7,10), we find that in the limit (4.4.1) the Riemann theta function
0iVz+iWt — D — er) transforms to the finite sum

0.(z,t) = Z exp{Zlog[%_M%] mjmg

m;=0,1 i>k

(4.4.12)
vi—1
+ ;mj (2njm+4fcj/\jt+2610g 711_ ) —an) }
Hence, the limit form of the solutions of the NS system is given by
y(z, )= A 071@D o aig2py |
bo(z, 1)

o2 0( 9 (4.4.13)
1\T, 2
2ia“t

The last formulas descnbe a family of (2¢ + 2)-parametric solutions of the NS
system (4.1.1), fixed by the choice of the parameters A, o, A;, n; and involving
elementary functions only. Varying those parameters one can obtain different
types of solutions which have direct physical meaning. We shall consider here
two of the most typical examples.

Example 1. Multi-soliton solutions on the constant background of the NS equa-
tion (4.1.2) with ¢ = 1.

Here A, );, n; are assumed to satisfy the conditions

ImA; =0, A €(-a,0), j=1,...,9

A=aexp(ip), peR, Imn;=0
From (4.4.14) we get

rcj=1/a2—/\§>0, f)/j=i)‘.llCJ , log<u) eER ,
it Vit (4.4.15)
i

-1 ] Kj .
— = —2jarctan +ir
’Yj+1 /\j+0{

.
’

(4.4.14)

log
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Taking into account (4.4.12) and (4.4.15), we find that 6.(z,t) satisfies the con-
dition

0.(z,t) = 0_c(z,1)

i.e., under the assumptions (4.4.14), the solutions (4.4.13) satisfy the reduction:
y(z,t) = y*(z,1)

By the same assumptions the smoothness conditions will be satisfied, too. So we

get a (2¢g + 2)-parametric family of smooth solutions of the NS equation in the
repulsive case.

Next, we consider the asymptotic properties of the constructed solution
y(z,t). Let ¢ be fixed and send £ — oo. Then the leading term in the sum
(4.4.12) corresponds to the vector

m=(@,1,...,1)

Therefore we get for y(z,t) the following asymptotic behavior for z — oo:

kg

y(z,t) ~ aexp | —2ia’t+ip+4i) arctan " (4.4.16)
j J
Similarly we get from (4.4.12) an asymptotic formula for z — —oo:
y(z,t) ~ aexp(—2ic’t+ip), = — —oco . (4.4.17)

Now, consider the asymptotic behavior of this solution for large time: ¢ — fo0.
Let us assume that for some j = j we have

z+2A50t=0(1), t—+oo . / (4.4.18)

Taking into account our suggestion about the ordering of the )A;’s, we conclude
that the leading term for ¢ — oo in the sum (4.4.12) is generated by two vectors

m=(0,...,0,1,1,1,.... 1)
N, o’
Jjo
and
m=(0,...,1,1,1,1,..., 1)
\—\.,—u/
Jo

Accordingly for y(z,t) we get
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1 +exp©i(z,t)

1) =
y(=, ) 1 +exp @y(z,t)
2 Kj
X aexp { —2ia‘t+ip +4i Z arctan N ta
J=jo+l
1 +exp O3(z, 1) D2, . e
= —2iat +
¥ exp Oalz,p) TP AN HIEY
t—o00, z+Xt=0() ,
g N2
Orta,0)= > tog (LI ) 4 2is d t @419
=dotl Vi T Yo
+ 4iarctan N, +a — 20,
2
Os(z,t) = Z log (71 710) +2K’jom+4K’jo)‘J‘ot"2nJ’o )
J=jo+l + Yo

93($,t) = 2K’J0(x — x;o) +4K’]0A10t +4i arctan )\Jo :_a )

Ou(z,t) = 26 (x — 25,) + 4K, Aj,t

M

where
: 1
ey = — 183’ e
J Jo _. J Jo
’ ) ? Jiotl (4.4.20)
=p+4
© Z arctan )\j o
J=jot+l

Now it is evident that the functional structure of the asymptotics for ¢ —» —oo
must be the same. Only the phase shifts have to be changed

Jo—1
_ +;
T = T, = 77.70 Z log |
0 ]..1 7]0
, 4421
Jo—1
@' = 9T =p+4 ) arctan

= A jta
The right-hand-side of the last equality in (4.4.19) describes the simple one-
soliton solution or, more precisely, a simple kink, because the non-zero boundary
conditions for z — +o00, o = 1 are satisfied. So the constructed solution describes
the interaction of the g-kinks of the nonlinear Schridinger equation.

The formulas (4.4.20) and (4.4.21) give the associated expressions for the
displacement of the center of mass and the phases of the solutions in interaction,
respectively. Equations (4.4.16-17) show that the phase shift for the boundary
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condition corresponding to the multi-soliton case is an additive function in the
number of solitons.

Remark 4.13. The multi-soliton solution of the NS equation with 0 = —1 (the
attractive case, which is more widely discussed in the literature) may be deduced
[4.6] from (4.4.13) as a result of the following choice of the parameters:

g=2N, A=a, An:j=2X;, Im); >0, j=1,...,N

9y

T
;5 =—-—2—10ga—1z

en+j=c¢j, J=1,...,N; a—0

+cj, j=1,...,2N

b)

Example 2. Multi-phase modulations of the stationary solution of the NS equa-
tion with ¢ = —1.

Let us assume that

g=2Na A=a, )‘N+j='—)\j, 0<>\j<a

nj=772+id-+cj, 77N+j=7]g'+id"‘ P

1+vm
) log — 4.422
; 22 g'rg+7z 22 1 —vm ( )
17‘3

dj,c; R, j=1,..., N

)

Proposition 4.14. Under the conditions (4.4.22) the functions y, y* defined by
(4.4.13) satisfy

y*(iz,t) = gGz, 7 (4.4.23)

Proof. Under the restrictions imposed on the parameters Aj,7n;, the exponents
I.(m,z,t) of the exponentials entering the definition of the functions 6.(z,t)
may the rewritten as follows: 3

5 Here and below Latin indices are taken to run from 1 to N and Greek indices from 1 to 2.
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2
YN+ H YN+

+Zlo [7N+J ] MN+;1

YN+j + 7
+ Z 2(/&‘.]':1: — ldj)(m]- + mN+j)
J

i~ 2e5)m; — mve)

v —1 TN+ =1 )
+2e log—=———m; +log ——— mn+;
z;( g’Yj"‘l ! g’)’N+j+1 N

=2 n}mj+mnsj)
J

Let the vectors n and m be related by the equalities
mj=1—nN+j, mN+j=1—nj
Then it is evident that

L((m(n) |iz, 1)

2
=L@+ (log [% v ] (1 = )L = nva)

i>l
2
+1log [w] (1 —nj — m))
YN+j + YN+ :
YN+j
+ logl——| 1 —-n;)1—-n
Z g [’YN+J +,n] ( i) N+1) (4.4.24)

+ Z (22(!-’.:]':1: - dj)(nj + nN+j) + (4K,j/\jt - 2c]-)(nj - nN+j))

J
— 1
+252 (nN+] log 11 +njlog 7_N:“J_)

YN+j +1
+2 an(nj +nNe)
J

where

. u—l
L(z)= —4i} (kjz —d;) — 2 S :1og“; T 4o
i v Y i
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We now remark that under the condition A; = —Ap+;, taking into account the
formulas
nN+j=nj=\/a2——/\§>0 ,
M —a?2 | K

?

= =1i
WE TN Fae AN ta
the equalities

1 ’yj—l__'yN+j+1

IN+j = —— =
Tiomrl ey =1 (4.4.25)

W _ AN+ TANHL AN+ TN YNHL TG

Yi t T YN+j FYN+L | YN+ FT AINH

hold. They allow to transform (4.4.24) in the following way:

2
I (m(n)llw )= I(z)+ Zlog [71/ '7;1]

vop Yot Vu

+I_.(n|ic,t) + I(n)+4 > ni(nj+nne)
J

N-1 N i " 2
Im==>"> (n; +nN+J)108[ 4 +7:]

=1 j=l+1

- Z(nl"'nNH) Z log [% +71]

=1 J=l1
N N AN+i — T 2
Do S

_ YN+j
> Yotog [ 2]

Taking again into account (4.4.25), we get
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I(n) =~ Z(nJ +NN) Zlog [ ’7‘]

1—2 Yt
Tty o) Y 2
- (n] + nN+J) log [ ]
,—1 z—,+1 7t
7N+]
— (n; +npyn+q) log [ ]
; JTTNY ; IN+ TN
7N+]
=— Y (n;+npn+j) lo [ ] log [ }
; j T N+j %}: 0g Z YNes 1
=—4) n)(nj+nyj)

J
In other words,

2
I.(m(n) |iz,t) = I(z) + Zlog[ 7"} +I_(n]iz,t)

vou v 7“

Consequently we have

0.z, )= ) expl(mliz,t)= > expLim(n)|iz,1)

m,m,=0,1 n,n,=0,1
—Tu :
=exp| L(z) + lo [ } expl_.(n|iz,?)
{ IZ;L ® Tt Te n,n,,z=0,l ) I

= E(z)f_.(iz,t)

where, by virtue of the second of the equalities (4.4.25), the function F is inde-
pendent of ¢ and has the form

E(z) = exp —412(fcj:l:—d) 4Zn]+210g[ w}

v>p Tt Vo

Now from 0,(iz, t) = E(z)0_.(iz, t) it is seen that the identity (4.4.23) in (4.4.13)
is true. This completes the proof of Proposition 4.14.
Taking into account that under the condition (4.4.23) the function

v(z,t) = y*(iz,t)
is a smooth ® solution of the NS equation with ¢ = —1, i.e., v satisfies

S The smoothness follows from the fact that the substitution of the fraction ¢/(z — zo(£))™, =, zo €

R, c € €, n € Z into (4.4.26) implies ¢ = 0, by virtue of the sign of the nonlinear term in
(4.4.26).
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ivy + vgz + 2|20 =0 (4.4.26)

From Proposition 4.14 we get now:

Theorem 4.15. Let N > 1, N € Z. Then for all a,o € R, @ > 0 and
{Aj, zoj, toj} 7 = 1,..., N, restricted only by the conditions 0 < ); < a,
zoj, to; € R, there exists a solution of (4.4.26) which depends smoothly on z
and ¢ and is of the form

01(z, 1)

— L expia’t —iyp) 4.4.27
2@ D) xpQia ®) ( )

'UN(IL‘,t)=

where

0.(z,t) = 0.(iz,t)

= Z exp{z:log[v +’)’l] (mjm1+mN+ij+z)
J

m,=0,1 j>1
1+, 'YI]
+ log[ 1 MN+; MY
Z 1— v +)
i 1
+2 1 P — ;
eZ og [% 1] (m; — mNsj)

-2 Zﬂj(mj +mpej)+2 Z5j(t — toj)(m; — mp+;)  (4.4.28)
J. J

+2i Z ﬁ:]‘(:c — .’L'oj)(mj + mN+j)} y

J

=4/a? )\2>0 5—2)\1/(12 3 'yJ—z

1 1+
0 ’)’J’Yl
) = — 1 l

Remark 4.16. Tt can be shown that |vy[?> may be represented in the form dif-
ferent from (4.4.27), namely

lon (e, ) = % log 6o(z,t) . (4.4.29)

The formulas (4.4.27, 28) describe a 3N + 2-parametric smooth family of
almost periodic (in z) solutions of the NS equation (4.1.2) with ¢ = —1. The
basic periods T are
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These solutions represent a multi-phase generalization of the simplest (one or
two phase) solutions of this type found first in [4.7]. The solutions found in [4.7]

describe the weak one-phase or two-phase modulations of the “stationary” wave
solution vo(z,?) 7, ie.,

vo(z,t) = aexpRia’t —ip) . (4.4.30)

For arbitrary N, the solution vy (z, t) describes the weak N-phase modulation of
(4.4.30). In addition, the existence of the solution vy (z,t) implies the instability
of the stationary solution vo(z,t) with respect to small multi-phase modulation
perturbations. More precisely, the following theorem holds:

Theorem 4.17. Let the choice of the A; imply the inequalities

max é; < 2miné; =260 . (4.4.31)
j j

Then for t — Foo the following asymptotics hold:

N
un(z, 1) = a1+ A% cos2;(z — zo;) exp(=26]t] F a)

j=1

O (exp(—4éolt))) ] exp (2ia’t —ip +ipE)

L+ yim y1 % +7z
Ar= _ 4—- exp(+26;t 2 J ,
j P 05) H - g (4.4.32)

A' + K
a,-=arctan;%, @ =q:4ZarctanA‘_|’_a=
J =1 J

= :FZZarctan ;)

=1 l

Proof. Consider for definiteness the case ¢ — +oo, looking at the asymptotic
behavior of vy (z,t) up to terms of order O (exp(—4éot)). The associated leading
terms in the sums 6, correspond to the vectors m with the following coordinates:

7 1t has to be mentioned that in the applications to fiber wave-guide optics considered in [4.7], the
roles of the space and time variables have to be interchanged.
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lemp=my=...=my=1 ,
mys =myg2=...=many=0 ,
(mi=my=...=my=1 ,
m =1, m =...=myny=0
CXP(—261t) — ﬁ N+1 ’ N+2 2N ’
m =0, m=...=2my=1
\ mya =mya2=...=man =0
(mp=ma=...=my=1
m =m =...=man-1=0, man=1 ;
CXP(—Z(SNt) o ﬁ N+1 N+2 2N -1 ) 2N ’
m1=m2=...=mN_1=1 y
\mN=mN+1=...=m2N=O
m1=m2=...=mN=1 s
my+; =1, m =...=MpN4;=...=man =0 ;
CXP(——Z(Sjt) — N+j ’ N+1 - N+j 2N >
m;j=0, m=...=mj=...=mny=1 ,
mys1=mya2=...=man =0

where 71 ; means, as usual, that the corresponding term must be omitted. Conse-
quently, the asymptotic behavior of the 6, for ¢ — +oo is given by the formula

0.(z,t) = exp (21an(x—moj)+225 (t—to,)—22ﬂ,
+25210g Z; [%4_71] )
{1 + Z [exp (Zlog [ ’Y’w] 2510g%jj%-11-

Yin
(4.4.33)

- 27]2 + 2il€j($ - (Bo]’) - 26j(t — toj))

+exp( zzlog[’yJ 7'] 2610g7’ 1+217(}—

1#: ]

—_ 2inj(:r — .’E()j) — 25j(t — tw))] + 0 (exp(—460|t|)) }

Similar calculations for ¢ — —oo yield formulas that may be obtained from
(4.4.33) by virtue of the transformation

5j—+—5j, € — —¢€

The behavior of the function vy (x,t) claimed in the theorem follows now from
(4.4.33), taking into account an explicit formula for 77?- This completes the proof.

Remark 4.18. Omitting the restriction (4.4.31) imposed on the parameters §,; the
weaker result remains true, i.e.,
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on(z,t) =all + o(1)] exp(Ria?t — ip +ipT)
t—+oo |,

5

N
=t - =
Ap=¢" —¢p ——4Zarctan Iy

j=t

4.5 Partial Degeneracy of the Finite-Gap Formulas.
Multi-Phase Modulations of the Cnoidal Wave

In complete analogy to the KdV one-gap solution, i.e., the genus one solution of
the NS equation will be referred to as a cnoidal wave solution or simply cnoidal
wave. For this solution, the Riemann surface X turns out to be an elliptic curve.
Hence, the solution describing NS cnoidal wave may be represented by means
of the Jacobi elliptic functions. In particular, for the attractive case, (o = 1), we

get from the general formula (4.1.22) the following representation of the cnoidal
wave solution:

+k

dn((m_m") 14k

A+ KB (4.5.1)
exp | 2i ) t+ip ,

O0<k<l, peR

1
y(z,t) =

1+k 2\/1?)
5 X

Of course, (4.5.1) may be obtained also by the direct substitution of the
corresponding ansatz into the NS equation.

Different limiting processes, performed in the variety of parameters of the
general finite-gap formulas, corresponding to the degeneracy of X into an elliptic
curve, lead to solutions describing different types of perturbations of the cnoidal
wave (4.5.1). Just as in the preceding section, we can obtain multi-soliton-like
solutions on the elliptic background as well as a multi-mode kind of perturbation
of the cnoidal wave, described by explicit formulas. In this section we consider
only multi-mode perturbations of (4.5.1). The perturbations of the multi-soliton
type may be constructed and studied in the same manner.

We fix the number & by the condition 0 < k < 1 and assume

g=2N+1, N2>1, 1=E1<BE<..<Egq=1/k

’ 452
Eg2=—E1,Eg3 = —Ey,..., Ergi2 = —Egn ( )

?

to hold. Now we fix the basis of cycles a,, b, according to Fig. 4.6.
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R

\-———
~
S

—

Fig. 4.6. Homology basis of cycles a,, b,, 0 < v < 1 for the curve (4.5.2)

The cycles a,, b, are ordered by v, v =0,..., g — 1 = 2N. Consider the
limit

Ezj, E2jn = Aj, j=1,..., N ;

4.5.3)
I<di<X<...<An<1/k

In such a limit

Eane242j , Bane3e2j = ANej = =)

and the function p = ,/P,4.2()) tends to the function po(A):

N
oY) = VO = D2 — k72 [JO? -2
=1

The square root in the definition of yg is assumed to be positive for the values
of X lying on the upper bank of the cut [k~!,0c0) on the upper sheet of the
associated Riemann surface. We see that, in the limit under consideration, X
degenerates into an elliptic curve X, defined by the equation

W= (2 = DA - k72

Now let us study the limit behavior of the different objects in formula (4.1.22)
for the general finite gap solution of the NS system. First, consider the behavior

of the Abelian differentials w,,:
k@ (N) dX

Ha>0()‘ - )\a)\/(A2 - 1)(’62)\2 — 1) ’
Po (W) = o X2V + G XN D

wy — W) =

The normalization condition

/ wy =27ib,,
a

m

in our case, takes the form
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1 0
/ w?, =—2k / (PV(A) 2 = 2mi bo, ’
a0 -1 JJO = AV (1= 21 — 22
a>0
W = — 2rires W3; Ap) 4.5.4)
. 0
- 2rik ‘PU(A#) =27 5,“/ , B> 0 ,
V&= D& -1 1:[00“ — o)
a#p

where in the last equality A, is considered to be lying on the upper sheet of Xj.
From (4.5.4) it turns out that

oV =c [TA-2a)

a>0
oW = (A +d) [Jo-ra), v>0
a>0
aFv

By virtue of A\y4; = —)\; the constants ¢, d, satisfy the equalities

4k / 1 dA = 2
O Jo VoD - ) ’

0 3. . 0 - , :
1A +d; CN+ja i —dNvi

\/O% - 1D - kz)\g) B \/()\§ — ({1 - k2)\§) Tk

b

(4.5.5)

dX
1 (A = ANV = 22)(A = k2)2)
/ ! Chajad ¥ djun d
1 A+ 2;)/(1 = 22)(1 — k2)2)

From these equalities we get the important relation

=

C(I)V+j,1=c(},1, dn+j = —d; . (4.5.6)

Let the quantities ;, K(k), M;j, I; by

7%= /OF = DE2=-2) >0
! d\
K(k) =
®) /o VA=) (1 - k2X2)

M. = /‘ 1 Xd\
Tl 0=y VA=A - k203

e /1 1 d\
T O=0) VT =01 = 20
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Now (4.5.5) leads to the following representation of wg(/\):

i d)
wo()\ _ 7l ,
oM =—7% VO = D(E2I2 - 1) (4.5.7)
S+ d, dA -
W) = » v>0,
(A =M /OT-DOZ - k2
i i

0 _ 0 = .
CN+j1 =Cj1> dN+j=—d;

Now we consider the limits of the vectors V, W and of constant E. From
(4.1.17) and (4.5.8) we obtain

i

VoV, W=e—, V0=22ik;=V3, ,
kK ! (4.5.9)
- 0 vil;
K,j = 1Cj1 = _ﬁ'

To compute the limiting value W of W we recall

1
1 [T = 2a) = AN — A2 2‘2‘§ N+,
a>0

(C?A)‘ + dy) H ()‘ - AO‘) = c(l)/l AZN + (C(I)IIAV + du)AzN_l +...
a>0
aRy

v > 0, and hence,
=0, C(,)‘z = C(J)‘l Aj+dj= ——C?V+j,2
From the last relation, taking into account (4.1.17), (4.5.8) and the limit formula

C=ZEj=O ,

we obtain:

2iy; :
Wo =0, W)=ddp="32(1; ~ M) =—diy; , (4.5.10)
WRH]’ = _W.;) = di;

The limit value E° of the constant E may be calculated from (4.1.17). The limit
form of (4.1.17) is

1
= % /_ Ry £23 res Ol (0, \)

v>0

or, by virtue of the relations
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c=0, fO)=-f(=), fN= AwS(A)/dA :
E° =2 "res (M) M) =2 —()\] O+ Xjdy)

v>0
112
-2y ;y—j()\chﬁ,l — Ajdn+5)
From the last formula, taking into account (4.5.6), we conclude that

E'=0 . (4.5.11)

Consider now the limits of the Abelian integrals {2, £23 and of the constants
N, wp. Define the functions 29, 29 by the formulas

DO =2/ - D2 - -2) :

1 1+ 1. 1-F
By = 10g (¥ = 4 OO -9 - Sl

It is not difficult to show that the functions £29 and 29 satisfy, as functions
defined on )} , the conditions

@ [ dmp=0

) 290 =+2\+..) |,
B =x@ogr+...) , X— oot

Expanding §29 and (29 at the neighborhoods of the points co® of the curve X,
we find the following limit values for the constants N and wp:

k2+1 1 — k?

0 _
N—)No—-—z k wo—>w0-—4-kT-

4.5.12)

The Limit Values of the Vector r. Let ro be defined by the formula

r—irg

in the limit under consideration.
On the upper sheet of X the following relation holds:

RGO R OF / w8(—A)}

oo~

]

oot

L ]oo W+ /_ : wg(x)]

1

ST
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oot —oo”
—2mi=2mi res(wd;);)= / Wi + / Wi

oo~ —oot

oot 0o~ oot oot
= / Wi + / , WiV = / w0+ / Wi

oo™ o0 o0~

In the derivation of these relations we have used the equalities
W=V = =)V,  wi=X) = —wh,;N), A > 1/k, (4.5.13)

where the automorphism A — —A\ has to be understood as acting in a same way
as on the complex plane C on each sheet of Xj.
The meaning of the notation +oo% is illustrated in Fig. 4.7.

-00

e

Fig. 4.7. The meaning of the notation +oo¥ is illustrated

From the above we get the following expression for r:

ro=—m roz;y_j ” Iid — M; dA
K i Q= AV =D kD) (4.5.14)
= —T?VH — 27

Limit Values of the B-Matrix. As in Sect. 4.4 we deduce that the real part of
the diagonal elements of the matrix B has in the limit under consideration the
following behavior:

ReB,, - —c0, v>0 , (4.5.15)

and at the same time By tends to a finite limit: 8

Boo — BS il ! A
00 — = — — =
PTOKh JR-Da-PY (4.5.16)
K = T

For the elements Boj, Bji, j # I, and By,;; we obtain the limit values:

8 We use the standard notation [4.8] k, k/, K, K’ for the main elliptic integrals and their modules.
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1/k
BY, = BY =2 / W)

J

x [k 1 I\ = 27
= - = = 471705
K Jy JOr-Da - ’
0 0 Wk 0
1
(4.5.17)
_v [ I\ — M;

A=2m5,5<1

d
K Jn (A= 2/ = D(k=2 - N2)
. . 1/k
BNiji= By N+j =2/A wn+;(A)
l

_ 1/k I\ + M; O\
K Jx, QO+ 2)VO2 = D(k2 = X2)

Taking into account that for 1 < |A| < 1/k the relations (4.5.13) must be
replaced by

= 27TN4+j

wo(=X) = wg(N),  Wi(=X) = wi; (V)
We conclude that the following relations hold:
0 0 TR
By+jo =By nej=2 /A wp(N)
=Aj

1/k
=2 / wo(A) = Bo; = 27imn;

A

1k (4.5.18)
B(I)V+j,N+l = B(I)V+I,N+j = 2/}\ ‘-‘-’(I)V+j()‘)
=N
Uk LN 0 :
=2/ ‘*’N+j(_}‘)=2/ wjA) =By =2m;; g <1,
)\1 Al
1 —1/k 1/k
i = 3 B = ] , 0= /A “hos®) (4.5.19)
—Al 1 e

1
— 0 — )
= EBI,N+j = TN+j,l

Formulas (4.5.18-19) complete the calculation of the limit values of the different
parameters of (4.1.22).

Define D, and Dy as follows:

1
Dy =5Bu+2n,, v>0; Do=2nrin

where 7o, 7,, v > 0 are chosen to be arbitrary constants invariant with respect
to degeneration X — Xj. The same consideration as in Sect. 4.4 shows that the
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non-zero counterpart in the series defining §(iVz+iWt—D —er), e = -1, 0, 1
is generated by terms corresponding to the vectors m € Z? with the property

—o<my<oo, m,=0,1, v>1

Now from (4.5.9-10, 17-18) we conclude that in the limit (4.5.3) theta series
entering in (4.1.22) become transformed into a finite sum of one-dimensional
theta functions:

8(iVz +iWt — D —er) — 8.(z,t)

iz € T
=mz=01193 —2kK—170-'2‘+2j:T0j(mj+mN+j) 3

xexp {23 mjmum; + masina) +2 D TNeamNem 4 590,
1> Ly

+2i Z(—z’fcjz')(mj +mpy;) +4 Z’yjt(mj — Mp+j)
J J

-2 Z(njmj +77N+ij+j) —ie Zr?(mj - mN+j)} )
J J

where J3(p | 7) is the third Jacobi elliptic function

o0

d3(p|7) = Z exp{rim2r + 2rimop}

Mmo=—00

As a result we get the following solution of the NS system:

2
yn(z,t) = A V-1(2,1) exp (.-211c i 1t> :

2
Jo(, 1) k (4.5.21)
% (z,t) = L -k 9i(a,1) ex 2i—’fiilt
INVED = TU Bz, ) Pl B

where the functions 9J.(z, t) are defined by (4.5.20) and the formulas (4.5.11-12)
for E, N and wy are taken into account. The solution (4.5.21) is dependent on
N real parameters A;, 2N +1 complex numbers 7o, 7;, 7n+; and a complex
number A. It describes the interaction of 2N “solitons” of the system (4.1.1) on
the background of one-gap periodic solution of the same system. More precisely
the constructed solution describes some rather special type of soliton interactions,
related to the restriction Ay, ; = —A;, imposed on the values of );. The reason for
imposing the last restriction, leading directly to some symmetries in the structure
of V), Wy, r and B9, is to obtain an elliptic analog of the solutions of the
NS equation considered in Sect. 4.4.

Now let us replace z by ir in (4.5.21) and impose the following restrictions
on the parameters 7, and A:
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\/1——](:2, Im170=—i27'0j, Imnj=ImnN+j y

J

N 7-1
RC?]J- +RC1’]N+J' = Z T+ Zle + ZTN"'J"I
I=j+1 =1 1

1
IAI"E

(4.5.22)

Taking into account that the quantities 7, 7o; are purely imaginary and that the

Te,j» TN+j,ts Kj» Vi» r‘J). are real, reproducing all steps of the proof of Proposi-

tion 4.14 we get: °

Proposition 4.19. Under the conditions (4.5.22) imposed on the parameters in
the formulas (4.5.21) the equality

yy(z,t) = yylz,t), z,teR

holds.
Now we get the main theorem of this section:

Theorem 4.20. Let

N>1, Ne€eZ; zo,k,peR, 0<k<l ;
I<Mi<X<..<An<1/k, =z,t;€ER, j=1,...,N

The equation
vy + vy +2J020 = 0 (4.5.23)

allows thus for the smooth (with respect to = and ¢ variables) solution defined
by the formula

_ d1(z, t) K2+1
)=k 1/1— 21202 .
vn(z,t) k 30D exp {21 2 t+ip , (4.5.24)

9 This procedure includes making now reference to (4.5.19) instead of (4.4.25) as previously.
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0c(z, 1) =0.(iz,1)

= D (ngff'o Z 705

my =0,1
v=1,...,2N

1—¢y7
+E T0j(mj + M)+ 7 E)

J

X exp { Z Tij(mum; + mNamNag) +2 Z TN+EMN+T g 5 05
I>j ly
+2i Z nj(:r - :L'oj)(mj + mN+J-)
J
+4) "yt — to;)(m; — muy)
J

_ZTj(mj+mN+j)-—i€ ng(mj —mN+j)} , 5:0, 1,
j i

where
= [ 2 M A, 1>
TT2K Jy 0=V DGEI= X)) ’
. [HE L)+ M;
TNejl = b A dr
NITIK f O VR = D2 - 2

o /l d\
Tl =)A= DA - A

M= /‘ Ad)
Tl o= a)/a - @A -2

and r9 and ro; are defined as in (4.5.14) and (4.5.17), respectively,

'-EWZWZWW ,

I=j+1 i=1

I.
mi= =Tl = JO - DG - N

Remark 4.21. Performing the change of variable A\ — u,

A =sn(u, k)

?

= d\
/o VA=A =k

uniformizing the curve Xy, (compare with Chap. 1), it is possible to rewrite the
parameters of (4.5.25) in the following way:
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Toj =7'/2 ad iuj/ZK

’

wir o« 91 (i(u; +w) /4K | 7/2)
P Ee— o —— +u;)—1
My =+ o lut ) —log 91 (i(wr — uj)/4K | 7/2)
Il>5 ,
miT '92 (i(uj +u)) /4K I 7/2)
L e +
e =+ gt ) ~log (ituj —w)/AK [1/2)
0_ —isn (uj, k) (4.5.26)
rj =arctan T+ dnGu, B (mod2rm) ,

1— k2, sn(lu],k)
k dn2(1u], k)
1—k2 sn (iu, k)
k Cn(lu],k)dn(lu],k)

V=

Kj=—

kKH(K iu; + K +iK')

where 9 2(p|7) are the Jacobi theta functions and II(u,a) is the canonical
elliptic integral of the third kind:

(u.0) “k2snacnadnasn2ud
u,a)= U
’ 0 1 — k?sn%a sn?u

Jo(u — a)/2K | 7')
ﬁo(u +a)/2K | T)

1 og [ d log Jo(u/2K | 1)

u=a

The free parameters u; in (4.5.26) satisfy the conditions
O<uj<up<...<uny <K'
and are related to the initial parametrization by the formula
Aj=sn(iu; + K, k)
The solution (4.5.24) represents a quasi-periodic function of = with the fol-
lowing group of the real periods:
Th=2kK, Tj=x/kj, j=1,...,N

This solution describes the phenomena of modulation instability of the cnoidal
wave solution (4.5.1). Exactly as in Sect. 4.4, the following asymptotic formulas,
describing the behavior of (4.5.24) for t — oo can be proved:

Theorem 4.22. Let the parameters \; be chosen in agreement with the inequal-
ities

maxy; < miny; =2y . (4.5.27)
j j
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Then the following asymptotic estimate holds:

vy (e, t)—%dn (( Ltk g[-]-g—)

X [1 + Z (AT exp{-2ik(c — o)} + BF exp{2ix;(z — 20)})

x exp{+4~y;(t — to;)} + 0(€XP{'—8’YO|t|})]
A+k
x exp | 2i e t+ip+1p™ |, t— Foo

where

T — 20

2kK ‘
% (5 15)

T — 0 T
’190 ( — T04 ‘ —)
2kK 712
- exp{4;} ,
90 (

= 13)

;
o s
AT = AT(z/Ty) =

exp{4; :Fir(}}

2kK
- T —1 CXP{A]} ’
(Fx [2)
2kK 12
N j—1
Aj = "tNeig— D Ti— Y Tl
! 1=j+1 =

Remark 4.23. Omitting, as in Sect. 4.4, the condition (4.5.27) we can see that
the rougher result still holds:
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1+k 1+k 2VEk
on(z,t) = . dn ((w_mO)T’—l—g)

dA+E
x exp | 2i 2 t+ip+ipT | [1+0(1)], t— Foo ,

—isn (iuj, k)

A = * _=—-2 t
pEe T zj:arcanl+dn(iuj,k)

4.6 Alternative Approach to the Finite-Gap Integration
of Matrix Systems

In this section, we follow in essence the scheme presented in [4.5] and describe a
construction which enables one to obtain all essential ingredients of the approach
represented in Sect. 4.1-2 especially the Riemann surfaces, the Baker-Akhiezer
functions and so on, in a purely deductive way. The only restriction appearing
for the class of solutions of the NEE for which this construction is formulated
is the assumption that there exists a matrix valued rational (in A\) function L())
satisfying the system

L= [U7 L] s

L, =[V L] (4.6.1)

Let us start with the consideration of the NS system (4.1.1). Without loss of
generality, L()\) may be assumed to be a polynomial in A:

N
L) =L z, =Y AWTLj,t) . (4.6.2)
=0

Tr L()\), det L()) and, more generally, the coefficients of the characteristic poly-

nomial Q(u, A) = det(L()\) — ul) are obviously the integrals of motion of the
system (4.6.1).

Without loss of generality we may assume that

TTL(A) =0 . (4.6.3)
The general case may be easily reduced to satisfy such a requirement by sub-
traction of some z and ¢ independent diagonal matrix from L.

Now an equation

QA ) =0 (4.6.4)



144 4, Vector Valued Baker-Akhiezer Functions

determines some algebraic curve X — a spectral curve of L(A). Due to (4.6.3),
equation (4.6.4) may be rewritten in the form

w2 = —det L) = A20)+ BO)YCO) 4.6.5)

where A, B, C are determined by the structure of L:
_ (A  BW
L)) = (C(A) —A(A)) . (4.6.6)

From the system (4.6.1) and (4.1.5) we get for the coefficient Ly in (4.6.2) the
relation

[03,Lo] =0, Loz=Loy=0
One of the natural choices of Ly, satisfying the above relation, is
Lo = —o3 4.6.7)

Consequently in the situation of “general position” (4.6.4) takes the form

2N
=X+ . . =T[0-E)), EjeC, E;#E
j=1

Assuming N = g+1 we reconstruct the Riemann surface X which was a starting
point in the construction of the finite-gap solutions of the system (4.1.1). Our
next task is to show that the Baker-Akhiezer function (P, z,t), introduced
axiomatically in Sect. 4.1, appears quite naturally in the approach of this section

as a common eigenfunction of three commuting operators 9, — U(A), 9; — V/())
and L()\).

Let @()\, z,t) be a matrix solution of (4.1.6) normalized by the condition
T\, 0,0)=1 . (4.6.8)

The eigenvectors of the matrix L(), z, t), corresponding to the eigenvalue y, P =
(p, A) € X, normalized by the condition h; = 1, imposed on its first component,
would be denoted by h(P, z, t). The matrix function ¥ defined above is an entire
function of \. The vector function h(P, z,t) is a meromorphic function of P on
X. Hence the meromorphic function (P, z, t)

Y(P,z,t) = T(\, z,t) h(P,0,0)
is defined correctly on X. (P, z,t) satisfies the following equations:

P, (P, t)=U, z,)¢(P,z,t)
Y (P,z,t) = V(A z,)¢(P, z,t) 4.6.9)
L\, z,t) (P, z,t) = pyp(P, z,1)
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We need to comment only on the last of these equations, which may be easily
checked by using the relation

LO, 2z, )8\, 2, 1) = T\, z,8) L(A,0,0)

following directly from the system (4.6.1) and the uniqueness of the solution 7z
of the system (4.1.6) satisfying (4.6.8).

Next we show that (P, z,t) possesses all the properties of the Baker-
Akhiezer function discussed in Sect. 4.1. h(P, z,t) may be represented in the
form

1
h = ( (E-—Ag)\,x,t)) ) , P=(u,A) . (4.6.10)
B(\,z,t)

Equation (4.6.5) shows that the zeros A;(z,t) of the polynomial B()) satisty the
relation

Hy =A%)
Now it is clear that the poles of h(P,z,t) are located at the points Pj(z,t)
defined by

P](xat) = (,U,;—(:I},t), A](:I:)t)) ’

B(X; z,t)|,_,. =0 ,

'u;(x, t)=—-A(\ z, t)l)\=)\j (z,t)

In the general situation, the number of poles coincides with the degree of the
polynomial B()), i.e., with the genus of X and the condition n(P;) # w(FPy) of
nonspeciality of the divisor D holds (here as in Sect. 4.1 #(P) = A). So we have
shown that the divisor of poles of ¥ in the finite part of X is

D= }g: P;(0,0)

3=0

Let us now turn to the study of the singularities of (P, z,t) at the points co.
A priori it is evident that these points are the essential singularities of 1. The
precision of the corresponding behavior of 1) may be realized as follows: by
virtue of the third of the equations in (4.6.9), we have:

Y(P,z,t) = o(P,z,t) h(P,z,t)

)

 being a scalar function depending on P € X. Let us introduce [compare with
(4.1.18)] the matrix valued function ¥ (), z, t):

T\ z,t) = ($(PY), Y(P) . (4.6.11)

¥ is correctly defined in some neighborhood of infinity on CP!. By virtue of
(4.6.11) we may factorize ¥ as follows:
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(A z,t)=H\, z,t) P\, z,1)

?

where

HQ\,z,0) = (MP*,z,1), M(P7,2,1)

_ [ p(P*,z,1) 0 _ [ di(\,z,1) 0
¢(’\’m’t)‘( 0 c,o(P",:v,t)):( 0 dz(A,x,t))

From the relations (4.6.5-7), we get for the polynomial A()\)
A z,t) = — A + %Ag
2 4.6.12)
+ (BO(x’t)ZCO(w’t) + —Cé— — f_i_) Nl

where By(z,t), Co(z,1), c and d are determined from the expansions

B\, z,t) = M Bo(z,t)+...; C\z,t)=ACo(z,t)+...

)

TP AL T ) S *46.13)
We also have the identities
Bo(z,t) = y(z,t), Colz,t)=—y*(z,t) , (4.6.14)

which follow easily from (4.6.1). The relations (4.6.10,12-14) lead to the follow-
ing asymptotic expansion for H(\, z,t):

‘ 1 1 0 1
H(A)-—[I+-)-\-H1+—)\—2-H2+...] <2A/y 0) , (4.6.15)

where (H1)11 =0, (Hiiz =y/2, (H1)z1 = y*/2. The substitution of ¥, given by
(4.6.11), into the system (4.6.9), taking into account (4.6.15), gives 1°

0 0
.a_a;log di _1)\+-a—mlogy+0(1/>\) )

) .
5 log d2 = —iA+0(1/%)
)

o log di =20\ + % logy +O0(1/})

gt—log dy = =2iX? + O(1/))

Now, taking into account the identities

I

di(1,0,0) = da(2,0,0) = 1

)

following from the definition of the function ), we get

10Roughly speaking our consideration is an inversion of arguments used in the proof of the Lem-
mas 4.1-2.
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(z,
i\ z,1) = y(O 5 exp{irz +2i\*t} (1+0(1/N)) (4.6.16)

da(\, z, 1) = exp{—idz — 2iN*t} (1+0O(1/N)), X — o0

Formulas (4.6.11, 15-16) certify the validity of the following asymptotics for
U\, z,t):

oo L ) . 0 1
T\, z,t) = (I +§;%/\ )eXP{—IWVZ‘AZt‘”} (u/y(o,()) o)
k=

A — 00

This asymptotics is equivalent (here we use the inverted variant of the consider-
ations in Sect. 4.1 once again) to the asymptotic estimates (4.1.15) for ¥ (P, z, t),
i.e., the condition (II). By this step the derivation of the properties (I-II) of the
Baker-Akhiezer function for the NS model is achieved.

Therefore we have established all the properties of the Baker-Akhiezer func-
tion for the NS model.

Before turning to the sine-Gordon case, let us note
L) =¥\, z,Duos? 1\ z,1) (4.6.17)

reconstructing the matrix L by means of the known Baker-Akhiezer function.

In the framework of the axiomatic approach of Sect. 4.1, when the matrix
¥ is fixed a priori by (4.1.18), the polynomial structure of right-hand-side of
(4.6.17) may be checked by copying the proof of the polynomial structure of
T, (\, z, )1\, z,t) and T, (\, z, )T "1 (), , t) in Sect. 4.1. In other words the
deductive approach of this section and the axiomatic approach of Sect. 4.1 lead
to the same variety of the finite-gap solutions of the NS system.

Now let us turn to the sine-Gordon equation. It is convenient to change the
gauge of the corresponding U-V pair, performing the gauge transformation

ORI G L

which is equivalent to fixing U and V in the form

U\ = —iray — i%iag ,

i 0 exp(—iv) (4.6.18)
V) = (exp(w) 0 ) ’

The constraints (4.2.6) (reduction restriction) take, in the new gauge, the form

U(N) = o3U(—=N)o3 ,
V(A =03V(=Nos . (4.6.19)

We retain the old notation for ¥.
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Without loss of generality the matrix L()) may be chosen in the same traceless
polynomial form as for the NS model. From the system (4.6.1), for the highest
coefficient Ly, and for the lowest coefficient Ly, we get the relations

[o1,Lo]l =0, Loz =Lo =0, [LN’ (Cxpo(iv) eXp(O_m)>] =0

Accordingly, we can assume that L satisfies the relation

Lo=o01 , (4.6.20)
and Ly must be of the form
2
Ly= ( 0 m ) oI exp(—iv) . (4.6.21)
n 0 n

From (4.6.19) we see that both L()\) and o3 L(—)\)o3 are solutions of (4.6.1).
The transformation

L()\) — L()\) — 03L(—A)o3 (4.6.22)
allows us to suppose that the reduction relation
o3 L(—N)o3 = —L()\) (4.6.23)

holds.

Now from (4.6.20) it follows that the degree of the polynomial L(\) must be
even in N,

N =2g

Retaining the same notations for the matrix elements of L as used for NS model,
we get the defining equation for the spectral curve X

(p')? = —det L) = A2+ BO)CQ) =¥ +... . (4.6.24)

Due to (4.6.23), the determinant of L satisfies det L()\) = det L(—)\). Hence the
curve X possesses the involution

T W) = (=, =N = LT
and the defining equation (4.6.24) must be of the form

2g
@ =[J0* - E)p

=1

The quotient X/ =X may be identified with the Riemann surface given by the
polynomial equation
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(o) 29 o
w =X T[> -E))
j=1

The projection m : X ——))02' is then described by the formula
(', A) = O, 0 = (g, )

The Riemann surfaces X, X and the covering m; : X —X are the basic
algebro-geometric structures, appearing in all constructions of Sect. 4.2.

Now let us consider the common eigenfunction ¢(P, z,t); P € X of oper-
ators 0, — U, 0; — V and L()), which is defined in complete analogy with the
previous discussion of the NS model:

Y(P,z,t) = T\, z,t) h(P,0,0)

where ¥ and A have the same meaning as in the preceding section. The unique
difference is that now & possesses two essential singularities at the zero point of
CP! and at infinity. Consequently ¥ (P, z, t) as a function of P has four essential
singularities on X situated at the points co® and 0%. Performing a simple analysis
similar to study of the NS model we get the asymptotic estimates

P(P) = [(;) +0 G)} exp{Firz}, P — oot |,

P(P) = O(1)exp{Fit/A}, P — 0% | (4.6.25)
A=m(P), m(' )=\

Equation (4.6.23) shows that the polynomial A()) is an odd function and B(\)
is an even polynomial in A. Hence the divisor of poles of the function (P)

(denoted by D as above) is of even degree. D is invariant with respect to the
action of 7

D"=D, degD=2g . (4.6.26)
The vector function ) satisfies

L\ z,)yY(P,z,t) = pyp(P, z,t)
The reduction properties of the matrix L()\) signify that

a3 Pp(P7,z,t) = «(P)Y(P,z,t) . (4.6.27)
From the property (4.6.26) we deduce that

o(P)=const . (4.6.28)
Asymptotic estimates (4.6.25) and the equalities

(00" =007, m(PT)=—m(P)
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enable one to make the identity (4.6.28) more precise

d(Py=1 . (4.6.29)
From (4.6.27,29) it is easy to conclude that the first component ; (P) of 1 1s a

single-valued function on X The second component 1,(P) is two-valued on X
Let X* be a sheet of the covering m;, containing the points 0* and oo*. This

sheet may be identified with the surface )o( cut along the path £ (Scct 4.2). We
assume that somc single-valued branch of the multi-valued (on X ) function A is

chosen on X \L, and local parameters at the points 0, oo EX are chosen such
that

o]

A=V, ;’E(u, ;\)—+O,oo
Let us put

, P=m(P)

X+

$(P) = ¥(P)

In terms of 1/;(103’) the properties (4.6.25, 27) take the form of (4.2.12-14) re-

spectively. (F) itself is single-valued and holomorphic on X \L. Its divisor
of poles T° is given by D° = 71(D), degD° = ¢, i.e., degD° coincides with

the genus of the curve X . In other words, we have completely reconstructed all
axioms a.) - d.) for the Baker-Akhiezer function of the SG model.

Remark 4.24. The matrix L()), playing a central role in the considerations of
this section, is defined as the V-operators for one of the integrable systems,
belonging to an infinite hierarchy associated with the given nonlinear integrable
equation. Hence the variety of all finite-gap solutions related to the algebraic
(hyperelliptic) curves of fixed genus coincides with the variety of the stationary
solutions of one of the “higher” analogues of the considered equation.

Remark 4.25. As presented in this section, the version of the finite-gap in-
tegration turns out to be more appropriate when applied to finite dimensional
integrable systems. The reason is that in the finite dimensional case the zero
curvature representation is replaced by the matrix Lax equation, L; = [V, L].
In other words, the differential operator 0, — U()) is replaced by the matrix
operator L(A). That is why the introduction of the algebro-geometric context in
the problem appears quite naturally; the Riemann surface appears from the very
beginning as a spectral curve of the matrix L. The deeper meaning of this lies in
the coincidence for finite dimensional case of the variety of finite-gap solutions
with the whole variety of the solutions of the system.



5. Uniformization of Riemann Surfaces
and Effectivization of Theta Function Formulas

The solutions of the nonlinear integrable equations constructed in the previous
two chapters are parametrized by compact Riemann surfaces. This seems to be a
rather complicated parametrization if one wants to investigate these solutions or
just plot them. Here we show how this problem can be solved using the Schottky
uniformization of Riemann surfaces.

The main body of results presented in this chapter was obtained by Bobenko
[5.1, 2]. Sections 5.7, 9, devoted to the qualitative analysis and the calculation of
the finite-gap solutions of the KdV and KP equations follow references [5.3-5].

5.1 The Schottky Uniformization

Let C1,C1,...,Cn,CY be a set of 2N mutually disjoint Jordan curves on C,
which comprise the boundary of a 2/N-connected domain F' (Fig. 5.1).
The linear transformation

on2 —~ By z— B,
anz—An_“"z—An’

transforms the outside of a boundary curve C,, onto the inside of the boundary
curve C), 0,C, = C,,. The points A,, and B, are fixed points of the loxodromic
transformation o, (Appendix 2.A).

The elements o of the group PSL(2, C) have the following representation:

lunl <1, n=1,...,N (5.1.1)

az+
vz+6
(a ﬂ>= 1 (A\/ﬁ—-B/\/ﬁ AB(l/ﬁ—Jﬁ))
v 6) AB\ VE-1/JE A/yi-ByE

The center of the isometric circle is given by

~6/7=ByE— Al - 1/VD

and its radius equals |y|™!.

The transformations o4,...,0N generate a Schottky group G [5.6]. The fun-
damental domain of G is F'. If all the boundary curves C,,, C!, are circles, then

oz = ,

(5.1.2)
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G
b,
Fig.5.1. The fundamental domain F'. a, coin-
cides with C?, positively oriented, b,, runs on F°
C between the points z, € Cy, and op2, € C},
1

and b-cycles do not mutually intersect

the Schottky group is called classical [5.7]. More generally, Schottky groups
can be characterized as those finitely generated, discontinuous groups which are
free and purely loxodromic [5.8]. This turns out to be equivalent to the previous
definition because any free system of generators of such a group gives rise to
a fundamental domain F' as constructed above [5.9]. Let £2(G) be the set of
discontinuity of G, then §2/G is a compact Riemann surface of genus N.

According to a classical theorem [5.10], any compact Riemann surface X of
genus N can be represented in this form. More precisely, let N homologically
independent simple disjoint loops v;,..., vx be chosen on X. Then X, being cut
along these loops, is a plane region. It is mapped conformally to the fundamental
domain F' of the corresponding Schottky group G, v, being mapped exactly
onto the curves C},, C,,. Two loop systems vy, ...,vy and vy, ..., v}y generating
the same subgroups in H;(X,Z) can determine the same group G but with a
different choice of generators. A difference of the subgroups leads to a difference
of the uniformizing Schottky groups G and G'. One may choose a canonical basis
Hi(X,Z) such that a-cycles coincide with the loops v,, = a,. This canonical
basis of cycles of §2/G is illustrated in Fig. 5.1: a,, coincides with C;, positively
oriented, b,, runs on F' between the points z, € C,, and 0,2, € C},, and b-cycles
do not mutually intersect.

Denote by G,, the subgroup of G generated by o,. The cosets G/G,, and
Gm \ G/G,, are the sets of all elements

o=0l...0}
so that ix % n and for G,, \ G/G,, in addition ¢; # m. The following Lemma is
adopted from the classical papers [5.11,12]:

Lemma 5.1. If the series

1 1
wn= Y (z—aBn—z—aAn)dz (5.1.3)

oc€EG /Gy
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are absolutely convergent, then they define holomorphic differentials normalized
in the basis shown in Fig. 5.1. The period matrix is given by

Bom = Z log{Bm,Am,0Bn,0As}, m¥#n |
0€Gm\G/Gn (5.1.4)
Bon =logp, + > 10g{Bn, An,0Bn, 040}
UEG"‘\G/G") U#I
where the curly brackets indicate the cross-ratio
{21,22,23, 24} = (21 — 23)(22 — 2a)(21 — 28) (22 — 23) ™" . (5.1.5)

Proof. The series (5.1.3) have no poles in F'. The normalization conditions

/ Wp = 2T 6pm (5.1.6)

are proved by calculating the integrals by residues.

If ¢ =0ol'...0!*, o # I, then both the points B, and g A, are inside of
Ci, when j; > 0, and inside of C;, when j; < 0. For ¢ = I we have B,, inside
of C}, and A, inside of C,. That gives the value (5.1.6) of the integral along
an. It is easy to prove that w,(0z) = w,(2), S0 w is a holomorphic differential

on X = £2/G. Using the invariance of the cross-ratio with respect to the linear
transformations

{o021,022,023,024} = {z1,22, 23,24} ,

one can derive (5.1.4) from the definition of the period matrix

Tm?2
Bnm = / Wn
r4

The finite-gap solutions do not depend on the choice of the canonical basis
of Hi(X,Z). Therefore, for the purposes of the finite-gap integration theory,
it is sufficient to consider the Schottky group G, determined by some fixed
uniformization §2/G of the Riemann surface X (i.e., by some fixed loops
V1,..., UN). SO we need to solve two problems:

1. For a given Riemann surface X does there exist a Schottky uniformization
2/@G (i.e., choice of the loops v1,..., vy) such that the series (5.1.3) determined
by this uniformization are absolutely convergent?

2. Can the set S = {41, By, p1,..., AN, BN, un} of the uniformization pa-
rameters be explicitly described?

It is apparently impossible to give a solution to these two problems in the
general case. Analogous problems were considered for the Schottky groups in-
dependent of the Riemann surface uniformization. Closely connected with the
second problem is the question of whether for the arbitrary Riemann surface a
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uniformization exists with a classical Schottky group. The answer to this ques-
tion is also unknown. The existence of nonclassical Schottky groups (for an
arbitrary system of generators) was proved in [5.7] though no concrete examples
are known [5.13].

5.2 Convergence of Poincaré Series

The series (5.1.3) are (-2)-dimensional Poincaré theta series. They can be written
in the slightly different form

3 1 1 , . 1
Wn = Z (az—Bn_az——An>UZdZ’ az_(fyz+5)2
oc€EG,\G

For the general Schottky group, they can be absolutely divergent [5.14,15]. How-
ever, if a Schottky group is classical and satisfies some restrictions, then (-2)-
dimensional theta series are convergent.

Assume that the Schottky group is classical and that 2N —3 circles Lq,...,Lan—
can be fixed on the fundamental domain F' so that the following conditions are
satisfied:

@) The circles Ly,...,LaN-3, C1,C],...,Cn,C) are mutually disjoint.
(i) The circles Lq,...,Lyn—3 divide F into 2N — 2 regions Ti,...,Tan-2.
(iii) Each T; has exactly three boundary circles (see Figs.5.2,7).

Let us call these Schottky groups circle decomposable.

Lemma 5.2. (The Schottky condition). [5.6, 16]. (-2)-dimensional Poincaré

series corresponding to the circle decomposable Schottky groups are absolutely
convergent.

In particular, each Schottky group which has an invariant circle is always
circle decomposable, and the series are convergent [5.10, 11]. The convergence
can also be proved in the case when the circles Cy,C}, k= 1,..., N, are small
enough and far enough apart (the corresponding estimates can be found in [5.11,
12}).

Let us pick out one of these regions T;, ¢ = 1,...,2N —2 (Fig. 5.2).

Consider any two circles of the boundary of T;. Let R,r be their radii and
e be the distance between their centers. So, considering various pairs of circles,
we assign three numbers K}, K?, K3 to each T,

?

R?+72 — e\
= ———] -1
K ( 2Rr )

Set K = min(K}, K?,...,K3y_,, K3n_5). The proof [5.6,16] of the Schottky
convergence principle shows that the series converges better for the larger K.
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Fig. 5.2. A region T; having exactly three boundary circles

The speed of convergence can be estimated by the maximal K possible among
various decompositions

K*=max K

The Schottky condition can be slightly generalized. Let us consider a domain F,
which is a union of several fundamental domains

F = U o, F

0s€{01,..,0,}

where o1,...,0k € G are certain elements of g. The generalization of the Schot-
tky condition is the following: if F can be decomposed into regions T' each
bounded by three circles (i.e., the conditions (i), (ii), (iii) are satisfied for F)
then the (-2)-dimensional Poincaré series are absolutely convergent.

The convergence of the Poincaré theta series gives information on a metrical
property of the limiting set of the group A(G) and vice versa. If v is the minimal
dimension for which the (—v)-dimensional Poincaré series converge absolutely,
then the Hausdorff measure of A(G) is equal to v/2. So the 1-dimension mea-
sure of A(G) of a Schottky group with divergent (-2)-dimensional Poincaré series
is infinite. Corresponding examples of the classical Schottky groups with fun-
damental domains bounded by isometrical circles are constructed in [5.14,15].
Calculations for various Schottky groups of a critical dimension v for which the
theta series still converge can be found in [5.17]. The class of Schottky groups

with convergent (—2)-dimensional Poincaré series was geometrically character-
ized in [5.29], p. 24.
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5.3 Schottky Uniformization of Riemann Surfaces
of the Decomposition Type

As was already mentioned, the problems formulated in Sect. 5.1 are rather dif-
ficult and their solutions in the general case are unknown. However, in the case
of real Riemann surfaces, which is the most important for applications, these
two problems can be completely resolved. In this section we give a simple proof
of this for real Riemann surfaces of decomposing type, which determine real
non-singular solutions of the equations KP1 and KP2 (Sect. 3.3).

Let X be a real Riemann surface of genus N, 7 : X — X an anti-
holomorphic involution of decomposing type, having n fixed ovals (real ovals)
Xo,...,Xn—1. The ovals decompose X into two components X, and X _, which
are the Riemann surfaces of signature (g, n), i.e., Xy, X_ are homeomorphic to
a surface of genus g = (N + 1 — n)/2 with n boundary contours.

Lemma 5.3. For any real decomposing Riemann surface X a Schottky uni-
formization by the Fuchsian group of the second kind exists. The series (5.1.3)
corresponding to such an uniformization are absolutely convergent.

Proof. Consider the Fuchsian uniformization H/G of the surface X, see App.
2.1, where H is the upper complex half-plane H = {z € C,Im z > 0}. The
surface X, has a boundary contour. Therefore G is the Fuchsian group of the
second kind. It is a purely hyperbolic group with generators a1, 31,..., a4, By,
M,-.y Yn, 1 > 1, satisfying one restriction

-1 4—1 -1 p—
a1fraq Py ...ayﬂgaglﬁgl’)q...fyn=1.

If we consider the action of G on all C, then the factor H/G with H = {z €
C, Im z < 0} is conformally equivalent to X _. Elements

i =g, Ogri = PBi, Ogri=75, t=1,...,9575=1,...,n—1

generate a free, purely hyperbolic group - the Schottky group uniformizing the
Riemann surface X. It is well known [5.10] that the (-2)-dimensional Poincaré
theta series always converge for the Fuchsian groups of the second kind. In our
case the Schottky group has an invariant circle, which is the real axis.

The Fuchsian groups of the second kind are well investigated. In particular
the complete description of the set S of generator parameters (Sect. 5.1) can be
obtained as described in Appendix 5.1.
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5.4 Schottky Uniformization of the M-Curves

As pointed out in Sect. 3.3, the periodic problem for the KP2 equation is solved
in terms of the M-curves. In this section we consider in detail various Schottky
uniformizations of the M-curve X and the corresponding fundamental domains
F of the Schottky groups G.

In this case the surface X, (Sect. 5.3) is homeomorphic to a sphere with
N +1 holes and therefore with IV + 1 boundary contours X, ..., Xy (Fig. 5.3).
Let [L] be a system of N mutually non-intersecting curves Lq,...,Ly on X,
such that the surface X, [L], which is X cut along all the contours L,,, is simple
connected. An example of such a system of cuts is given in Fig. 5.3.

Poo XO Xl Xz X3

Fig. 5.3. The system of cuts on the Riemann surface

A Fuchsian uniformization of X, is H/G. There is a natural projection
¢ : H — X, = H/G. Groups equivalent in PSL(2,R) uniformize conformally
equivalent Riemann surfaces. It should be recalled that for the KP equation we
have a Riemann surface with a marked point P,,. Let us fix the normalization
®(c0) = Pyo. The inverse mapping #~! : X,[L] — H is uniquely determined
by two conditions:

(1) &7'(Po)=o00
(2) ~YX,[L) is connected.

Then F = ¢~1(X,[L]) C H is a fundamental domain of the group G.
&~1(L,) consists of a pair of contours C,,C, . They belong to boundary OF,
and there is a hyperbolic transformation mapping one onto another ¢,C,, = C|,

(5.1.1), where
An,BnaﬂnER, 0<l1'n<1

The free system of generators of G is oy,...,0n. Every system [L] induces in
this way a certain fundamental domain F. The fundamental domain F', corre-
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S, t, t S, S, t, t, 2 S t, 4 S5

Fig. 5.4. The fundamental domain of the Schottky group

sponding to the cut system [L] of Fig. 5.3 of the Schottky group constructed in
Sect. 5.3, is presented in Fig. 5.4.

The Poincaré metric on H (Appendix 2.A) induces a metric on X, = H/G.
Let the curves L,(s,,t,) be mutually non-intersecting and go from one bound-
ary contour X; to the other boundary contour X;, ¢ & j. There is a geodesic
L! (sn,t,) in the Poincaré metric with the same boundary points s,,#,. It is
evident that the geodesics L' are also mutually non-intersecting. ¢~ !(L')) are
geodesics on H, so that the fundamental domain &~!(X,[L']) is bounded by
circles. As a result we see that the Schottky group G is classical.

The complete description of the set S = {A1, B, p1,..., AN, BN, 4N} can
be easily obtained (App. 5.1). The set S depends on the fixed system of gen-
erators. We describe S for generators determined by the system of curves [L]
shown in Fig. 5.5 and, as a corollary, by the fundamental domain of the Schottky

group shown in Fig. 5.6. For these generators S is described in the following
final form:

By <Byag<...<Bi<A <...< Apn
O0<u<l, i=1,...,N |

)

2
—+ . Jin (5.4.1)
{Bu, An, Buit, Ann} > (—————""“‘) ,
1+\/Nnﬂﬂn+1
n=1,....,N~1

The proof of this statement is given in App. 5.1. We also mention that the
generators 01,07 Yooy, cr;,l_la ~ induce the fundamental domain of the form
shown in Fig. 5.4.

To study small-amplitude waves of the KP2 equation it is more convenient
to consider another Schottky uniformization of the M-curve X. The surface X,
can always be mapped to the upper half-plane with N discs removed and with
P, mapped to oo [5.10]. Then the group G is described as follows (Fig. 5.7):

Bn=A4, ImA,>00<i<l,n=1,...N . (5.4.2)

In this case C), and C), are the isometric circles of the transformations o, and
o1, C, and C,/ are mutually complex conjugated. Since their centers and radii

are known (Sect. 5.1), it is easy to write the conditions for the circles to be
disjoint:
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o0

Fig. 5.5. The system of cuts [L]

S EANGA

Fig. 5.6. The fundamental domain of the Schottky group

An\/ﬁ:— An/\/ﬂ—n N Am\//]:r:'"Am/\/lm

Nn"l/\//-‘n \/l‘m_l/\/#m
2Im A, 2Im A,,

= 1\En i = 1/

These inequalities together with (5.4.2) determine S. However, for this uni-
formization the convergence of the series (5.1.3) can be proved not for any point
of S but only for the subset of the circle-decomposable groups. In particular, the
series always converge when N =2,

We call the two Schottky uniformizations of the M-curves, as described
above, I and II (UI and UH). The loops v,, of UII (Fig. 5.7) are chosen uniquely
— they are the real ovals of 7 without P.,. In the UI case, v, can be chosen
in many ways. Two examples are presented in Fig. 5.4,6. The most natural is

(5.4.3)
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Fig. 5.7. The fundamental domain of a decomposable Schottky group (dotted lines show the circle

decomposition). The corresponding Schottky group leads to the solution of the KP2 equation shown
in Fig. 5.9

the choice v, when the value K* is maximal and the series (5.1.3) are the most
rapidly convergent ones.

5.5 Solutions of the KP2 Equation

Let us return to the KP2 equation. The local parameter in the neighborhood of
P, = oo is equal to k = z~!, Recall the general formula for the finite-gap
solution of the KP equation (Chap. 2)

w(z,y,2) = 2_8927 logf(Uz +Vy+Wt+D)+2c
X
The reciprocity law (2.4.13) for the normalized Abelian differentials of the first
and second kinds allows us to present the vectors U, V', W in the form

d 1 &2
Un=fa(0), Vip= d—pfn(P)IFO, W, = Emﬁf"(p)llﬁo ’
where p = k™! is the local parameter near P, p(Poo) = 0, and w,, = f,(p) dp is
the representation of the normalized holomorphic differentials in the neighbor-
hood of P.,. Then we have from (5.1.3) and (5.5.1)
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U, = Z (cA, —0By) ’

c€G/Gy,

Vo= Y ((0A)? = (0B (5.5.2)
o€G /Gy

Wo= Y ((04n) —(0B.))
oc€EG /Gy

The Abelian integral of the second kind (Sect. 3.1) is written in the form
a
= Z (az——->+z
oc€G, o071 v

Then, applying the definition of the constant ¢, we get

c= » 7. (5.5.3)

oc€G, 071

The KP equation allows the following transformation: if u(z,y, z) is a solution,
then

u(z,y,t) = ulz — %—at,y,t) -« 5.54)

is also a solution of the KP equation.

For UII the vectors U, V, W, D are purely imaginary. The periodicity
condition

w(z,y,t) = ulz +27,y,t) = u(z, y + 27,1)
leads to a restriction of the parameters
iU, iv ez . (5.5.5)

Let us fix the solution in the class (5.5.4) normalized by the condition

27
/ u(z,y,t)de =0
0

As a result we obtain

o .
u~(:1;,y,t) = Zﬁlog Uz+Vy+Wt+D) |, (5.5.6)
W=W —3cU

In the Ul case D € R" is a real vector, and the series are convergent because
the statement on the convergence of the series EaeG(aa — ob) is a corollary to
the one of the convergence of 3 . ., ~~2, [5.10].

So with the help of Theorems 3.2, 3.3 the following theorem is proved.



162 5. Uniformization of Riemann Surfaces

& 0,:::0 -
O X KN
LR
IR A7
SR
RN
SR

Q>
o lese%
SIIEAL
SORORESIOKX K
0 ‘\‘:‘:'::o't'.‘ 55
%

syt 2oy
R RLTATRS
SN oe s
RS TN NI
s
I m‘mfo
RSN

X
0 IR
) & IVKDOR
R s =
i ..:'.,jé.:'otg,,,g.;;::;.‘w
! o e
SESIA I
S0 ”,

Fig. 5.8 a. The large-amplitude two-phase periodic solution in the soliton regime. The soliton structure
is evident. The isometric projection of the surface u(z, y,0). This surface is represented as a set of
lines which are produced by the intersection of the wave surface with planes being parallel to the =
and y, respectively

Theorem 5.4. (UI) All real non-singular finite-gap solutions of the KP2 equa-
tion are given by the formulas (5.1.4), (5.5.2-3, 6), where the parameters A,,
B, uy belong to the set (5.4.1) and D € RY is an arbitrary real vector.

(UTI) For circle decomposable groups (in particular for any two-phase solution)
real non-singular finite-gap solutions of the KP2 equation can be described by
the formulas (5.1.4), (5.5.2-3,6), where the parameters A,,, u, belong to the set
(5.4.2,3) and D is an arbitrary imaginary vector.

When the generators are chosen as in Fig. 5.6, then all the U,, are arranged
as follows:

O<Ui < <...<Upn

We also remark that the simple periodicity condition (5.5.5) shows that the UII
representation is more convenient for isolating the periodic solutions. In this
case, Ap, pn are the natural convenient parameters of the solution, because, for
a given X, UIl is unique and we have a one-to-one correspondence between A,
Kn € S and the solutions of the KP2 equation.

In [5.5], with the help of the formulas described above calculations of the
finite-gap solutions of the KP2 equation were carried out. The periodicity condi-
tions could be taken into account in a rather simple way. The calculations were
done using the formula (5.5.6) and UIL For a given diagonal of the period matrix
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Fig.5.8 b. The isolines u(z, y,0) = const, i.e., the contour plot of the same solution. The range of
variations of z and y equals two periods of the solution, i.e., [0,4x], t =0

B, and vectors U, V' (amplitudes and wave numbers of harmonics) the parame-
ters A,, un of UIl were calculated. Then the formulas of the present chapter give
all the parameters B,U,V, W. As a result, computer plots of various finite-gap
solutions were constructed in [5.5].

Figures 5.8 a,b show the typical large-amplitude two-phase solution. It has
been calculated by UIl with the parameters :

U =1(1.000, 1.000), - .
vV =i0.000, 1.000), ¢=70217,t=0, =,y €[0,4n]

. _ 0.400 0.225
W =i(-0.171, 0.823), B=-2r (0.225 o.aoo) .
D = (0.000, 0.000).

The uniformization parameters for this solution are:

A; =-0.024+i10.507, 1 =0.076,
A> =0.588+10.556, p3=0.014,
A more complicated interaction of four phases is presented in Fig. 5.9. The

fundamental domain of the corresponding Schottky group is presented in Fig. 5.7.
The parameters used are as given below:
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Fig. 5.9. The interaction of four phases
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0.500 0.062 0.288 0.155
0.062 0.800 0.116 0.252
0.288 0.116 1.100 0.325 ’
0.155 0.252 0.325 1.500

U =1(1.000, 1.000, 2.000, 2.000)
V =1(~1.000, 2.000, —1.000, 2.000)
W =i(0.480, 2.682, —2.138, —7.930) ,

D=i(0,0,0,0),¢=0, c=—0.118, z,y € [0,4x]

B=-27

?

?

A; =—0.500+i0.499, p1 =0.0429 ,

Ay =0.970+10.515, pp=0.645x 1072 |
A3 =-0253+i1.107, w3 =6.19x10"* |
Ay =0479+i1.055, ps=69x107°

5.6 Solution of the KP1 Equation

The finite-gap solutions of the KP1 equation are determined by a general real
Riemann surface of decomposing type, not by the M-curves only (Sect. 3.3).
Let X be such a surface, Xo,...,X,_1 - n fixed ovals of the antiholomorphic
involution 7. Then X, is a Riemann surface of genus g = (N +1 — n)/2 with n
boundary contours Xy,...,X,-1 (Fig. 5.10).

The arguments quite similar to those of Sect. 5.4 show that a set of non-
intersecting geodesics L,,n = 1,..., N, such that X,[L] is simply connected,
induces a fundamental domain F of the Fuchsian classical Schottky group G. Let
us fix L,, with the ends on X ;. Figure 5.11 presents F' constructed by the contour
set [L] shown in Fig. 5.10. This is one of the possible choices of F' when the
boundary circles C,,, C}, are combined in canonical “fours” and “pairs”. Invariant
lines of g pairs of generators intersect.

Note that the fundamental domain of the Fuchsian group of the second kind
shown in Fig. 5.11 (restriction of the Schottky group to the upper half-plane)
differs from the canonical one [5.18]. The latter is determined by the contours L,
starting from some internal point Py € X,. The set of generators of a canonical
fundamental domain is not free (Sect. 5.3).

In general, let Cy,, C}, n=1,...,N be N pairs of mutually disjoint circles
orthogonal to the real axis and also such that one is not inside of the others. The
order of circles is arbitrary. Every couple C,,, C, determines a hyperbolic trans-
formation o,,. A set g1,...,0N generates a Schottky group which uniformizes a
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real decomposing Riemann surface with the number of ovals determined by an
arrangement of the circles.

The set S of parameters of the generators op,...,0xN is also completely
described by analyzing invariant lines of G. Corresponding results for generators
shown in Fig. 5.11 are obtained in [5.19].

The canonical basis of cycles indicated in Fig. 5.11 is transformed by the
anti-involution 7z = Z:

Tar=—ax, k=1,...,N, ,

T =bi —agi

(5.6.1)

Thgsi = bgei —ai, 1=1,...,9, 7=1,...,n—-1 |

Thag+j = bags;

Fig. 5.10. The Riemann surface of genus g = (N+1—n)/2 with n boundary contours Xp,..., X, i

The basis a}, b}, connected with it by the equalities

a;=a,~—by+,-, b;=b,' )

Agyi = ~bgriy  bpi=agri—bi (5.6.2)
a£g+j = —bag+;, b§g+j = Q2g+j

in canonical and anti-involution transforms it by the rule (3.3.6). Exactly this

basis is used in Theorem 3.3 for the description of the vector D. Using the
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b, b,
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b,

D

Fig. 5.11. The fundamental domain F' constructed by the contour set [L] of Fig. 5.10

modular transformation law (2.5.12) of theta functional argument, one can easily
rewrite conditions (3.3.7) on the vector D in the basis indicated in Fig. 5.11.
The period matrix in the basis (5.6.1) is equal to

010 * * * g
B=BR+7ri<I 0 0) , ( * * * ) g
0 0O * * * n—1 ]
g

g n-—1

where Bp, is real. The theta functional argument in the formula for the solution
of the KP1 equation due to Theorem 3.3 is of the following form:

‘=&, (e, neR™

in the basis aj, b}. Relation (5.6.2) of two bases can be written in the matrix
form (2.4.22)

I 0 0\ 00 0
a=(—IOO), b=(OIO),
0 00 00 I

0 —I 0 I 00
c=(0 ~I 0), d=(0 0 0)
0 0 —I 00 0

(the dimensions of these matrices are indicated above). Substituting the above
formulas in the transformation law (2.5.12) we see that the theta functional
argument in the basis (5.6.1) is imaginary. So the following theorem is proved:

Theorem 5.5. All real nonsingular finite-gap solutions of the KP2 equation are
given by the formula

u(z,y,t) = —2ai log(iUz + Vy+ Wy + D)) +2c

z2 ’
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where the constants are determined by the equalities (5.1.4), (5.5.2, 3) and the
vector D € RY is arbitrary.

5.7 Multi-Soliton Solutions
and Small-Amplitude Waves

From the general N-phase wave solution we arrive, by a limiting procedure, at
two kinds of simply described degenerate solutions, namely at the multi-soliton
solutions and at small-amplitude waves. Carrying out the limit

o —0, n=1....N |

the circles C,, and Cj, collapse to the points A, and B, respectively. Let us
describe this limiting process in detail.

In this degenerate case for all non-identity mappings o and for arbitrary
a,b € F, the equality oa = ob holds. Therefore in the series (5.1.4, 5.5.2, 3)
only the terms corresponding to o = I are non-zero

Re B,, — —o0, By — 10g8{Bm,Am,Bn, An}, nFm, c— 0

(571
Up— Apn—Bpn, Vo 5 A2 B2 W, - A2 - B3 G7D

The vector D is an arbitrary parameter, and we can fix its asymptotic behavior
as we wish. Let D,, be equal to

D, =—Bp,/2+n,+0(l) , (5.7.2)

where 7,, are finite constants. Then the argument of the exponential function in
the series (5.5.6) is seen to be given by

23 Bunkalba = D+ Y Bunkaks

n<m

+ Z ke (Unz + Voy + Wyt +npn + o(1))

Since all terms of the series with k,, # 0, 1 are identically zero, this series is finite.
Let {0,1}¥ be the set of all N-dimensional vectors with coordinates equal to 0
or 1, then the limit (5.7.1) leads to

Uz +Vy+Wt+D)— 0(z,y,t)

where
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(B — B)(Ap — A,)\
by= > I ((Bm — A )(Am — Bn))

KE{O,1}N n<m

X exp (Z kol(A, — B,z (5.7.3)

+(A2 - Bly+ (42 - Bt + n,,])
Finally, the solution of the KP equation is given by

u(z,y,t) = 2-22-2- log6(z,y,t) . (5.7.4)
Ox

For solution (5.7.4) to be real and non-singular, we have to apply the limiting
procedure described above to the UI type solution of the KP2 equation, i.e.,
choose A, B, to be real. The degeneration (5.7.3) for the UII type solutions of

the KP2 and solutions of the KP1 equations does not lead to non-singular real
solutions.

To obtain UII type degenerate non-singular real solutions we need to choose

a finite parameter D so that the conditions of Theorem 3.3 are satisfied. Then
we have a small amplitude limit

O Uz+Vy+Wt+ D)

N
-1+ Z Vin [exp(Unz + Voy + W.t+D,)

n=1
+exp(—Unz — Voy — Wat — Dp)]
Up = itin = Ap — An, Vo = v = A2 — & (5.75)
Wn —iw, = Ai —23
Bpn — log py, Dy =id,, ¢ — 0

n ?

?

u(z,y,t) — —4 Z \ /,unui COS(Un + vpy + Wit + dy)
n

Clearly (5.7.5) represents a linear superposition of N non-interacting Fourier
modes of small amplitude.

As long as u,, and C,, for UII are small, the solution of the KP2 equation is
described by the linear limit (5.7.5). When phase amplitudes and, consequently,
the size of the circles C,, C! increase, the phases start to interact, but the
solution remains described by the general UIl formula. At last, with further

amplitude increase, we reach the near-solution regime and the UI description
becomes more natural. '
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5.8 Solutions of the KdV Equation

As already mentioned in Sect. 3.4, if the surface X is hyperelliptic and the point
P, is a branch point, then the solution (5.5.6) of the KP equation reduces to the
solution of the KdV equation

4us = 6uty + Ugyy

All finite-gap solutions of the KdV equation are obtained in this way. Let us
describe these solutions, drawing attention to the choice of the basis of cycles
(for all details see Chap. 3).

Fig. 5.12. The basis of cycles for an algebraic curve (5.8.1) in the case of genus two

The Riemann surface X of the hyperelliptic curve (Fig. 5.12)

2N+1
w=J[O-E), EieR Bi<E<...<Ewn (5.8.1)

=1

admits the hyperelliptic involution 7 : (A, u) — (A, —p) as well as the antiholo-
morphic involutions 7 : (A, ) — (X, —F) and 77 : (\, ) — (X, ). Since X is
an M-curve, both 7 and n have N +1 fixed ovals. Fixed ovals of r are situated
over the gaps [—co, E1],...,[Eaon, Ean+1] and fixed ovals of n7 are over the
allowed bands of the spectrum [E;, E»l,...,[Ean4,+00].

Fixing the local parameter k = iv/\, p = k! near Py, : A = oo, we see
that 7*k = k. All real non-singular finite-gap solutions of the KdV equation are
described by (3.4.3):

o
u(z,y,t) = 2—5-—2- log(Uz+Vy+Wt+ D)+2c

T
where all constants are determined by expressions (5.5.1) (see also Sect. 3.4),
and the vector D satisfies certain reality conditions depending on the choice
of cycles on X. In particular, for the cycles of Fig. 5.12 we have 7a = —a,

: (5.8.2)
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Fig. 5.13. The basis of cycles for an algebraic curve of genus two

b = b and D is an arbitrary real vector D € R”. On the contrary, for the
cycles of Fig. 5.13 we have 7a = a, 7b = —b and D is an arbitrary imaginary
vector D € iRY. Figure 5.13 may be interpreted in a somewhat different way.
Consider the anti-involution 77 instead of 7. It acts on the cycles in quite the
same way as 7 in the first case: 77a = —a, 77b = b, but (71)*k = —k.

It is clear that the finite-gap solution itself does not depend on the choice of
cycles on the Riemann surface. Thus Figs. 5.12, 13 represent various parametriza-
tions of the same finite-gap solutions. However, as before for the KP2 equation,
we use both parametrizations. Finally, note that the transformation of the local
parameter k — ak + bk~! + o(k—2) induces the transformation

z — az +3ad%bt, t = &°t, u — d®u +2ab (5.8.3)

of the solution. With imaginary a, b it transforms a solution in the parametnzatlon
of Fig. 5.12 into another SOlllthIl in the parametrization of Fig. 5.13.

An arbitrary hyperelliptic M-curve can be uniformized in the following way.
Let C4,...,Cn be disjoint circles orthogonal to real axis and lying to the right
of zero. The mapping 7z = —z transforms them to circles Cj,...,C}. As above,
the pair C,,, C/, determines a hyperbolic transformation o,. The fixed points of
o, and o;l are A, and B,, = —A,,. The isometrical circles of o, and o, Lare C,
and C}, respectively. The center of C,, is situated at the point A,(1+u,)/(1—py)
and its radius equals 2A,,/u, /(1 — py). In this case the Schottky group G is
a subgroup of the group with generators a, and 7: o2 = 1, 0, = Tay,. The
intersection points of the circles with real axis, as well as 0 and oo, are the fixed
points of the hyperelliptic involution 7z = —2. The antiholomorphic involution
is given by 72 =7%.

As was mentioned in Sect. 5.1 the Schottky uniformization depends on the
choice of the loops vy,...,vx on the Riemann surface. Below we consider two
different Schottky uniformizations UI and UII of the curve (5.8.1), determined
by Fig. 5.12 and Fig. 5.13 respectively (we always put a,, = v,). The Schottky
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Fig. 5.14. The fundamental domain FL of the Schottky group for an algebraic curve of genus two
with the basis of cycles as shown in Fig. 5.12

groups G! and GY, corresponding to these two uniformizations of X, are differ-
ent. Their fundamental domains F' and F" are shown in Fig. 5.14 and Fig. 5.15
respectively where the points e; which are the images of the ramification points
E;(E = oo — z = o0) are also indicated. The involutions 7= and 7 of the first
uniformization are described above, the local parameter at co equals k¥ = 2. For
UII we also have 7z = —z, but as explained earlier 77z =%, k =1iz.

The reduction B,, = —A,, simplifies the period matrix

Bum= Y. log{Bm,Am,0Bs,04,}
c€G,\G/G,

_zlog( —aA) Zlg( _Zg)
= 2 1"3( A—a*( A)) Zl" ( e Aﬁa) (5.8.4)

o*=mon

— oA, 2
_Zlog< e An)> ,

A, —cA, \?
B,,.=1 nt 1 L i
ada >, log (An - ,a(—An))
GGG"\G/GH)G#I

Here we use an involution 0 — ¢* = wow of the group G, which preserves
the cosets. Convergence of the series in (5.8.4) is a corollary of convergence of
the series )" (0 A, — o(—A,)). Due to (5.5.2,3), the other parameters are equal
to

Y (GAn—o(-4n)

0c€EG/G,
Wa= Y ((0A)° —(0(-40)) (5.8.5)
cEG/Ghn

Wn"—'Wn_?’CUn’ c= Z 7_2 ’
o€G,071
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€5

Fig. 5.15. The fundamental domain FI of Schottky group for an algebraic curve of genus two with
the basis of cycles depicted in Fig. 5.13

The description of the set of the uniformization parameters in this case is
given by '

0<A<...<Any <400, 0< /upn<l1l, n=1,...,N

?

(1—\/ﬁn> (1—./'—un+1)> A v (5.8.6)
1+\/ﬂn 1+\/,u'n+1 An+l, S .

The uniformization UII is equivalent to the choice of the local parameter
k =iz at oo, which in turn (5.8.3) leads to the transformation z — iz, t — —it.

Theorem 5.6. All real nonsingular finite-gap solutions of the KdV equation are
given by the following formulas:

u(z,t) = 222— log(Uz + Wt+ D) (5.8.7)
Ox?
u(z,t) = 262:72- log0(i(Uz — Wt+ D)) . (5.8.8)

where U, W are determined by (5.8.5), the parameters A,,, x, belong to the set
(5.8.6) and D € RY is an arbitrary vector. Formula (5.8.7) [as well as (5.8.8)]
gives all the finite-gap solutions.

Now we return to formula (5.8.5), put ¢ = 0 in it and derive expressions for
the ends of spectrum bands of the integrable Schrodinger operator

&2
(—%'5 - u($)> e =Ap

with the potential (5.8.2) in terms of uniformization parameters. Formula (5.8.2)
was obtained under the condition that the local parameter at oo equals k = iv/\.
Comparing it with k = z (for G) and k =iz (for GU!), we have

N =—- ) 02 - 001+ Q

oGt

Ay = 2 _(c0)] —
(2) agll[(az) @0)1-Q , (5.8.9)
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for G' and G! respectively. We have Eyns1 = Q (for UD) and E; = —Q (for
UID), (see Figs. 5.14, 15).

The other ends of the gaps are the images of the fixed points of the involution
7 on 2/G : g,z = 7z. We have 2N points z=,n =1,..., N, each pair z* being
a solution of the quadratic equation

(z — An)? = pa(z+ An) = 25, 2, < 2},
The gaps are given by (see Figs. 5.14,15)

By _on = NG, By —ane = N(27),
Ey, = X(zp), By = N'(2})

The corresponding potentials for UI and UII are

u(z) = 2% logé(Uz + D) +2¢, forUI
x

u(z) = 2%25 log 0(i(U z + D)) — 2¢, forUIL

with the constants determined by (5.8.5). At last, note that a shift u — u — a,
A — A+ « leads to the general finite-gap spectrum.

)

b

5.9 Qualitative Analysis of Solutions of the KdV Equation

Since G is the Fuchsian group of the second kind, all the series of Sect. 5.8
converge. The smaller the circles C,,, Cj,, the better the convergence. The small
circles, in turn, correspond to the small loops v,, which implies a smallness of
allowed bands of Fig. 5.12 and gaps of Fig. 5.13. In the paper [5.20], using the
theta functional substitution technique, a detailed analysis of two-phase solutions
in these limiting cases was carried out. The first terms of the series for B, U,
W, with respect to a small parameter (size of zone), were obtained. They turned
out to be sufficient for a physical interpretation of the solutions. The formulas
of the present chapter seem to be even more suitable for such an investigation.
In addition, they allow to define uniquely some physical characteristics of the
multi-phase solution such as amplitudes, wave numbers and phase velocities of
harmonics (see below). These characteristics can hardly be defined in the substi-
tution approach since the modular transformation of the theta function changes
them.

Let us consider (5.8.7, 8) in the limit u — 0. The solution (5.8.8), defined
by UII in this limit, describes small amplitude waves. Indeed, this solution cor-
responds to a spectrum with small gaps which in turn implies the smallness of
the C,-circles of UIL Denoting the corresponding parameters of Ul by Al 41
the first approximation gives
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Al _ AlN?
B! ~logul, B! w~ ( m n
nn n’ nm A;rln +Al1,{ )

Un ~245, Wi ~2(40)

The diagonal elements of the period matrix are much bigger than the off-diagonal
matrix elements; therefore, the solution represents a sum of non-interacting small
amplitude harmonics:

N
u(z,t) & —16 > (An)+/pl cos (2A%(z — (AN + D,,)

The phase speeds of harmonics are equal to W1 /U ~ (A2,

Similarly, the limit of small allowed bands is studied. It corresponds to the
limit 4 — 0 in (5.8.7). We denote the corresponding uniformization parameters
of Ul by A!, ul. The first approximation

I I I AL — AL\ I I Wl I3
B,,~logu,, Bp,~ (ﬁ) , U, =24, W,=~2A4;,)
m n
describes the interaction of N-soliton chains moving with the velocities W /UL,
A soliton chain represents a periodic infinite sequence of solitons. Solitons of
different chains interact in pairs with the usual collisional phase shift.
One may associate a wave number to every soliton chain or harmonic. As a

matter of fact, periods of the theta functions in (5.8.7, 8) are determined by the
lattice

A={2riM +NB}, M,Nez" |

where B is real. For small amplitude waves the argument of the theta function in
(5.8.8) is imaginary; hence, the wave numbers of the harmonics are determined
by the imaginary part of the lattice A

Kil=-pl | (5.9.1)

The theta functional argument (5.8.7) of the soliton chain is real; therefore the
wave numbers are given by

K'=(K},... K\)=2xBY L(UHT . (5.9.2)

The interpretation of an N-phase solution with a finite period matrix B is non-
trivial, due to the possible modular transformations (2.5.12) changing the wave
numbers and other characteristics of solitons. Usually this freedom is eliminated
by fixing a certain “basic” period matrix obtained from a certain ratio of diag-
onal and off-diagonal matrix elements [5.21]. In this way the interpretation of

degenerate cases is extended to finite B. We mention that this fixation of the
“basic” period matrix is well-defined only for N =2.



176 5. Uniformization of Riemann Surfaces

We extend the interpretation of formulas (5.8.7,8) presented above to all pos-
sible values of uniformization parameters. Let the expression (5.8.8) describe N
interacting harmonics with the wave numbers K" and the phase speeds W1 /UY,
and let the expression (5.8.7) describe N interacting soliton chains with the wave
numbers K! and the speeds W1 /UL. The distinctive property of U and B, de-
fined by (5.8.4, 5), singling them out from all equivalent ones, is as follows:

O<Ui <...<UpNn ,

—Bn,l <...< _Bn,n-—l < —Bnn > _Bn,n+1 >...> _Bn,N

Such an interpretation is imposed by the spectral problem. The difference to the
above mentioned approach [5.20, 21] can be found only in the intermediate case
of medium amplitudes. But the interaction picture in this case is so complicated
that one of the interpretations suggested can hardly be preferred to the other.

The cycles of Fig. 5.12, 13 are connected by the symplectic transformation
(see also (2.4.22, 2.5.12, 13))

0 0 0 -1 1
0 0 -1 1 0

a=d=0, cfb=-1, c=] : t 1. (5.9.3)
-1 1 - 0 0 0
1 0 --- 0 0 O

The theta function is transformed according to

8(z'; B') = xexp {%(z,B_lz)} 6(z; B)

B' =47%(")'B~ e, 2 =2ri(c )T B2

(5.9.4)

Let U™, W“, B" be the parameters determining the N-phase solution (5.8.8).
(We would like to mention that the corresponding basis is a', b' and 2’ = (U2 —

Wnt) + D)). The modular transformation (5.9.4) yields the representation

u(z,t) = 256% logd (U's —W't+D;B)+a

B' =4z '(BH (DY, a=20hBYH U (5.9.5)
U= —I—BIcTUH, W' =~ BITW
27w ™

for the same solution. This solution differs from (5.8.7) with A!, u' by the
transformation (5.8.3) and may be interpreted as an interaction of N-soliton
chains moving with the speeds W /UL on the constant background a.

Let U be the solution characterized by the wave numbers K™ = (K1,... K1)
in the interacting harmonics description. The passage (5.9.5) to the soliton in-

terpretation combined with (5.9.1, 2) gives the following connection of wave
numbers:
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K'=K"c. (5.9.6)

Consider a periodic small amplitude solution with the period 2, describing the
interaction of N first harmonics, i.e., none of the harmonics is omitted:

K'=@1,2,....N)

If we increase the amplitudes of all harmonics keeping the period fixed then at

a certain time the soliton interpretation becomes more natural. Moreover, due to
(5.9.6)

K'=(,...,1

all chains have the same period 2. This phenomenon is called the wave number
paradox. For N =2 it was discussed in [5.20].

The approach of present section was in [5.3, 4] applied to calculate and to
draw plots of the finite-gap solutions of the KdV equations. It turns out that the
suggested interpretation is in good agreement with the numerical experiments.

5.10 Solutions of the Sine-Gordon Equation

We considered above only the real Riemann surfaces of decomposing type. How-
ever, the finite-gap integration of a number of equations deals with the real
Riemann surfaces of nondecomposing type. The sine-Gordon equation

Ugt — Ugg +SINu=0 (5.10.1)

is the best-known equation of this family. The Schottky uniformization allows
us to describe effectively the real finite-gap solutions in this case also.

The real finite-gap solutions of the sine-Gordon equation are determined by
the hyperelliptic curves

2N
pt = H(A —E) | (5.10.2)

i=1
where 2k points Fy < ... < E3; < 0 lie on the real axis and the others
Bkion—1 = Espszn, n=1,...,N—k

are mutually conjugated (see Sect. 4.5 for details). The curve X is of the non-
decomposing type if k % N.

The canonical basis of cycles is fixed in Fig. 5.16. The cycle £, going around
the cut [0, +o0], is equal to a; + - - - + an and the anti-involution

T Oy = O, =)

transforms the basis as indicated in (4.3.23):
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Ta; =—a;, t=1,...,N
thi=b;, j=1,...,k (5.10.3)
'rbj=bj-—a,-, j=k+1,...,¢g

The cycle £ fixes a branch of the square root v/A on X. The normalized Abelian
differentials d{2;, df2, are defined by their singularities

dy — dWV)), A — oo

1 (5.104)
dfdh — d(ﬁ)’ A—-0 .

’

Fig. 5.16. The basis of cycles for an algebraic curve of genus two

All real finite-gap solutions of the sine-Gordon equation are determined by
(see also (4.2.25, 27, 31)):

0 (19522 +i% ¢+ D + 7iA)

u(z,t) =2ilo , 5.10.5
57 (TR +i%V¢ + D) ( )

where U, V are the vectors of b-periods of df2, df2; respectively, A =
1,...,1), D = Dy + mi(ey,...,€x,0,...,0) + 7i/2(1,...,1,0,...,0) (zeros on
the last N — k places), Dy is an arbitrary real vector, and 1, ...,y are either 0
or 1 and enumerate the different components of solutions.

The curve (5.10.2), as well as the hyperelliptic M-curve of Sect. 5.8, is
uniformized by the Schottky group with generators o1,...,0 N, Which is a sub-
group of index 2 of the group with generators o, and 72 = —z : o2 = I,
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on = apw. The reduction B, = —A,, is also valid. The only difference to
Sect. 5.8 is that along with the positive g with 0 < p1,...,< pr < 1 there
are now N — k negative ones —1 < pig41,...,< uny < 0. This means that the
generators oy41,...,0N map the upper half plane H onto the lower half-plane
H. Consequently, the group G is not a Fuchsian group, although the real axis
remains an invariant circle of G. The fixed points on £2/G of the hyperelliptic
involution w2z = —2z, besides 0 and oo, lie in pairs on every circle C,,. Forn > k
they are the points of intersection of C,, with the real axis, and for n > k they
are complex conjugate. The anti-involution 7 is, as above, 7z = Z. The basis of
cycles of this uniformization satisfies the condition (5.10.3). For N =2, k=1
it is shown in Fig. 5.17.

Although G is not a Fuchsian group of the second kind it is a group having
an invariant circle. Hence, all the series of these sections converge.

%
C |

Fig. 5.17. The fundamental domain of the Schottky group uniformizing the curve in Fig. 5.16

The period matrix is given by the same expression (5.8.4). For the correct
definition of U, V it is necessary to coordinatize the local parameters at the
points z =0 and z = c0."

First of all, the function A(z) has a double pole at z = oo, a double zero at
z =0 and satisfies the reduction A\(Z) = M(z): therefore it is equal to

M) =¢) (02 —(a0P) (5.10.6)
ceclG
where ¢ is a real constant. The asymptotics of \(z) at the points z = co and
z2=01s
M) = ¢2%, 2o 00

Az) — qCZZ, z—0

c= ) 671 -2py)

ceG

’ (5.10.7)

It is evident that the fixed oval of nr, which is situated over the cut [0, co] in

the A-plane, is mapped onto the imaginary axis in the z-plane, therefore ¢ in
(5.10.6) is negative
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q=—d’
Let us consider the Riemann surface X of the curve (5.10.2) as a two-
sheeted cover of the A-plane (two copies of the A-planes glued along the cuts
[0, +00l, [E1,Enl,..., [Ean—1,Ean]). We fix the branch of the square root
VX so that it changes its sign when we intersect the loops v, situated over
cuts [Frn—1, E2,] and coinciding with the a-cycles. As was mentioned above,
the loops v,, are mapped onto the circles C,,, C},. Therefore, on the fundamen-

tal domain F' the function v/X is single-valued. Finally, we have the following
asymptotics:

\/X—)iaz, z— 00 ,

(5.10.8)
VAo iaza/e, z—0

where +/c must be taken to be positive. Indeed, v/A(iy) is real-valued for y € R
and never vanishes except at y = 0.

The parameter a is not essential since a change of a is equivalent to a Lorentz
transformation with respect to which the equation is invariant. Chosing a = 1
and comparing (5.10.4) and (5.10.8) we obtain the asymptotics

dfy —idz, z—o00 |,

dﬁzﬁ—-i-dl, z—0
c =z

In the usual way we calculate the b-periods of Abelian differentials of the second

kind, using the reciprocity law (2.4.13) in terms of normalized holomorphic
Abelian differentials

Un=i Y [0(-An)—04s] ,

. 1 . .
V"=_—l¢'2 2 {a(—IA ) " GA ]
0€G/Gp n n

Theorem 5.7. All real nonsingular finite-gap solutions of the sine-Gordon equa-
tion are given by the formulas (5.10.5, 9, 8.4, 10.7).

If X is considered as two copies of the A-planes glued along the cuts [0, oo},
[E2n—1, Eny], then the “vertical” cuts [Ez,-,—E_z,-] may be chosen in various ways.
The order of the points of intersection of [E,;, Eo;] with the real axis is not fixed.
In a similar way the order of fixed points of the generators o, with positive and
negative u,, is not determined. An appropriate choice of generators changes this
order, while preserving the condition B,, = —A,,.

We considered the uniformization of the curve (5.10.2) connected with the
fixed half-basis of cycles ay,...,an. Sometimes, for example in constructing the
action-angle variables [5.22], other half-bases may seem more convenient.
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Remark. Due to the arguments given at the end of Sect. 4.3 the formula

0 ((UZV):C - (UZV)t + D+ 7riA)

u(z,t) = 2ilog P ((U;V):z: — (U‘;V)t 7 D)

is more convenient for the description of small-amplitude solutions of the sine-
Gordon equation. In this representation the small-amplitude solutions are obtained
in the limit of small generating circles of the Schottky group p — 0 and can be

investigated in exactly the same way as done in Sects. 5.7 and 9 for the KP and
KdV equations.

5.11 Uniformization and Coverings

The finite-gap solutions of various nonlinear integrable equations are determined
by special Riemann surfaces. These are hyperelliptic curves, which determine
the solutions of the KdV, NS, sine-Gordon and many other equations, elliptic-
hyperelliptic curves (two-sheeted coverings of elliptic curves), which generate
the solutions of the XYZ Landau-Lifshitz equation, two-sheeted coverings, by
which the finite-gap two-dimensional Schrédinger operators are constructed, and
various curves corresponding to tops of all kinds (see Chap. 6). In addition,
coverings (first of all of elliptic curves) generate interesting special finite-gap
solutions of nonlinear integrable equations (see Chap.7). In all these cases of
uniformization it is necessary to take into account specific characteristics of the
curve. For this purpose we need a simple generalization of the Schottky groups.

Let Cy,C},...,CN,Cq, Si,...,Su be a set of 2N + M disjoint Jordan
curves on C, which comprise the boundary of a 2N + M-connected domain F.
The loxodromic transformations o,, n = 1,..., N transform the outside of a
boundary curve C,, onto the inside of a boundary curve C,0,C, = C.. The
elliptic transformations ap,, m = 1,..., M, af= =1 transform the outside of
Sm onto the inside of S, . The transformations o1,...,0N, a1,..., apm generate
a generalized Schottky group G, F is the fundamental domain of G. The factor
2/ G, where 12 is the set of d1scont1nu1t1es of G, is a Riemann surface of genus
N with 2M marked pomts 2}, 22.. Here 21?2 are the fixed points of a,. The
local parameters at 2. are equal to (z — m2)1/ km_If all the boundary curves
¢y, C,...,Cn,Ch, Sl,...,SM are circles (the generalized Schottky group is
called a classical one), the orders k,,, of all elliptic generators necessarily equal
2.

Let G be subgroup of G of finite index d = [@ : G]. This means that the
set of representatives g;,...,gq of left cosets G /@ is finite, i.e., an arbitrary
element § can be represented as follows: g = 99s» 9s € {91,---,94}, g € G.

IfGisa group with fundamental domain F, then G is a Klein group with the
fundamental domain
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F=gFU...UgF ,

and the Riemann surface £2/G is an N-sheeted covering of £2/G. A normal
subgroup G C G induces a normal covering 2/G — 2/ G, and the quotient
group G /G is an automorphism group of the covering.

As a matter of fact, in Sects. 5.8,10 we used the generalized Schottky groups
when we described the uniformizations of hyperelliptic curves. Let G be a group
with elliptic generators m,01,...,an, 7> = o®> = 1, 7z = —z whose fun-
damental domain F' represents the right half-plane (Rez > 0) with N circles
Ci,...,CN cut out. The transformation «, maps the outside of C, onto thg
inside of C,,. The subgroup G of index 2, which consists of all elements of G
of even graduation, is a usual Schottky group with generators o, = wa,. This
group was used for integration of the KdV and sine-Gordon equations. In this
case the set of representatives of left cosets G/G is {I,=}, and F = F U xG is
the fundamental domain of G shown in Figs. 5.14,15,17.

Let us consider coverings of elliptic curves. The elliptic-hyperelliptic curves
are described in complete analogy with the hyperelliptic case. The general-
ized Schottky group G is generated by elliptic transformations =, aq,...,ap,
7* = o2, = 1 and by a loxodromic transformation &. Fix 7 to be equal to
7z = —z. The fundamental domain F represents a half-plane with M + 2 circles
C1,C1, S1,-.., Sy cut out. The transformation «,,, maps the outside of S,,, onto
the inside of S, and & maps the outside of C; onto the inside of Cj. The
subgroup G is generated by

01=0, 02 =TOW, 03 = TQ1,...,0M+2 = TOM

This group is a usual Schottky group with the fundamental domain F' = FurF

and the following restrictions to the fixed points A;, B; of the transformations
T35

Ay=—-A;, Bi=-Bp, A;j=-B;, 1=3,...,M+2

G is a normal subgroup of G, and 2 /G is a two-sheeted covering of an elliptic
curve. The quotient group G /G corresponds to an involution interchanging the
sheets.

For M = 0 the Riemann surface 2/G is of genus 2. The generators oy, 05
of the corresponding Schottky group satisfy the relation

o2 =mo1w, Ay=—-A1=-A, By=-B1=-B

The transformation 2 — AB/z corresponds to the hyperelliptic involution of
£2/G. The holomorphic differentials w;,ws, normalized in the natural basis of
cycles, are transformed into each other under the action of 7« : 7*w; = ws.
Hence the differential/\w = w; +wy is the normalized holomorphic differential of
the elliptic curve {2/G and v = w; — w; is the Prym differential of the covering
2/G — £2/G. One can easily show that
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w = Z [(z —oB)™ ! —(z - aA)“l] dz
UE&/G1

v= Y (1) [(z=0B)" —(z—0A)]dz ,

O’Eé\/Gl

(5.11.1)

where o € G /G1 means that the summation is taken over all elements of G of
the form o = ...« (i.e., the word ends with the element ). The integer number
o equals the number of 7’s in the representation of ¢ via & and =. Setting

w=/w, w'=/v ,
bl bl

we have for the period matrix of 2/G
l fw+w w-—d
B__Z-(w—w’ w+w’)
Expressions (5.11.1) imply
w=logm+ Y  log{oB,0A,B,A} ,

UEGl\a/Gl

w' =log pi + E (=1)°~log{cB,0A, B, A} ,
0€G1\G/G1

(5.11.2)

The case of a curve of genus 2, which is a two-sheeted covering of an elliptic
curve, was considered above; N-sheeted coverings of genus 2 can be described
in a similar way. Let us consider the case N = 3. The group G is quite the same
as for N = 2. The difference is in the choice of the subgroup G. For N =3 it is
generated by

o1 =6%, oy=mom, one "t

and its fundamental domain F' = FUr FUG F is shown in Fig. 5.18. The subgroup
G is a generalized Schottky group with a fundamental domain consisting of five
circles. The subgroup G is not normal.

The differential w (5.11.1) of 2/ G is holomorphic, and its periods are equal

(/ w, / w, / w, / w)=(21ri,27ri,2w,w)
al an b]_ bz

As will be shown in Chap. 7, if one holomorphic differential of the curve of genus
2 is reduced to an elliptic one, then there exists another linearly independent
holomorphic differential, which is also reduced to an elliptic differential. Let us
calculate the periods of the last one.

Let (27i, 27i, kw,w) and (2wing + my7,2wing + maT, 27ing + mar, 27wing +
m47) be periods of these differentials, where k,n;,m; € Z. Calculating the

to
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Q>

A

NI I N

C
=
D

a>
a
a>

Fig. 5.18. The fundamental domain F = F U 7 F UGF

period matrix and taking into account its symmetry and the incommensurability
of w, T, 27ri,w’r, we have ny = —-knl, my = ——kml, ng = —n3, M4 = —mMs.
Finally, in the new normalization, the periods of the second differential become
equal to (2xi, —27ik,w’, —w') and the period matrix of {2/G is given by

ol (Bw+e kw -

T kvl \kw—w  wt+w
In the case under consideration k£ = 2 and (5.11.1) yields the expression for w
in terms of the basic holomorphic differentials w = w; + w,. For the differential

w and its period w we have the same formulas (5.11.1, 2). As was shown, the
second holomorphic differential, which reduces to an elliptic one, is equal to

v=w —2wm= Y [z-0B)'-(t—0A)7]|dz

c€G /G,

-2 Y [e-orBy' —(z—orA)']dz ,

UEG/GQ

where the summation is taken over cosets generated by subgroups G, G, with
generators o1, o2, respectively.
Note that the fundamental domain of G is bounded by three circles; therefore

all corresponding theta series converge due to the Schottky condition (Lemma
5.2).
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Appendix 5.1 Description of the Schottky Space of M-Curves

As we have seen above (Sect. 5.1) the problem, which arises naturally in appli-
cation of the Schottky uniformization to the finite-gap integration theory, is to
describe explicitly the set S = {4, B1, p1,--.,AN, By, un} of uniformization
parameters. There are a lot of papers devoted to this problem [5.16, 19, 23-27].
Effective concrete results are obtained for the case of the Fuchsian group G. It
was mentioned that this is the most important case generating real finite-gap so-
lutions. For all uniformizations of the present chapter the set S can be described
explicitly. Below we give a complete description of S for M-curves.

Let o be a hyperelliptic transformation, characterized by the triple A, B, u
(5.1.1). A half-circle £(o), lying in H and orthogonal to R with the ends at points
A, B, is called an invariant line. The transformation o maps L(c) onto itself.
The arrangement of invariant lines of generators and some of their products was
investigated in the papers [5.18, 24, 25, 28]. Based on these results, a description
of generator parameters S = {A;, By, u1,..., An, BN, pn} was obtained in
[5.19] (see also [5.16, 25], where slightly different parameterizations are used).
It is evident that S depends on the choice of generators of G. In [5.19] the
generator system of Fig. 5.4 for the Riemann surfaces of the signature (0, n) was
studied. We describe the set S for another system of generators corresponding
to the cuts shown in Fig. 5.5 and the fundamental domain of Fig. 5.6. It allows
us to present a complete description of S.

Lemma 5.8. Let 0q,...,0n be the generators of the Fuchsian Schottky group
with the fundamental domain shown in Fig. 5.6. Then the invariant lines L(o,+1),
L(04), L(07 0 n41) are situated as shown in Fig. 5.6.

Proof. Considering the transformation o, 15,, one can easily show that
Al < UflazAz < al_lazA1 < al_lazY <X<Y<A

This means that the attractive fixed point of o] 102 is inside the interval [A;, X]

and the repelling fixed point is inside [Y, A;]. In quite the same way other
transformations o 10,4 are considered.

Lemma 5.9. The invariant lines £(0p41), £(0r), £L(0 0 n41) are situated as in
Fig. 5.19, if and only if, the inequality

2
nt\/ln
{BnyAna Bn+1,An+1} > (_L___,U'_il_) (5A1)
1+ vV Enlntl
holds.

Proof. First of all let us make a linear transformation

zZ gz = {z, An) Bn—!-l, An+l}
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L(o,,)

= - .
n+l n1p Bn 0‘nq q An B On G"+1p P A An+1

Fig. 5.19. The invariant lines £(opn41), £(0n), Lo  on41)

HCHCC, A'n+] — 00, Bn+1 - 07 An — 1’ Bn — A= {Bfu Arn Bn+l, An+1}° As
elements of PSL(2,R), the transformations & = gog~! are

a'n+1 = ( Hntl 0 ) ’

0 1/\/,“n+1
= (7w )
n - A - n
PR ”1 VEn -\ ’
n 1—A 7
- T Vbn — AMtin
Vin vV Hn
§=5"nn
() ()
_ 1 Hn+l \/ITn_ HKn \/m \//71: HKn
1-2A 1

(g m) g ()
0 < lin, Vs, 0< A<

The fix points of & (denote them by A, B) are solutions of the quadratic equation

F(2) =22 pai(l — pn)

(5.A.2)
+2(fn = A = finst + Minpine1) + ML — pp) =0

Let the invariant lines be located as illustrated in Fig. 5.20. Then both roots of
(5.A.2) are larger than 1. Hence, 0f/0z|.=1 <0, which in turn yields

A> P + fintl — 2fhnfins1
1- Hnln+l

The transformation & is hyperbolic in two cases: tr¢ > 2 and ré < —2 or
equivalently

) < (\/,un - \/ﬂn+l)2
1-— vV HEnbnti

(5.A3)

(5.A4)
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|

£(6n+l)
£ (7,) L(o)

LN N

Fig. 5.20. The invariant lines of &y, Fpe1, 5  Fnet

2
+./
/\>< Hn ﬂn+1)

5.A5
1+ V Hnln+l ( )

However, (5.A.4) contradicts (5.A.3) which completes the proof of (5.A.5).

Conversely, if (5.A.5) is valid then & is the hyperbolic element with two fixed
points which are the solutions of (5.A.5). Since (5.A.5) yields (5.A.3), both ﬁxed
points are bigger than 1. It remains to prove that A > B. Otherwise 5! and &7
map the interval [1, A] into itself 5-1[1, A] c [1, A], 5;'[1, A] C [1, Al. Hence,
the product & +11 = 515! possesses the same property. We see that there is a
fixed point of &, in thc interval [1, A]. The Tesulting contradiction proves the
true arrangement of fixed points of & : A > B. The Lemma is proved, because
it is formulated in terms of invariants of the transformation & = gog™!

Lemma 5.10. Let invariant lines £(op41), £(0n), £(0 7 0q41), be situated as

in Fig. 5.6, i.e., every triple as in Fig. 5.19. Then there exists a fundamental
domain of G in the form shown in Fig. 5.6.

Proof. Let p be some point between A and B, then B < o lo,up < A. It
is evident that o,.1p > Bp+ (Fig. 5.19). On the other hand, applying o, to
o ops1p, we have opyp < B,. Hence the fundamental domain of the group

with generators g,,, 0,41 is bounded by the half-circles shown in Fig. 5.19 by
dotted lines.

In summary, the following theorem is proved.

Theorem 5.11. The following statements about the uniformization of Fig. 5.5,
6 are equivalent:

1) fundamental domain of G is as in Fig. 5.6,
2) invariant lines are arranged as in Fig. 5.6,
3) parameters of generators satisfy the inequalities
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By <By_1<...<Bj <A <..<ANn ,
0<pi<l, i=1,...,N |

2
vV +\/ n
{BnaAn)Bn+17An+1} > (M) s

1+ vV HEnHlnal



6. Theta Function Formulas for Classical Tops

The methods developed in the previous chapters are now applied to integrable
systems of classical mechanics. We restrict ourselves to the tops investigated
in the 19th century and do not discuss the numerous examples of integrable
systems found recently with the help of the inverse scattering method. A good
survey of these modern results can be found in [6.28, 29, 52]. This chapter is

an improved version of the preprint [6.1] by Bobenko. The main results were
reported in [6.2-5].

6.1 The Lax Equation and Analytic Properties
of the Baker-Akhiezer Function

The analytic properties of the Baker-Akhiezer functions are deducible from the
corresponding Lax representations

%L(,\) +[L(N), AN =0 . (6.1.1)
Let
L=wpw!

be the diagonal form of the matrix L, where [ is the eigenvalue matrix. It satisfies
the equation

fe = [0, 771 AD + 7 1,] | (6.1.2)
and, as a corollary, it does not depend on ¢ since the RHS of (6.1.2) has a zero

diagonal part.
The Baker-Akhiezer function is an eigenfunction of the operator L

L =puyp . (6.1.3)

Here L is an (N x N) matrix and 4 is an N-dimensional vector. The eigenvalues
of L do not depend on t. Therefore, the characteristic polynomial

det(LO\) — p) =0 (6.1.4)
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is also independent of ¢. It defines a spectral curve X. The suitably normalized
ap-function is an analytic function on the Riemann surface of the spectral curve
(6.1.4).

Let us consider the simplest, but simultaneously the most general example
where L and A are rational functions of )\, and there are no reductions. It is
evident that X is the N-sheeted covering of the A-plane. So we have N values
pl,..., N (every value is counted according to its multiplicity), corresponding

to every \. Respectively, we have N eigenvectors ' = 1p()\, uf) of the matrix
L.

Let us consider the function
(det ¥)? = (det(y’,...,p™M)?* . (6.1.5)

It is a single-valued function of A with the divisor of the poles of degree 2K,
where K is the degree of the divisor of the poles of 1) on X. The degree of the
divisor of zeros of the function (6.1.5) is equal to the sum of all branch numbers

> v;. By equating these degrees and taking into account the Riemann-Hurwitz
formula (2.2.1) we get

2K =) v;=29-2+2N

where ¢ is the genus of X. Finally we see that 1 has the divisor of the poles of
the degree

K=g+N-1

Differentiating (6.1.3) by ¢, we see that the Baker-Akhiezer function satisfies the
equation

(L_ /*‘)(I‘/Jt - A'l/’) =0 ’

which in turn gives

Y, = AP +a(A, )Y

Here a(A, t) is some scalar function, which can be eliminated by suitable renor-
malization of 4. We see that 4y has essential singularities at the poles of A.
Finally we see that the Baker-Akhiezer function is a solution of the system

Lp=pp ,y=A9

It is an analytic function on X, having the divisor of poles independent of ¢ and
the essential singularities at the poles of A.

Let us mention that the various possible reductions of L — A pairs lead to the
symmetry of the spectral curves and to the specific properties of tp-functions.
Below we consider L — A pairs with reductions.
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6.2 Integrable Systems

The Kirchhoff equations are imporiant in classical mechanics and hydrodynamics:

y . OH . OH
p=Ip,wl, M=[M,wl+[p,u], w'=-—, u'=——

A - (6.2.1)

Here, [ , ] denotes the vector product in R3. Equations (6.2.1) are Hamilton’s
equations of motion [6.6]

f={Hf}, f=H 6.2.2)

with respect to the following Poisson brackets:

{M;, M;} = ;g My, {Mi,p;}=eijepr, {pi,pi}=0 ,

. (6.2.3)
7’7]7k=1,213, e =1

Here €;jx is as usual a totally antisymmetric tensor. The Poisson brackets (6.2.3)
are, in fact, the Lie-Poisson bracket for the Lie algebra e(3) of the motion group
E(3) of Euclidean space. Notice that

fi=pt= Zp%, fo=pM = Zp,-Mi (6.2.4)

are trivial integrals of motion (Casimir functions) for the Poisson bracket (6.2.3).
Thus we have a four-dimensional phase space. For the corresponding system to
be completely integrable, it is sufficient to possess one additional (besides the
Hamiltonian) integral of motion K.

The rotation of a rigid body about a fixed point is described by (6.2.1). In
this case the orthogonal frame is attached to the body and coincides with the

axes of the inertia ellipsoid. The origin is chosen to be at the fixed point. The
Hamiltonian is

1
H= §(I1M12 + LMZ + M2+ Iipy + Dopp + ps. (6.2.5)

Here M is the angular momentum of the body, p is the unit gravitational field
vector, the constant vector (I, I, I3) indicates the center of mass and I~ 1
I;1, I7! are the main moments of inertia of the body.
The following cases are integrable:
(1.) The Euler case: I' =0, K = M? = M? + M2 + MZ.
(2.) The Lagrange case: 1 = L, I1 =1, =0, K = M.
(3.) The Kowalewski case: I =L =L/2 , I3 =0.
(4.) The Goryachev-Chaplygin case: Iy = I = I3 /4, I3 = 0 and the constant f,
vanishes, i.e., pM = 0.
In the last case we have the integrable Hamiltonian system on only one integral
level. The formulas for the additional integrals K for the Kowalewski and the
Goryachev-Chaplygin cases are presented in the Sects. 6.3, 4.
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We remark that in all integrable cases presented above K is a polynomial of
M; and p;. Ziglin has shown [6.7] that there are no additional cases of integra-
bility if K is a meromorphic function of M; and p;.

For quadratic Hamiltonians

1
H= -2- Z(a,‘jMiMj + Zb,‘jMipj + C,‘jp,'p]‘)

equations (6.2.1) coincide with the Kirchhoff equations of motion of a rigid body
in an ideal incompressible liquid being at rest at infinity. The orthogonal frame is
attached to the body and is chosen such that the inertia tensor is diagonal. In this
case M and p are respectively the complete angular momentum and the complete
impulse of the body-liquid system. The non-trivial integrable Clebsch [6.8] and
[first] Steklov [6.9] cases are known and are the only cases with the additional
quadratic integral K, the corresponding expressions for which are presented in
Sects. 6.7, 8.

We also consider the Euler equations on the Lie algebra SO(4), which have
interesting applications in hydrodynamics. The Lie algebra SO(4) is isomorphic
to the direct sum of two copies of SO(3). In the following we shall always

use the isomorphism SO(4) = SO3) + SO(3). The Euler equations with the
Hamiltonian

1
H= —2- Z(aijSiSj + 2biijTi + C,'jTiTj), aij = aji, Cij =Cji (6.2.6)
1]
and the Lie-Poisson bracket
{Si,S;} = €ixSk, {5:,T;}=0
{T:,T;} = €ijx Tk, 1,5,k=1,2,3

are given by

6.2.7)

$=[S,AS+BTT], T=[T,BS+CT]

Here A, B, C denote the matrices of the coefficients of the Hamiltonian (6.2.6).
The two trivial integrals

q=8=3 "8, @=T"=) T} (6.2.8)

show that as in the e(3) case, we have four-dimensional orbits. The additional
integral of motion K exists in the integrable Manakov [6.10] and [second] Steklov
[6.11] cases.! These are the only cases with quadratic K. Recently another case
of integrability with quadratic H and quartic K was found [6.16, 17].

1 The Euler equations on SO(4) of the special type (special A, B, C) describe the motion of a rigid
body with an ellipsoidal cavity filled with liquid. A family of integrable cases of such systems
depending on 3 parameters was found by Steklov [6.12]. When the problem of finding integrable
Euler equations on SO(4) was investigated later, these same integrable cases were found [6.13,

14, 15]. The number of arbitrary parameters increased to 6. We will refer to this case as the second
Steklov case.
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Another classical problem, integrable in terms of two-dimensional theta func-
tions, is the Neumann system. The equations of motion are

[S;:+1S,81=0, I=diagly,h,L), S2=1 . (6.2.9)

It describes the motion of a particle restricted to the unit sphere under the
quadratic potential

U(S) = % > LSt

Below we construct theta functional formulas for all systems mentioned above
except the Lagrange top (the Euler and the Lagrange tops are easily solved in
elliptic functions and are investigated in detail).

6.3 Kowalewski Top

In her celebrated paper [6.18] published in 1889, Kowalewski found a new and
highly nontrivial integrable case of motion of a heavy rigid body around a fixed
point, completing the list of integrable tops. Two previous known integrable cases
are Euler’s top in which the stationary point coincides with the center of mass,
and Lagrange’s top which is axially symmetric. The third case discovered by
Kowalewski is rather bizarre: the moments of inertia have a fixed ratio 2 : 2 : 1,
and the center of mass lies in the equatorial plane of the top.

In this section we follow the paper [6.2], where calculations omitted here are
presented.

6.3.1 Kowalewski’s Paper

The starting point of Kowalewski’s work was her observation that Euler’s and
Lagrange’s tops are solved in terms of Jacobi functions. Therefore, her initial
idea was to try to solve the equations of motion of a general heavy rigid body
about a fixed point in terms of Abelian functions. However, Weierstrass pointed
out that a general solution of this form does not exist in the general case and
may be possible only for some particular geometries of the top [6.19]. Thus
Kowalewski started her search for tops of this type.
She considered the equations of motion for the general top (6.2.5)

IM = (I} My, LMy, M), I =(I1,I%,1%) -

and substituted the series

Ty = 6.3.2
remrn AL Di G2 T (6.3.2)

M; =
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in the neighborhood of the singularity point (t9 € C) into the equations (6.3.1).
The question was: for what kind of tops is the series (6.3.2) a general solution
of equations (6.3.1) (i.e., which series have a sufficient number of independent
constants).

In her paper Kowalewski obtained three remarkable results. First she proved
(with some gaps which were filled in later, see comments in [6.20]) that the
only tops with the property that the general solution is given by meromorphic
functions of the complex time variable are Euler’s and Lagrange’s tops and a
new top with the Hamiltonian

H= %(Mf + M?+2M3) —p . (6.3.3)
She also found the additional integral
K = (M? — M2 +2p)* + 4(My M, + py)? (6.3.4)

for the top (6.3.3) which now carries her name. Finally, using a non-trivial change
of variables, Kowalewski reduced the equations of motion to the Jacobi inversion
problem for the hyperelliptic curve (Kowalewski curve) of genus 2 2

g2 = (O — H? — K/ — H? +(1 — K/4)) — (pM)*) . (6.3.5)

Kowalewski’s paper became very popular, especially the first part which at-
tracted attention and was widely discussed and generalized (see the comments
in [6.20]). At the same time the extremely technical part, devoted to explicit in-
tegration of the top, remained, for a long time, only a sequence of well-guessed
substitutions and calculations. The relationship among the three problems con-

sidered by Kowalewski was also unclear. This was recently clarified in [6.21,
22, 23].

6.3.2 The Lax Pair for the Kowalewski Top

Let us consider the Kowalewski gyrostat (KG). This is a system with the Hamil-
tonian

1
H= 5(M12 + MZ +2M? +29M3) — p; . (6.3.6)

Theorem 6.1. The Kowalewski gyrostat, as defined by the Hamiltonian (6.3.6),

is completely integrable and admits a Lax representation dL/dt+[L, A] = 0 given
by

0 p- 0 -p —y 0 M_ 0
L=i -p+ 0 p 0 [ .10 0% 0 ~M,
AM 0 —p3 0 —py M, 0 2Mz—~ 2\ )
P 0 p- O 0 -—-M_ 2 2M; + v

2 Here and below, with no loss of generality, we shall assume in the sequel that p? = 1.
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2Ms + 0 M_ 0
il 0 —2Ms-y 0 ~M,
=5 0 oMy 2 , (6.3.7)
0 —-M_ 2 2M3 +y

p+=p1tipy, My=M xiM,

These matrices obey the symmetry relations

L= = n LV, n=diag(1,—1,1,—1)=("g 33) , (6.338)

_ o, O o, O
LT = — ( 0 02) L)) ( 0 02) . (6.3.9)

We recall the definition of the Pauli matrices o;:

(0 1 (0 =i (1 0
1= 10/ 27 i o) T 0 -1

The invariants of the matrix L(\) are integrals of motion in involution H,
h=p*=1, f; = (M) and

K = (M? — M? +2p1)? + 4(M; My + pp)?
— dy((M3 + 7)(M?E + M3) +2Mps)

This integral is an extension of the integral (6.3.4) found by Kowalewski and
was discussed in [6.24, 25]. The Lax pair (6.3.7) as well as broader generaliza-
tions of the Kowalewski top and the corresponding Lax pairs were obtained by
Reyman and Semenov-Tian-Shansky [6.53].

6.3.3 The Spectral Curve

Let us now turn to the original Kowalewski top where v = 0. We shall consider
complex equations of motion. The Lax equations are linearizable on the Jacobian
of the spectral curve X defined by the equation

det(L(A\) — ) =0 . (6.3.10)
The characteristic equation (6.3.10) for the Lax matrix of the KT takes the form
=210 + (V) =0
di(z)=2"1-2H+2z
da(2) = 272+ 4[(Mp)* — H)lz="' + K
The symmetries (6.3.8, 9) give rise to two commuting involutions 71, 7, on X

i u) =0, nap) =0, - | (6.3.11)
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which in turn induce the coverings X>Xand X - E given by the relations
z= X% and y = p%. So the curves X and E are defined by the equations

pt = 2d1(2)pt + da(z) =0 (6.3.12)

and
y* —2d1(2)y + do(2) =

The covering X — X is unramified and thus is determined by a cycle £
(mod 2) on X : a loop v on X lifts to a closed loop on X if and only if
(v, L) = 0 (mod 2), where (v, L) is the intersection number. To put it another
way, the function A = \/z acquires a factor (—1)¢*} upon a circuit of ~.

For later use, we must have a closer look at the cover X — E. The elliptic
curve E is a two-sheeted covering of the z-plane. There are two points co4 at
“infinity” where z has simple poles, and one point 0 where z has a double zero.
The function y has a simple pole at co,, a simple zero at co_, a double pole at
0, and hence two other simple zeros at some points Pj, P,. The branch points of
the function u = ,/y on E are therefore co,, co—, Pj, P,. Thus X is obtained
by glueing together two copies of E along suitable cuts [oos,00_] and [P, P»].

We choose the cut [oo,, 0o_] such that the function A = y/z becomes unram-
ified on E\[oo,, 00_] (notice that oo are the only branch points of /z).

The curve X may be thought of as the Riemann surface of the function
A =4/z on X. One can always choose a canonical basis in Hy(X, Z) so that

way = —az, wh =-b3, wax=—ay, wWhr=-by ,

where m: (p, 2) — (—p, 2), and also a; = £ (mod 2) (Fig. 6.1).

We may now identify X with two copies of X glued together along L: X=
XMy, X, 1t is natural to choose the contour £ such that 7 £ = —£ (the minus
sign denotes reversed orientation). The involution 7 acts on X by permuting the
sheets X,

The final thing we need is the behaviour of y near the points of X where
X = oo or A = 0. These are the points 0oy and 0% on the sheets C®. If we
arrange the points oo(') onto a 4-tuple (oo(l), o?, ooS,l), oo+)) the 4 branches
of u near A = oo can be combined into a row-vector

u) ~ (0,0,2), —2)) +o(l) . (6.3.13)

In a similar way, with respect to the ordering (O(l), 09), 09), 0(3)) (this particular
ordering is convenient for the calculations in Sect. 6.3.7), we have

pQ) ~ —ed71(1, -1,1,-1) (6.3.14)

near A = (, with ¢ = -1 depending on the location of L. It is always possible to
choose £ such that e = 1.
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Fig.6.1. A plane model of the elliptic curve E. The cycles a;, b; are depicted relative to the
representation of X as a two-sheeted cover of E: continuous lines show parts of the cycles on the
upper sheet while dotted lines show their parts on the lower sheet

6.3.4 Analyticity Properties of the Baker-Akhiezer Function

The Baker-Akhiezer function, defined as a solution of the linear system
LAPY)$(P) = p(P)p(P), %MP) = AAP)HY(P) , (6.3.15)

has certain analyticity properties as a vector-valued function on X. We can also
require ) to be symmetric with respect to the first of the involutions (6.3.11)

P(nP)=np(P) . (6.3.16)

This enables us to regard. 3 as a double-valued function on the curve X = X /7,
which makes all calculations much simpler.
Let us now state the analyticity properties of .
1. 4 is meromorphic on X except at A = oo and ) exp(—tp/2) is meromorphic
on X except at A =0.
2. The divisor of poles of 1, denoted by D, has degree 8 and is time indepen-
dent.
3. 1 satisfies the symmetry condition (6.3.16).
The divisor D is not, however, completely determined by these conditions. If
f is a meromorphic function on X and (f) < D on X, then 4 can be replaced
by fip. Using this freedom, _we can fix two points of D 1o be oo and coP.
Then D is the pull-back to X of a divisor D U co, on X, and degD =3.
The behaviour of 1 near A = oo can be reformulated in a more convenient
matrix form. Let !P(/\) be the 4 x 4 matrix whose jth column is the value of 1)
on the jth sheet of X — {\} near ) = oo (the ordering of sheets corresponds to

the ordering of points over A = oo, described in Sect. 6.3.3). We can then write
¥(A) as
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T\, 1) = (@ +SA~1+.. )diag(1, 1, AeM, —ide ™) (6.3.17)

(the factor —i in the last entry of (3.17) is taken for notational convenience).
Denoting

LY=L x Y+ Lo+ L), AQ) = Ag+ A

?

we have from (6.3.15,17,13)

Ly =2 (8 0 )sp-l, Lo=[S97', L , (6.3.18)
o3
A= (8 23 ) &l Ag=9,8"1-[5971 A] . (6.3.19)

The symmetry condition (6.3.16) takes the form (notice that = permutes the
sheets):

_ a3 0 o1 0
w-n=(7 (s )

which gives the symmetry relations for ¢ and S:

o3 O o 0\ _ o3 O oo 01 _
(o @)@(0 @>“@ (0 @)5(0 @)“S
Combined with (6.3.18) this implies that ¢(¢) has the form
1 1

(1) = ¢ diag(qu®), (0,1, | 1 7

We can set ¢ = 1. The relation (6.3.19) yields differential equations for ¢;(t):

dgi . d :
% =1Msq, f =-iMzg ,
so that
t 1
a®) = a exp( / Msdt), @) =B exp(—i / Msdt) . (6.3.20)

In a similar way, arranging the 4 eigenvectors 1/:(0(:,';)) into a 4 X 4 matrix
¥(0) according to the ordering of the points O(i) described in Sect. 6.3.3, we have

o3 O 0 o1) _
( 0 03) w(0) (0'1 0 ) = ¥(0) (6.3.21)

and using (6.3.14,15), we find
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L_1 = —e ®(0) (‘63 33) w=10) . (6.3.22)

The strategy of our further computations will be as follows. Using the sym-
metry property (6.3.16) of ¢ , we reformulate the problem entirely in terms of
the curve X: the functions v, 3, A9, A4 are single-valued functions on X.
The properties of 1 stated above allow us to write explicit formulas for 3, 14,
which in turn serve to compute the coefficients S;; of S for 7,5 = 3,4. From
(6.3.18) we have the relation

Mz =—iS533 — Si3 (6.3.23)

which by (6.3.20) yields expressions for ¢, g2. After that we can write down
the remaining components 11, ¢2. To determine the constant factors that occur
in these formulas, we must use the second symmetry relation (6.3.9). Combining
it with (6.3.18), we come down to the Prym condition for the divisor D and de-
termine the Baker-Akhiezer function completely. Finally to derive the evolution
of p(t) we use (6.3.22).

6.3.5 Explicit Formulas for the Baker-Akhiezer Function

We now begin to implement the program outlined above. First of all we have to
introduce certain Abelian differentials.

Let df2 be a normalized Abelian differential of the second kind on X with a
pole at oo, such that

P
Q(P)=/ d2=X1+00"1) as P — oo,

(recall that there is a well-defined branch of A on X\L; its sign is specified by
requiring that u ~ 2X at co,). Let us denote by

veti W, V- [ do
b;

the b-period vector of df2.

Let df2; be a normalized Abelian differential of the third kind which has
simple poles at oo, and oco_ with residues 1 and -1, respectively. We choose a
path £ from oo, to co_ and normalize df2; by the condition f df2; =0, where

the cycles a; are supposed not to intersect £. It is easily checked that df2; is the
pullback to X of a differential on E given by

1+ qz‘l)dz
y — di(2)

with some constant g, so that 7*d{2; = df23 (w(z, p) = (2, —p)). We put

df =

P
smm=/dm
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and fix the constant of integration by the condition
e =X+ 0(1) as P — oo,

We need the values of the multi-valued functions §2(P), e?(P), [ P o at the
points ooy and 0. For that purpose we specify the choice of the path £ joining
oo and oo_ coinciding with the cut [oo4, 00_] (see Fig. 6.1), i.e.,

(a) its projection to E passes through 0 and is symmetric with respect to 0 € E,
(b) the cycle £ — £ is homologous to az,
(c) £ does not intersect the ramification contour L.

Since the periods of df2, df2;, w; and ws over ap are all zero, the multi-
valued analytic functions 2(P), %), | P oo 3 have single-valued branches
in a neighborhood of the contour £ U 4. Also we set [~ w; = 0. Standard
calculations [6.2] show that

lo o JN
/ w=/w=(r,7ri, -r), dfy=m
OO 4 £ bz

2
Doo_)=0, 2P = —%— +0(1) as P — oco_

)

where r and a are defined as follows:

dis=— | dfs, a=e®0d = _%0)
by bs

In particular we see that es") changes sign when analytically continued along
bs.

Let D be a vector in € such that the divisor of §( fol; w+D) on X coincides
with the divisor D introduced above.

Theorem 6.2. The Bakher-Akhiezer function (P, ) is given by

0( [F w+Vt+ D)6lel(D + R) AP

Yy =

9(f w+ D)0[el(Vt+ D + R)
by = 0[6](f w+Vit+ D)0lel(D+ R) 2Pt

2 =2
8(f¥ w+D)§(Vt+D+R)
b = 3 f w+Vt+ D+ R)§D) AP 25(P).
0(/¥ w+ D)o[el(Vi+ D+ R)

o = 6( f w+ Vit+ D+ R)6(D) e API2(P). (6.3.24)

9T w0t DOVI+ DI R)
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where

R=(r,0,r), e=[0 0 0]

010

The proof is a straightforward corollary of the analytical properties of

6( f P w), $2(P), §5(P) displayed above and of the Baker-Akhiezer function
described in Sect. 6.3.4. Recall that now we do not take into account the second
symmetry relation (6.3.9).

The expressions (6.3.24) for 3 and 4 enable us to calculate Ms(t).

Lemma 6.3.

. 0 dlel(Vi+ D+ R)
My =gl = DT R

Proof. From (6.3.23) we get
My = lim A(~it3(P) — 4(P)) =
—&OO_‘_

8 P P P
%e[e](/ w+Vi+ D+ R) ) :9—’;0(/ w+Vit+ D+ R)
0lel(f*w+Vi+D+R) 0" w+Vt+D+R)

-1

P=oo+

where k = A7! is a local parameter at P = oco,. The derivative 3/0k may be
replaced by 9/0t due to the usual reciprocity law for df2 and w.
The integrand in (6.3.20) turns out to be an exact derivative and thus we get

O(Vi+D+R) o 8(Vi+D+R)
“9vi+D+R) > BV hqwvi+D+R)

where the constants of integration «, (3 are still to be determined.

q(t) = (6.3.25)

6.3.6 The Prym Condition

It is now time to take into account the second symmetry condition (6.3.9), which
is done best in the resulting formulas for the solutions. Substituting (6.3.24,25)
into (6.3.18), we have the coefficients of Lg:

8(Vt+ D)0[el(D + R)
0(Vi+ D+ ROD) °
2i , 6(Vt+D+2R)H(D)
3 6(Vi+D+ROlelD+R) ’

0lel(Vt + D)0lel(D + R)
Olel(Vi+ D+ R)O(D) °

(Lo)13 = —28513 = 2«

(Lo)sz = —2iSs14; " =

(Lo)24 = —2iS23 = —2if
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2¢2  O[el(Vit+ D +2R)6(D)
a 0[el(Vt+ D+ R)0el(D + R)
The relation (6.3.9) implies (Lo)13 = —(Lo)42, (Lo)24 = —(Lo)31, which gives
) 8(DY?8(Vt+ D +2R) ) 6(D)*0[el(Vt+ D +2R)
T WD+ RMHVEI+D) 6D+ RMe(Vi+ D)

For this equality to hold identically, the theta functions depending on ¢ must
cancel out:

(Lo)s1 = 2iSyqy " = —

of

6(Vt+D+2R)=c0(Vt+ D)
with some constant c. Since 7*V = —V, 7* R = R and, moreover,
0(—u) = 6(u) = O(x*u) ,
this implies
D=P-R, 7*P=-P

These relations give

o AP - R) 4o ia §(P — R)
Olel(P) ’ A Olel(P) °
_ 2ia 6[e}(Vi+ P — R) ... 8(Vi+P—R)
YTTA T Glel(Vi+ P) M- =2i4a Vt+P)

where the constant A is still to be determined.

6.3.7 The Poisson Vector

We still have to calculate the Poisson vector p(t). We will use (6.3.22) and bear
in mind that p? + p3 + p? = 1. In view of (6.3.21), we write ¥(0) as

_ | .A 0'3A0'1

where

i 1 i
£ = diag (G(Vt +P)’ Aflel(Vi+P)’ 0lel(Vi+P) 6(Vi+ P)) ’
R =a (P — R)
. R0t 204t
x ding (9(1"- w+P-R) 6(f*w+P—-R)’
20t 20t
([ *w+P—-R) 0(f°‘w+P—R)) ’
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0/~ w+Vt+P—R) 9(j0+w+Vt+P R) )
(9[5](]0 w+Vt+P - R) —0[5](f+w+Vt+P R) ’
. (9[.5](]" w+Vt+P) —0[6](f+w+Vt+P))
0/~ w+Vi+P) 8(/> w+ Vi+ P)

To verify these formulas we recall that 1;(03) = (—1)7%;(09) and e7%0%) = +a.
Also, it can easily be shown that

(6.3.26)

04 1
/ w= -2-R +C, »*C=-C . (6.3.27)
This and the relation §(u) = (—7*u) imply

B=o01A . (6.3.28)

Therefore (6.3.22) can be written as

Li=—LW (“g 0 ) w-lg-1
o3

with

_ A 0’3./40'1 _ 1 A— A—lal )
W_(0'1.A 0’301A0’1)’ W (0‘1.4 03 —(71./4—10'103

(we have assumed that € = 1 in (6.3.22), [see (6.3.14)]). After simple calculations
we find

Li=—L (3101 + 5202 530301 )L—-l ’

S30103 S101 — S202

where the S; are defined by
ZSJ'U]' = .A 03./4_1

By equating the matrix coefficients (L_1)32 = (L-1)14, we finally get A? =1and

_ 6(Vi+P) : _Blel(Vi+P) .
M. = 6lel(Vt+ P) (51+i%), M_= 6(Vt+ P) G-
M;=—-A5;

Now we can sum up our calculations.

Theorem 6.4. The general solution of the equations of motion for the Kowalewski
top is given by

Olel(Vt+ P — R) M= 2ia¢9(Vt +P - R)

M, =2ia 0[e](Vi+ P) oVt+P)
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. 0 Olel(Vt+ P)

M3 = —15 IOg m y (6329)
(Vi+P) AB gle)(Vi+P) CD
P Vit P)AD+BC’ P2 evi+P) AD+BC °
BC — AD
PB=AD+BC
where
3 e

0 +
A=9(/ w+Vt+P), B=¢9(/U w+Vt+P) )
00+ o4
0- 0y
C=9[£](/ w+Vt+P), D=9[e](/ w+Vt+P)
00+ OO+

6.3.8 The Geometry of Liouville Tori

The remaining indeterminacy in (6.3.29) for the dynamical variables (the change
of sign A — — A or the permutation 0, «— 0_) reflects the freedom in recon-
structing the Lax matrix (6.3.7) from the algebraic data. It is easily verified that
this freedom amounts to conjugation L — ULU ~! by a matrix U of the form

U = diag(1,1, -1, —1)

This is equivalent to a renormalization of the Baker-Akhiezer function ¢ — U1
and induces a symmetry of the Kowalewski top:

M — BM, p— —Bp, B=diag(-1,-1,1) . (6.3.30)

Clearly, (6.3.30) leaves the Hamiltonian invariant but changes the sign of f, =
(pM). Recall that only the square (pM)? is a spectral invariant,
We may summarize the situation as follows.

Theorem 6.5. If (p M) # 0, the common level surface of the spectral invariants
H, K, (pM)? consists of two components (Liouville tori) each of which is an

affine part of an Abelian variety isomorphic to Prym,X. These components are
permuted by the transformation (6.3.30).

If (pM) =0, the curve E degenerates into a rational curve which is a two-
sheeted cover of the z-plane. The curve X is given by the equation

(2 — di(2)2 =4(* —2Hz + 1+ H? — if_)
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and has genus 2. In the variables u = \2uzz, z = 1/2(u® — 1/z) it takes the
usual hyperelliptic form

w? =z(z* +2Hz + %)(gﬁ +2Hz + % -1

Notice that it is different from the Kowalewski curve (6.3.5) with (pM) = 0. The
fact that there are various hyperelliptic curves associated with the Kowalewski
top which are different from the classical Kowalewski curve was pointed out in
[6.22]. The motion of the top linearizes on the Jacobians of these curves which
are isogeneous to one another.

For (pM) = 0 the mapping of the Liouville torus to J(X) becomes an

unramified two-sheeted covering. The corresponding theta functional formulas
are presented in [6.2].

6.3.9 Reduction of Two-Dimensional Theta Functions

Since the Kowalewski flow on J(X) is parallel to the Prym variety of the cover
X — E, it is desirable to express the dynamics entirely in terms of the theta

functions related to this Prym variety. The Prymian has polarization (2.1) and its
period matrix is [6.51]

II = (2 fbl(wl +ws3) sz(wl +ws3) )

2 fbl w2 sz w2

Let 1/2B, be the period of E

By= | (w1 —ws)
b1

We write the Prym vectors V and P entering (6.3.29) and C defined by (6.3.27)
as

Mow po BBy ol
2,7)2) 2), P (2,p2’ 2)7 C (

C1 1

V= a a
( 2> P 3

)
where we have used the notation
w = (vit+p1, vat+p), c=(c, )

Then we have the following expressions for the theta functions occurring in
(6.3.29)
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00 0 10 1
9(Vt+P)=6[ ](w;H)O[ ](0;B0)+9[ ](w;ﬂ)ﬁ[ }(O;Bo) ,
00 0 00 0
9(Vt+P—R)=9[§z]( 17)9[ ](2T,Bo)

+9[;g}( H)eH(zr By)
04

6(Vt+P+/ w)=9[ ]('w:tc,ﬂ)ﬂ[ ](r Bo)
+

oo

+0[ ](w:i:c,ﬂ)a[ ](T’BO) )

0[6](Vt+P)=9[00}( 11)0[ ](0 Bo)

fyme o

Ole](Vt+ P - R)= 0[ ] ; I1)0 [g] (2r; Bo)

+0[01]( II)G[ }(27‘ By) ,

04
Olel(Vt+ P+ /

o4

w)=0[ ](w:l:c,ﬂ)a[ ](T,Bo)
+0[ ](w:i:c,ﬂ)(}[ }(r,Bo)

Remark. Adding to W a period of the form

2 0 M 2
(0 I’H)(N)’ M,NeZ

does not change the solutions (6.3.29). This shows that the mapping of the

Liouville torus to Prym,X is one-to-one, as was already mentioned in Theorem
6.5.

6.4 The Goryachev-Chaplygin Top

Now the system under consideration is a special case of the motion of a heavy
rigid body with a fixed point, discovered by Goryachev and Chaplygin [6.26]
in 1900. It represents a symmetric top with the principal moments of inertia
satisfying I;7! : I;' : I =1 : 1 : 1/4 and the centre of mass located in
the equatorial plane. The Hamiltonian of the Goryachev-Chaplygin top (GCT) is
given by
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H= -;-(Mf + M2 +4M2) - 2p; (6.4.1)

where M is the angular momentum and p is the field strength vector in the
moving frame (Sect. 6.2).

The system (6.4.1) admits an extra integral of motion provided that the
Casimir function f, (6.2.1) for the Poisson brackets (6.2.3) vanishes

M1p1 + szz + M3p3 =0 . (6.4.2)
A more general system described by

1
H = -2-(M12 + M? + AM? + 4yM3) — 2p,

is called the Goryachev-Chaplygin gyrostat (GCG). It is also integrable if
(Mp) =0 [6.27]. We mention also two papers where GCT is studied in a differ-
ent way. In [6.30] the R-matrix technique is used to solve both the classical and
the quantum problems. In [6.31] the geometry of the complexified Liouville tori
for GCT is thoroughly studied using the general technique developed in [6.21].
In particular, a close connection is established in [6.31] between GCT and the
periodic Toda lattice with three particles.

Here we follow the paper [6.3]. Let us note that (compared with [6.3]) similar

but slightly more complicated formulas for these solutions were obtained in
[6.45].

6.4.1 The Lax Pair for the Goryachev-Chaplygin Top

There is an interesting connection between GCT and the Kowalewski top (KT)
on the Lax representation level.

An important observation of [6.3] is that removing the first column and the
first row of the Lax matrix (6.3.7) we get the Lax matrix for the GCG

37 B — M.
L=i| -8 -2Mz—3y -22-5 | . (6.4.3)
~M_  E+42)  2Mz+iy
Put
~3M; — 2+ 0 —~M,
A=i 0 —2M3 — 3y -2) : (6.4.4)
—M_ 2) 2Ms + Ay

Then the Lax equation is equivalent to the Hamiltonian equation with the Hamil-
tonian (6.4.1), provided that the constraint (6.4.2) is satisfied.
For future use we introduce the notation

L= L_lz\_] + Lo+ L1\
for the coefficients of the Lax matrix (6.4.3).

In the following we shall consider only the GCT case with vy = 0. Formulas
for the general case may be easily obtained in quite the same way.
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6.4.2 The Spectral Curve

Let X denote the spectral curve given by the equation det(L(\) — xI) = 0. The
symmetry relation

~1 ~1
Le»=( 1 )MM( 1 ) (6.4.5)
~1 ~1

gives rise to an involution on X
T w = (A, p)

It is natural to consider the quotient curve X = X /T given by
1

P HuRH —42—=)=2G=0 2z=) |,
z

where H = 1(MZ+M?+4M3)—2p, is the Hamiltonian and G = M3(M7+M3)+
2M;ps is the Goryachev-Chaplygin integral. It is equivalent to the Chaplygin
curve [6.26]

v = +2Hp — 2iG)? — 16p%, y=8zp— p> —2H u+2iG

Note that we always assume (Mp) =0, p* = 1.
The spectral curve X is a three-sheeted covering of the A-plane A and is also
a double cover of X = X /7

(A, 1) X 2—} X=X/T (1, 2)

3ml . l&l

A 4 = C (=)
We denote the points of X with A =0 and A = oo by
A=0 0! p=0 A =00 oo =0
ol po~ ~)\"1 OOII po~ -2
OIII [t~ )‘—1 0OIII o~ 2.

X is a three-sheeted covering of the z-plane. We denote the points with z = 0
and z = oo by 01, 02, and oo;, 002, in such a way that 0;, ooz are the branch
points of the covering X — C > 2. This covering is unramified at 0;, oo; and
p(01) = p(oor) = 0.

The function A = 4/ is double-valued on X and changes sign when analyt-
ically continued along a closed path which intersects a certain contour £. Here
EA is a contour connecting the points 0; and co; and determined by the covering
X — X. Glueing two copies of X along £, we obtain X. The condition

p~—=2X at ooy, p~-A"! at 0
uniquely fixes £ and the branch of A.
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6.4.3 Analytic Properties of the Baker-Akhiezer Function

Our main goal is to construct explicitly the Baker-Akhiezer function ¥(P) =
(ab1,%2,13)T which is analytic on X and satisfies

Lp=pp, ,=Ap . (6.4.6)

We may assume that ) satisfies the symmetry relation (6.4.5)

-1
¢(TP)=< 1 )¢(P), PeX . 6.4.7)
-1

Hence, the component i, may be regarded as a single-valued function on X,
while ¢; and 13 are double-valued on X and change sign when analytically
continued along a closed path intersecting £. We may assume that the ; are
defined on X\ £ and satisfy the symmetry relation

PH(P) = (=1)'p7 (P) (6.4.8)

for P belonging to the cut £. In other words, w1, 13 acquire a factor (—1){74)
upon a circuit of . Here (v, £) is the intersection number.
Let us define a matrix-valued function

T = (P, $»PhH, @)

where P!, P!, P are the inverse images of A with respect to the mapping
X — A. We mark them so that

pLILI 1111

— 00"
PLILI _, oLILII

at A — oo

atA—0

b

holds. The function ¥()\) is defined on the domain U = Uy U U, which is a union
of two simply-connected domains with the points A = 0 and A = oo, respectively.
These domains also do not contain the branch points of the covering X — A
and are invariant with respect to the involution A — —A.

The reduction (6.4.7) can be rewritten in terms of ¥:

-1 1
(- = ( 1 ) T(\) ( 0 1) . (6.4.9)
-1 1 0

To see this, note 70" = 0, 700!l = co!ll, 70! = OF, 700! = ool

According to (6.4.6,8) it is natural to determine the asymptotics of ¥()\) at
A—ooand A — 0 as

1 A
T = ($+SA71+..) e~ 1 ,
A—00 2t 1



210 6. Theta Function Formulas for Classical Tops

)‘—1
v = T( 1 )
A—0 1

Then the reduction (6.4.8) gives

() )y
() )=

The coefficients of L(\) = L_;A~! + Lo + L ) are related to the matrices &, S,
T in these expansions by

0
L_1=—T( 1 )T—‘,

~1

0
Ly=-2 [srl,( 1 1)} : (6.4.10)

- 0
0

L1=245( ~1 )45-1,

1

which gives

1 q
& = 1 1), Z=-3iM
—i i 9

In the usual way all these analytical properties can be reformulated for the
vector function 1 on X.

With a suitable normalization, the Baker-Akhiezer function has the following
properties which characterize it completely:

(1.) 4 is analytic on X\L, satisfies the symmetry relations (6.4.8) on £ and is
meromorphic on X'\ co;.

(2.) In the neighborhood of the points 0y, ooy, 0oz, ¢ has the following asymp-
totic behavioyr:
o\~

(
'«/)N( o) ) for P — 0y,
oo™

g+ 0™
¢~( o) ) for P — ooy,
o1

0
P ~ (( 1 ) +O(A‘1)) exp(—2At) for P — oop.

—1
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(3.) The divisor of poles of ¥ D = P; + P, has degree 2 and does not depend
on ¢.

(4.) The normalization constant q above satisfies the differential equation ¢, /q =
—3i1M3; hence,
q=a exp(=3i [ Msdt)

The Baker-Akhiezer function v with these properties satisfies (6.4.6), where

L and A are almost the Lax matrices for GCT, the only exception being that the
condition

(L-1iz==(L-1)xn 6.4.11)

is not automatically fulfilled. (This condition will be imposed in the last stage of

the computation. As we shall see, it amounts to a suitable choice of the integration
constant «.)

It is useful to present the expressions (6.4.10) in more detail

M3 = ’—532 - iS22, M+ = 2512, M_. = 2521 /q

Y

Tia T
L_ = —— L_ = 6.4.12
Ty Ty _.Typ

=1 _ =1
P T — T T P Ty

6.4.4 Construction of the Baker-Akhiezer Function

To write down explicit formulas for the function vy, ¢, and 13, we must define
a number of standard objects on X. Let 23(P), A(P) and £2(P) be the normal-
ized Abelian integrals of the third and the second kind, respectively, which are

uniquely specified by their behaviour in the neighborhoods of the points ooy,
002, 02 R

P e$23(P) eA(P) 2(P)
001 a A2 +0(1) f
02 A+b+O(T) dATI+00H) —22+007h (64.13)
0, cA+00™?) e oQ) .
Let us denote
R=/dﬂs, A=/dA, V=/d(2 : (6.4.14)
b b b

There are some useful relations between the different constants in (6.4.13) and
(6.4.14). Comparing the singularities, we get

N[ p = SPsPI2AER) (6.4.15)

which implies 3R+2 A = 0 modulo the periods. Let us choose the paths [oo;, 0,1,
[001, 002] such that an exact equality holds; i.e.,
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3R+2A=0 . (6.4.16)
Also, using (6.4.15) we get
d 3b
apy _%q_ 20 '
€ )\( b\ +.. )a P —o00p ,

where b is the constant term in the expansion of e at co, (6.4.13). Using the
general properties of Abelian integrals we obtain

f=3b, d=ae . (6.4.17)

Choose D € J(X) such that the divisor of zeros of 6( f P+ D) on X is
precisely D, the divisor introduced in the definition of ¢/ above. We are now in
a position to write down the explicit formulas for 2.

Theorem 6.6. The function 4 is given by the following formulas:

¢ 0T w+Vi+D-1ROD +3R)

NS W Tws DVir DI R)
x exp(2(P)t + 23(P) + AP) — 1) |
P
L) @ Vit D6D) ey (6.4.18)
6(/" w+ D)§(Vt+ D)
. P
- _ie(f w+Vit+ D+ R)6D) exp(2(P)t + 25(P))

A6(f¥ w+ D)§(Vt+D+R)

The expression for the function v; can also be written in a different form,

P1(P) = ¢(p(P) — ip(co2)3(P))
0(f" w+Vi+D— RO +3/2R)
6" w+D)0(Vt+D+1/2R)
X exp(§2(P)t — {5(P) — ft)

@(P) = b (6.4.19)

6.4.5 Formulas for Dynamical Variables

Substituting asymptotics of 5, 13 at oo, into (6.4.22), we obtain

120 0(Vt+D+R)_
20t 2T o(Vi+ D) ’

O(Vt+D+ R)>3/2

q = « exp(3bt) ( Vit D)
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where we have used the form | Po= 21—>\V +... of the Abel map near cos.
Now we must satisfy the last condition of (6.4.11). To obtain the expressions
for (L_1)12 and (L_1)21 , we use (6.4.18,19), respectively. We get

¥1(02)
L-1z= ~ 502
_ce _;6(Vi+D+1/2R)8(Vt+D)(D +3/2R)
VR #(Vi+ D+ R)6(D) ’
12(02)
(L-1)a = 2024
¢ ;6(Vi+D+RB(Vt+D+1/2R)H(D)
T Tt 2(Vi+ D)D +3/2R)

This implies that
,_ 1 64D

a =

"¢ 62(D+3/2R)
To compute p4 we also use both (6.4.18,19) for v,
_ . $3(02) $2(02)

=i , = p(003)
P-=l0y PP
Finally, taking into account (6.4.16, 17), we obtain the following theorem

Theorem 6.7. The general solution of the GCT is given by the following for-
mulas:

_ 1/2
o, = 21/ 8Vi+ D = 12R) <G(Vt+D+R)) |

6(Vt+ D) 8Vt + D)

' 12
M_=—2i\/€0(Vt+D+3/2R)( (Vt+ D) ) ’

(Vi+ D+ R) Vt+ D+ R)
_ i—a—log 6(Vt+ D+ R) + b
20t 6(Vt+ D) ’
0Vt+D - R)§Vt+D+ R)
2(Vt+ D) ’
(Vit+ D+2R)8(Vt+ D)
>(Vt+ D+ R) ’
-¢ 6(Vi+D+1/2R)
a[0(Vt+D)§(Vt+ D+ R)]/?

M

P+ =c (6.4.20)

p3=—

The square roots in (6.4.20) are quite unusual. Their presence is predicted
by Painlevé analysis of the equations of motion, which shows that the leading
powers of singularities in ¢ are half integers [6.31]. The sign change of the square
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root in (6.4.20) leads to the transformation M; — — My, My — — Mz, p3 — —p3
preserving the equations of motion.

The paths [cos, 001], [002,0,] are already fixed (6.4.16); the constants a, ¢
and e are defined by the integrals upon these very paths.

6.5 Integration of the Lax Representations
with the Spectral Parameter on an Elliptic Curve.
XYZ Landau-Lifshitz Equation

All other tops considered below possess Lax representations with spectral pa-
rameter varying on an elliptic curve. In this section we describe the integration
process in this case, using the papers [6.4, 32]. The Lax representations of all
examples considered below are of matrix dimension 2 x 2. The general theory
for an arbitrary matrix case is constructed in [6.33].

We use the uniformization of the spectral parameter suggested in [6.34]

dn(u, k) _ cn(u, k)

wy(u) = R w3 (u) k)

1
sn(u, k)a wa(u) =

wh —wh=Jg—Jay (1,0, d3)=(0,F,1)

Here sn, cn, dn are the Jacobi elliptic functions of the module k. The variable u
varies on the torus £ which is a parallelogram with the lattice 4K, 4iK’ (here
K is the complete elliptic integral of the module k). Let us denote by E the
“quarter” of E, the torus with the lattice 2K, 2iK’.

The general form of the Lax representation with the spectral parameter on
an elliptic curve in the case of 2 x 2 matrix dimension is as follows:

3 N

N,
Lw =Y > Y Ly®fiw-u)oa

a=1l s=1 k=1

3 N N, ’
Aw) =) > N A OfEu—udoa

a=1 s=1 k=1

(6.5.1)

W1 W w3 [w% + w3 + w3

fg(u) = Wa 2 3

2 21"
0. [sv_t;’_w_] @ ath=2n+1

The functions f¥(u) have a pole of the kth order at the point v = 0 and
satisfy the important reduction

fé(u +2K)o, = a3f§(u)aa03 ,

Fru+2K"Yos = o1 fE(W)oq0r

] () atk=2n+2 ,

(6.5.2)
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The functions fg (u — u,) generalize the function 1/(\ — A;) to the elliptic case.

The matrices L(u), A(u)(6.5.1) obey the symmetry relations (6.5.2). This
implies that the spectral curve X

p* = det L(w) (6.5.3)

is a two-sheeted covering of the torus E. Let us choose the canonical basis of
cycles in a natural way as illustrated in Fig. 6.2. The projections of the cycles
aj, by on E form the canonical basis of cycles of E corresponding to the shifts
on 2iK' and 2K respectively.

Fig.6.2. A canonical basis of cycles

Let us also define the necessary Prym differentials [6.51, 32]. Denote by
1/1=5(w1+wn+1), v; = wy, i=2,...,n
the odd differentials with respect to the involution 7 : (u,u) — (—p,u). These

differentials differ from the canonical Prym differentials by the normalization.
Their period matrix

H,’j = dl/i, i,j = 1,...,n

b

is in a simple way related to the canonical period matrix ] of the Prym variety

Prym, X

17:2(1/2 I)H(l/z I) . (6.5.4)

It is this matrix which defines the corresponding theta function we use below.
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Let us denote u}, u; = 7u} the points of X with projections X — E equal
to u;.

The normalized Prym integrals of the second kind 2(P)

w*df) = —df2, / d2=0, j=1,...,n
a;
are determined by the asymptotics at the poles
N,
QP =) agplu—u)F+0(1), P—uf
k
Here a, ; are constants. We denote by
Vi =/ df2, j;j=1,...,n
bj
the b-period vector.

Theorem 6.8. The Baker-Akhiezer function corresponding to the Lax pair
(6.5.1) is given by

o[ v+vi+D; II P
P = (fP° )exp(t/ dﬂ) )

6(fp, v+ D; 1) Py
0(fp v+ Vit+D+A; D) P
Yo = — exp |t / dn , (6.5.5)
0(fp, v+ D; 1) Py

v=,...,00), A=7ri(1,0,...,0)=/u, DecC"

ai

The complete proof of this theorem is given in [6.4]. Here we only remark
that the Baker-Akhiezer function (6.5.5) satisfies the reduction corresponding to

(6.5.2). Indeed, for the analytical continuation along the cycles a; and b; we
have

My, Y(P) = 03¢(P), M, ¢Y(P)=a1yp(P)m(P) ,
where m(P) is the following function:
6 (Jpv+Dim)

et 6(f£u+D+A;II>

In the neighborhood of the point u, the matrix function of v € E
@ (u) = (Pu”), P(u7))
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is well-defined. Here u are the two preimages of the point u with respect to the
projection X — E . They are uniquely determined by the conditions u* — ut
when u — u, . Let us also consider the diagonal matrix

A pu®)
”—( u(u‘))'

As usual, the following equalities are valid
L =vp, U,=A¥ . (6.5.6)

Substitution of the asymptotics of ¥ and f near u,

N,
U(u) = (P + O(u — ug)) exp (Z ag k(u — us)—kt03) ,

k

ﬁ=lag(u-—u8)_N'+..., u—u; ,

in (6.5.6) determines Lf,;’C and Ag;". In particular, for the first coefficients we
have

C,D,—A,B C,D,+A,B
s,N,= si/s st g s,N,=__- st/s ss
L =%0,"8.c. » 4D, —B.C,
s,N, _ Ast +BsCs _ As Bs
L3 "lAst—BSCs’ ¢.=(¢o b ) (6.5.7)

l2 = Z(Lsa,N, )2

1 1
-1 8N s,N
s = 1tV s == L3He
b,038, - ZO;AO, Oa =7 za: o f0q
Calculating &, and reducing A,, B;, Cs, D, by common multipliers we see that
L%Ne are given by the expressions (6.5.7), where
Ag=0Vt+D+e,II), By=0(Vi+D+e;+ryll)

Co=0Vt+D+e,+ A II), D;=60(Vt+D+e;+r,+ A; 1)
ut

s u,
€ = v, rg= v
Po u+

8

Here the projection of the integration path in r, onto E should be homologically

equivalent to zero. The elliptic integral v = [ du calculated along the path of e,
should be equal to

?

ut

“du=u,— P (mod4K,4iK'")
Py

modulo period lattice of the “big” torus E.
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The solutions presented above may be considered as the finite-gap solutions of
integrable nonlinear equations with the Lax representations with elliptic spectral
parameter. To construct such an equation, we should introduce a new variable z
with respect to which the Baker-Akhiezer function satisfies the similar equation
v, = Ba. Here B(w) is the matrix elliptic function of the same structure as A(u),
i.e., the reductions (6.5.2) are valid for B(u) also. The compatibility condition

B, - A, +[B,A]=0

gives the nonlinear integrable equation.

The additional condition that # is the eigenfunction of some matrix L(u)
means that 7y is an analytic function on X which is two-sheeted covering of
E. All finite-gap solutions are obtained by the choice of all possible L(u) or,
equivalently, of all possible two-sheeted coverings of E.

The most important example of an equation of this kind is the completely
anisotropic XYZ Landau-Lifshitz equation

S:=1S,8,,1+[S,IS], S?+S3+5%=1

Here the square brackets denote the vector product and IS — the vector with
the coordinates (1151, [S>2, I353). This equation describes nonlinear waves in
ferromagnetics. The zero curvature representation for it was found in 1979 by
Sklyanin and Borovik [6.34]:

B(u) = —iQ Z Sawa(u)a'a ’

AW =2g" Y T2 W)S000 = ) walW)lS, Selava (6.58)

1 L -1
==VE—T, k=4 L<I
FVh -4, A L<h<h

The corresponding ¥-function has the following singularity at u =0

U(u) = (P + O(u)) exp (—igw@% + 2i92t03-—1—)

%)

Finally we obtain the following:

Theorem 6.9. The finite-gap solutions of the Landau-Lifshitz equation are
given by [6.4]:

_CD-4B  _ .CD+AB  _AD+BC
T AD-BC’ "* T AD-BC’ T AD-BC

A=0Uz+Vt+D;II), B=0Uz+Vt+D+r;II) |,
C=0Uz+Vit+D+A;II), D=0Uzxz+Vt+D+r+ A4;II)

Si
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Here all the parameters are determined by an arbitrary Riemann surface X which
is a two-sheeted cover of E. The vectors U and V are the b-period vectors of
the normalized Prym differentials of the second kind

Ui = / i, O — TG +0)
b; +
u—0
Vi= / df, 2 — +Qig%u~%+0())
bi

The integral » is equal to
o-
r= / v
o+
and the path of integration should be fixed in such a way that for an elliptic
integral the equality [y, du = 0 (mod 4K, 4iK") holds.

6.6 Curves of Lower Genera.
The Euler Case and the Neumann System

For the curves of lower genera (n = 1,2) the formulas of the previous section

can be simplified. For this purpose we use the addition formula (2.6.8) for theta
functions

B MO 1= Y| | G-+ 22208 | | 1 = sz
5

where the sum is taken over all n-dimensional vectors § with coordinates 0, 1.
For n =1 we have

()9 [;W (rs)

0[‘ (z)e[i (rs)
6 '3] ()9 _z] (rs)
il— :1 , (6.6.1)
i
6 [‘1’] (2)9 [‘1’] (rs)
Ly =1

6 H (2)6 H rs)

1
0 Ll] ()8
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2=2Vt+2D +2¢,+ 1,

Here and below in this section we use the notation 6 Z] (z)=40 [2] (z;2I).

For n =2 the formulas are more complicated

R [00} (2)6 (‘,2](rs)+o[;;](z)a 11](7"3)
Ly = -1 ]

10 (10 11
0 [1 o] ()6 1 0] (ra)+0 [1 0] ()6 (10 (T’)
[ oslsfeeef] n[s ]
L;N —il 2 s (662)
BERERRERE

01 01
PN i o G
3 = ’
[ ]()0[ ](rs)+e[;;]<z)9[§;](rs)

2=2Vt+2D+2¢,+7

Let us now consider the Euler top and the Neumann system, which have the

simplest elliptic L — A pairs. The L — A pair for the equations of motion of the
Euler top

1
M.=[M,IM], I=dagh,L,k), e=5vhE-h, (M,M)=1

is as follows:

L=—ip Z Mawo(wo,
a

L1
A=22Y wlzm WMooa, k= Iz — Ii

The spectral curve is given by the equation (6.5.3) and corresponds to the case
= 1. The solutions are given by the expressions (6.6.1), where [ = 1 and
2 — £2ig*u"?, u — 0%,
The solutions of the Landau-Lifshitz equation independent of ¢ are the solu-
tions of the Neumann system [6.37]

Su+IS=X®S ,S*=1 . (6.6.3)

This system was solved by C. Neunann [6.38] using the method of separation of
variables. The equation (6.6.3) was considered in connection with the finite-gap
potentials [6.39, 40, 41]. In particular, the generalization of the system (6.6.3)
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to a higher dimension case was solved. The L — A pair for the system (6.6.3) is
equal to

. Wy W w .
L= 2192 Z 1723 (u)Sqoo —i0 Z wo(u)SgStv€aprTa

w
afy

A=—ip)  Sewa(u)oa

The function det L(u) is even and has a pole of fourth order at the point v = 0.
The spectral curve corresponds to the case n = 2, and possesses an involution

Tu = —u. We denote by u = p1,p2,q1,¢ the branch points of the covering
X — E. The Prym differentials are odd with respect to the involution

™™V =—V

For the vector » we have

r:/y:/l[:—’l"l‘\/‘l/#"’:(o-) ;
l Tl a2 71

since 7l = | — ay (Fig. 6.2). The one-half of theta constants 6 [?} (r;2II) in
2
(6.2) becomes equal to zero. Finally we obtain the following formulas:
9 [‘ "] (z;211)6 [1 "]
01 01
11 11]
0 [1 1] (z;211)0 [1 1]
9 [" "] (2;211)8 [0 0]
R 01
o2 =1 11 11
[1 1] (2110 [1 1]
00 00
6 [1 1} (z:2ID)8 [1 1]
11 11]
0 [1 1] (z;211)0 [1 1]
1

where 4 {:2] =6 {2] (0;2II), =z=2Vt+D,

S =—

’

S3 =

Vo= | d2, 2 - TFipu™!, uw—-0*
bn
The Prym differentials 2vy, 21 in this case are the holomorphic differentials
of the Riemann surface X /w7 of genus 2. The involution 7 is a hyperelliptic
involution of X /xr with 0, K, iK', K+iK', p=p1 = —p, ¢ = 1 = —¢ being
the fixed points of . It is easy to see that 214, 2u5 are normalized, so the matrix
21T is exactly the period matrix of X /.
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6.7 Manakov and Clebsch Cases

It was mentioned in [6.37] that the one-phase solutions (depending on the com-
bination z + vt) of the Landau-Lifshitz equation and of the asymmetric chiral
O(3)-field equation are the solutions of the Clebsch and Manakov cases of integra-
bility respectively. In this way the Lax representations for these tops came from
known zero curvature representation for the Landau-Lifshitz equation (6.5.8) and
asymmetric ciral O(3)-field equation [6.35].

The Manakov Case. The Lax representation is as follows:
Lay(u) =) {Sawal — k) + Towau + K)} 00 /20

1 2
Ay(w) = a A + 249

AD =" Sawalu—rwoaf2i 6.7.1)

A9=-%" {sa DN (1 — ) + Tawo(26)walu — n)} Ta /2

Wa

The Lax equation (6.1.1) with the matrices (6.7.1) describes the Hamiltonian
system with the Poisson bracket (6.2.7) and the Hamiltonian

H = Hy +czHg, H = ZwaSaTa, We = wo(2k)

_ 1 2 2 2 w1wW2wWw3
Hy=3 3y (——wa(S’a +T) +2—— SO,TO,)

e 4

(6.7.2)

We see that the spectral curve corresponds to n = 2. The general solution of
the Manakov case is given by (6.6.2):

S = 59[ia](zo +2V1)0[ea)(r + 6) + 0[5 J(z0 + 2V 1)0[3 (v + §)
* T Blml(zo + 2V H0[mI(r + 8) + 0[n)(zo + 2V )8[n)(r + 8)

. Tﬁ[ia](zo + 2V )(r — 8) + 0[5 1(20 + 2V H)O[F 1(r — 8)
T GIml(zo + 2V HO[mI(r — 8) + 0[n)(zo + 2V OI[n](r — &)

ee=—-1, e=-i, =1

’

101
il = {4 - [52]=[22], [i3]=[‘1’§] :
.

. . 01 . 01
[71]“—‘“)0-, [Jz]=[00], [Ja]=[10] ,

ml=| 0], W?[i;] ,

10
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'I'=/ v, 6= / v, Z()Ecz, V;:/dﬂ
—kt b;

Here S and T are constants (6.2.8) and the normalized Abelian integral §2 is
determined by the asymptotics

1 c cl +
/d0—+i2i5(~(u_m)2+u_w+...), U — K

The Clebsch Case. The Lax representation is as follows:

Lw=Y {pa = Mawa} >

[

Acw) = 1 AV + AP

?

AP =) " pawaoa/2 (6.7.3)

AD = Z{pawa(w +Jo —20)+ M, w‘wm}Z—‘i‘ ,

Wq
w? = (Wi +wi+wd)/3, T=(N+L+h)/3, ws=w(u)

It is a Hamiltonian system with the Poisson bracket (6.2.3) and the Hamiltonian
1
H=dH +dH,, H; =§Z(Jap§+M2) ,
1 J] J2 J3 2 2
HZ—EZ( 7. pz"'JaMa

The solution formulas are obtained by the isomorphism [6.5, 36] of this case
and the Manakov case:

(6.7.4)

WiwW W3

Pa = wa(sa - Toz)) M, = (Sa+Ta) )

o
2 2 2

ww +ww +'U)'U)
o = 192 1%3 23(d1

— w%dz) + 2w1 w2w3d2 y
2wiwaws

¢ =di — wj dz, Wo = We(K)

Direct integration of the L — A pair (6.7.3) by the technique of Sect. 6.5 yields

the formulas (6.6.2) for p,, where [ = p (6.2.4), r = jo + v and the vector V is
determined by the normalized integral with the singularity

1 d2 dsz d1
/dﬂ——)iz( 2p2 —p+...>, u — 0%

u
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These formulas were obtained by Kotter [6.42] (see also [6.9]) for d; = 0. The

expressions for M, obtained in this way are more complicated and we do not
present them here.

Remark 6.10. Adding to V't a period vector of the form

1 0 2 0 N 2
(3 0lm (2 ) (%), warez 629

does not change the solutions. Let us normalize the period matrix (6.7.5) changing
a basis in €2. We obtain that the period lattice is given by the normalized matrix

2 0
(0 1\21‘[) , (6.7.6)

where [ and IT are connected by (6.5.4). The matrix (6.7.6) is exactly the period
matrix of the Prym variety Prym,(X). It shows that the mapping of the Liouville
torus to Prym,(X) is one-to-one. This fact was established in [6.34, 32].

Remark 6.11. All integrable cases considered in the present and next sections
depend on 6 arbitrary parameters. We obtain additional parameters adding the
Casimir functions fi, f2, g1, ¢2 to Hamiltonians (6.7.2,4). Furthermore, the
bracket (6.2.3) is invariant with respect to the transformation p, — ap, (for
all « together), which changes a Hamiltonian. We also remark that for any in-

tegral K of the Clebsch top (as well as of the first Steklov case of integrability
[see below])

> 0K/0Ja

is an integral of motion. Therefore, the transformation J, — J, + A (for all «
together) preserves integrability. Combined with the transformation p, — apg

mentioned above, it guarantees integrability of the Clebsch and first Steklov cases
with arbitrary J,. |

6.8 The Steklov Cases

The integrable Steklov case of motion of rigid body in liquid was solved by
Kétter [6.44]. In his paper he used implicitly the Lax representation with an
elliptic spectral parameter [6.28]. Various modifications of the Lax pairs for the
Steklov cases were suggested in [6.5, 45, 46].

The Second Steklov Case. It possesses the following Lax representation:
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Ly(u) = Z {Sawa(u) + %Ta(wa(u — k)t welu + K'))} 92;; 3

An(u) = a1 AP + A9 | (6.8.1)

wi1wWww
AP =23 5.~ 2w

g) = ZT {we(u — k) — wo(u+ rs)} —

The Lax equation (6.1.1) with the matrices (6.8.1) describes the Hamiltonian
system with the Poisson bracket (6.2.7) and the Hamiltonian

H= C1H1 +62H2

)

H=Y (wg(ﬂ)sg - 2“";"2’“"3 (n)SaTa) ,

o4

H=Y (_ “’lzm (K)T2 + 2wa(K) S, T, )

o3

The L — A pair satisfies the reduction
L(—u) = —L(u), A(—u)=A(u) . (6.8.2)

Note that the factor E /i (where i is the involution tu = —u) is a rational curve.
The matrix L, multiplied by wywaws(u)

L - wiwawsL

becomes a function on E/i. So the Steklov cases (see also the first Steklov case
below) possess Lax representations with a rational spectral parameter.

The spectral curve X (6.5.3) corresponds to n = 3 of Sect. 6.5. It also has
an involution

T. (Mau) - ("/1'3 _u) ’

which is a corollary of (6.8.2). This involution has two fixed points 0" and 0~
with v = 0 (Fig. 6.3). The factor X /7 is a curve of genus 2. The involution =
changing the sheets of the cover X — F is the hyperelliptic involution of X /.
Its fixed points are pi1, q1, ;2, K, iK', K +iK'.

We shall specify the parameters determining the Baker-Akhiezer function to
satisfy the reduction

P(tP) =(P) . (6.8.3)

Then the reduction (6.8.2) is automatically fulfilled.
One can always choose a canonical basis of cycles such that (Fig. 6.3)
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Fig.6.3. The spectral curve X

Tap = a4, Tb] = b4, Taz = as, Tb2 = b3

The Prym differentials v = (11, v2,13)7 (Sect. 6.5) satisfy the equality

1
v =Tv ,T=( 0 1)
1 0

The asymptotics at the singularity points of x and of the normalized Abelian
integral of the second kind §2, determining the velocity vector V, are as follows:

S S +
p,—):':ii';;, .Q—-):EC];{LET atP —0

I - +
,u—+:t4i(uT_ D’ 2 - i622i(u—n) atP — &

- o+
AR T R TOwa at P — -k~

Hence, the equality
Td2 =df2
holds. For the b-periods we have
TIT = IT « fp B vL
Vv =>H=(,g g j), V=(Zz) . (6.8.4)

Let us fix the fixed point of 7 as the starting point in all integrals Py = 0* or 0.
The symmetry of the period matrix gives

0(Tz; IT) = 0(x; IT)

This in turn yields
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TP TP
0( v+ Vit+ D;II) =6(T( v+Vt+ D), II)=
P Po
P
o( v+ Vi+ D;II)
Py

if the vector D is also symmetric
D=TD . (6.8.5)

Thus we obtain that (6.8.3) is equivalent to (6.8.5).

The even part of Prym,(X) with respect to 7 is a two-dimensional Abelian
torus. We see that the flow V't is restricted to this torus. Let us give the solutions
in terms of two-dimensional theta functions. For this purpose we use the theta
function reduction technique, see Chap. 7. Let us make a substitution of the theta
function’s summation variable

1
m = N(n+9), N=( 1 —1)
1 1

Here n € Z°, 6§ = (61,6,6) = {(0,0,0),(0,1/2,1/2)}. The matrix NTIIN
consists of two blocks

T _ H+ 0 _ o 2ﬂ _
NIIN-(O 11_)’ IL,-(M 2(7+5)), I_ =20y —§).

Hence, the following equality holds

(Hm, m) + 2(:1:, m) = (ﬂ+(n1 + 61,n2 + 62), (n1 + 51 , g + 52))
+ 2((:171 , Zo + .’133), (n1 + 51,712 + 52))
S+ (H_(n3 +683),n3 + 83)) +2(z3 — z2,n3 + 83)

which yields the representation of the 3-dimensional theta function in terms of
2-dimensional and 1-dimensional theta functions:

6(a; 1) = 6 [3 g] (@1, 2 + 3% I1,)9 [2] (23 = o33 I1.)
(6.8.6)
+6 [‘; :,] (21, 72+ 23); 10 m (23 — 233 I1.)

The structures (6.8.4,5) of the vectors V and D prove that the 1-dimensional
theta functions in (6.8.6) are constants.

The First Steklov Case. The corresponding L — A pair and the Hamiltonian
are given by

Jo—J, 1 o
LI(u) = Z {pawa(w2 + 2 )+ EMawa} %’i’ ’
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Aw) = di AP + AP, AP =2 p 22 ”a

Wq

A=) {2pa_____w1:2w3 (w + T — 52+ M, L2 } Za

a Wy 2i ’
Wy =wa(u), H =d1H1 +dyHy

Hi=3 Y242y 25 p0 M, - 1Y)

’

J1J2J3
Ja

The solution formulas can easily be obtained using the isomorphism [6.5] of
this case with the second Steklov case:

1
=3 > ol JE+ T+ T7 — T2)pk +2 PaMy + JoM2) . (6.8.7)

W1wW2Ws3

Pa=Say My = Sa(wl (k) — 3w(x)) — 2T, (®)

=dy —wi(k)dy, ¢ = —wiwyws(k)dy

Direct integration of the L — A pair (6.8.7) yields the same formula for p,,.

Remark 6.12. Adding to vt = (v1,v2)Tt a period vector of the form

1 0|20 28 N 2
(0 1| 28 7+5> (M) N.MczZ (6.8.8)

does not change the solutions. Since 2v4, v, + 13 are the normalized holomorphic
differentials of the Riemann surface X /7, the matrix (6.8.8) is the period matrix
of X /. It shows that the mapping of the Liouville torus to J(X/7) is one-to-one.
This fact was established in another way in [6.21].

6.9 Complete Description of Motion in the Rest Frame

Up to now we have described the motion of tops in the moving frame attached
to the body. But for a complete description of the rotation it is necessary to
describe it in the rest frame.

It is convenient to use the isomorphism of an algebra of vectors in R? with a

vector multiplicaton and an algebra of traceless 2 x2 matrices with a commutation
operation

X =(X1,X2,X3) «— X = Xo22
Z (6.9.1)
[X,Y] — [X,Y]
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Everywhere below X means the matrix (6.9.1). The coordinates X and X' of

a vector in the moving and the rest frames, respectively, are connected by the
transformation

X=GX'G™! (6.9.2)

with some 2 x 2 matrix G . Our aim is to determine this connection matrix.
The equations of motion of a heavy rigid body about a fixed point in the
moving frame attached to the body are as follows:

M =[M,(-G:G D +Ip, L1, p¢=I[p,(~G:«G™Y)] . (6.9.3)

Here L =5 L,0,/2iand L, are the constant coordinates of the center of mass

in the moving frame with an origin at the fixed point. Comparing (6.2.1) with
(6.9.3) we get

GGl =~

AT (6.9.4)

We also fix the third axis of the rest frame, assuming it to be the gravity
vector. Combined with (6.9.2) it gives

Gos G} =Z DPala - (6.9.5)

An arbitrary solution of (6.9.4) satisfying (6.9.5) may differ by a constant diag-
onal gauge factor

G- GC, [C,o3]1=0 . (6.9.6)

The remaining freedom (6.9.6) corresponds to the so far unspecified two axes of
the rest frame.

The motion of the rigid body in liquid is described in a similar way. In this
case the vectors

2= (91, Qz, .{23), .QO, = BH/BMa

v =(v1,v2,03), Vo =0H/0p,

are the angular and translation velocities of the rigid body in the moving frame
attached to the body [6.9]. As above, for the heavy tops the rotation of the fixed
frame to the moving frame is determined by the matrix G satisfying (6.9.4).
Let us choose the third axis of the rest frame coinciding with the (constant)
momentum p. Then for G we have

1
GoyG~ ! = > Z DaCo - (6.9.7)

The remaining freedom in G is the same as for the heavy tops (6.9.6).

The velocity of translation movement in the rest frame v’ = (v}, v}, v}) is
equal to

b
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Zv;aa =G} ZvaaaG =G Z -g}—f-[—aaG .

To find G(t) we still have to solve the linear differential equation (6.9.4). It
turns out, however, that the Baker-Akhiezer functions contain more information
than the Euler-Poisson equations themselves and allows us to find G(¢) without
solving (6.9.4).

The Kowalewski Top. Let us consider the equation ¥; = AV at A = 0. Observe

that A(\ = 0) decomposes into two 2 x 2 blocks, which essentially coincide with
the angular velocity.

In particular, the matrix

=(1/)1(0—) ¢1(0+))
¥3(0-)  ¥3(04)

satisfies

1 0H

1
Y = ——E a—maa@ = -—-'ii'(M]O'] + M20'2 +2M3U3)‘P

From (6.3.26) we find

1
—_— 0
0 T [e)(Vi+ P)

ebt

0(fo, w+P-R)
0

0

xA e_bt ’

0(for w+P—R)

where b= (0% df2 and A'is given by (6.3.26) [(6.3.28)]

0_ 04
6(/ w+Vt+P) 9(/ w+Vt+P)
A: OO.*O.— OO+0+
O[e] (/ w+Vt+P) —0€] (/ w+Vt+P)
OO+ oo+

It is easily checked that the time evolution of the Poisson vector p is given by

1 -1
t) ==
p(t) 5, P3P

So reducing ¢ by the constant right factor, we have



6.9 Complete Description of Motion in the Rest Frame 231
1

0 Vi+ P bt+bo
G= (Vi+P) 1 A(e e—bt-—-bo) )

T fel(Vi+ P)

where by = const.
By inverting, we also obtain the evolution of the top in the rest frame. For
example, the motion of the symmetry axis of the top in the rest frame is given

by

, e—bt—bo » ebt+bo
E Lyoa = bt+bo A" 03 A e—bt—bo )

where L/, are the coordinates of the unit vector directed along the axis of the
top.

For the Clebsch and Steklov cases we restrict ourselves to the case dy = 0,
i.e., H = H for both systems.

The Clebsch Case. Substituting the asymptotics

O(u) = (@ + Qu + O(u?)) exp (—;—i’%t)

into the equations

LU =Uj, W,=AY

we obtain
PQUZ%Q_I = zpaaa )
Y Myoq = [Qdi—l, 3 paaa] + % > Pada (6.9.8)

2i §,07! = [Z Pala, Qqs—l]

From these formulas we get

_ 1 M
6,6~ = = (E Mooy — p? 3 paaa> . (6.9.9)

'I_'he equalities (6.9.8, 9) show that G(¢) satisfying (6.9.4, 7) can be easily
obtained using & with the help of multiplication by the right factor

G=¢& exp (—?ﬂt)

1 p

(we consider the case H = Hj). Finally, we have
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G= 6(Vt+ D, II) 6Vit+D+r, I
“\OVt+ D+ A II) OVi+D+r+ A I

btvbo (6.9.10)
X( 6—bt—bo) ;

be 1pM 1 [% 40

T 2ip 2o

Remark 6.13. 'We ignored this fact, but in reality the ¥-function constructed here
satisfies the equation 1, = A +a(, )y (Sect. 6.1), since it was determined up
to a scalar factor depending on ¢. Nevertheless the connection (6.9.2) of the bases
with (6.9.8) is valid since (6.9.2) is invariant with respect to this multiplication.

The Steklov Case. The analogous expressions for the Steklov case are as fol-
lows:

P (u) = (P + Su+ Qu? + O@w>)) exp (9 (—z—pt)> ,

2i u?
R p pM1 03
=S +5=—~—+ =
a <u3 2p u O(u)) 2i

pPo3®™' =) paoa
5 rare @8] =5 - Lat)
2id, P~ = -2 [Z Palar Qqs-l] +3" pavald = Ja)

= Yo - Tapaloa+ ¥ para (-5 )
orsen( 5 (n-2))

The final result in this case is given by the same formula (6.9.10) as for the
Clebsch case. The difference is that in the Steklov case the theta functions in

(6.9.10) are 3-dimensional (Sect. 6.8) and the constant b is determined by the
slightly different expression

1 pMY\ 1 [+
b-——"z—i' (Jp——p—)‘l"i/o‘- das?



7. Algebro-Geometric Principles
of Superposition of Finite-Gap Solutions
of Integrable Nonlinear Equations

In this chapter we are concerned with the following question: what kind of
specialization of the parameters enables one to express the finite-gap solution
of an algebro-geometric integrable equation with partial derivatives, associated
with a non-singular algebraic curve X, of genus g,! through Abelian functions of
lower genera, in particular, through elliptic functions? By answering this question,
we could reduce finite-gap solutions to computationally simpler functions and
single out practically important special classes of solutions which are periodic
in one of the variables or satisfy a given boundary condition. A solution to
this problem was proposed in 1982 [7.1a], using the theory of reduction of
Abelian integrals and Riemann theta functions to lower genera that was initiated
by Weierstrass (see, for example, [7.2 a, b]). It was understood that the solution of
an algebro-geometric integrable equation may be expressed in terms of Abelian
functions of lower genera provided the moduli of the algebraic curve belong to
some subset which is dense in moduli space. Specifically, for genus g =2, such a
reduction is possible in a countable number of cases in which the curve X covers
N-sheetedly the torus X, where N = 2,3,...; furthermore, the Riemann matrix

. (27 O By 2#i/N
IT of the curve X is reduced to the form IT = ( 0 2ni 27i/N Bp )

Although the problem of reducing finite-gap solutions to lower genera is basically
solved by referring to Weierstrass classical theory of reduction, the derivation
of the resulting formulas is a technically complicated procedure that requires
application of addition theorems of the N-th order theta functions (Sect. 2.5).
As mentioned in [7.3 a, b], these technical difficulties could be surmounted
in a special case of curves X, that have a group of non-trivial automorphism
G = {g;}. In this case the action of each element g; € G on the basis of cycles in
Hi(X,,Z), g : Hi(X,,Z) — Hi(X,,Z) is associated with the transformation
0; = Z’ Z’ € Tr(2g, Z) that leaves the B-matrix invariant. So, in view of

1 1

(1.5.13), the B-matrix satisfies the relations

B(2mid; + ¢; B) = 2ni(2wibj +a;B) Vg; € G

?

! Throughout this chapter the lower index of X is used to denote the genus of X.
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which are used to define the special structure of the B-matrix. This approach,
developed in [7.3], is simple and straightforward, so that it is quite effective in
the cases where it is applicable. For instance, it is possible in a number of cases to
derive numerical values for the B-matrix, starting from symmetry considerations
only.

The reader can find a discussion of different aspects of the reduction problem
for finite-gap solutions as presented in this chapter in [7.4].

Here we give the Weierstrass reduction theory for the case of genus g = 2
and describe the reduction of theta functions to lower genera for curves with au-
tomorphisms. As applications we consider the isospectral deformation of elliptic
finite-gap potentials which are the solutions in terms of elliptic functions for
a number of algebro-geometrically integrable nonlinear equations and classical
dynamic systems. We use the formalism of the theory of theta functions (Krazer
[7.2a], Krazer and Wirtinger [7.2b), Igusa [7.5], Fay [7.6], Griffith and Harris
[7.7], Farkas and Kra [7.8], Mumford [7.9]) and give brief proofs of the propo-
sitions directly related to the theory of reduction. The original results presented
here were previously reported in [7.1, 3].

7.1 The Simplest Reduction Case

We illustrate the present approach by considering an example of the reduction of
a hyperelliptic integral to the elliptic integrals described by Jacobi and Krazer’s
monograph [7.2 a]. By making in the elliptic integral
d¢
-/
VEA =81 - 26

a rational substitution of order N =2,

_ (-1 -5
§= OO p) , (7.1.1)
we obtain

(A2 — afB)d)
= — 1 -_ 1 -
VI=T=P [t

(7.1.2)

where p()\) = (A — a)(A — B) — (1 — a)(1 — B)). If the constant ¢ in the last
equality is chosen so that the function ()) is a complete square, i.e., we set

OCERY s
I-a1-p) °

(7.1.2) takes the form

F=d =

(7.1.3)
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e
VEL—o0 - &9

Ry — (A £ Vap)dx
= \/(l a)(1-p) / VA =D — )X = B\ — apB)

Equation (7.1.4) examplifies the reduction of independent hyperelliptic integrals
to elliptic ones made by a rational change of variables (7.1.1). In other words,
(7.1.1) and (7.1.4) imply that there exist covers 7+,

(7.1.4)

X%LX—J

?

of a hyperelliptic curve of genus 2, X3 = (u, A),

p2 =20 — DO = )\ - BA — af) (7.1.5)
over elliptic curves (tori)
75 =€ — &1 - &8 (7.1.6)

with moduli c4, defined by (7.1.3).

The important property of the curve (7.1.5) is the presence of a non-trivial
automorphism T of second order with a fixed point,

, pap}?  ap

The automorphism T' makes it possible to determine the factor X, /T, which can
easily be shown by going from (7.1.5) to a conformally equivalent curve

P=R-hHR-HR-&) , (7.18)
using the transformation

ejt+er \A—eq

A= — (7.1.9)
€2 —€l A+e

It is seen that the curve X, /T is defined by the formula

7" = (€ — ) - ) — &)
When the curve X is defined in this way, (7.1.4) has the form

/‘ /\d/\ [

V- el)(s - ezxé -
(7.1.10)

%3]
i \/é(s—el)(s—ezxg—eg
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The elementary example described above leads us to the formulation of the
general reduction problem of Abelian integrals and Riemann theta functions to
lower genera that was given by Weierstrass (see Krazer [7.2 a]). The first results
along these lines were produced by Konigsberger and Kowalewski [7.2 a]; the
problem was also treated by Appel, Gursa, Burkhardt, Bolza, Krazer, Picard,
Pringsheim, Poincaré, Humbert, Hermite and others [7.2 a], and was recently
discussed within the present-day context by Igusa [7.10] and Martens [7.11].
These papers have considerably influenced our treatment as presented in this
chapter.

The algebraic curves for which Abelian integrals reduce to lower genera
sometimes have non-trivial automorphisms. In particular, for the case of genus
g = 2 the restrictions imposed by the Riemann-Hurwitz formula (2.2.1) enable us
to conclude that the automorphism (7.1.8) is only possible for the given type of
automorphisms with fixed points. With g > 2, there is a much larger number of
curves with additional symmetries which were discussed and classified by Klein
[7.12], Kuribayashi and Komiya [7.13), Accola [7.14], and Horiuchi et al. [7.15].

7.2 Poincaré Theorem

In this section we formulate the Poincaré theorem about the “complete reducibil-
ity” of the Riemann matrix to block form under the action of the group Tr(2¢, Q)
and discuss its relation to coverings over a torus.

The point B € U, is said to be reducible relatively to the action of the group
Tr(2g, @), if there is an element o € Tr(2g,®) such that

B 0
U'B=(O B") ’

where B' € Uy, B" € Uyn. Following [7.10, 11] we formulate the Poincaré
theorem about “complete reducibility”.

Theorem 7.1. (Poincaré [7.16]) Let II; be a Riemann matrix (2.5.3) such that
for some complex (go x 2go)-matrix IIp and some (2g; X 2go)-integral matrix
M, where 1 < go < g1, the upper (go X 2¢g;) submatrix of the matrix II; can
be written as IToM7T. Then there exists an element o € Tr(2¢;,®) and a point

By, € Uy, such that the matrix (27il,,, B,,) is necessarily equivalent to the
Riemann matrix IIp and

G-Bg1=(B61° 12,) , (7.2.1)

where IT = o(2nil,,, By,) and p is a complex invertible (g; X g1)-matrix.

At the points reducible relatively to the group Tr(2g, Z) the theta functions
0l](z; B) are decomposed into a product of theta functions of dimensions go
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and ¢’ with period matrices By, and B’, and at the points reducible relatively
to the group Tr(2g, @), the theta functions are decomposed into a sum of the
products of theta functions of dimensions go and ¢' with matrices NB,,, N B’
for some positive integer N. In what follows we will be concerned with this case
only.

In the special case gy = 1, the Poincaré theorem is reduced to the Weierstrass
theorem:

Theorem 7.2. (Weierstrass, see Kowalewski [7.17]) Suppose that go = 1 and
the condition of the Poincaré theorem are valid. Then and only then exists an
element o € Tr(2¢1,Z) and a point By, € U,, such that

By 2rik/N O .-+ O
2wik/N
o - Bg1 = 0 , (7.2.2)
: B'
0

where k is the positive integer 1 < k < N and

N =PfMTQM) (7.2.3)

and Pf is a Pfaffian.?

Thus, we have

Corollary 7.3. Let the B-matrix be of the form (7.2.2). Then the reduction
formula holds

2pn1
6N (z; B) =ZcpN9 [% ] (Nz1; NB1)
PN

PN2 (7.2.4)
2pn2 2pN3  2PNg | ons. N A
xe[zkpm 0 ... 0 (Nz;NB)
in which 2 = (22,..., z,), the summation is over the whole set of representatives

Z°|N, py = (PN1,PN2,- -, PNg), and the constants ¢, = are equal to

2 We recall that the Pfaffian P f(A) of the determinant |A| of a skew-symmetric matrix A of degree

n = 2m is said to be a form of degree m with respect to the elements of the determinant such
that |A| = (P f(A))%.
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7l

Cpn = €XP ( > klePNZ)

Y 9[2”N _OZPN‘l](O;N(N—l)B)
M=1J,J.f{,N—1 (7.2.5)

x 6 [ZPN-I EZPN—Z] ©O: (N — 1)(N —2)B) x ---

x 6 [2”3 52’%] (0;6B)8 [2’(’)2] ©:2B) |

where Pm =(pM1,...,ng), M=N‘,...,2.

The proof follows from the Koizumi formula (see (2.4.4) and [7.18]) and the
following equality:

Bu 2rim 0 --- 0
2wim
0lel| ;| O = (=1)~c12m/2 (7.2.6)
: B
0
By 0---0
6, 6' 6' .o 6' 0
X6 6”+i€'m s’+2s’m 6’3’ e’y’ o B
1 7€ 27& 3 g : B
0

Thus, (7.2.6) implies that when the condition of the Weierstrass theorem is
valid, the g-dimensional theta function 8[e](z; B) is expressed through g — 1-
dimensional theta functions and Jacobian theta functions.

We show that the condition of the Poincaré theorem holds, if the Riemann
matrix IT,, is generated by an algebraic curve which is an N-sheeted covering
over an algebraic curve of genus go < ¢gi.

Letn: X, — X,, be an arbitrary N-sheeted branched cover of the compact
Riemann surfaces X, and X,  of genera g; > go > 1. We write down the
canonical bases of homologies

O,y =@, a5 60, 6D € Hi(X,,, Z), i=0,1

with intersection matrices
Qi=(P o) = ( 0 Ig‘) =01 |, 1.2.7)
'—Ig.' 0

assuming that the bases v and 4 do not intersect the branch points of
the cover and their images. We define the holomorphic differentials w(® =
W®,..., w®) dual to 4, i = 0,1, i.e., the holomorphic differentials normalized
so that the Riemann matrix ITy; has the form 27ily;; By;), By; € Uy, , 3 =0, 1.
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The cover « induces the mapping of homologies, M : Hi(X,,,Z) —
Hi(X,,,Z), which is described by the (2g; X 2go) integral matrix (M;;) by
the formula

290

MyP =3 "M (7.2.8)
=1

(

where %1) is the basis cycle of Hi(X,, ,Z). Under the action of 71 every basis

holomorphic differential w§°) € H1(X,,,Z) transforms into a linear combination

of basis differentials wgl) € Hi(X,,,Z). The (go x ¢1) complex matrix ¢ can
thus be defined by

go/w(l)=. / WO, i=1,....91 . (7.2.9)
(1) ‘290
‘ ZM;,-'yfo)

j=1

Equation (7.2.9), written in matrix form

oIl, =, MT (7.2.10)

represents the condition of Theorem 7.1.

We can also show that for the matrix M the following equation holds (see
for example [7.14]):

NQ(O) = MTQ(I)M : (7.2.11)

where Q®, ¢ = 0, 1, are intersection matrices (7.2.7) and N is the number of
sheets of the cover m. When go = 1, (7.2.11) has the form (7.2.3). We denote
M= My M , where M, are (g1 % go)-matrices. Then (7.2.11) leads to the
Mz M,
equations
MIMy — MIM,=0
MEMy — MIM; =1,,N (7.2.12)
MIMs — M{M,;=0

which, for go = 1, result in a single equation

g
> MjiMgjo — MgaiMja=N . (7.2.13)
=1

Our further discussion is based on the Weierstrass Theorem 7.2 for covers:

Theorem 7.4. Suppose that an algebraic curve X, covers N-sheetedly a torus
Xi. Then there is an element o € Tr(2g,Z) and a point B € U, such that the
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representation (7.2.2) in which k is the positive integer, 1 <k < N and Bis a
((g — 1) x (g — 1))-matrix of ¢,_; holds.

7.3 Coverings of Genus 2 Over a Torus.
Humbert Varieties

In this section we prove the Weierstrass theorem of Sect. 7.2 for genus g = 2
and describe the conditions of reduction in the moduli space of algebraic curves
of genus 2.

Theorem 7.5. (Weierstrass theorem for genus 2) In order for the algebraic curve
X5 to cover N-sheetedly the torus X, it is necessary and sufficient that there
are an element o € Tr(4,Z) and a point B € U, such that

o»_( Bu 2xi/N
o B_(Zwi/N Bﬂ) . (7.3.1)

Proof. (Krazer [7.2 a]). Suppose that there is a cover 7 : X, — Xj. Then, on
X, there is a holomorphic differential w, reducible to an elliptic differential with
periods v and »'. Decomposing the differential into holomorphic differentials
wp and wg, w = cjw; + cowy, normalized in this basis (a,b) € Hi(X>2,Z), and
calculating its a and b periods, we have the equations

a = Mnpv+ Mo
e = Myiv+ Myv'
c1B11 + &2 Biz = Majv + Mapv'
c1B12 + 2By = My v + Mygv'

(7.3.2)

?

The condition for which the equations (7.3.2) are compatible for the unknowns
a1, €2, 1, V2 1S

det (2“‘]{;T B ) =0 , (7.3.3)

where M is a (4 x 2)-integral matrix

MM,
My M)

734
M3 M3, ’ ( )
May1 My

M=

or, in expanded form,
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-2%(@311 + BBy3 + YBx)+ #(sz — B Bp)+e=0 (7.3.5)
where

a= MMy — MuMs, ~v=MnMs— MunMpn

6 = MipMp — MMy, €=M My — MaMs, (7.3.6)

B = My Mz — Mya Mz — (Mo Maz — M Myy)
The condition (7.2.13) must hold for the numbers M;;, i.e.,

My Mz — MioMz + (Myuy Mgy — MpMy)=N . (7.3.7)
Substituting from the first four equalities (7.3.6) the quantities
M21 _ Mu’)/ + M31(5 M22 _ Mlz"y + M325
M1 Msy — Mip M3y’ M1 M3y — Mz M,
(7.3.8)
My = Mue = Mz M, = —Mi2e = Mo
T My Msy — MMy 2 My Ms; — MM,
we obtain the equation
eé+ ary

Moy Myy — MMy = — (7.3.9)

My M3y — My Ma,

With this equation taken into account, the fifth of the equations (7.3.6) transforms
into a quadratic equation with the roots

1
My Msy — Mya Mz, = 5(ﬁ + /B -4+ ay)
(7.3.10)

1

Mo Map — My Ma = 5(=f £ v/ f? — 4(eb + ary)
From this equation and (7.3.7) we have

N2 =32 —Aeb+ay) . (7.3.11)

To complete the proof, we have to find an element ¢ € Tr(4,Z) such that
(7.3.1) is valid. For this purpose we find a matrix T such that

T (N 0 0 1
MT-(O 01 o) . (7.3.12)

We consider the matrices A;, By, D12, C12, Ay = Dy3A1Dya, By = D13 B D1y,
where

1 010 0 010
w00 io] B=5 00

D 0100 (7.3.13)
co(83 8 8). e300

0 0 -1 1 0 010
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For the sake of completeness, we also give the matrices

100 1 1 0 00

{010 0 [0 0 o0 1

=g 010l B=lo o 1 ol - (7.3.14)
0001 0 -1 0 1

The action of the matrix A;, ¢ = 1,2 on M7T amounts to adding the (2 + i)-th
column of the matrix M7 to the i-th column. As a result of the action of the
matrix B;, ¢ = 1,2, the i-th column of the matrix M7T is added to the (2 + ¢)-
th column, and the :-th column is replaced by the (2 + z)-th column multiplied
by -1. Under the action of the matrix Dj,, the first and the second columns of
the matrix M7 are exchanged, as are the third and the fourth columns. Finally,
under the action of Cjy the first column of the matrix M7 is added to the
second, and the fourth column is subtracted from the third. The six matrices
introduced are enough to reduce the arbitrary matrix M7 to the form (7.3.12).

The matrix 77T = (Z :) maps a basis into a basis in Hy(X,, Z). Therefore,

b

the appropriate matrix ¢ = d) € Tr(4, Z) wransforms the B-matrix to the

form (7.3.1). The proposition proven can be inverted (Krazer [7.2 a]).

Corollary 7.6. If a holomorphic differential on the curve X, is reduced to an
elliptic differential, then the other independent differential is also reduced to it.

We can thus conclude that the curve X; is an N-sheeted covering over

two tori X; and Xj; the resultant relations are represented in the following
commutative diagram

X & x, Sox
N R
rxp Lo L i)
in which the mappings =, ' introduced above, A’', Az, A are Abel maps, and

¥, ' are the mappings of the Jacobians.

We note that while proving the Weierstrass theorem for genus 2, we intro-
duced the varieties

6 o
(27i)2 (Biz (7.3.15)
— BuBpn)+e=0, A=p*—4ay—4c6e N}

1
HA = {B]%(aBu + ,BBIZ + 7322) +

Proposition 7.7. (Krazer [7.2 a]) The quantity A is invariant under the action
of the group Tr(4, Z).



7.4 Expression of Moduli for a Genus Curve 243

The variety H, is called an Humbert variety with the invariant A [7.19].
In the present case of reduction, the invariant A is a complete square A = N2,
N € IN. The other cases are discussed by van der Geer [7.19]. In the simplest
case A =1 H; is a variety of singularities, i.e., a set of points B such that the
matrix is equivalent to a diagonal one and thus reducible with respect to Tr(4, Z)
(Sect. 7.1). In what follows we discuss other examples of Humbert varieties.

7.4 Expression of Moduli for a Genus 2 Curve
in Terms of Theta Constants

In this section we specify the description of hyperelliptic curves, given in Sect.
1.8, to cover the case when g = 2. This is necessary for the construction of
applications of the Weierstrass theorem.

As is known, a non-singular curve X, of genus 2 is always hyperelliptic
[7.8]. Following Bolza [7.20], we write down the curve X, as

6
4[] 618,11+ 6208,1%)
2= I , (7.4.1)

10
xt H " lek]
k=1

where the products []' and []" are extended to all odd and all even character-

istics. The Lemma given below is derived from works by Rosenhain [7.21] and
Bolza [7.20].

Lemma 7.8. Let the curve X, have a basis fixed in H;(X,,Z) by six char-

acteristics [A;] = fgf w, where Q1,...,Qs are the branching points of X»,
and w = (wi,w;) are normalized holomorphic differentials. Then, the curve
X = (1, A), realized as (7.4.1), is conformally equivalent to the curve

£ = A+ DO = M)A = XA = ) (7.4.2)

where A(Qg) = oo, A(@5) =0, MQ4) = —1, MQ4—i) = \;, i =1,2,3,

o 0e10Me] . B
,——m, 2‘7/] #k—1,2,3 . (743)

[e11 =[A4A546], [611=1[A4] ,
[e21=[A42], [62] =[A24546]

[63]=[g 8] [65] = [AsAe]

b

(7.44)
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the differentials dX/ p and d\ /i are normalized on X5, and the normalization
constants c;j, ¢,5 = 1,2 of the holomorphic differentials wy = (cx1 A + cx2)dA/ i,
k = 1,2 normalized on (7.4.2), are equal to

en = —(1/2rk)8aley), 2 = (s /2n°kD)bles]

(7.4.5)
a1 =(1/27%k)01 (1], 2= —(k1/27*:Dbile)]
where
lo1]=[A3A546], [0,]=[A43] , (7.46)
k1 = 0le116le218les], K2 = 6[6:11616216[65] o
k1/r2 =) =k | (7.4.7)

and the sum.of the characteristics in (7.4.4,6) is written multiplicatively.

Proof. We set

_ Gileil+ f200,1)

- 2 (7.4.8)
61lg,] + 021@,1)

where the quantity x = x;/k; and the characteristics [g,;] are determind by
(7.4.6,7). By substituting (7.4.8) into (7.4.1), we obtain

i = k(\82lg,] — k620D D*(L1],[05))

6
x A[[ODe;1, les)) - xD(le;1, D)

=3

where [g;],...,[06] are the six independent odd characteristics and
D(le;l,[e;]) = 61le;10200;]1 — 61l e;162100;]

Using the Rosenhain formulas (2.6.4) (an extended version of these formulas is

given in App. 7.1), we transform the last equation into the form (7.4.2), where
Ai» © = 1,23 are determined by (7.4.3), and

S O
2 K2 (61[0,] + 62[0,])0)

with the product J]"' being expanded to four even characteristics unequal to the
characteristics (7.4.4). Now, in line with Sect. 2.8, we write the following two
representations in a fixed basis of homologies for the coordinate A that has a
second-order zero at the point s and a second-order pole at the point Qe:
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6’ [ A4 As5Ag)0? [g 8} (fg1 w; B)

LA As A6l [, w; B)

(7.4.9)
0 0
62[As A)6*[Ad)(JF, w3 B)

¢ [0 o] Fadsad(S wiB)

By substituting () = ()3, Qs into the first of equations (7.4.9), we obtain two
formulas from equations (7.4.3). To avoid indeterminate forms in calculating A;,
we substitute () = ()4 into the second of formulas (7.4.9) (Sect. 2.8) and obtain
the characteristics indicated in (7.4.4).

To prove the propositions on holomorphic differentials, we note that (2.8.17)
yield for the curve (7.4.1):

e 10 172 , ¢ —1/2
G2=8n = (H" G[Ek]) (H 92[‘5']) ’ (7.4.10)
L] 4

k=1
a1=cn=0 ,
i.e., the differentials d)\/fi and Ad)/ji are indeed normalized. We can use this

result and the transformation (7.4.8), to find the normalization constants c;; for
the curve (7.4.2) in the form (7.4.5).

Remark 7.9. Lemma 7.8 is also proved for any other choice of the zero and
pole of the function A (the choice we made is due to the application of the
sine-Gordon equation (Sect. 7.9).

Remark 7.10. The curve (7.4.1) has a symmetry under the transformation

Bi1 Bz 1 By BIZ
A = , 7.4.11
( (Bl2 Bzz)) - ()\ (sz B ( )
which converts the canonical differentials d)/7 and Ad)/f into each other.

Remark 7.11. Equations (7.4.5-7) can be obtained by fixing the curve in the
form (7.4.2) and determining some basis in H;(X>2, Z) on it. Then, for the divisor
D= P, + P, — 2Q, we write down (2.8.11)

VOO ZXQ)O® = A@Qw)

_, A ASANADEB) L (7.4.12)
T UM lAASAGI(AMD), B T T
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where ki are constants. By making AD tend to A(Qx) and A@ to A(Qx), k =
1,...,5 in (7.4.12), and removing indeterminate forms on the right-hand sides
of the equations, we have the overdetermined set of equations

c1161[ A3 AsAg] + c12602[ A3 A5 A6} =0
c12601[A1 A3 As] + c260:[A1A3A5] =0
(c11 + c12)01[A2 A3 As] + (co1 + c22)0h[A2 A3 As] =0
(ci1 1 + c12)61[A5A5] + (e Mt + c)62[A3As] =0
(1122 + c12)01[ A3 A4 As] + (e A2 + c22)02[ A3 A4 A5] =0
(c11)s + c12)01 [ A3 AZ] + (ca1 M3 + c2)62[ A3 AZ] = 0

I

I

(7.4.13)

b

Relations (7.4.5) are obtained by solving these equations by the aid of (7.4.3) for
the projections of the branch points A;, Rosenhain formulas (2.6.4) and Thomae
formulas (2.8.15).

To conclude the description of curve (7.4.1), we give (2.8.13) as specialized
for this case. For this purpose we write

Z[e)N) = Gile] + 6ole]\, D=Pi+P— Q1 — Qs ,

where p; = (u®,2®), i = 1,2 are two points in the general position and Q; =
(0, E;), j = 1,2 are two branch points. Then

[SY

]
0Dz

o[t Sl sy Home[s 2o

2[5 Slaon 2} ooz} oe

et Yaoy  z[0 Homz [ How

2[00 amy  z|' Yooz |! e

e[t Slaoy 2|0 Homz|? oo

@ g 8 (A(D))=-Z:i (1)1 (A(l))Z:i (1) ooy TR
e |0 Haoy  z[F Yomz|l ¢loo

20 Naoy 2|t ] amz ) ol

|0 Hamy  z[} omz|l Sloo

62 -g 81 (A(D))= z-i (1)-(,\<1>)z-} (1)- (A®)
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To conclude this section, we discuss the condition under which the curve is
non-degenerate.

Lemma 7.12. (see, e.g., Dubrovin [7.22]). Let B be a matrix of the peri-

ods of curve X, of genus g, and 6;; [% ], 6 [%] theta constants §;; [;} =

(0%/92;02;)8 [%I] (2;2B)|z=0, é [%’] =6 [%,] (0; 2B). Then

(7.4.15)

rank(@,-j [E(:)'] ,é [g]): g(gz'l'l) +1 ’

where €' = (¢y,...,¢,) are all possible vectors with coordinates 0 or 1.

EI

~le ], .
0] ,0[0])1sa(4x4)-
matrix, and the condition (7.4.15) was shown by Sasaki [7.23] to reduce by

application of the Rosenhain formulas (2.6.4) to the condition for the modular
form of weight 5 with respect to Tr(4, Z) to be non-vanishing

a(B) = [ 61e1#0 . (7.4.16)

lel=1

In the present case when g = 2, the matrix (é; 5

The vanishing of each of 10 even theta constants determines the component
of a set of “boundaries”, OIF, of the variety I = Uy /Tr(4,Z). Each of these
components is associated with the coalescence of the branch points of the curve
X,. To describe OF, explicitly, we consider the singular submanifold .53,

_ _ Bu 0
Sz—ulxul—-{B.( 0 Bzz)}

in L. It is obvious that for even characteristics [¢],
e &
6 [6'} 6;!} ©; B)

6 [2] (0; B8 [Z] O:Bp), i [€]7 [i 1] :

. 11
0, if [5]-—[“].
Equations (7.4.3) for branch point projections imply that .S, is associated with
the coalescence of three branch points. By acting on S, with the group Tr(4, Z)
such that the characteristic 1 i goes into the other nine even characteristics,

we get nine more components of the set OF,. The union of these ten components
is the Humbert variety H;.
Taking into account the formula
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!
e[;’},], if e=0 ,

Iim 4[] = ) (7.4.17)
Baz oo 0, if ey=1 ,
we can see that the even theta constant 8[¢] vanishes on the set
D2 = {B'Bu — —00 Or Bzz — —oo} 3 (7.4.18)

which corresponds to the coalescence of two branch points. It follows from
(7.4.17), with the action of Tr(4, Z) taken into account, that every component of
D, [7.18].

By expanding ¢;(B) in a series in the neighbourhood of H; and ID,, we can
see that the divisor of zeros of gy (B) is exactly 41D, + 2HH,;.

7.5 Reduction Scheme for Genus 2

In this section we describe the operators needed to reduce the theta functions
and Abelian integrals on an N-sheeted covering of X, = (u, A) over a torus to
Jacobian theta functions and elliptic integrals on a torus Xj.

7.5.1. Choice of a Basis. Our discussion is based on the formula(2.6.4). It is most
useful, if the basis of homologies in H; (X3, Z) is fixed so that the B-matrix has

the form (7.3.1). We show the procedure of going over to this basis from any
fixed one.

We fix the basis of homologies as indicated in Fig. 7.1. According to (2.8.2),
the half-periods Ay,..., Ag are then equal to

[0 0 10 10
A‘"[o 0]’ AZ‘[O 0]’ A3“[1 1] )
11 11 0 0
A4’[1 1]’ A5={1 0]’ AG“L 0]

Consider the Humbert surface H 4 with A = N? > 1. In the fixed homology
basis we can propose a possible form of the matrix M as

(7.5.1)

N-1 0
-1 0

m=| o 1|, (7.5.2)
0 -1

ie.,

m(a,a2; b1, b2) = (N — 1)a, —a; b, —b) , (@&,b) € Hi(X1,Z)

and the corresponding component of H 4 is found with the help of (7.3.6) as
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Fig. 7.1. Homology basis in Hj(X>, Z), where X, is a Riemann surface of genus two

(N-1)B11+(N —2)B1z —Bn=0 . (7.5.3)

To come to the homology basis for which B-matrix has the form (7.3.1) we
have to find the transformation T such that (7.3.12) is valid. This transformation
can be constructed with the help of the matrices (7.3.13,14). We find that in the

considered case TT = (Z Z) o= (ccl Z) are given as

1 -1 0
» [0 o 1
T"=1o o0 1
0

0

1

ol o= RRE (7.54)
0

0 -1

Under the action of o € Tr(4, Z) given by (7.5.4) the matrix B and basis char-
acteristics (7.5.1) are transformed within the law of transformation for the theta
function (2.5.12-14) to the following form

) ] (7.5.5)

B# = N — 1 B — # = ———
1 « ) it B»), Bj NBu+ B

=N
#_00 #_1 0 #_1 0
at=[o o] 4i=lo o) -1 5]

7.5.6
M=P0] szl] Q_Pl} (7.5.6)
1 1) 11 7671 0] -

We write (7.4.3-6) in this basis
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s [0 0] 6’2'10" g loo] g2 [o0
\ 00 00 \ 10 00
1= = = = :, 2= - y
gloo]pfro P 00]92 oo]
lo1]” o1] 11 01 757
92 -00.1 02 -10-
X = [10] " |oo]
g2 [00] g 10]
(11]° [o1]
nGg[i(:]
ar= 00 10} oo ’
2w 3] o [so o [1o)
00 00| |10
) iz
“az= 00 :10: oo| ’
2%29[ ]e e[ ]
o1 [or|” [11
B
1 = = .1 s (7.5.8)
27r20[00]0 10 9[00}
oof Joo]| |10

2= 00] ., [10 oo| ’
2
2o oo [s 3] 10)

7.5.2. Reduction Condition. The conditions (7.3.15) that distinguish in 2/, the
Humbert variety Hy:, N =2,3,... are reduction conditions. In this subsection
we show the procedure of reformulating these conditions in equivalent form — as
conditions on theta constants and as conditions on branch point projections. To
write the reduction condition as conditions on theta constants, we fix a homology
basis in which the B-matrix has the form (7.3.1). The obvious equality

11 ) NBH 0 _
] @ (T wea)) -0

and the formula (7.2.6) that has the form
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9 Ei 6'2 . B11 2mi
e el \®\2ri B
1 2 22

—(—1)hen/2g | € € (Bu 0
(=7 9[e;'+eg eg+e;]<z’( 0 Bn

for genus g = 2 yield the condition

1 1 N NB]] 2mi _
o[ 3] (m (e 22 )) -0 . 0.5.10

Making in (7.5.10) the Nth order transformation with the use of (2.6.4), we have
the required relation between theta constants. This relation determines only one of
the components of the Humbert variety H 2. To get the rest of the components,
it is necessary to act by the group Tr(4, Z) on the theta constants involved in the
reduction condition. To derive the reduction condition in terms of branch point

projections, we must use the Thomae formulas (2.8.15) that relate even theta
constants to branch point projections.

(7.5.9)

7.5.3. Description of a Covering. To describe a covering, we must make up a list
of the reduced theta constants contained in (7.5.5-8) and then write down these
formulas in terms of Jacobian theta constants with moduli N By; and N By,.

7.5.4. Reduction of Holomorphic Differentials to Elliptic Ones. The above
discussion shows that normalized holomorphic differentials reduce exactly to
elliptic differentials. To describe the reduction of holomorphic differentials, it is
sufficient to express the normalization constants c;;, ¢, = 1,2 through Jacobian

theta constants with moduli NB;; and NB;; with the help of the formulas
derived in Sect. 7.4.

7.5.5. Description of Covers w : X; — X;, ' : X — X{. In Sect. 7.1,
we have given the algebraic derivation of a covering that belongs to Jacobi (see
Krazer [7.2]). It allows a generalization (quite complicated, though) to the case
of N-sheeted coverings, N > 2. Attempting to produce a complete theory of
reduction that uses theta functions, we give the derivation of covers =, 7’ based
on Picard’s idea used by Bolza [7.20] to describe 4-sheeted coverings. First of all
we note that it is convenient to represent the covering as (7.4.1), because in that
case the reduction made for one of the independent holomorphic differentials can
be used to derive a reduction for another independent differential by employing
the transformation (7.4.11).

We consider an N-sheeted covering of genus g = 2 over a torus, realized as
(7.4.1) and the divisor D = P, + P, — Q1 — Q», where P; = (P, X®), ; = 1,2
are two points of the general position and Q; = (0, E;), j = 1,2 are two branch
points. Let A(D) = ¢ = ((1, () € J(Xp), ie.,

Prdx P dx Prydx P 2d)
G = e~ +/ -, ( =/ —_ +/ A,C—E/—\ . (7.5.11)
Ql “ 2 'u 1 # 2 “
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We consider the elliptic function £ over the torus X = (n, £),

s [(1)] (0; NByp)

7 =1 — 61— k%), k=

ZHCEEN.
(7.5.12)
6? [8] (0; NBqy) 62 [i] (N¢1; NBn)
¢ = | ,
62 [(1)] (0; NByp) 62 [(1)] (N¢i; NBiy)

The equality

3 dé
2N 76 [0] 0: NByy) ¢ = ,
™ o] G VEWG /o Ve =0 = k20

and (7.5.11) yield an equation
/P1 dX /Pz d:\’
-+ -
1 M 2 M

_ 1 /5 d¢ (7.5.13)
2N 762 [g}(O:NBu) o VEI-6A-k8

which defines ¢ as an algebraic function of A1 and \@. We set

(7.5.14)

Equation (7.5.13) then takes the form

P gx 1 ¢ de
== : (7.5.15)
/ LB oy [8](0; NBn)fo VET =61 - k%)

where ¢ = (0, E;) and
6, [0 1]
01
Bi=- 01
i

To define £ as a function of X, we make use of the identity
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1 . 10 (NBy1 2ni
oy vesnmn o)) (e (0 05))

0 . - 00 . NB]] 27 '
0[0] (NG; NBu) 0 [10] (NC’( 2mi NB22))

Using the Nth order transformations with the use of (2.6.6) on the right-hand
side, we obtain a function that depends on relations between the theta function
and the B-matrix such as (7.3.1). By imposing the conditions (7.5.14) and using
(7.4.14), we can write down these relations as an Nth-order relational function
of X = X, For reference, we list here (7.4.14) under the condition (7.5.14)

(7.5.16)

01
o|o1| camn-o .

01
00

P [
(00] 10 00
6?2 (A(D)) 0[00]0 00] 0[

11
(A(D)) ) 6 [o 0] 0

00

— | ——
[ =]
=
(PR
=3

5 [o1] [10] ,[o1] ,[01 11 11] %
¢ 10] (A(D) 9_01_9_00_9[10] o [01]+92[01]A
5 [oo0] [11] ,[o0] ,[00 10 10|+’
d 00| (A(D)) 0_11_0_00_9[10 91[11}“92[11]’\
5 [01] [10] ,[11]

4 _11_(A(D))_ 9_01_9_00_

5 [00] afo0] s foo]

6 00| (AD)) 0_00_9_10_

01] ~ 01 (01] ~
(@] [1]%) (@ o] [0]5)

:1 0; — Y TS , (7.5.17)
(@]l (o] +a 1]5)

o

¢ [‘1’ ;] (AD)) 6 9

01

X

-1 1-
(11] ~
(91 [1 0] SANE

el

62 [z(‘)](A(D)) o|! 9[
1) (

(ol[ ]+92 ii’i) (01

X
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01 [10] ., [10
6 [1 1] (AD) 0 01 0 [o o]

01 - [01] . [o1
00](A(D)) 6 9[ ]

[00] " |10
01 [01] ~ 01 01] ~
(a o]+ o] %) (a 23]+ [11]%)
x , 01)
10 10}~ 10 10|~
(af i) [1]5) (ahe] wee [12]5)

7.5.6. Reduction of Abelian Differentials of the Second and Third Types. To
reduce Abelian differentials of the second and third types to elliptic differentials
with singularities, it is necessary to use (2.7.4,7) and the reductions of theta
functions and holomorphic differentials derived above.

62

7.6 Example: 2- and 4-Sheeted Covers of Genus 2 over a Torus

7.6.1. 2-Sheeted Covers. We derive the reduction condition. For this purpose
we use (2.6.8) to transform the condition (7.5.10)

11 . 2B]1 27 _
IRAGEEE o

to the form

10} _of10
6* [01]_9 [00] ) (7.6.2)

Condition (7.6.2) determines one of the components of the Humbert variety
H,. The variety Hy was described in modular forms by Hirzebruch and van
der Geer [7.24], who proved that it involves 15 components. The vanishing

of 15 differences z; — z;, ¢,j = 1,...,6 determines these components. More
specifically,

H, = {Blgs(B) =0} ,
94(B) = q1(B) H (zi —z;)=x35 (7.6.3)
1<i<j<6

where y35 is the modular form of weight 35 with respect to Tr(4, Z), derived by
Igusa [7.25].
We write the reduction conditions in terms of branch point projections. Us-
ing the rules described in Sect. 2.8, we define the basis (7.5.5) and assign the
1
0
to the partitions of numbers 1,...,6 into two subsets {1,4,5} U {2,3,6} and

characteristics [(1) (:] and [ z] that appear in the reduction condition (7.6.2)
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{1,4,6}U{2,3,5}, respectively. Using the Thomae formulas (2.8.15), we rewrite
(7.6.2) as “double quotients”

(Es — E)(Es — Br) _ (B — E4)(Es — Er)
(E5s — E3)(Es — E2) (Es — Ez)(Es — En)

Condition (7.6.4) is just the reduction condition for the case V = 2. Going over to

a curve with branches at infinity, realized as (7.4.2), we write down the condition
(7.6.4) for this case

(7.6.4)

=M . (7.6.5)

Condition (7.6.5) also follows from (7.5.7,6.2).
We find the explicit form of a 2-sheeted covering. For this purpose we use
(2.6.8) to make up a list of theta constants (Appendix 7.3), denoting by 9J; =

9,(0; By /i), 9; = 9;(0; Bya /i), j = 2,3,4, the Jacobian theta constants. By
substituting reduced theta constants into (7.4.1), we have

A k2 — B2 = 4x2 021 + O+ B Yk + KD (7.6.6)
where ¢ = M92/9% and

_'9% /_19% "9% "’/_'9%

k=-2 kK== - =
92’ 93’ 92’ 92

From (7.5.15) we obtain the following formulas of reduction of holomorphic
differentials

VE? - k2 d¢ 1 d¢
\/(1 +(2)(k + KD + k'¢2) 2 VEL = (1 - k2§
VE? — 2 d( 1 de’ 7.6
Ja+ ok BeaGere Ffoa-ea-Re)

Explicit formulas for the covers «, n' are obvious for the curve (7.6.6).

b

7.6.2. 4-Sheeted Coverings [2.20]. We first derive a reduction condition for this
case. Using the equation

11 . 4311 27 _
0 [0 0] (0, ( omi 4322)) =0 (7.6.8)

and twice applying (2.6.9) we have the required reduction condition

00 00 00 00
o2 o[22 o2 o] 0 069
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To write the condition (7.6.9) in terms of branch point projections, we make use of

the Thomae formulas (2.8.15). In the fixed homology basis (7.4.7), we assign the

characteristics {0 0], [0 0], [0 0], {0 0] to the partitions of numbers 1,...,6
0 o_l 11 10 01

into two groups {1,3,5}U{2,4,6}; {1,3,6}U{3,4,5}; {1,2,5}U{3,4,6}, and

{2,4,5} U {1,3,6}, respectively. We then use (7.6.8) and (2.8.15) to derive the

reduction condition

/(B3 — E\)(Es — E1)(Es — E2)(Es — E»)(Es — E4)(Es — E3)
+ v/(Ey — E1((Es — E»)(Eg — Ey)(Es — E3)(Es — Es)(Es — E3)

(7.6.10)
=v/(E2 — E1)(Es — E2)(Es — E1)(Es — E3)(Eg — Es)(Es — Es)
+ +/(Es — E2)(Es — E4)(Eq — E2)(Es — Eq)(Es — E3)(Ees — Ey)
if the curve X has no branch points at infinity, and
/(B3 — E1)(E4 — B)){/(BEs — E\)(Es — E3)
— V/(Bs — E))(Es — Ey)} 610

=v/(Ey — E1(Es — E3){3/(Es — E\)(Es — Ep)
— V/(Bs — E3)(Es — Eg)}

if its branch point Q)¢ is located at infinity.
We now describe a 4-sheeted covering. For this purpose we denote o = —i®3,

B =1} ~y=02a =id3 B = 03, v = 9% where 9; = 9;(0;2By1 /i),
¥; = 9;(0; 2B /7i), j =2,3,4, and introduce three functions
Fi = (8*B — ¥*C) — 2iAad' X — (8%B — y2C)\?
Fy=(y*C — a*A) — 2iBBA'A — (72C — a2 AN | (7.6.12)
B =(a?A — 8*B) — 2iCyy'A — (a* A — B*B)X?

where A = —ao' + 88 +vv', B=ad' — ' +vv', C = ad' + 88 —v'. For
the curve (7.4.1) we then have a representation
~ Ar’Fi P, Fy
H = ABC(BC+CA+AB) ’

(7.6.13)

and the normalized holomorphic differentials dx /B, XdA /i are reduced to elliptic
differentials by fourth-order rational substitutions. Let us find the substitutions.

We denote 8[e](z) = 0[e](z; 4B), 8[e](2) = 6[e](z; 2B). The following formulas
are valid:

211113110 A~101 A 101
29[11]9[11](4C)=+9[00](2C)9[11](2C)

o1 o (7.6.14)
o[ eod [t a0
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2lo1l=31lo0o0 ~l01 Al01
29[10]0[10}(40:“9[01}(2{)0[ }(2()

A 01 A
wi|o] o2 eo

~Too] 201 (01
L P R B (R BRI
:Olw (7.6.15)

|11

— 6 ) +6° 00](0 ,

9[‘1"1’] [00](20 +20|°! (c)e

01

»-AO

0 1]
[ 00

+26

(C)9 ©)

|
' ©
|

)—-lO
—

~foo] s[01 [01] [01]
49[01]0[01](2c)=+20 08 |°©

00 01
[01] [01]
+20 1] )6 1o © ,

~loo] ~]o1 _ [01] [01]
49[10}9[10](2c)_+20 ©8|°©

_10_ LOO-

01 01
~ 26 [0 1] ©9 [0 0} ©
Using (7.5.6, 10) for N =4, we write the coordinate £ over the torus

10 ) 4B 27
= & [1 1] (4¢( omi 41322>>

— . 7.6.16
k2 02 00 4C° 4311 27 ( )
10 >\ 271 4B

We now use (7.6.14) and the equations ) [1 1] = —iﬂg@z, 6 [(1) (1)] = 19352, to
obtain the following equation from (7.6.16):

2
~l01 Al01 ~101 4101
: 9[00](200[11](20—9[01](200[10](20

é':._.--.- ,
~101 ~101 A~l101 ~101
o1 @[] eora2] eonld ] eo

= (7.6.17)

Imposing the condition (7.6.8), we use (7.6.15) in (7.6.17). Thus we have
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& [‘1’1] ©

1
€=
k* 5 o1
6 [, 0] ©
91°°10(°°e)-201°°10]°°1621° | 2 70
y 10]" o1 N 00 11 10
00 00 00 00| {01
o1l e@=m s3] el 1]
where
_ 01| oot 201
00 =¢ (1] [1] - [3)]
From (7.5.17) we find that
01 2|01
¢ LO](A(D)) on [1 1](A(D)) on
, |01 ARy’ o1 BF;
@ [os] o e | cay
such that (7.6.18) transforms to
1 AF
£= EEE% (7.6.19)
2
9 [”0] 9 [""] (BCF, + ACF, + ABF;) — 26 [""] 9 [”] BCF,
" [10 01 00 11
9 [‘1”1’] 9 [‘;‘1’] (BCF, + ACF; + ABF;) — 28 [gz] 9 [‘1";] ACF,
We further note that
00 00 00 00
9 [0 0] 0 [0 1] 9 [1 0] 9 [1 1] =ﬂ’2’)’2 —»,32’)/'2=’)’,26¥2 _720/2
= arzﬁz _a2ﬂr2 ,
BCF; + CAF, + ABF; = 2(8"%y — B*y?)Fy
where
Fy= (o’ + BB +77) +i(y 8% — v*F7)X
+(aal3 +ﬂﬂl3 +77/3)’X2
Equation (7.6.19), therefore, takes the form
1R (R-R\
€= —FE {m} (7.6.20)
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Now, to complete the derivation of the formula, we have to find a common factor
for the quadratic trinomials Fj — Fi and Fj+ F5. Indeed, the roots of the equation
Fy — Fy =0 are i(a®A — ?B)/C~+' and yBBB'/(4*C — o'*A), and the roots
of the equation Fy + F; =0 are iAaa' /(8B — 4'*C) and i(a?A — 3*B)/Cv+'.
So, we have proved the validity of the reduction formula

d\ dX
= = VABC(BC + AC + AB)——I—?—I————\/_E__F—,?, 0 6an
_1 dé -
4 EQ -2 +p%8) '
¢ =K [(7'20 a2 A2 +2iBB' BX — (Y*C — a2 A)]

[(B2B — 'y’ZC')/\Z +2iaa’ AN — (ﬂzB 72 O)]

o[ Q2C - a’zA)i ~igg'BY , (7.6.22)
(2B — y2C)\ —iaa'A

K =a4a'2A2(720 — a*A -3 B)?
ﬂ4ﬂl2B2(720 — ﬂZB — 3a2A)2
To derive a reduction formula for the second independent holomorphic differen-
tial and a formula for the coordinate ¢’ of the cover =’ : X, — X, similar to
(7.6.22), we must replace (a, 8,7) — (&, 8',7"), A = —1/X in (7.6.21, 22).

7.7 Elliptic Finite-Gap Potentials

It is established (see for example Sect. 3.6) that the spectrum of the Schridinger
operator H = d*/dz® — u(z), with a periodic Lamé potential

uwx) =g(g+ Dp(x), geN , (7.7.1)

where p is the elliptic Weierstrass function, consists of g gaps of an abso-
lutely continuous spectrum. The Lamé potentials were studied by Hermite [7.26],
Halphen [7.27], Ince [7.28] and others. Treibich and Verdier [7.29] have recently
formulated a geometric approach to describe elliptic finite-gap potentials. Thus
they found a new series of such potentials different from the potentials (7.7.1).

On the other hand, Its and Matveev [7.30] have derived a general formula
that expresses the arbitrary g-gap potential through a meromorphic function on
the Jacobian J(X,) of the hyperelliptic curve X g of genus g. Here again the
question arises (similar to that stated in the introduction to this Chapter): under
what conditions on the moduli of the hyperelliptic curve X g does the general
finite-gap potential [7.30], which is a quasi-periodic function of z reduce to the
periodic elliptic function z?

In this section we give an answer to this question within the format of the
Weierstrass reduction theory developed above. This theory enables us to use the
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general theta function formula of Sect. 3 to derive not only the Lamé potential,
but also a new series of Treibich-Verdier potentials.
We consider a nonsingular hyperelliptic curve X, of genus g
2g+1
w=Io-Eo (7.1.2)
k=1

where Ex =n(Qk), k=1,...,2g+ 1L kF# 1L k, 1=1,...,29 + 1, m1(Q2442) = 00,
and define the basis (a, b) € H1(X,, Z). According to [7.30], the g-gap potential
u(z,t) of a one-dimensional Schridinger equation, which is associated with the
curve (7.7.2), is defined by the formula

u(z,t) = —2%105; 86Uz +Vt+AD) - K;B)+C (1.7.3)
X

in which ¢ is the isospectral deformation parameter or the time in the Korteweg
- de Vries equation

us =0uty — Ugzy (7.7.4)
U,V € €9 are the “winding vectors” defined by

2g+1

. . 1 :
Uj==2icyj, V;=8ilc; + 5015 N E), j=1,...,9 , (7.1.5)
k=1
where the ¢;;, 1,5 = 1,...,g are the normalization constants of holomorphic
differentials w = (w1,...,wy), D = P +...+ P, is a non-special divisor, K is

the vector of the Riemann constants amd the constant C is equal to

g
c=% f i (7.76)

=1 V&

Definition. The g¢-gap potential u(x), associated with the curve X4, will be
called N-elliptic, if the curve X is an N-sheeted cover of a torus.

Theorem 7.13. The g-gap N-elliptic potential associated with the curve X,

equipped with a homology basis in which the matrix B has the form (7.2.2), is
defined by the formula

2 o 2
u(z,t) = = = 55108 ) Cpy 6 [prlj\;z} (NUiz + NVit+ NWi; BN)
PN

(7.1.7)
2pN2 2pN3 ...2pnNyg ~ - S
XG[ZkPNl 0 0 (NUz+NVt+NW;NB)+C

in which the summation is over the whole set of representatives (I/NYZ9,U =
U,0), V=WV), W=(W,W)= A(D) — K, is a non-special divisor
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on X; B is a matrix of degree g — 1, formed from B by crossing out the first

line, equal to (B11,27ik/N,0,...,0) and the first column; the constants Cpy
are defined by (7.2.5).

The proof follows immediately from (7.7.3, 2.4, 5).
From (7.7.7) it follows that the N-elliptic potential is a quasi-periodic func-

tion of z. The following theorem enables one to describe elliptic periodic poten-
tials.

Theorem 7.14. For the g-gap potential to be an elliptic periodic potential on
the torus X, the following conditions are necessary and sufficient:
() the hyperelliptic curve X, associated with the potential u(z) is non-singular
and is an N-sheeted cover of the torus X;;
(i2) the following equations

Uy=Us=---=U, =0. (7.7.8)
are solvable for hyperelliptic points in the interior of the set U/, in a homology
basis in H1(X,, Z) such that the B-martix has the form (7.2.2).

Proof. A sufficiency condition. We choose a basis in H1(X,, Z) such that the
B-matrix has the form (7.2.2). Under the conditions (7.7.8) the g-gap N-elliptic
potential u(zx,t) is written as

o
u(z,t) = —-25-5—67 X (7.7.9)
Bu 2¢ik/N 0...0
2mik /N
logG(U1$+V1t+W1,Vt+W; 0 )
: B

0
where U = (U1, U), V = (W, V), W = (W1, W), and B € U,_1. We denote
U1 = miw and define the half-period w’ such that w'/w = N By; /27i. The transfor-
mational properties of the theta function (2.5.10) imply that u(z+2w,t) = u(z, 1),
w(z +2w', t) = u(z, t), i.e., u(z,t) is a doubly periodic function of z.

A necessary condition. We suppose that the g-gap potential given by (7.7.3)
is elliptic in z with periods 2w, 2w, Im— > (. Then it follows from (7.7.3)

and transformational properties of theta functions (2.5.10) that the following set
of 2¢ equations has to be valid

g
ZLUUJ' =NJ'+ZM,'B,'j,j= 1,...,g,
=1

9 7.7.10
ZW'Uk=N}+ZM{ng,k=l,...,g, ( )
=1
NiaNI::)Mi,Mz! eZ
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The compatibility condition for (7.7.10) has the form
( fi 0... 0 1 0

0 fr. 0 10
0 .. f, 10

k| poGTo %o 1| <ev2 (7.7.11)
0 fi. 0 01
\o ... £ 0 1/

where f; = N;+> 1 Mg By, fi = N!+> 1. M; Bki,i = 1,...,g, is equivalent
to the compatibility condition for (7.2.10),

( 1 0 0 M My, \
1 ... 0 My M22
0 0 .. 1 M, Mg_l 2
’ ’ < 2 7.12
rank Bu By ... By Mg Mg Sg* ’ Y )
B2 322 voo By Mgay Mgap
\Bgl By ... By M1 My, /
with g; = g, go = 1 and the matrix M of the form
( %11 J\Aj:frlz ( M, - Mx\
'21 .22 1\4'2 __M2
M= MAg/I‘l" M;J“'z | M, -m |, (7.7.13)
gl 92 -Ni M
Mg+1,1 Mg+l,2 . 1
: : \__' . )
K Mzg,l Mzg,z ) Ng Ng

Then according to Theorem 7.4 the curve X, covers N-sheetedly a torus X,
where the number of sheets N equals to

g
N = (MkN]’c —M;cNk) . (7.7.14)
k=1

Therefore the condition i) of the theorem is valid.

Following Theorem 7.2 let us transform the B-matrix into the form (7.7.2).The
matrix (7.7.13) is transformed to the form
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N 0
0 0
0 0
M=14 1| (7.7.15)
1 0
\o 0/

Returning to (7.7.10) we find that condition ii) is valid in the new basis. The
theorem is proved.

Corollary 7.15. The N-elliptic periodic potential (7.7.9) has N poles z;1(t),...,zn ()
on the torus X; = C/wZ @ w'Z, where w = 7i/U;, w' = NBy;/2U; and is thus
representable as

N
u(z,t) =2 plz — ;) (7.1.16)

=1

where g is an elliptic Weierstrass function on the torus X;.
Proof. We consider the function

fz,t) = (7.7.17)

By 2xik/N 0...0
2mik/N
0| Uiz + Vit + Wi, Vi+ W; 0
| : B
0
03(Ulz+zvly+m;%)

7l

The function (7.7.17) is nonconstant and meromorphic on the torus X; = C/wZ®
w'Z, where w = 7i/U;, w' = NBy;/2U;. This is easily seen from (2.5.10);
a shift by 2w leaves (7.7.17) unchanged, while a shift by 2w’ results in the
factor exp(—(1/2)By1 — (Urz + Vit + W1)) appearing in the numerator and the
denominator. The zeros of the function (7.7.17) on the torus X; are known,

because they are zeros of the Jacobian theta function 93 : Uzt t+Wy) % +

2m
%ﬂ%, k=0,...,N — 1. Therefore, the theta function has in its numerator

exactly N zeros on Xj, and consequently the potential u(z,t) has N poles
z1(t),...,zN(t). Using the formula (7.7.9) and the expansion of the Weierstrass
p-function near the pole, p(z) = 1/z% + o(z?), we derive (7.7.10).

Corollary 7.16. The N functions «;(t), j =1,..., N are roots of the equation
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= 2m/N
; A a0 [an/N] (NUjz+ NVit+ NWy; NByj) =0 (7.7.18)

with the functions A,,,(t) equal to

Am‘n(t) = Z C{m/N:"/N:PNB)""PNy}

PN3,PNg

< 0 2kn/N pns3,...,0
2m/N  0,...,0

(7.7.19)
] (NVi+ NW:NB) |

where the constants C’{.} are defined by equations (7.2.5), and the vectors U, V/,
W = A(D)+ K and the matrix B are defined by stating Theorem 7.13.

Proof. Equality 6 = 0, where § is the theta function in the numerator of (7.7.17),
is valid strictly for z,(¢),...,zn(t). Equation 8 = 0, is changed to the equality
6 = 0 by applying the Koizumi addition theorem (2.6.6).

We now consider a 2-gap N-elliptic potential u(z, t), associated with a non-
degenerate curve X, equipped with a homology basis in H;(X3,Z) such that
By =27i/N. According to Theorem 7.14 and formulas (7.7.5,5.7), in order for
the potential u(z, ) to be an elliptic function of z, it is sufficient that the modular
equation

10 . B 27i/N _
[0 (0 (o2 7))o -

to be solvable in the interior of Up. We denote by 9; = 9, (0; &21) and by
9; =9, (0; £B=2), 1 =2,3,4 the Jacobian theta constants.

2ni

Example. ¢ =2, N =2, For this case (7.7.20) can be reduced by (2.6.8) (App.
7.3) to the form

2 10 . Bll 7l _
w3 2))-

This equation may be satisfied only at the boundary of moduli space and conse-
quently, periodic 2-gap 2-elliptic potentials such as (7.7.9) do not exist.

Example. ¢ =2, N =4. In this case the condition (7.7.20) can be reduced by
(2.4.8) (Appendix 7.3) to the equation

90503 + 930% — 0503) = 20395
which implies that

k=K1 —4k®, or equivalently, &' =k(1 —4k?) |, (7.7.21)
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where k and % are Jacobian moduli, k = i92/92, k = 93 /9%. Thus, for k # 0,1+
1/2 the condition (7.7.8) is valid. According to Corollary (7.15), the appropriate
2-gap potential must have four poles. Let D= P + P, —2Qg and P, = (0, E),

P, = (0, Es). Then, [A(D) + K] = [i ‘1’] in the basis (7.5.5) and the potential is
defined by

o 10| (miz ([ By wi/2
U(LL‘,O) = —-25;2—10g9 [1 1] (—w—,O, (7‘_1/2 B )) +C . (7.7.22)

1

1
by expansion in powers of z, with the condition (7.7.20), written for N = 4,
taken into account) and a single zero at r = w'

The function 6 { (1)] (%2,0; B) has a third-order zero at z = 0 (this is verified

0 [1 ?](Wiw'/w,O; B)=4# [1 (1)] (2B11,0; B)
10 . 10
=—0 [1 0] 2By, 7i; B)= -6 [1 0] (2B11,2B12; B)
= —exp(—2B1;)0 [: 2] (0; B) =0

Therefore, for the potential (7.7.9) the representation (7.7.16) takes the form
u(z,0) = 6p(x) + 2p(z — w'), and consequently, u(z,0) coincides with one of
the Treibich-Verdier potentials [7.29]

u(z,0) = 6p(z) +2[p(z —wi) —e], 1=1,2,3 . (7.7.23)

We find the curve X3, corresponding to the potentials (7.7.23). For this pur-
pose we fix the homology basis (7.5.5) and calculate the branch point projections
A1, A2, A3 with the use of formulas (7.5.6) under the conditions of (7.7.21) and
B2 = 7i/2. Using the table of theta constants for a 4-sheeted covering (Appendix
7.3), we conclude that the curve X3 = (u, \) is realized as

12 =2 = DA = A0 = 2O = ha) (7.7.24)
o (K VIR : \ o k++/1—4k2 ’
\k—Vica ) T \k—viZar)

) (7.7.25)
= k—+1—4r"2
P\k-visaez)

where k% = (e2 — e3)/(e1 — €3), k2 = (e1 — €2)/(e2 — €3), p(w;) = €j, j = 1,2,3.
The curve (7.7.24) may also be realized as

2=\ — ENO — B\ — E3)(\ — Ep)(\ — Es) (7.7.26)
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where
El = _66i ’
}_7’,2’3 = —-—26j — e 2\/(261,; + 6j)(76j + Sei) , (7.7.27)

Eys5=-2¢; — e; 2\/(26] +ep)(Ter +3e5)

where i # 57 # k =1,2,3, and each of the curves (7.7.26, 27) corresponds to :th
potential (7.7.23).

Remark 7.17. We have given the derivation of the curve (7.7.18, 19), based
entirely on the theory of theta functions. We now outline another approach.
Every 2-gap potential satisfies the Novikov equation [7.31],

%(IZ + ClIl + C()Io + c_1I_1) =0 N (7728)

where I_; =74, Ip = u2, I; = 2u3 + u2, I, = 5u® + 10uw’ + u'"? are the integrals
of motion of the KdV equation, u; = 6uu, — uz;,, and the bar stands for the
averaging operation

L
f= lim f(z)dz
L—oo —L
We normalize a two-gap potential by expansion near z = 0,
6
u(z,0) = — +ar?+bat +exb+dab+--. . (7.7.29)
T
To such a potential corresponds the curve

p? = A5 —(35/2)aX? — (63/2)b)? +[(567/8)a®

‘ (7.7.30)
+ (297 /4)c]A + 1377 /4)ab — (1287 /2)d

By making appropriate calculations, we can see that the potentials (7.7.23) satisfy
(7.7.28), and the curves (7.7.26,27) are the same as (7.7.30).

7.8 Elliptic Solutions of the KdV Equation
and Particle Dynamics

We consider a periodic N-elliptic g-gap potential u(z) = u(z,0) and its isospec-
tral deformation, i.e., the deformation conserving the spectrum of the Schrédinger
operator H = d?/dz? — u(z),
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N
w(z,0) = u(z, ) =2 plz -z +c (7.8.1)
j=1

where z (1), j = 1,..., N are functions of time such that u(z, t) satisfies the KdV
equation (7.7.4). The description of an isospectral deformation of the potential
u(z) is known (Airault, McKean and Moser [7.32 a], as well as [7.32 b, c]), to
reduce to integrating a completely integrable system of Calogero-Moser particles
£1,...,ZN with a pair interaction potential p(z; —z;) (@ #j3),¢7=1,...,N
and a Hamiltonian such as

N
1
h=52p%—229(mi—xj) : (7.8.2)
i=1 i
More specifically, the particles z;,...,zy are on the locus
N
Ly =14 (1,...,an) Y p'@i—2))=0, j=1,..,N (7.8.3)
iy
and evolve according to the law
#i==12) p(zi—z;), i=1,...,N. (7.8.4)
7

The geometry of the locus Ly has not been discussed as yet. It has been es-
tablished that the locus £y is non-empty if N is a “triangular” number, i.e.,
N = g(g +1)/2 [7.32 a). Treibich and Verdier [7.29] have recently proved the
existence of components of £y for non-triangular numbers N, too.

The problem of integrating the system (7.8.2), stated in the most general
form, was solved by Krichever [7.33], who described the elliptic solutions to the
Kadomtsev-Petviashvili equation, associated with the algebraic curve of the gen-
eral position. Here we make use of the results of [7.33], restricting the treatment
(and the restriction is non-trivial) to the present case of a hyperelliptic curve. For

this purpose we assign for the Baker-Akhieser function ¥ (Chap. 4) an ansatz
such that

N
U(z,01(8),...,en(t); @) = €** Y bid(z — zj50) (7.8.5)

j=1
where b;, j =1,..., N are the functions to be defined, (k, o) are the coordinates
of a hyperelliptic curve and the function &(z; o) is the solution to the equation

d?
('d:c_z - 230(:5)) P = \&

and is defined by the formulas
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&= &(z;a) = E = §CXP[C(a)x]

in which ¢ and ( are Weierstrass functions.
We substitute the ansatz (7.8.5) into the equation

?

62 N
LY = \P, L=@+2§g)(x—xj) : (7.8.6)
ov
Au'f_—at— , (7.8.7)
a’; N
—5_' 32@(1:*%])__;@(:3“:”]) ’

whose compatibility conditions result in the Lax representation 0L/0t = [L, A]

for the KAV equation (7.7.4) with solutions of the form (7.8.1). Using the ex-
pansions

1 1
&(z; ) = P —-p(a):c + 630 (a):v +.

1 1
(:c)-—-—+§—692:c +...
we equate the principal parts of the poles of equations (7.8.6,7) in the neighbour-
hood of the points z;, j = 1,..., N. As a result, we have a set of homogeneous
linear equations with respect to b;,..., by, whose compatibility conditions are
(7.8.3,4) and also
detL=0 |, (7.8.8)

where L = (L;;),
Lij =1 - 6;)®;; + kéij, t,5=1,...,N |,
detM =0 (7.8.9)
where M = (M;;),
M;j = 6;;(K =2 " pi+pl@) — N = 21 = 6;)@;, i,j=1,...,N ,
7

and @;; = &(z; — zj;0), 1 F 4, pr1 = plzr — 1), kK F 1L
We now discuss the equalities (7.8.8,9) in more detail. Equality (7.8.8) defines
the algebraic curve X,

Xg: Rk,a)=0 , (7.8.10)
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N
R(k,0) = kN + Y kN irj(a, 21,00 TN)
3=l

where rj, y =1,..., N are the elliptic functions in « defined on X;. For the first
two functions r;,

== Y &by, r= Y $ibpdy
7 7k
i,j=1ye,N i, k=1 e, N

we give the explicit expressions

= ( )@(01) Z Pij, T2 = _(Jg) @l(a) ’

1<i<N

derived by applying the addition theorem for Weierstrass p-functions.

The curve (7.8.8) will be called a Krichever curve. Its role in constructing
elliptic solutions is as follows: by describing it explicitly, one can construct a cor-
responding theta function and determine the coordinates of particles z1,...,zn
through the zeros of the theta function ([7.31] and Sect. 7.7). We, therefore,
describe the properties of the Krichever curve.

Proposition 7.18. The Krichever curve has the following properties:
(z) The Krichever curve is an N-sheeted cover of the torus X,
(z¢) In the neighborhood of the point a = 0, the Krichever curve can be repre-

sented as
N - Rt
k-1 fala) H (k+ =+ file)=0 , (7.8.11)
where f1,..., fy are functions of « regular at « = 0, i.e., the meromorphic

function & defined on a curve has a simple pole with the principal part
(N — 1)/ on one of the sheets (this sheet will below be referred to as the
“upper” sheet) and simple poles with the principal parts —1/« on the of
N —1 sheets.

(441) The genus g of the Krichever curve X, is equal to p + 1, where 2p is the
number of the zeros of the function JR/0k that do not lie over the point
a =0 and differ from the zeros of the function dR/da.

(2v) The Krichever curve admits an involution (k, a) — (—k, —a) .

(v) For z7...,zn on the locus £y, the Krichever curve is hyperelliptic.

Proof. The proof of (i) follows from a representation of the curve as in (7.8.8);
the function &(z; o) is doubly periodic in « and the coefficients of the polynomial

(7.8.10) for powers k have no essential singularities. To prove (i7), we note that
for a =0 the curve is represented as
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k l/a+ola) ... 1l/a+o(a)
1/a+ o(a) k co. 1/a+o(a)
det . : : =(
l/a-l.-o(a) l/a-;-o(a) k

Thus, we have the representation (7.8.11).

(222) follows from the Riemann-Hurwitz formula (2.2.1) and the fact that the
branch points of the covering are exactly the zeros of the function OR/0k that
do not lie over o = 0 [7.34].

The existence of the involution (k, o) — (—k, —a) on the curve (7.8.8) [7.34]
follows from the representation of the curve as a determinant and the equality

~&(z,—a) =¥(-z,0), ¥(z,0)=0(a—z)/0(a)s(z)

Finally, to prove (v) [7.1 i], the curve should be assigned a meromorphic function
of the second order. If and only if the points z1,...,zy are on the locus (7.8.3),

the equality (7.8.9) holds and, when in the neighbourhood of the point a =0, is
written as

E+1/a% — ) 2/a? 2/a?
2/a? B+1/a? - X ... 2/a?
det . ) ) =0.
2/a? 2/a? cer K2+1/0% =)

From this and item (z2) it follows that the function A\ has no poles on the lower
sheets and has a second-order pole on an upper sheet with the principal part
N?%/o2.

It is to be noted that, as shown by Smirnov [7.34], the properties of the
Krichever curve are sufficient for it to be restored without applying the elimina-
tion procedure.

We have discussed above the potential (7.8.1) in which the particles zq,...,z N
are at the general position on the locus. Let us now consider an elliptic potential
u(x) at the special points of a locus.

M
u(z) = Zgi(gi + Doz —z)+c
i=1

Iy (7.8.12)
> gilgi+1)=2N

=1

Starting from work by Hermite [7.26] and Halphen [7.27], we choose an ansatz
(corresponding to this potential) such that

U(r,z1,...,T; )

M %7l g 7.8.13
=Zek:c {aoﬁ(m—zj)-i-Zalga:;—[@(x—xj)}’ ( )

j=1 =1
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Making operators similar to those described above, it is possible to construct
the Krichever curve in the cases when the potential (7.8.12) and the ansatz
(7.8.13) are compatible. To illustrate this point, we consider

Example. [7.1i]. Let u(z) be a Treibich-Verdier potential (7.7.23). We substi-
tute the ansatz (7.8.13) with M = 1, z; = wj, g; = 2 into the Schrédinger equation
with the potential (7.7.23). As a result, we come to a set of linear equations

ap = kay,
(3k? = 3p(a) + Nag +68(w;; a)ay =0,

(——k3 —3p(a)k — kX +2p'(a))ay + 6@'(%'; a)az =0, (7.8.14)

3, 3, , 1 1
(—'2'80(01) + 5k pla) —6¢j + 592+ 5/\@(01)) a1

+ (29" (wj; @) — 20" (w5 )k — B(wj; A)k* — B(wj; ) Naz = 0.

The compatibility conditions for the set (7.8.14) are

(' (@) — 2(p(a) — e,)k)A = 2(pla) — e)k> — 3k%p' ()
+6p(a)(p(a) — ek — p'(a)(pla) —4de;)
3(p(a) — e)k* — 3p' (@ — 12¢;(p(a) — e;)k?
+4(p(a) — )% +3p(@)p' (@k — p'(@)kA
— 2p(a) — €;)(p(e) + 2e)A + (p(a) — e;) N>
— 3(p(a))’ +15%; — p(a)(48¢5 — 3g2) + 36¢} — 3g2e; =0

(7.8.15)

By excluding the variable p from (7.8.15), we have the Krichever curves

K —3Q2p(e) — e;)k* + 4¢'(a)k — 3p*(a)

C . (7.8.16)
+3ejp(a) — 3e;e; =0, JFiF1=1,23

Each of these curves is birationally equivalent to the corresponding curve (7.7.26,
27); this birational equivalence is given by

(, \) = (%(19 —3p(a@)k — p'(@)2k* — 6p(a)k* — 2¢' (@)k +9e;),

2(p(a) — )k + 6p(a)pla) — ek — p'((BE* + pla) — 4e,)
p'(a) — 2p(a)k +2ek

(k, p(a)) = (4@ — 15/2¢;)(A + 6¢;)’

. _ (A — E))X — E3)(\ — 3e; +9¢;)?
I 16(A\ — Ej)(\ — (15/2)e;)?
each of which can be obtained by excluding appropriate variables from (7.8.15).

(7.8.17)
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To conclude this section we give another approach [7.1 €] describing the
functions z1,...,z N that employs covers and enables one to produce the most
complete results for genus g = 2. For genus ¢ = 2 we consider the Jacobian
inversion problem whose solution amounts to integrating the KdV equation

A0 A2
/ w1+/ w =Uic+Vit+W;
oc;‘(l) (x;(z) (7.8.18)
/ w2+/ wr=Uxc+WVt+ W,
[s0} o0

Let u(z,t) be a 2-gap N-elliptic potential that satisfies the conditions of Theo-
rem 7.14. Then each of the Abelian integrals in equations (7.8.18) is reduced to
an elliptic integral of some rational degree N by the substitutions P;(}A), P2()),
and, with an appropriate choice of a homology basis U, = 0.

Next we express AL, A® for a solution such as (7.8.1) to the KdV equation
through Weierstrass p-functions. For this purpose we use the “trace formulas”
(see Sect. 3.6 and [7.35]),

2g+1
u(z,t) = — 2000 + 1) + Z E;
j=1
1
= (36%6,8) — taalz, ) ADAD (7.8.19)

1 3 2g+1
g (s
47 J=

By setting E;::fg“ E; =0, without loss of generality, and making z tend to z,
J=1,..., N in the solution (7.8.12), we find

1
A(zj+e,t)==+o(l)
€

(7.8.20)
MW(j+e,t)==3 ) pjr+ec
kj

Therefore, the equations (7.8.18) in which z = z; and the hyperelliptic integrals
are reduced to elliptic integrals, transform to

PLAD(z)) = plaz; + pt+7) (7.8.21)

P(OAP(zy) = plst +0) (7.8.22)

where p and g are the Weierstrass functions defined on tori over which X, is

an N-sheeted covering, and «, £, v, K, ¢ are the constants that appear under
reduction. Eliminating the A® from (7.8.21,22), we have an algebraic equation
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with respect to p with coefficients depending on {. Here we describe the integra-
tion of a system of particles z1(¢),...,zn(t); its specific feature is that (7.8.22)

involves no variable z ; under the sign of the @-function because of the condition
U, =0.

Proposition 7.19. Finding the functions z,...,zy for a 2-gap N-elliptic po-
tential that satisfies the conditions of Theorem 7.14 reduces to solving an alge-

braic equation of the Nth degree (7.8.22) for A\ and to the subsequent quadra-
tures

&, =@, j=1,....M . (7.8.23)

Proof. The KdV equation implies that £; = —12), i Pik e Using formulas
(7.8.20), we obtain (7.8.23).

Example. To illustrate our point, we construct an isospectral deformation for
the 2-gap Treibich-Verdier potential (7.7.23). We first find the coordinates p =
P1(N), § = P2()) of coverings 7, 7', (p', p) «— Xo —(§', ). For this purpose
we make use of (7.6.21) for a 4-sheeted covering over a torus. By imposing the
condition (7.7.21) on the moduli of such a covering, we have from (7.6.21, 22)

(H%ej) % =i% , (7.8.24)
_ Q=B = B — e
16(A — E))(\ — b;)? ’

d_idg 0= B0 = B - i)

w3 YT 160\ — Ev) !
where a;r = 3(ej — 361), bj = (15/2)ej, cjl = S(ej +eyp), j #l,

(7.8.25)

3¢ =2(e1 — e3)° — (e1 — e2)(Sex — 2e3)*
38, = —(e1 — €3)° +2(e1 — €2)(Sez — 2e3)*
383 = —(e1 — €3)° — (e1 — e2)(Sez — 2e3)?

The reduction formulas (7.8.24) are given in the present context to make our

discussion complete. Using (7.8.25), we derive, within the scheme presented, an
equation of the fourth degree in A) = ),

A = E)(\ — E3)(\ — cj,)2 +4(\ — E))(p@it) —e) =0 . (7.8.26)

We note that since there is a remarkable relation between solutions such as
(7.7.10) to the KdV equation and the dynamics of a Calogero-Moser system on
a line [7.32], formula (7.8.26) gives a complete description of the trajectories for
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the third flow of a system (7.8.2), restricted to stationary points of the second
flow for a Treibich-Verdier potential (7.7.23).

7.9 Elliptic Solutions of the Sine-Gordon Equation
In this section we describe the solutions in elliptic functions for the sine-Gordon
equation [7.35], written in the laboratory system of coordinates

Ut — Ugy T sinu=0 . (791)

The appropriate general finite-gap solutions were constructed in Sect. 4.2 (4.2.25-
27). Here it is convenient to write these formulas as
U z+U t+Uo+ K + [;"° w; B)

u(z,t) = 2i log o
0 U z+U t+Uo+ K + [° w; B)

, (1.9.2)

where K is the vector of Riemann constants, Qo is an arbitrary point of curve
X,, and the relation between the vectors U® and Uy and the parameters of
finite-gap solutions, used in Sect. 4.2, is given by the equation

16 16\/%619 Y .7 - "",g I
p=EE- B , (7.9.3)

Q
Uo=D——K+/ w+ A
(1]

U =iV; F —=W; =2i(cj +

In this section we shall consider only real finite-gap solutions to the (7.9.1).
Therefore the curve X, will always be real, implying (Sect. 4.2) that in (7.9.3)
the following inequality holds:

V>0 . ' (7.9.4)

Just as in the case of elliptic finite-gap potentials (Sect. 7.7), we have for the
solutions of (7.9.1) the following

Theorem 7.20. For the g-gap solution of equation (7.9.1) to be doubly periodic
in the variable z, it is necessary and sufficient that following conditions are valid:

(z) curve (7.9.3) is non-singular and is an N-sheeted cover of the torus Xi;
(¢2) the equations

Us=Uf=---U:=0 (71.9.5)

are solvable for hyperelliptic points of the set 2/, in a homology basis in
Hi(X,,Z) such that the B-matrix has the form (7.2.2).
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We note that since the expression for the “winding vectors” (7.9.3) involves
a free parameter ,/pp that satisfies the condition (7.9.4), one of the equations

(7.9.5), for example, U; = 0, can be satisfied by setting
p =, /16°; . (7.9.6)

Therefore, for the case of genus g = 2 there exists an enumerable number of
2-gap solutions doubly periodic in z that correspond to N =2,3,.... We turn to
the case of genus g = 2.

We restrict ourselves to discussing only real solutions of genus g = 2 that
belong to one of the three types (see, for example, [7.1 b, 34] and also Chap. 4):

i Type: Eus< E3<Ep,<E;j <0 ;

I Type: E4<E3<0, Ei=E,4E ;

Ol Type: E <E,#E,, E;=E4+#E,

Since we consider below the solutions in terms of elliptic functions, it is conve-

nient to fix a homology basis such as (7.5.5). Then, for the solution (7.9.2), we
have the formula

8loo Utz + U™t +Uy; B)

u(z,t) =2ilog —
G[Qoo](U+a: +U"t+U; B)

(7.9.7)

where [go] = [i g] (2o = [1 ‘1’] U=UY+K+ [°w+1/2g,+1/2By,
B; = (B, Byz). Using the second-order transformations (2.6.8) we write (7.9.7)

as
~111 ~101
(u_u€> p[1J<oe[lJ(o
arctg =i

4110 ~100
e[lJ(oa[lJ(o

0 [1 0] (7.9.8)

)

C=U*a:+U‘t+[7, up = 21 log——o——l-— ,
9 10
o)
0l1(O) = 0[el(¢; 2B)

Equations (7.9.3, 5.7) give expressions for the components of the “winding vec-
tors” in terms of theta constants

Uji _ i(—1)! &/po
00 10 00
”W[OJO[OJB[lJ (7.9.9)

10 1 10 .
% (9j [1 0] T 16\‘1/ﬁgj [1 o])’ 1=12
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We consider a 2-sheeted covering of genus g =2, i.e., we give the B-matrix

as B = By wi

w1 By

(7.9.12) in terms of theta constants (Appendix 7.3), we find that (7.9.6) is solvable
for po = 1/16*, and the following equations are valid:

. By calculating the components of the “winding vectors”

Uf =i92 /n(939% — 9202 =a, U =0 ,

~ o~ 7.9.10
U =0, Uy =id3/n(3%; - 959D =58 , D
in which 9; = 9,(0; By /i), 9; = 9,0, By/xi), j = 2,3,4, are Jacobi theta
constants. These equations and the transformational properties of the theta func-
tion (2.5.10) imply that the solutions u(z,t) of the sine-Gordon equation defined
by (7.9.4,5) are doubly periodic functions not only in z, but also in # with inde-
pendent periods w = 27i/a, w' = 2By1/a and @ = 27i/B, &' = 2By /. Using
(7.9.8), the solution (7.9.5) can be represented as

arctg[u(z, 1)/4] = F(az)G(At) (7.9.11)

where F' and G are elliptic functions. This solution to the sine-Gordon equation
finds numerous applications in physics.

Consider a 4-sheeted covering of genus g = 2, i.e., we give a matrix such

as B = ‘E.;” mi/2 . Using (7.9.8) and (2.4.8), we obtain a quasi-periodic
7T1/2 Bzz

solution in terms of elliptic functions

arctg[(u — up)/4] = (7.9.12)
Z (=1)2/2¢,9 [;'1:1}2] (ﬁ ——ZB.”) 9 [65,11{2] (Q ——23.22>
et 1er=0,1 2 m  ml €1 m  ml
Z el @ ¢1, 2B g|eat+1/2 (2. 2B»n ’
oy ey +1/2) \ni’ 7w 3] i’ wi
€1,
where

! ~ |
ce =expim(e) +1/4e} +1/261€5)9 [ €1 ] 3 [62+ 1/2] ,

1/2+¢€} €1

and the components of the “winding vectors” are calculated in terms of reduced
theta constants, using (7.9.9) and the tables of theta constants in Appendix 7.3.
This solution is doubly periodic in z (but quasi-periodic in t) under the condition
(7.9.6).

Other types of the solutions of (7.9.1) in terms of elliptic functions may be
found in [7.3 a, b].
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7.10 On One Periodic Solutions of the Kowalewski Problem

The general solution of the problem of motion of Kovalewski’s gyroscope [7.37]
was described in Chap. 5. Here we are concerned with some periodic motions of
this gyroscope. The abundant literature [7.38 a, b] devoted to studies of different
special motions of Kowalewski’s gyroscope gives only cases of periodic motions
that arise when the Kowalewski curve degenerates (Sect. 5.2). The case reported
in the present section corresponds to a nondegenerate Kowalewski curve.

The Kowalewski equations in integral form are Jacobi inversion problem

/Pl d\ /Pz d) .
— + — = —-8ic ,
P, M p, M

Pl P1
[ [y

p, M P, H

(7.10.1)

where P; = (u;,8;) € X3, ¢t = 1,2, and sy, s, are Kowalewski variables, formu-
lated for the Kowalewski curve X, = (u, \), p = Hz:f()\ — F}), which is defined
by

p* = [(A — HY? - ﬂ A [()\ — HY* + (1 - %)] — (pM)* |, (7.10.2)

where H, p, M and k are the integrals of motion. By solving the inversion

problem (7.10.1), we can express s; +s2 and s;2 through theta functions on the
Jacobian J(X>).

Proposition 7.21. For the motion of Kowalewski’s gyroscope to be periodic

and described by elliptic time functions, it is necessary and sufficient that the
Kowalewski curve (7.10.2) is

(z) an N-sheeted cover of the torus Xj,

(11) one of the components of the vector U = —/2i(ci1, c21), where c;; are the
normalization constants of holomorphic differentials w, is zero in uy, in a
homology basis for which By = 27i/N, and

(¢12) the parameters H, k and pM are related by

H+k>pM)? . (7.10.3)

Proof. Equations (7.10.1) imply that s; + s and sy, are expressed in terms of
the theta functions of curve (7.10.2). Repeating the proof for Theorem 7.14, we
conclude that the functions s; +s; and s; s, are elliptic time functions. According
to (7.5.1), condition (z:z) ensures the reality of motion.

As an example, we consider a curve of genus g =2,

1 = (A2 = 3g2)(\ +3e))(A +3e2)(\ +3e3) (7.10.4)
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where e; = p(w;), = = 1,2,3 are parameters in the theory of elliptic Weierstrass
functions. The branch point projections of the curve (7.10.4) +1/3¢2, —3e;,
¢ = 1,2,3 coincide with the boundaries of the gaps of the 2-gap Lamé potential
u(z,0) = 6p(z). This is verified by employing the Novikov equation (7.7.28).
The curve (7.10.4) 3-sheetedly covers the tori X; = (p', p) and X; = (¢', p),

X & X, 5(21,
p2=4p’ —qpp—g, =40 -0p-B ,
2 =46 +21¢)/93, G =T2g393 — 363/ 93
Specifically, the following formulas [7.1 d] are valid:

o o) 2003 —9p) — 545 N +27gs
PRI =\ 21T (02_3g) 902 -3g)

2 1 (7.10.6)
@ = (1/5?#(4/\2 = 3g2), 34X _992,\2+9g3)> :
2

This description of covers 7 and 7 follows from the reduction of holomorphic
differentials

(7.10.5)

d\ _1 d¢
V2 — )@ —6ar—b) 32t -0)E-a) ’ (7.10.7)
£=4X -3a)N)/a ,
Ad) _ 1 dn
VOZ=a)BX —6ar—b) 2V3+/p® —3an+b (7.10.8)

=M =b0/30%-a) ,

to elliptic differentials by using third-order transformations [7.26]. In (7.10.7,

8),we set a =3¢z, b = —54¢3, £ = @, n = 6p and using the notation introduced
above, it follows that

dA 4 dp A\ 2dp

—_—, — =—=— (7.10.9)
B 33 ' p 3¢
We shall need the following Lemma on the isospectral deformation of a 2-gap
Lamé potential:

Lemma 7.22. Let u(z,t) = 235, p(z — z4(t)) be a solution to the KdV
equation, u; = 6uu; — uz.,, where the functions z;(t) satisfy the condition
z1(t) + z2(f) + z3(2) = 0. Then the quantities p;; = p(z; — ;), 1 # 7, 4,5 =1,2,3
are roots of the cubic equation

11 ,
49’ — qap — 303+ 39:8(61/3021t) =0, (7.10.10)

where @ is a Weierstrass p-function with invariants (7.10.5).
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Proof. We consider for the curve (7.10.4) the Jacobi inversion problem whose
solution amounts to integrating the KdV equation

AL A(2)
AT

o )u‘ (e o}

° (7.10.11)

/ AdA /*"’ AdA
—+ — =2ix
o B Jo K

where AV + X\ = y(z,¢)/2. Using the “trace formulas”(7.8.19), we have ex-
pansions AV = 1/e2+ o(1), A® =3(pjz + pji) +0(e), i j F k for z = z; +e,
e — 0. Now we use these expansions to derive from (7.10.11), for z = z;

3 pjr+pji) d\
— = =8i(t —to)
L5

(7.10.12)

222 =2ig;, j=1,2,3
oo p

The reduction formula (7.10.7) implies that the quantities p;;,: # j, 1,7 = 1,2,3,
are roots of (7.10.10) and satisfy the equations

/3(91 +pji) Ad)

pij tpjk+teri =0

(7.10.13)
PijPjk + PijPri T PjkPRi = —g2/4

We show that the second of the equations (7.10.12) is satisfied identically. Indeed,
the reduction formula (7.10.8) implies

3
-0 .+
p(3c;) = TR

(7.10.14)
3@%;’ — 02

Since 21 +z2+23 =0, pf; = p; = pi (7.10.14) is transformed by the addition

theorem for Weierstrass p-functions to equation

i + Pl - Pri = 93
Qpij + pri* 92 — 3¢,

P

?

which is satisfied identically, because from (7.10.13) we find that 20i; + pri =
:E\/ g2 — 3@]“'.

We note that the description of the Jacobian J(X3), equivalent to (7.10.10),
was produced in [7.34], proceeding from different considerations.

We turn back to the Kowalewski problem. As is known [7.38 a], the motion
of Kowalewski’s gyroscope is real, if it belongs to one of the five types

Type 1-c0<s2<E3<E;<Ei<E;<s1<Es |,
Type 2 — o0 < 83 < B3 < min(E;, Ey) < max(Ey, Ey) < Ey < 31 < Es
Type 3— 0 <2 <E4<E3<E, <E <5 <5

’

?



280 7. Algebro-Geometric Principles of Superposition

Type 44— 0 <2< E1 < E4<s5 <Es,| —
YE,=E3#E,
Type 5—00<s3 < Ey < Ey <351 < Ey,

where Ei,..., Es are the branching points of (7.10.2). In what follows we con-
sider the motion belonging to Type L

Theorem 7.23. Suppose that k& > 0, the inequality (7.10.3) is valid and
2H =5(VEk+4Vk+33) |

(3 VEN[(4 _, 2 (7.10.15)
(pM) = (EH——Q—) (ES—H +§\/EH+1) ,

and the initial conditions are chosen as s1(0) = Es, s2(0) = E3. Then the motion

of Kowalewski’s gyroscope is real, periodic and described by elliptic functions
as

s12(t) = %H
1 [3 3 (7.10.16)
*3 Y pit,|992+) 9210 > pipiy
j=1 j=1 1<<5<3

where p; = p(it/\/i+wj|w,w’), w =w, w =w+w, ws =W, plw) = e,
i=1,2,3 and

1(H Ve 1 [ k& vk H
61,2—5(?5-——6—)13\/1{—, R (7.10.17)

Proof. We make in (7.10.1) a substitution s; = 5; + 6, : = 1,2 with the constant
6 and the parameters H, k, pM chosen so that in the new variables the roots E;
of the polynomial u? coincide with the boundaries of the gaps of a 2-gap lamé
potential (7.10.2); namely, we satisfy the conditions

E\+Ey+E =0, Es=-E; (7.10.18)
E%+E§+E}=%E§ , (7.10.19)
The definition of the Kowalewski curve (7.10.2) yields the following equations
Es=H+Vk/2, Ey=H-Vk/2 , (7.10.20)
E\+E+E=2H (7.10.21)
E\Ey + E1F3 + B2 F3 =3H2—-Z-+1 : (7.10.22)

E\E2E3 = (pM)* . (7.10.23)
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Thus we find that § = 4H/5 and E3 = 3H/5 — v/k/2. By substituting F3 and
§ into the condition (7.10.19) and using it in calculations (7.10.20,23), we have
the condition

1m_, 7 1 2
H —36\/511+Ek- 3=0 ,
and solving it, we obtain an expression for (7.10.15). The compatibility condition
(7.10.21-23) and the above expression for Ej3 is found as the second of equalities
(7.10.15) by substituting E3 into the cubic equation A(A — H? +(1 — k /4) =
(pM)?. We can see that the conditions imposed on the parameters are met at
least near k = 0.

We fix the initial conditions s;(0), z = 1,2 that correspond to Type I of real

solutions and set 31(0) = v/3g2, $2(0) = —+/3¢g>. The integration paths in formulas
(7.10.1) can be chosen such that the constant ¢ is given by

o+
c=—1 . (7.10.24)
6+/392
Next we set
3 )
1t
2(51+3)=-2 Z ) (— - aj> , (7.10.25)
J=1 \/i

where the isospectral deformation of a 2-gap Lamé potential is on the right-hand
side of the equation. To calculate the constants o; = o 5(c), j = 1,2, 3, we make
use of the relation (7.10.10), which, for the value (7.10.24) of the constant (it is
an analog of the time variable in the KdV equation), reduces to

11
40} — ppij = 303+ 502 =0 . (7.10.26)

Since € 3 = ++/3¢92 + 393/ g2, €2 = —6g3/ g2, the equality (7.10.26) takes the
form pg = 0; it thus follows that the constants o; can be taken to be equal to
wj, 3 =1,2,3. The relation between the quantities p(w;) = e; and the integrals of
motion is derived from the reduction formulas. Equation (7.10.16) follows from
(7.10.25) and the “trace formulas” (7.8.19).

7.11 Normal Coverings

In the preceding sections we have, basically, given an answer to the question:
when are multi-dimensional theta functions of algebraic curves and Abelian in-
tegrals reduced to lower genera? While it is possible to describe all algebraic
curves of genus 2 that cover elliptic curves, such an effective procedure is not
available for Riemann surfaces of genera g > 2. We therefore consider an im-
portant (from the practical viewpoint) special class of algebraic curves whose
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theta functions are reducible. These are the curves X;, which have a non-trivial
group G of birational automorphisms and, consequently, are normal coverings
over X,/G, 7 :X,— X,/G.

For algebraic curves of genus g > 2, the order N of group G is finite, and
N < 84(g — 1) by the Hurwitz theorem [7.8]. The upper bound in this inequality
is attained for curves of genus ¢ < 7 only if ¢ = 3 (Klein curve [7.12], for
which N = 168 and Macbeth curve [7.39], for which N = 504). For genera
g < 3 there is a complete classification of Riemann surfaces with non-trivial
groups of automorphisms that was obtained not so long ago for genus g = 3
by Kuribayashi and Komiya [7.13]. The examples of hyperelliptic curves with
non-trivial symmetries that represent finite subgroups of the rotation group are
given by Horiuchi [7.15].

We give a simple argument showing that in the case when the curve X, has
an automorphism T, there are additional restrictions on the period matrix B,
resulting in a reduction of appropriate Riemann theta functions.

Suppose that on X, with a fixed homology basis an automorphism T, T' :
Hi(Xy,Z) - Hi(Xy, Z) acts according to the formulas

9

Tai=Z{d,~jaj+cijbj}, ’i=1,...,g ,
=1

g
Th; = Z{bijaj +a;b;}, i=1,...,9 ,

5=l

(7.11.1)

in which a, b, ¢, d are such (g x g¢) integral matrices that the composite matrix
a

o= (c Z) € Tr(2g,Z). Let w = (w1,...,wy) € HI(XQ,Z) be a basis of
holomorphic differentials dual to a canonical homology basis. The representation
T* of the automorphism T in H'(X g, Z) acts according to the rule T*w(P) =
w(TP), P € X,. Since the period matrix B remains unchanged during this
process, (2.4.21) leads us to the equation

B(Q2rid + ¢B) = 27i(2nib+ aB) . ‘ (7.11.2)

Relations (7.11.2) between matrix elements of B give a restriction on the period
matrix of an algebraic curve that has non-trivial automorphism.
If on the algebraic curve X, there acts a group of automorphisms G with

generators Ty, k = 1,...,s, whose representation in H;(X,,Z) is given by the
(k) pk)
generating matrices a(®, ¥, ®, B 5B = (ﬁ(k) Z"“)) € Tr(2g,Z) the

B-matrix of such a Riemann surface must satisfy a set of equations
BQ2rid® + #B) = 27i@2#ib® +a®B), k=1,...,s . (7.11.3)

It is possible to get a numerical value of a B-matrix for some curves, starting
only from similar symmetry considerations, i.e., from (7.11.3). Furthermore, there
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are two ways of deriving the relations (7.11.1) between the “old” and the “new”
basis. In the first case the Riemann surface is represented as a covering over
a complex plane, and the second as a fundamental polygon of a Fuchs group,
and the necessary relations (7.11.1) are provided by an analysis of the action of
automorphism on the canonical basis of this polygon. The first approach is very
convenient and effective for hyperelliptic curves; exactly this method was used
in obtaining the numerical values of the B-matrix in [7.40] and [7.3 a-c]. An
automorphic approach was, probably, first used by Poincaré [7.41] in order to
calculate the period matrices for Klein curve. The technical errors committed in
[7.41] were rectified in [7.40]. Another solution to the problem of calculating
the B-matrix of a Klein curve was found in [7.3 a], using Baker’s calculations
[7.42]. Reference [7.3 a] also gives the reduction of appropriate theta functions
to one-dimensional ones.

As a recent physical example of application of the present approach to the
reduction, we refer to [7.43]. These works give examples of the reduction of
theta functions of non-hyperelliptic curves such as

eNyN + 2V +yVN +1/K* =0, N>3 |, , (7.11.4)
related to the recently discovered integrable chiral model of Potts. The resulting
four-dimensional theta function for N = 3 can be represented as a sum of 12
terms each of which is the product of four one-dimensional theta functions.

7.12 The Appel Theorem

There are several methods of representing in terms of theta functions of lower
dimensions (Sect. 7.2) the theta functions constructed by the matrix B satisfying
the condition of the Poincaré Theorem 7.1. The procedure of proving these
expansions is the same in all cases: using a special form of the period matrix B,
it is possible to replace the summation over the lattice, Z9, in formula (2.5.7)
by summation over some sublattices. Next we use the Appel Theorem [7.44]
(see also [7.3 a, b]) that enables us to express the g-dimensional theta function
in terms of (g—1)-dimensional theta functions and Jacobi theta functions under
certain conditions imposed on the period matrix (these conditions are a special
case of the conditions of the Weierstrass and Poincaré Theorems in Sect. 7.2).
To state the theorem, we give some definitions.

We suppose that the last column of the period matrix B satisfies the relations

ijjg'_'Qj) ]=1,...,I/ ’

. (7.12.1)
m;Bjs =mgBgs+qj, j=v+1,...,9—-1 |,

where my,q; € Z. We note that it is always possible to take mg >0, m; >0,
l=1,...,v. ¥ my <0 for k¥ > v, we make the following transformation: we

invert the signs for z; (argument of the theta function) and for n, [summation
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index in (2.5.7)]. Under the transformation the theta function (2.4.30) remains
unchanged, and m; in (7.12.1) changes its sign and becomes positive. So, we
can always think that in (7.12.1) m; € N, £ = 1,...,¢, ie., the change of
signs described above is already affected. Furthermore, we agree to choose the
smallest possible numbers my for which the (7.12.1) are still valid; in particular,
it Bkg =0, we take my = 1.

Theorem 7.24. (Appel [7.44]). Let the last column of the matrix B satisfy the
conditions (7.12.1). Then

89 (z; B) = Z exp (-;—(Br,r)+(r,z))

rcZI(m)

(7.12.2)
~ 9(9—1)(y. A)d, Yg M
’ 2w | 27 ’
where the summation over r stands for a finite sum over r = (rq,...,71y), 0 <

re <mg—1,k=1,..., ¢, the indices (¢) and (¢ — 1) indicate the dimension of
an appropriate theta function, and the rest of the parameters are given by

y=(y13---,yg—l)=(§1,~~,fyvu,gu+l _gg7°°',§g—1 —'gy) )

~ 1 0 (7.12.3)
Yk —mk2k+§mkb—T;(Br,r), k=1,...,¢

m%Bii, if :1<v ,
A=y 2 e
m;Bii —my By, i 1>v
m;m;B;;, if ¢+ or j<v ,
A,‘j =

mim;B;j —m>By, if i,j>v

In what follows we make use of a special case of this Theorem in which
:=0,5=1,...,4.

Theorem 7.25. [7.3 b]. Let the last column of the matrix B satisfy the condition
(7.12.1), and ¢; =0, j = 1,...,¢g. Then

09z B)= Y 697D [‘3‘] (y; 4)
zZz€Z9(m)

(7.12.4)
6

where o = (1,...,qp-1), @j=rj/mj, j=1,...,g=1,8§ =37, r;j/m;, the
matrix A is given, as before, by the expression (7.12.3), and
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m;z;, if 7=1,...,v
yi=q 7 IT eV (7.12.5)
mjz; —mgzg, if jg=v+1,...,9—1

We note that the condition of the Appel Theorem depends on the choice of a
canonical homology basis, i.e., the B-matrix that satisfies the condition (7.12.1)
in one canonical basis no longer satisfies it in another basis. We will not discuss
here the problem of constructing the general transformation o € Tr(2g, Z), which
can be used to derive a homology basis needed for the Appel Theorem to be
applied. We only note that this basis can be easily found for a number of cases
[7.3 a, b].

7.13 Reduction of the Theta Functions
of Normal Coverings

For a number of definite classes of normal coverings, it is possible to indicate
some homology basis and to examine in it the reduction of appropriate theta
functions. In particular, Fay [7.6] considered two reducible cases: (1) the in-
volution T : Xg — Xg has n pairs of fixed points; (2) cyclic automorphism
T : Xg — Xg of the pth order (T = 1) has no fixed points.

Here we discuss the first case. Let X g; be a Riemann surface of genus g,
equipped with the involution T : X¢g; — Xg; with fixed points @y, ..., Q2.
We denote by X go the quotient X go = Xg¢1/(T'), and by go the genus of Rie-
mann surface X go. We define a two-sheeted branch cover 7 : Xg1 — Xgo
over X go. According to the Riemann-Hurwitz formula (2.2.1), the genus g¢;
is equal to g; = 2g9 + n — 1. The canonical homology basis in Hy(Xg, Z),
(@12 Qggy gl s e vy Qggm1,A - e o5 g3 D1yeen s bggy bggaty v ey Bgpan—1,01,. .., 05)
can be chosen such that (a1,..., agy; b1 ..., by,) is a canonical basis in Hy(X go, Z)
and

d,+Ta,=b +Th,=0, 1<v<go ,
a;j+Ta;=b;+Tb;=0, go+1<i<go+n—1

When g =3, go = 1, n = 2, see the homology basis in Fig. 7.2. When 1 < v < ¢y
and go+1 < ¢ < go+n — 1, the following equations are valid for dual normalized
holomorphic differentials wi, ..., Wy, Wegsls -« s Wiy « o w’goz

wy(P) = —w,(TP) , e
wi(P)=—wi(TP), PeXg . (7.13.1)

The holomorphic differentials on X go, dual to the canonical basis, (a1, ..., ag,;
by...,by) € H1(Xgo,Z) are equal to v, = w, —w', v =1,..., 9o, and the
expressions
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Fig.7.2. Homology basis of H(X3, Z), when X3
is a Riemann surface that doubly covers a torus

wy=w,+tw,, 1<v<go wi=w; g+1<i<go+n—1
give go +n — 1 linearly independent normalized Prym differentials
UV(P) = UV(TP)) wu(P) = _wV(TP)

From (7.13.1) it follows that the period matrix B; of the Riemann surface X g;
has the form

(I,x+B)))/2 I,; I,\-B))/2
By = II; 211;; II; ;
(II,x— B%)/2 M (II,\+B%)/2

where 1 < X\, v < g0, o+l <i, j < go+tn—1, BYis the period matrix of the
Riemann surface X g, IT is the symmetric Prym ((go+n —1) x (go+n —1))-matrix

i, I1I,; fb Wy 1/2fb wu)
II= Y Y1) = A i . 7.13.3
<Hu Hz’j) (fbA wi 1/2 f wi 7133
We denote by z = (z1|22]23) a ¢g1-dimensional vector where z; and 23 are

g-dimensional vectors, and 2z is an (n — 1)-dimensional vector; z' = (2}|25) €
Coml 2l e €%, 2 e €

(7.13.2)

Theorem 7.26. Let the matrix B; be given by (7.13.2). Then the following
equation holds:

(ISR Y [

se(1/2)Z90 [2290 (7.13.4)

+salz2 20 | | 1 - 2289
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where the summation is over all go-dimensional vectors with components 0 and
1/2, the first co-factor under the summation sign is a (go + n — 1)-dimensional
theta function, and the second co-factor is a go-dimensional theta function.

The proof of this theorem is given in [7.5] (see also the appendix in [7.3 b]).

If 7 : X — X/(T) is a cyclic unramified cover then there exists an expansion
[7.5] similar to (7.13.4).

7.14 Example: 3-Gap Solution of the Sine-Gordon Equation
in Terms of Elliptic Functions

We consider the simplest curve X, to which Theorem 7.26 is applicable; this is
the curve of genus two,

wr=02 - -\ —€d) (7.14.1)

which is equipped by the homology basis given in Fig. 7.3. We consider the
involution that acts on the curve (7.14.1). The involution T' does not permute
the sheets; its fixed points are over oo on both sheets, i.e., n = 1. The curve
X1 = X,/T (Fig. 7.4) is given by

WP=E(E—eDE—e)E—e)) . (7.14.2)
The normalized holomorphic differentials on X, and X 1 are
—ciA+c p —cA—o
u = ———dX, uy = —————=d\ ,
BTeN U7
v=u _u, _262d/\ _c_zc_i_f_
PTRTTOY T RO

The normalized Prym differential

2c1 AdA c1dn
w=u; +uj =— = ——
TRTTTOY T T

is also elliptic; it is given on the curve X; (Fig. 7.5) and defined by

=2 2 2 2
p=m—edn—e)n—e) . (7.14.3)
The constants ¢; and c; are determined from the normalization fv=1 fw=

1, where the integration is over the a-cycles of Riemann surface X; and X1,
respectively; besides, B® = fyv, II = J, w. According to (7.13.4) the theta
function of the curve (7.14.1) is represented by one-dimensional theta functions
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-~

T —— —— = T

Fig. 7.6. Homology basis of the curve (7.14.5)
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6 lz2i B) =8 || G+ 2200 | | a1 — 2528

) 0 (7.14.4)
+6 [0] (z1 + z2;211)0 [O] (z1 — 22;2B)

We now consider the curve X3 of genus g = 3 (Fig. 7.6)

E=2r—e)A—eTHA—ed A —es DA —ead A —esh) . (7.14.5)

It has the involution 7} : A — A~l. Under the action of this involution the
homology basis changes according to (7.11.1), where

LY =Sy, d=h=0, Tid=(S""d |

00 1
S{=(010>
100

Here b' = (b7, b, b;) stands for the vector whose components are the b-cycles
illustrated in Fig. 7.6. According to (7.11.2), we can already get a restriction on
the period matrix B of the curve (7.14.5), but it is straightforward to go over to
another canonical basis b = V', a = (#T) "¢/,

1 -1 1
d= (1 0 0 ) . (7.14.6)
1 0 -1

Under the action of the involution 7j, this new basis (a,b) € H1(X3,Z) is

transformed by the matrix Si, related to S| by the similarity transformation
St = @S{Q“l, Tib = S1b, Thia = (Sir)_la, where

1 0 0
Sy = (0 1 —1) . (7.14.7)
0 0 -1

With the restriction (7.11.2), the period matrix calculated in the basis (a, b) has
the form

™ T 0 1 0
B= (7‘2 T4 T ) =\l T A . (7.14.8)
0 nn 2n 0
The last column of this matrix satisfies the conditions of Theorem 7.25 v=1,
my =1, my =2, ms = 1), such that

01
9(2; B) =6 [0 0] (21,222 — 23, A)9 [8] (23;27'1)

0 | (7.14.9)
+6 [0 0] (21,220 — 235 A)0 [0] (23;2711)
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If the curve (7.14.5) also has the involution
A—e1
etA—1

with the parameters e;, e, e3 being related by e; — e; = e3(e1ez — 1) we have,
following the argument used for the involution T3,

thx\——)

(7.14.10)

1 0 0
Sy = (1 -1 1) , MW=212 . (7.14.11)
0 0 1

We thus conclude that according to Theorem 7.25 (in this case v =0, m; = mp =
1, and it is necessary to replace the last column with the first one in the condition
of the Theorem), the two-dimensional theta function in (7.14.9) is just a sum of
products of one-dimensional ones®

8(z: B) = 6 [g] (21: 228 [8] (Q2s — 21 — 233474 — 211 — 219)
0 1 |
x 6 [0] (23;27'1)"'0 {Ojl (ZI;ZTZ) (71412)

X 6 [(1)} (23;2711)0 [(1)] (223 — 21 — 2334714 — 21 — 271)

In this case all basic holomorphic differentials are reduced to elliptic ones, and
the quantities 7; are expressed through elliptic integrals. In [7.3 c] the curve
conformally equivalent to the curve (7.14.5) with the involution (7.14.10) is
discussed.

We apply these results in order to derive a solution to the sine-Gordon equa-
tion (7.9.1) in terms of elliptic functions. For this purpose we represent the curve
X3 = (“7 )‘);

6
=] - E) (7.14.13)
j=1

as in (7.14.5), i.e., we require that the branch point projections Eji, ..., Fg satisfy
the conditions

E1=E2-1=e1, E3=E;1=62 ,

. (7.14.14)
Es=E; =e€3; e1,e2,e3€C

Since the B-matrix of this curve is calculated (7.14.8) to derive a reduced solution
to (7.9.1), it is necessary to find the vectors U=, D, see (7.9.2), with the vector
D being defined via the reality condition for the solution. We note that since the
involution T does not change the sheets X3, the following Abelian differentials
of second type are equal:

3 A theta function with non-zero characteristics can be represented in a similar way [7.3 c].



7.14 Example: 3-Gap Solution of the Sine-Gordon Equation 291

1 1 2 2
WO R S (7.14.15)

From (7.14.15, 7) and (7.9.3) it follows that
U'=TyUu*=U;,U5,0), U =-T[yU™ =(0,U;,2U0,) . (7.14.16)
From this and the expansion (7.14.9) we get

Proposition 7.27. ([7.3 c]) If the branch point projections Ej,..., Eg for the
curve (7.14.13) satisfy the conditions (7.14.14), the solution (7.9.2) of the equa-
tion (7.9.1) has the form

6(z,t) = 2i log {[9 [‘]’ 2] (v1, 23 A)0 m (y3; 271)
-9 [f ;] (1,323 4) 0 [(1)] (ys;zn)]
X [9 [3 g] (y1,y2; A)0 [8] (y3;211)

-1
+e[‘;;](yl,yz;A)e[é](ya;zm] } :

where the parameter 71 and the 2 x 2 matrix A are defined by (7.14.8) and

(7.14.17)

r Uz Uy
y1=2—-$+D1, p=—=c+2Dy;— D3, y3=—=-t+D3
T 4 T s

The solution (7.14.17) is a 6-parametric (parameters ej, ez, e3 € €, W € C)
family of solutions doubly periodic in ¢ (replacement z — it, ¢ — iz produces a
solution doubly periodic in z). We note further that the general finite-gap solu-
tions of genus g to the equation (7.9.1) are parameterized by 3¢ — 1 independent
parameters (2g — 1 corresponds to branch points and D € C7); the periodicity
condition leads additionally (the period is not fixed) to a ¢ — 1 restriction. So,
the family of solutions (7.14.17) that we have constructed has the same number
of independent parameters as the general periodic solution of genus 3.

To isolate real solutions we use the results of Sect. 4.3. It turns out that in the
present case, when ey, ez,e3 E R, A=(1,1,0), ReU*=Re V™ =0, B=—B,
there are four components of the real solutions Re D = Re(Dy,D,,D3) =
{(1/4,1/4,0), (3/4,1/4,0), (1/4,1/4,1/2), (3/4,1/4,1/2)} that are non-trivially
different from one another. Furthermore, (7.14.17) describes a real solution pe-
riodic in ¢. Equation (7.9.1) is invariant under the transformation ¢ — ¢, t — z,
¢ — ¢+, by means of which a real solution periodic in z is derived from
(7.14.17). Using the results of Sect. 4.3, we can also distinguish real solutions
for the surface (7.14.5) with complex branch points.

If the curve X3 has a dihedral group of automorphisms, T2 = T2 =1, 1 T =
17Ty (7.14.10), then the initial three-dimensional theta function is expressed in
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terms of one-dimensional ones by (7.14.12), so that we have from (7.14.17) a
solution in terms of Jacobi theta functions

u(z,t) = 2ilog
0 0 0
X {[9 [1] (y15;272)0 [1] (yas 414 — 2711 — 27)6 [O] (y3;2m1)

1 1 1 (7.14.18)
+0 [1] (y1;2m)0 [1] (ya; 414 — 211 — 21)0 [0] (y3;21'1)]

X [9 [8] (y1; 2m2)0 [8] (y43474 — 211 — 272)0 [8} (y3:271)

-1
+8 [(1)] (y1;272)8 [(1)] (ya; 414 — 211 — 212)0 [(1)] (y3;27'1)] } ’

where
1
Y4=1 —y1 = g(sz—- Uz +2D; — D3 — Dy

We note that the existence of involution 75 does not imply restrictions on the
vectors U and V, similar to (7.14.16), because the singularities of differentials
”(12 are not invariant with respect to this involution.

Under the conformal transformation

__/\+1 1—e
C_)\—I‘/1+e1 , (7.4.19)

the curve (7.14.5) changes to the curve

p= (= )E =N - -0 (7.14.20)
whose involutions 77 and 15 are very simple:
T () = (1, =0y Tt (V) = (¢3¢ (7.14.21)

The solution of (7.9.1) that corresponds to the Riemann surface (7.14.20) is
constructed in [7.3 ¢, d]. Since the curves (7.14.5, 21) are conformally equivalent
by (7.14.19), the solutions constructed in [7.3 ¢, d] are the same as in (7.14.18).
Therefore, here we do not give the expressions in terms of the branch points X3
and complete elliptic integrals for the constants in the solution (7.14.18). For the
curve (7.14.20), these are presented in [7.3 d].

To conclude, we note that the approach of Sects. 7.11-14 made it possible
to derive new solutions in terms of elliptic functions for a number of soliton
equations involving non-hyperelliptic curves [7.3 f-h].
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Appendix 7.1 Relations Between Theta Constants for g = 2

Here we give three groups of formulas which are a consequence of the Riemann
theta formula (2.4.1) for theta constants when g = 2. These are the relations
between the fourth powers of even theta constants (7.A.1), the relations between
the squares of even theta constants (7.A.2) and Rosenhain formulas (7.A.3). In

(7.A.1, 2) each of the rows at the right gives the characteristic equal to a sum of
the characteristics that make up the term

o[- 1)
(10 '01:
—041°°]+04~1°.’
94[00]_94[11]=94 01] , g 00
00 00 10 ] L01- T.AD)
(00] [10] o
- L1°.+04_°1-’
64[00]_04[11]=94'10'|+94'oo'
00 11 00 (10
_ gt 01'\+94 00 ’
Loo_ [ 01 ]

#lle el - lle i)
o[Je) (1:):
Lo filel)
Lol (D
#lilela] e lile ]
ool ():
Lalel-e el
Lol (1)
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92 00 02 01 =92 10 92 11
11 00 00 11
o] ()
10 01 11
02[11]92[00}=92[00]92[11}
00 11 00 11
2{10| 2f01 11
elileln] ()

We introduce the notation D([e],[6]) = 61[e]02[6] — 62[€]61[6]. Then the
Rosenhain formulas are valid

[00] ool ,[11],[01]

ao (1,12 ) =a o0 e ot a0t ([o]):
o1{’}lo1 10 11 11 10 00
[o1f o1 1o [r1f fru] . 00
[11] 1o\ _,[11] ,[00] ,[00]  [10] o1] .
4D(_1o_’Llo_)—epl_oL01_9L11_9b01_’ 00] )’
(101 T 1] a0l T Yy PER
aD 10’01l p 01910000}000, (11 :
117 {11] [10] " {o1] " |1o0] {01 00
[o1] o]\ _,[10] ,[10] ,[11],[11] [00] .
4D(L“-’-01.)—0LOO.GLOI.GLOO-Q-”.’ (_10_)’
SUE I S EE S N M L
4D(01,11)=6 00 gfoo] gfr1] g0 ,_(101>;
=11i 01 00 EOlj =11ﬁ 00 Lloj
4D(1o’111)=911 alo°]al0]a] 0], (01);
=”i L01: 500: E11j =01i LOO; E10T
4D<10,01)=0 01910000000’ (11>;
Llli o1, [00] " [o1] :001 11 E10i
4D(10 ’ 10)=9 oﬂeoﬂell oltt]. (OO);(7.A.3)
10711 =00i 10] " |11] :ooi 01]
41)(117,01)“5J 009009111001, (10);
Lloﬁ 11 [11] " [1o] :007 LOOT 01
4D<11,10>=0111000900910, (01);
10) 7 [11] :111 00] " [10] Looa =Olj
4D(10,01>=6 o1] g[10] gfoo] gfoo] (11);
[ 10] Lllﬁ LIO; 00 ] Lll1 [00] b01j
4D(1ﬂ,11)=€1001ﬂ001901 ’ (oo>;
Lloj 01 =Olﬁ 00 :107 E00j L11T
41)(11,01)=‘9 00000}911901, (10);
10 :011 L011 oo " [oo] " |10, |11
4D(1g,11)=0110000000101, (o1>;
|10 5011 Loo_ UO% Eooi L01_ |11
41)(10,01)___‘9 0119109009001, 11] .
[10]7]01] [oo] " Joo] o]  |10] 11
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Appendix 7.2 Addition Formulas for Second-Order Theta
Functions at g = 2

Here we give the expanded forms of (2.6.8) for g = 2, which for instance, were

gsed in deriving a covering in Sect. 7.6. As before, we introduce the notation
Ole]l(2) = 9l€](z; 2B).

IO I (O
+92[ ]() [;]u),
o] w=e e ]
e[ n]@-2)h e
o[efi]ee o2 []
A ISR

00 00 00 A 1
9[01]9[01](@42[00}@)-92 O]u)

(7.A4)

[iioflm )t
- [ ]()é[ ](>,

o[sa)else]@-25i)wa il
é[ ]()9[ ](),
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e fil-n e
4@[(‘)2] (z)é{:)(l)}(z),

[l -l o
+20 {2 (1)] ()0 [:’ (‘)] (2),

el josl e
—26[ ]( >9{ ]( ).

fiefetf sl ool
9{ ]()[ ](z),

]() [ ](z),

il el el
~l11], alo1
——29[10] (z)O[lo] (2).
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(7.A5)

(7.A.6)
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oloe]e[n]@=2[i3] @ )]
+é2[i?](z)+§2[?i](z),

[ifis e [1)eo-o [ o
—52[:(1)](z)+§2{(1):](z)

[ o]
+é[ }()ek[ ](z),
JHHEET A
afion e
ISR e
cufyJen [ o
Lo e[ on
REARE
[ fteo-sfr o ]
9[ }(z)ek[ ](z>,
[i]afie-sfon )
-aftton 2]

(7.A.7)

=1,2 . (7.A.8)
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Appendix 7.3 Theta Constants of 2- and 4-Sheeted Coverings
Over a Torus

Here we use the formulas given in Appendix 7.2, to construct reduced theta
constants for a 2-sheeted covering of genus 2 (item b);

aﬂxLB=(B? g;)mﬂﬂj=ﬂMQ%#%53=%(Q%¥%i=li4

T
Then
01 % =010 = @0,0:9:90)' 72,
00 01
(0 1] -
6 (1) (1) =6 [g (l)] = (203949293)' /%,
[10]

o' 1] =16 [1 i] = (292949,94)'/%,

LOO_

LT

9|00 | = 03T+ 03T+ AT (7.A9)
[00] o Y 3

0% = (925% — 039% — 039H)\/?,

L.l 1-

o|0s| - 33 - 33+ 03,

00] ~ ~ ~
6|05 | = @352+ 3% - 3y,

o[t -Sl)s of--bla
AN B O
THESTHESN RS
o L(fi: %9 L?;]ﬂ% 62 Lﬂ’%"{?ﬂ 3%, (7.A.10)
JHEE U HEE L
1] vl o[)-wl)a
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B /2 ~ ~ ~
b) Let B = (wi}IZ 7;42) X =033, Y = %y, Z = 949,, 9 =

~

9,(0;2B11/7i), U = 9x(0;2Bpn/7i), k = 2,3,4, A = X2 +7Y2?2+ 22
B=X?>-Y?+2%C=X2+Y?>-2% D = A+ B+C. Then the follow-
ing formulas hold:

91°°|=x+v+2 9[00]=X+Y—Z,

00 | 01

91°° | =x—-v+2 0[00]=X——Y-—Z,

| 10| 11

02 r(l) g- =23/2(XY)1/2(D1/2+21/2Z))

g2 |10 =B xXVVA(DV? - 212, (7.A.11)

01

& 2(1) =23/2(XZ)1/2(D1/2+21/2Y),

g [01] = B2 Z)V2(DV/? — 212y,
10
92 ‘1 l.‘ =23/2(YZ)1/2(D1/2+21/2X),

00

92 ‘1 1- =23/2(YZ)1/2(D1/2—21/2X).

& :g] =%(ZXY)U“(&%CI/Z+21/219§Z)
X (D1/2+21/2Z)_1/2,
0, :2 =—%(2XY)I/4(5§CI/2+21/25§Z)
) X (D1/2+21/ZZ)—1/2,
o =—;-(2XY)1/4(19§CI/2—21/219§Z)

X (Dl/2 _ 21/22)—1/2’
6, [i ‘1’] = -%(2)(1/)1/4(5%0‘/2 _ 21252 7)

x (D1/2 _ 21/22)—1/2’
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0 |0 | = 3@X D BB +2' 9y
X (D1/2 +21/2Y)_1/2,
6, L —1(2XZ)1/4(5231/2 +21232y)
01 2 4 3
x (DY? +21/2y)=1/2
% L? || =30x2) H$3BY - 2!y (7.A.12)
J % (D1/2 _ 21/2Y)—1/2’ A
6, [01] —1(2XZ)1/4(5ZBI/2 _ 232y
11 2 4 3
- X (1)1/2 _ 21/2y)—1/2,
0 |y | = 5@ZVISHCH + 2123 X)
L A
% (DI/Z + 21/2X)_1/2,
0 2 _l(zzy)1/4(§2cl/2 +21/25§X)
01 2 3

x (D2 + 212 x)71/2,
6, {‘ H ~3QZV)HHACH? — 2195 x)

x (D/? =22 x)~1/2

& [1 | = LezvH@Bor - 2125

,4
=
[ S Y

X (D1/2 _ 21/2x)-—1/2.



8. An Application:
The Peierls-Frohlich Problem
and Finite-Gap Potentials

One of the remarkable applications of algebro-geometric methods in solid-state
physics is the construction of an exact solution to the Peierls problem. This
problem, arising from a number of fundamental problems in solid-state physics,
reduces to finding a self-consistent state of the lattice and conduction electrons.
According to the qualitative arguments proposed by Peierls [8.1], the specific
feature of the self-consistent state in point is that the lattice-induced potential
generates a gap in the energy spectrum of the conduction electrons at an energy
equal to the Fermi one. We can, therefore, hypothesize that the exact solution to
the Peierls problem in the jellium model would be a single-band potential. The
hypothesis was proven in 1980 [8.2, 3].

In Sect. 8.1 we present the foundations of the theory of finite-gap potentials.
In Sect. 8.2, an exact solution to the Peierls problem is constructed. In Sect. 8.3
the theory of the Frohlich conductivity created by a uniform motion of the Peierls
state is presented and in Sect. 8.4 some final remarks are made.

8.1 Finite-Gap Potentials

We recall that the function u(z) taken from a Banach space C(IR) of continuous
bounded functions is called almost periodic if the set {T u(-), z € R}, where
T, u(-) = u(-+x), is relatively compact in Cy(IR). A closure {2 of this set is known
to be compact in a metrizable Abelian group. A normalized Haar measure p on
the set {2 turns out to be T,-invariant and ergodic. Thus, each almost-periodic

function generates a probability space (£2, u, T;). The operation of averaging on
this space is given by

1 T
M f(u) = lim = / f(Tyu)dz = / Fw)u(du). (8.1.1)
¥ T Jo [0
By means of the differential expression
L(u) = —82 + u(x)

we define for u € {2 a Schrodinger operator in £2(IR), which is essentially self-
adjoint. Let A € € and c(), z), s()\, z) denote solutions to the equation Ly = A
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with the initial data ¢(),0) = 1, ¢/(},0) = 0, s(),0) = 0, s'(A\,0) = 1. The
functions c(A, z), s(A,z) are continuous with respect to a totality of variables
(A, z) and integral ones of order 1/2 with respect to A. The limits

we(\, u(’))=F zl_l-»n;o c(A, 2)/s(A, z)

exist and are called the Weyl functions. Besides these, we shall also employ the
functions wy (A, T, u(-)). In what follows we shall use simpler notations such as
w1(A), wi(A, z) instead of wi (A, u()), wi(\, Tyu(-)), accordingly. It is possi-
ble to show that the Weyl functions are holomorphic in €C; = {\ € C | ImA > 0},
map C, — C,, and their zeros or poles on the real axis can only be simple ones
[8.4], if there are any. We use the Weyl functions to define the functions

(A, z) = c(\, ) £ wiL(N)s(), ) =exp (:i: /’3 wx(A, y)dy) (8.1.2)
0

which, for each A\ € C,, belong to £2(IR.), where R, = [0,00), and R_ =
(—00,0), respectively. By definition, the functions 14 (\, z) satisfy the equation

—2ps(\,2) + (u(z) = Npe (A, 2) =0 . (8.1.3)

By substituting (8.1.2) into this equation, we have the following equation for the
Weyl functions:

+8, wi(A, z) +wi (), 2) + A — u(z) = 0. (8.1.4)
The Green function for the operator L(u) is
9Oz, =g\, 4, 2) = —(w, V) +w- ) A DP-(y)  (B.15)

when z > y. Using the above expression, it is easy to establish the following
properties of Green function [8.1.5]:

w+(A, Q}) - w—()‘) 117) = 61: log g()‘)x)x)Tmu) (816)
g()\,x,a:,u)+ 6,\[2g()\,w,a:,u)]_1

1 oo 0 8.1.7)
= —-iaz{g(/\,0,0,u)[/o P2\, y)dy —-/ P2 (A, y)dy} } (

Following [8.6], we define the Floquet index

FO) = (1/2M (weN) +w_(N)) = —(1/2)M (g(1,0,0)7}) . (8.1.8)
Let A = £ +in. The Floquet exponent has a finite limit ae. at { €R, 5 | 0
f€+10) = =l(¢) +irn() (8.1.9)

where [(£) is the Lyapunov exponent, and n(¢) is the number of states that can
be defined, using the functions c¢(A, z), s(A, z), as follows:
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_ . 1 2 ! 21
1) = Lm o log{c(¢,z)" +c'(¢,2)*} =
. 1 2 2
= zlru}:loo iz log{s(.f,:c) +5'(€, z) } ,
. 1 .
()= lim +— arg{c(é, ) —id'((,2)} =
z—too T

= lim ii

z—+co TZX

arg{s(f,a:) ~i3,(§,$)} .

Here the expression for [(£) follows from the conventional definition of the

Lyapunov exponent, and the expression for n(¢) from the oscillation theorem.
We give an outline of the proof for (8.1.9). The function r(},z) = c(A, z) +

ic'(A, z) is non-zero at A € C, = {\A € C | ImA > 0}, so that logr(\,z) is a

continuous function of z and A in €C; x IR and a holomorphic function of X\ in
C,. Then, for A=¢+in, n | 0

lim —1—log r(€,z) = lim El—-log{c(ﬁ,x)2+c'(£,w)2}+
rT—r00 I 00 LT
1
+1i lim ;arg{c(ﬁ,x)ﬂc’({,m)} = (&) —imn(f) .
On the other hand, we have, according to (8.1.2),

A z)=

w_(A) b, )+ w(A)

wi(A) +w_(N) we(\) + w_(A)¢—(A’ z)

Since the first term tends exponentially to zero when £ — +o0 and A € C,, we
have

1 1
lim ~logr(¢,) = lim —log{y—(¢,2) + iy (§,2))

— im L / w_ (€ +10,y)dy
0

T—00 I

=_/ w—(¢ +10, Tyu)p(du) = — f(£ +i0) .
o}

Here the last equality follows from the equality Mw.()\) = Mw_(}), which
is obtained by averaging from (8.1.6). By equating the two expressions for
lim,_, o %log r(¢, ), we have (8.1.9).

Being real and imaginary parts of the boundary value of the function holo-
morphic in C,, the Lyapunov exponent and the number of states are related by
an equality which is called the Thouless-Herbert-Jones formula:

16) — lo6) = / log € — C|(n(d0) — no(d0)),

(8.1.10)
lo(€) = max(0, —&)' /2, no(£) = max(0, £)'/?
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The number of states, n(§), determines the spectrum X'(u) of the operator
L(u): for ae. u € 2 Y (u) = supp(dn) [8.7]. The Lyapunov exponent /({) deter-
mines an absolutely continuous spectrum X, . (v) = {£ € R | I(£) =0}, where
the closure is with respect to Lebesgue measure [8.5, 7]. The last proposition
may be formulated in a stricter way.

Theorem 8.1. [8.5] The Lyapunov exponent /() = 0 a.e. on a Borel set A € R
with a positive Lebesgue measure if and only if the density of an absolutely
continuous spectrum is positive a.c.on A. Under the same condition

wi(§ +10, ) + w_(€+10,2) =0 (8.1.11)

or, equivalently, Re g(¢ +i0,z,z) = 0 a.e. on A. The last equality is called the
reflectionless property of the potential.

We now give the proof of this property. By separating the real and imaginary
parts of (8.1.4), it is easy to show that

—2Rew4(\, z) = £0; logIm wi(\, z) +Im A /Imwi (A, z)

By averaging this equality, we come to an expression such as follows
—Re f(A)/Im X = (1/2)M (1/Im w4 (), 7))

Equality (8.1.7), when averaged, takes the form
df /d\ = M(g()),0,0,u) = —(w+(\, z) + w_(}, z)) !

By adding the last two equalities, we have

Ref . df\ _ 1 1
- (ImA +im dA) = M{hnw+(A,m) "o ()

1
Ry W gy }

=M{[ 1 1 ] (8.1.12)

mw ()  Imw_(hz)

[RC (’U).;.(A, .’E) +w_ (/\7 :L,)]Z
lwe(A, 2) + w_(A, 2)|?

, Im @i, 2) —w_ O, ) }

s O, @)+ w_ (), o)

If () = —Re f(£ +i0) =0, then
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lim RefE+in) _ . Ref€+in) —Re f((+i0)

7—0 n n—0 n

. _ df
OyRe f(& +in) o —Im X e

Therefore, when n | 0, (Re f/Im ) + Im(df/d)) — 0. As a result, (8.1.12)
yields, with n | 0

Re (wi (€ +10,z) + w_ (£ +i0,2)) =0
Im (w (€ +i0,2) — w_(¢ +i0,2)) =0

b

y

or wi(€ +i0,z) +w_(£ +10,2) = 0.
We now proceed to discuss finite-gap potentials.

Definition. The almost-periodic function u(z) is called a finite-gap potential if
the spectrum of the Schrodinger operator L(u) = —8% + u(z) is a union of the
finite set of segments of a Lebesgue (double absolutely continuous) spectrum.

Starting directly from this definition, we derive an explicit expression and
the basic properties of a finite-gap potential.

Theorem 8.2. For a g—band Lebesgue spectrum X = [Eq, E,]U. . .U[E,g41, 00),
the potential u(z) and the eigenfunction (P, z) of the Schrédinger operator
L(u) = —0% + u(z) are expressed by

w(z) = =282 log (iU z — A(D) — K; B) + const (8.1.13)
_8Uz+AP)~AD)-K;B) (. (P
Y(P,z) = 9AP) —AD) K. B) exp (m /oo .Q) . (8.1.14)

Here P is the point of a hyperelliptic Riemann surface X, defined by the equation
p? = Hfff' ! (A — E;), w is the vector of normalized holomorphic differentials,
B is the matrix of their periods, A(P) = fOI:w is an Abelian mapping, {2 is
a normalized Abelian differential of the second kind, which at infinity has a
second-order pole with the principal part (~2d(, where ( is a local variable; U
is the vector of the periods of the differential {2, D is a non-special divisor, and
K is the vector of Riemann constants, see Sect. 3.5.

Proof. The function w,(\,z) + w_(\,z) as a sum of the Weyl functions, is
holomorphic in C, and maps C, into C,. For a finite-gap potential this function
(according to Theorem 8.1) takes, on the real axis, imaginary values on the
segments of the spectrum X, and real values on additional intervals R\ X. The
latter property makes it possible to continue the function w,()\, z) + w_(\, )
to the whole complex plane by employing the Schwartz reflection method. As
a result, for finite-gap potential this function turns out to be holomorphic on a



308 8. The Peierls-Frohlich Problem and Finite-Gap Potentials

hyperelliptic Riemann surface X, given by the equation p? = Hfﬂ 'O\ - E).
Considering that, according to (8.1.4),

wi(), 2) =iV +iu@)/2V A + o(|A| 713 (8.1.15)
with A — oo, it is easy to see that
wi(\, )+ w_(, ) = 2/PO)/ S\, z) (8.1.16)
2g+1 g
P = [JO = E), SO,2) =] — M=) (8.1.17)

=1 k=1

The function w,(\,z) — w_()\, z), as a difference of Weyl functions, is also
holomorphic in €, and maps C, into C,. For a finite-gap potential this function
(according to Theorem 8.1) takes real values on the real axis and, as a result, can
be continued to the whole complex plane, using the Schwarz reflection method.
Thus, this function turns out to be a rational function of A. An explicit formula
for the function under consideration follows from (8.1.4):

wi(A, ) — w-(A, z) = =0, log(w.+(A, ) + w-(A, 7)) = 8; log S(A, )

The formulas derived above enables us to write down explicit expressions for
the Weyl functions:

19,50\, z) .v/P()
Az)=t= . 8.1.18
weh 2y =+5=c5 0 500 (8.1.18)
This formula implies that +w.4()\, z) are the two branches of a meromorphic
function on the hyperelliptic Riemann surface X . Taking into account the number
and order of the poles, it is easy to express this meromorphic function through
the Riemann theta function € introduced in Sect.2:

6l + A(P) — A(D)—K,B) . /P
9(A(P) — A(D)— K, B)

w(P, z) = 0, log 2 . (8.1.19)

oo

All the notations used in the above formula were explained when the Theorem
was formulated. Taking into account the asymptotic expression (8.1.15) for the
function w(P, ), we get a formula for a finite-gap potential such as

we) = — 2ires| ,__ MP)w(P,)
— 210,705, { \(P)

(8.1.20)
x log 8(izU + A(P) — A(D) — K, B)} + const

—28%log 6(izU — A(D) — K, B) + const

When deriving the last equality, we used the fact that A(P) = (U + O((3),
where ¢ = A~1/2 is a local parameter in the neighbourhood of co. Finally, taking
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into account that ¢ (P, ) = exp ( Js w(P, y)dy) , we obtain an expression for the
eigenfunction, i.e.,

_ 8GzU + A(P) — A(D) — K, B) . [F
YD AP - AD) - K, B) T (“” / ”)

e o]

The proof is complete.

We note that this theorem was first proved in [8.8] for a periodic finite-gap
potential only. The proof given above is free of this limitation and valid for an
arbitrary finite-gap potential which, predominantly, is almost-periodic.

Let us now establish the necessary and sufficient conditions for the function
u(z) to be a finite-gap potential.

Theorem 8.3. For the function u(z) to be a finite-gap potential, it is necessary
and sufficient that it satisfies an ordinary differential equation of order 2g:

Z em—— =0, (8.121)
m=—1

where the c,, are constants and the I, are average values of the polynomials of
the function u(z) and its derivatives up to order m included; they are determined
recurrently as coefficients of the asymptotic expansion of the number of states,
n(£), for £ — oo,

n(€) ~ (k Z(Zk';‘;niﬂ) k=¢72 (8.1.22)

Specifically,

I_1=Mu, Iy= Mu?, [} = MQ2W® +u?)
L = MGu* + 10uu? +u'"?)

’ (8.1.23)

Y

while the differential equations for 0-, 1-, 2-band potentials have the form

2c0u+c_1 =0, —2c1(u'" — 3u?) +2cou +c_1 =0 ,
2¢(ut — 10u"y — 5u’? + 10u%)— (8.1.24)
—2c1(u" = 3u®) +2cou+c_1 =0

Proof. Necessity [8.9, 10]: For the function w, (¢, z) the following Riccati dif-
ferential equation (8.1.4) is valid:
Ozws(€, @) +wi(€, 2)° + £ — u(z) =0

It is easy to establish from the equation that the real part w,(¢,z) is a total
derivative, i.e.,
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Re w, (£, z) = (1/2)0, logIm w.(¢, )
From the same equation it follows that for £ — oo the following asymptotic

expansion is valid:

Im w, (¢, z) ~ Z‘("z’;c');ifl) , k=€

whose coefficients w,,_1(z) are easily determined recurrently. They are polyno-
mials of the potential u(z) and its derivatives; specifically,

Wo1=u, wo = w? —u" wy =2u® = 5u? — 6uu + Y ,

wo = Sut — 50uu? — 30u?u" +19u'? + 28u'u'" + 10uu’ — "

For our further discussion we need the expression of the number of states, n(§),
in terms of the function w,(¢, z), i.e.,

n)=1/m)Mw.(,z)=1/m)MInw,.({,z) . (8.1.25)

When deriving the last equation, we took into account the fact that Re wy (£, )
is a total derivative and, consequently, MRe w. (£, z) = 0. Using the asymptotic

expansion for Im w, (¢, =), we obtain an asymptotic expansion for the number of
states

Here
I, = Mw,
and, more specifically,

I_1 = Mu, Iy = Mu?, I} = MQu? +u"?)
L= MGu* + 10uu? + u'?)

b

A simple consequence of the above expression is the asymptotic expansion for
variations in the number of states

1 Y
- n 8.1.26
i nz-—; Qkyntl gy (8120

where

6w,. s d° Ow,
Z( 1) dzs Hu®

s=1

We now consider the variation of the number of states of the Schrodinger
operator with an arbitrary quasi-periodic potential with respect to such variations
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of the potential that do not affect the set of frequencies of the potential and show
that for this case the following formula is valid:
on 1 1

— e ——, 8.1.27
ou 27 Im w,. (¢, ) ( )

Indeed, by varying the Riccati equation given above, we have
Oz 0w+ (€, z) + 2w (€, 2)éw (€, ) — bu(z) =0

The solution of this equation with initial condition dw.(£,0) = 0 is as follows:

6w+(£, z)= /z d:v'&u(:c’) exp [—i /z dw"2w+(§,m")]
0 !

The imaginary part of the solution is

du(z")

N N e

X sin [/ dz''2Im w+(§,x")]

The corresponding variation of the number of states has the form

én = (1/m)MéIm w, (€, z)

o Su(z) Lo ,
’“zlifiloz/d 2ﬂmm(m){1--cos. [/zld:cZIme,(ﬁ,x)]}

which is the sum of two terms. The second term vanishes if the following two
conditions are met:
(1) the variation of the potential éu(z) is a quasi-periodic function with the same
set of frequencies as that of the potential u(z);
(@) 2MImw.(¢,z) ¢ Mu, Mu is the modulus of frequencies for the poten-
tial u(x); [in other words, the generalized Bragg-Wolff conditions [8.11] are not
fulfilled].

When the second term is absent, the above expression yields formula (8.1.27).
It is possible to say that this formula for a variational derivative holds for a certain
class of variations in quasi-periodic potentials that affect the coefficients, but not
the frequencies of a Fourier series corresponding to the potential.

Let u(x) be a finite-gap potential. It then follows from Theorem 8.2 that

Im w+(€a "E) = P(f)/S(&, J))

By substituting this relation into (8.1.27), we obtain the following expression for
the variational derivative of a finite-gap potential:

on iS({,w)
s =T 20 (8.1.28)
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Let us expand this expression in an asymptotic series of & = £!/2. Among the
coefficients of this series there are g +1 linearly independent ones only, because
all of them are expressed linearly in terms of g + 1 coefficients of the poly-
nomial S(£,z). On the other hand, because the coefficients of this asymptotic
series are, according to (8.1.26), proportional to 61, /éu, the variational deriva-

tives 6I,,/6u, m = —1,0,...,¢, for a finite-gap potential should be linearly
dependent, i.e.,

J 61
Z Cmﬁ =0

m=—1

This is the desired result for the necessity direction of the proof.

By comparing the asymptotic expansions (8.1.26,28), it is possible to derive
the so-called “trace formulas”

151_0 g 2g+1
-2-E=u=—22=l:)\3+;Ez ’
I ) (8.1.29)
_1.5_Il=_u”+3'u,2=SZA-Ak—4 ZE etc
2 bu i< ! - 'l

Sufficiency [8.12]. Let the following ordinary differential equation of order
2g + 1 be valid:

g 61,
Z cm-:s_’l: =0

m=-—1

This equation can always be represented as
[L,Ag] =0 (8.1.30)

where L = —82 + u(z) is the Schrodinger operator, and A, is an ordinary dif-
ferential operator of order 2¢g + 1, the coefficients of which are dependent on the
potential u(z) and its derivatives. The operator A, is actually defined by the com-
mutational equation above. Since the operators L and A, are commuting, they
have the same set of eigenfunctions 1) and can simultaneously be transformed to
a canonical form. We choose the functions ¢(), z), s()\, z) introduced above as
a basis in the 2-dimensional space of solutions to the equation Lt = At. In this
basis the differential operator A, is given by a matrix M, of order 2 x 2, whose
matrix elements are polynomials of the potential u(z) and its derivatives and of
the spectral parameter ). From linear algebra it is known that if the matrix M
depends polynomially on the parameter A then its eigenvalues and eigenvectors
are meromorphic functions of A\ on a Riemann surface defined by the equation

det(uE — My) =0
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Because, in the case under consideration, the matrix M, is a 2 x 2 matrix and
Tr M, = 0 due to the anti-symmetric character of the operator A, we have

det(uE — M,) = p® +det M, =0

Thus det M, is a polynomial P()) of order 2¢g + 1 in A, so that the above
equations define a two-sheeted Riemann surface with branch points at 2¢ + 1
zeroes of the polynomial P()). These branch points are boundaries of the bands
of the spectrum of the operator L.

We conclude our discussion of finite-gap potentials. A survey of the theory
of finite-dimensional potentials is given in Chap. 3 and [8.13].

8.2 The Peierls Problem

The problem of finding a self-consistent state of electrons and ions in a one-

dimensional metal in the jellium model can be reduced [8.1] to that of minimizing
the functional of a free energy

F=uN — /de n(e,u(-))f(6)+(rs/2)(u2) (8.2.1)
with the additional condition

(w)=0 . (8.2.2)

In this section (u) denotes the average value of the function u(z).
Here we have used following notations:

e =(2m/R)E, u=Q2m/k)aw,, k = (K [2ma)ps® (8.2.3)

where k is the Planck constant, z is a space coordinate, m is a mass of electron,
E is an electron energy, w(z) is a lattice displacement, p is a lattice density, s
is a sound velocity, « is an electron-phonon interaction constant.

The first two terms in (8.2.1) represent the free energy of an electron gas
in the potential u(z), and the third term the elastic energy of a lattice. The
notations used are as follows: p is the chemical potential, A is the electron
density, n(e, u(-)) is the number of states with energy less than ¢ in the potential
u(z), referred to a unit of length; f(¢) is the Fermi function, « is the elastic
constant.

To determine the form of a solution to the variational problem stated, we con-
sider the change in the free energy (8.2.1) when the potential u = 0 is replaced
by a small band potential u(z) that leads to the appearance of gaps in the energy
spectrum of electrons. According to perturbation theory, the boundaries of a gap
formed at energy ¢ are located symmetrically with respect to €. Consequently, if
the states of the spectrum on both sides of the gap are equally occupied by elec-
trons, the same numbers of electrons on both sides of the gap will decrease and
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increase their energy by the same amount, so that the change in the electron part
of the free energy, related to the gap formation, becomes zero. Because the lattice
part of a free energy, proportional to (u?), rises simultaneously, the formation
of a gap is energetically disadvantageous under the conditions described above.
If, however, the states situated under the gap are occupied more than the states
above it, then the electron part of a free energy will decrease when the gap is
formed, and this decrease may be greater than the corresponding increase in the
lattice part of a free energy. As a result, the formation of a gap is energetically
advantageous under the conditions in point. The form of the Fermi function that
defines the electron occupation of the states of the spectrum shows that a gap can
occur at ¢ = p only. The above heuristic considerations put forward by Peierls
[8.1] result in the following hypothesis:

The minimum of the free energy (8.2.1) is attained, with additional condition
(8.2.2), on a single-band potential, i.e., on the potential which generates not more
than one gap in the energy spectrum of conduction electrons.

The proof of this hypothesis is the main result of the present section. To prove
it, we consider the free energy (8.2.1) on the set of quasi-periodic potentials. We
choose such variations of the potential that its periods remain unchanged. By
setting the variation derivative of free energy (8.2.1) with respect to the above
class of potential variations equal to zero, we have the following equation:

— / def(e)én(s, u(-))/éu +rku+A=0 . (8.2.4)

Here A is the Lagrange multiplier used to take condition (8.2.2) into account.
This equation implies that the variational derivative of the number of states with
respect to the class of variations chosen is a linear function of the potential.
According to Theorem 8.3, this is a necessary and sufficient condition for the
potential to be a single-band one.

We present the necessary data related to a single-band potential [8.13]. The
single-band potential is an elliptic function that can be expressed explicitly via
the Weierstrass p-function or the Jacobi theta function:

u(z) = =2(pliz + w) — (pliz +w)))

(8.2.5)
= —28%log 94(L "'z +const,q)

where (p(iz +w)) = —q'Ju', L = —2w'.

For all the quantities, except for the spectrum boundaries, we use below
the conventional notations adopted in the theory of elliptic functions [8.14]. For
the boundaries of the spectrum ey, €2, €3 we adopt the following notations and
ordering:

e1 &< e

Following (8.2.5), the number of states of a single-band potential is expressed
in terms of the potential
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n(e) = (1/m)/(e — e1)(e — e2)(e — e3){(e — y(z) )
y(z) = (1/2)(e1 + €2 + €3 — u(z))

Using the explicit expression for a single-band potential, we then obtain a para-
metric representation for the number of states

n(z) = (1/mI{(2) — 2(n' /)], e=p(2), e1<e<le

i (8.2.6)
n(z) = —(1/m{(z) — 2(n' /W) +2/L, e=p(z), e3<e< o0

The wave function of a quantum particle with energy ¢ in a single-band potential
is as follows [8.14]:

o(izg + w)o(iz +w F 2)
o(iz + w)o(izo +w F 2)

'(/):I:(xa Z) =
€ = p(z)

exp[i(z — z0)((2)] 8.2.7)

This formula, valid inside energy zones, assigns to each energy value two linearly
independent wave functions that correspond to two sheets of a Riemann surface
given by the equation p? = P(e) = (¢ — e1)(e — e2)(€ = €3). Sometimes it is
appropriate to use for the wave function the following form corresponding to
(8.1.2)

$(o,8) =[x e, N Pexp(i [ daxtae)

x@,) = PO (e — 7)) ", (8.2.8)
P(e) = (e —e1)e —e2)(e —¢€3)
¥(z) = (1/2)(e1 + &2 + &3 — u(x))

In such a form the wave function is normalized by the condition (| |?) = 1.

According to (8.2.5), the single-band potential is defined by three parameters
such as ¢1, €2, €3 or (u), w, w'. If we are interested in relative but not absolute
values of the potential, it is sufficient to have two parameters such as e — €1,
€3 — €1, OF w, W',

Let us now derive equations that determine the potential parameters. To obtain
the first equation, we subtract from the variational equation (8.2.4) the same
equation averaged over the period. As a result, we have

_ /def(s) (%’5 - <-g—;’->) + ru— (u) =0

The variation in the number of states of a single-band potential with respect

to the variations leaving the period of the potential unchanged is, according to
8.1.28),

on 1 g — y(z)

—

du 27 fle — enE — e2)e — e3)
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By substituting this expression into the previous one, we have the first equation
for determining the potential parameter:

f(€) 3
(u — (u)) (47m + / de— 53)) =0 . (8.2.9)

We note at once that this equation has two solutions. The first is

u=(u)=0

) (8.2.10)

implying that a single-band potential degenerates into a zero-band one. The sec-
ond is

f(e)
d
© V(e —e1)(e — e2)(e — €3)

Equation (8.2.9) is given by the variation of the free energy with respect to
potential variations that leave the potential period unchanged. To derive the sec-
ond equation, we consider the change in free energy when the potential periods

change. For this purpose we make use of the homogeneity property of an elliptic
Weierstrass function:

+4rk=0 . 8.2.11)

p(vz |vw,vw') = v 2p(z |w,w'), where v is the teal parameter

Since the single-band potential is expressed via the Weierstrass function, we have
the similarity property of a single-band potential

-2 -2 -2 -2
ulve, v e, v e, v "e3) = v "u(x, €1, €2, €3)

It is easy to see that, under the similarity transformations of a single-band po-
tential, the free energy is transformed as follows:

.7:(1/—261, 1/_262, v 2e3) = (u — u“z(u)).)\/' - /ds nf(u_2s — 1)
+ v4(n/2)((u2) - (u)z)

By differentiating this expression with respect to v at the value v = 1 and
setting the obtained derivative equal to zero, we have the second equation for
determining the potential parameters

f de f[n — 2(e — (u))(dn/de)] =25 ((uv®) — (u)?) . (8.2.12)

Using (8.2.11), this equation can be represented as
dn 1 (u?) — (u)?
— 2 — _—+ — =0
[ s [” R T ) Gy =

By integrating the last equation by parts, it is possible to represent the second
equation for the potential parameters as follows:
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/ de g(e)(df /de) =0

. d
g(e) = / de [n —2e~ (U>)d—: (8.2.13)

1 (u?) = (u)?
27 /e — e1)e — e2)(e — €3)

We present the basic properties of the function g(e) which will be used in what
follows:

(1.) Function g(¢) is continuous on the interval (¢, co) and differentiable on
it everywhere, except for the points €3, ¢3, where it has a discontinuity in the
derivative.

(2.) g(e1) = g(+o00) = 0.

(B.)Fore; <e<e

_1 [ 1 (y — e1)(y — e2)(y — €3)
gle) = T Je ds\/(e—el)(e—ez)(e —€3) €— <0

This inequality follows from the fact that, by definition, &2 < 4(z) < e3. For
e2<¢e<e¢g3

9() = glea) + —2[g(e3) — gle2)]
€3 — €2
Fores <e< oo
o(e) = 1 /= 1 (r—eNly —ely —e3) _

d
T Je 6\/(6—61)(8—62)(6—63) Y—¢€

Thus, the function g(¢) becomes zero at some point of the interval [e;, €3], too.
4.) Letey = —2a(1 — p2/2), g2 = a(l —2p?), e3 = a(l +p2). Then, as p — 0

(3(1)1 /2

g(e3) = —gle2) = p*[1 + O(p*log4/p)]

Consequently, as p — 0, the function g(e) becomes zero for € = (e3 + £2) /2.

The proof of these propositions is too cumbersome to be given here.

Now we first analyze the present solution to the Peierls problem at absolute
zero. Since df /de = —6(e—p), where 6(z) means the Dirac function, the equation
(8.2.13) takes the form g(y) = 0. This means (considering the third property of the
function g(¢)) that &2 < u < e3. The latter is equivalent to /' = A*, where N'* is
the number of states in the conduction band ¢; < ¢ < ¢;. Since for the periodic
potential (and the single-band potential belongs to this class) N*L = 1, where
L is the potential period, the equation (8.2.13) can be represented as N'L = 1.
This equation is called the Peierls equation. If A and L in this equation are
expressed in terms of the Fermi momentum k7 and the reciprocal lattice vector
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b, according to the equalities N = kg /m, L = 27 /b, then the Peierls equation can
be written in the conventional form b = 2kr. The single-band potential period is
= —i2w', so that the Peierls equation also has the form

W =i2N . (8.2.14)

At absolute zero (8.2.11) is readily written as

w=2rK . (8.2.15)
According to formulas available in the theory of elliptic functions,

e3 — e1 = (1/2w)*%50,9)

e2 — &1 = (1/2w)*930,¢) (8.2.16)

&3 — &2 = (r/20)*930,9)

where ¢ = exp(irw’/w). These formulas express the single-band potential pa-
rameters in terms of electron density and elastic lattice constant. As a result,
the potential and the corresponding number of states and the wave functions
are completely determined. This allows us to calculate any characteristics of the
system as, for example, the free energy:

Fe / " dne — (u) + (s/2) ((12) — (uP?)

N 1 91"0,9)] 94'0,9)

T 4822 [“ 24726 N 9100,9) | 91(0,9) (8.2.17)
N, 1 909)

2k 2472k N 94(0,q) ’

+

where g = exp(—1/4kN).
Let us treat the limiting cases.
Let ¢ — 0; this corresponds to small electron density. Then,

&3 —e1=(1/16:*)(1+0(g)) ,

(8.2.18)
e2 —e1 = (1/r))(L+O(g*)
The potential turns out to be a set of potential wells such as
u(z) = const — 1/8«% cosh’(z /4k) . (8.2.19)

They are independent of electron density. Each electron creates a potential well
itself and occupies the only energy level existing in the well. This autolocalized
state of an electron is referred to as a soliton (polaron) in physics. The energy
level width dependent on electron density is determined by electron tunneling
from one potential well to another. The free energy is

F=—(N/48s%) (1 — 6¢* + O(g")) + N* /2 . (8.2.20)
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In this expression, the first term is proportional to soliton density and the propor-
tionality coefficient is the soliton binding energy. The second term is proportional
to a squared density of solitons and describes their mutual repulsion.

Let ¢ — 1; this corresponds to great electron density. Then,

€3 — e = N2 (1+0(g)

(8.2.21)
e3 — &2 = TN?16¢ (1+0(9?)

where ¢ = exp(—4n2xN). The potential
u(z) = const + 167 N2GcosRrN z + ¢) (8.2.22)

depends on the electron density and is therefore generated by all electrons col-
lectively. This limiting case was studied earlier by Frohlich and designated by
him as a charge-density wave [8.15]. The free energy is

F=(1/3*N? (1-6¢*+0(") . (8.2.23)

The first term in this expression is the energy of free electrons. The second
term describes the decrease in electron energy when the gap is formed and is
proportional to a squared gap.

Thus, the charge-density waves and solitons (polarons) are limiting cases of
the Peierls self-consistent state.
Let us clarify this statement more carefully. Using well-known results of the
theory of elliptic functions it is easy to show

. . ir & iz
KO(IIL' + U.)) - (p(liL‘ + LU)) =m + d_xz lOg 192 ('2: ‘T)

o 2 & - (8.2.24)
5+ £ ot -2

7 + " 3;00 cos 7 (z iw's)
to hold. With the help of the above equality we get from (8.2.5) the following
expression for the potential u(z):

. 2 x
T, =2 i)
u(@) = = + - s;wcosh [Zw(:z: 2i's)| . (8.2.25)

According to this expression the potential u(z) represents a lattice made up of
potential wells of the form — A cosh™ Bz, each well separated from the other
by the period L = —i2w'. The potential well —Acosh™2 Bz is well known
(see, e.g., [8.16]) to contain only a finite number of bound states equal to
[(1/2){(1 +4A4/B%!/2 — 1}], where [2] means here an integer part of a number
z. In our case a potential well contains only one bound state. Thus, if —ir7 =
—imw' /w = 1/4k N — oo and the separation —2iw' between the potential wells
is larger than their width, the Peierls state is (almost) a soliton lattice, i.e., a lattice
of potential wells each of which contains only one electron in a unique bound
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state (we do not take into account the electron spin). If —irT — 0, the potential
wells composing the lattice are overlapping to such an extent that an energy
level is transformed into an energy band. In this case it is reasonable to rewrite

(8.2.24) by means of the Jacobi imaginary transformation of the right-hand-side
of the equality,

plzr +w) — {p(r +w)) = :gilog 64 (_2_1_57 7.)

(8.2.26)

- o0 .
im irs/T . ,
= co .
ww' fi—; cosh(irs/T) simsa /u)
Taking this expression into account we obtain with the help of (8.2.5) for the
potential u(z) the expression

27 o~ ims/T . ;
u(z) = —— Z cosh(ins/7) cos(imsz /w') . (8.2.27)

s=1

This supports the picture of the Peierls state in the limiting case —in7T — o0
as a superposition of charge-density waves. In the language of mathematics a
transition from one physical picture to another one corresponds to an imaginary
Jacobi transformation. According to the theory of elliptic functions, under this
transformation the equality (log q)(log¢) = =2 is valid. Therefore a transition

from one form of definition to another takes place at ¢ = ¢ = exp(—n), i.e., at
T=10r at

4N =1

To determine the temperature dependence of potential parameters, it is nec-
essary to solve the set of equations (8.2.11, 13). We shall calculate the critical
temperature T, at which a single-band potential occurs. For this purpose we
analyse the above set of equations under the assumption that the gap width is
Zero, €2 = €3. As long as the function df /de is symmetric with respect to E = p,
and the function g(e) is, in view of property 4, anti-symmetric with respect to
€ = (€3 + &2)/2 while €3 — 3 — 0, it follows from (8.2.12) that

E3=€2=4U . (8.2.28)
We multiply the equality
1
dE =
V(e —e1)(e — e2)(e — €3)

by f(e2) and subtract it from (8.2.11). Setting in the above expression €3 = €2 = 4,
we find

0

1o _ [ tanh(z/2)
ey = ), i (8.2.29)

z=—wW/Tp, =n=(1-w/T,
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Let 4 — &1 > T,. By partial integration in (8.2.29) we have

1 o0
81mT;/2 = / dz
21

B (z+ |2 D)2 — |21 |12
|21]1/2 cosh’(z/2)

CEIPTRCEPAE

Expanding the integrand in a series of z/|z;| yields an asymptotic series such
that

1 o0 dz
8akTi /v — —— / —_—
TS 2|z1|172 J_o cosh?(z/2)

3 22 2
1 =
X [ 08 "6 TP +O(|z1|4)]
1 8yla| 7
- — |21 -
|21|1/2 [ 08 T 8|z1|

where v = exp C, C is the Euler constant. When the previous notation is used,
the resulting equation reads

8vler — 2 T, T
47I'K,|61 _ /J,|l/2 = lOg 7' T PI _ _16 |€1 .._P'u,|2 +0 (—"——|€1 -—1-)/.L|4
P

Restricting ourselves to the first term on the right-hand-side of this equation, we
have the standard expression

A
4|z

>+ O0(|21 |4)] ,

T, = 8/m)|e1 — p|exp [-47”'.:]61 _ m‘/z] . (8.2.30)

This expression can be represented as Tj, = (y/m)A, where A is the half-width of
a gap at zero temperature. This is easily seen by comparing (8.2.21) and (8.2.30).

8.3 Theory of the Frohlich Conductivity

A conductivity created by a uniform motion of the Peierls state is known as
the Frohlich conductivity, since Frohlich was the first to investigate this new
type of conductivity in a limit case of charge-density wave in 1954 [8.15]. The
existence of Frohlich conductivity was confirmed about 10-15 years ago by ex-
periments in quasi-one-dimensional conductors. Here we build a rigorous theory
of the Frohlich conductivity for a general case, obtain an exact expression for
an effective mass and investigate current oscillations. Further we closely follow
[8.17].

The theory of the Frohlich conductivity of a one-dimensional conductor is
developed here similar to the previous Sect. 8.2. and in line with Frohlich, ac-
cording to whom electron wave functions (z,t, E) and lattice displacements
w(z,t) in a uniformly moving Peierls state are defined as extremals of an energy
€ of the system with a given number of electrons A" and a momentum P with
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£=y < o + awz|¢v|2> " —;-p(wt + 2u?) (83.1)
N = Z(W)F) 8.3.2)
P= Z (Ptpe — hath) — plwyw,) (8.3.3)

The following notations are used: £ is the Planck constant, x is the space co-
ordinate, t is the time, m is the electron mass, F is the electron energy, p is

the lattice density, s is the sound velocity, « is the electron-phonon interaction
constant,

Jim l/ A(z)dz

The summation in (8.3.1 - 3) is taken over all occupied electron states. We will
consider our system at the temperature of absolute zero and therefore we will
take the summation from the ground state up to ones with a Fermi energy. Thus
the problem of Frohlich conductivity reduces effectively to the determination of
a minimum for the functional

F=E—puN —ovP (8.3.4)

where the chemical potential x4 and the speed of motion v are the Lagrange
multipliers. It is worthwhile to note that the functional (8.2.1) coincides at the
temperature T = 0 with the functional (8.3.4) at the momentum P = 0.

Before considering the minimization problem it is appropriate to go over
from the laboratory frame of reference K to the frame of reference K' moving
with the velocity v. The well-known Galilean transformation is accomplished by

c=z' +ot', t=t

E=E+Pv+(1/2)mv®>, P=P'+ mv
Pz, t) = 9'(@’, ") exp [(/7) (mvz — (1/m?t)]
w(z,t) = w(z',t')

(8.3.5)

Here and below all quantities in the moving frame of reference K' are marked
with a prime. The Galilean transformation brings the functional F into the form

K2 "
F =3 (Gl auly ¥ >
m'v2 2 2,2 1 \2
— (I«"" T) Z(hb | 2p (('wt,) +s ( — v /8" W wy) >

Variation of the functional yields the Euler-Lagrange equations for wave
functions and lattice displacements:

(8.3.6)
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h2
Ty
————"b'zl z! + awlzﬂ/) = _lhlptl 5

Why — 8% (1_;_2.) W, = (ZW’ [2) | (8.3.7)

Further, we consider the stationary case with w'(z',t') = w'(z') and ¥'(z',t') =
Y'(z")expl(i/R)E't']. In this case the system (8.3.7) acquires the simple form

nZ
d _'(,b’z/zl + aw','(/) = E’¢' s

(1———) =2 W ()

To simplify the subsequent calculations we shall rewrite the above system of
equations:

(8.3.3)

g +u’ =gy, —ku= > (PP — (PP (8.3.9)
where we introduced the new notations

e=Q2m/K)E, u=(2m/E)aw!,
K= (h2/2ma2)p32(1 —v?/s?)

)

(8.3.10)

to be compared with (8.2.3). Solving the system (8.3.9) we find electron wave
functions and lattice displacements in the moving Peierls state similar to Sect. 8.2,

u(z) = —2(pliz +w) — (pGiz +w))) (8.3.11)

where p(z) is the Weierstrass elliptic function. The half-periods of the Weierstrass
function satisfy the relations

W =12N, w=27k . (8.3.12)

The first relation connecting the period of the potential u(z) and the electron
density N is named after Peierls. The second relation appeared for the first time

in a paper by Frohlich and thus received his name. The electron wave function
is given by

P’ e) = [(x (2, €)) x(z', &)1~ exp (i / " do x(:c,e>) :

x(@',€) = [P©1'2 (e — v(z")) - (8.3.13)
P(e) = (e —e1)e — e2)(e —¢&3)
v(z") = (1/2) (e1 + €2+ &3 — u(z"))

?

where €1, €2, €3 are boundaries of the spectrum. Note that according to (8.3.13)
the wave function is normalized, (|:|?) = 1.



324 8. The Peierls-Frohlich Problem and Finite-Gap Potentials

Formally the expressions (8.3.11, 12) coincide completely with analogous
expressions obtained in Sect. 8.2. at T' = 0. Nevertheless there is an important
difference. It consists in the definition (8.3.10) for the parameter « that contains
in comparison with a similar parameter of the previous Sect. 8.2. an important
multiplier (1 — v?/s?) that takes into account a dependence on a velocity. Thus
a dimensionless parameter kA for the moving Peierls state is less than that for
the static one. In a physical language it means that the moving Peierls state is
more similar to a soliton lattice than the static one.

In order to obtain an expression for an effective mass M of the Peierls state
let us write down a relation between momenta (and between energies also) of

this state in laboratory and movable frames of reference. It is easy to do with
the Galilean transformations

PP+ N Mo =Y 2 (B — B') - pluwhywl)

(8.3.14)
+v (m Y (WP + o))
E=E+vP +(1/2)N Mv?
h2
- ¥ (Gl auldv'P)
(8.3.15)

+(1/2p{(wp) + 8wl )) +v ) %@zup;, — Vo)
+(1/20% (m Y (1'P) + p{(win)?))

Taking (|%[*) = 1 into account we get from the last formulas the following
expression for an effective mass M:

K2
e (1o ) (58 () ) w00

The quantity M is called an effective mass since according to relations (8.3.14),
(8.3.15) at P’ =0 it is a proportionality coefficient between a momentum P in
a laboratory frame of reference and a velocity v and also it is a coefficient of
a quadratic with respect to velocity additional term to energy £ in a laboratory
frame of reference. We call M an effective mass although it depends on a velocity
in fact and strictly speaking we should consider as an effective mass a quantity
Mess = ]-imv—>0 M.

Note also that according to (8.3.16) the effective mass M is always larger
than the electron mass m since it includes an accompanying lattice distortion
(p/N'm){(w',)?). This lattice distortion and an appropriate part of an effective
mass vanishes in the transition from the soliton limit to the charge-density wave
limit, i.e., when the dimensionless parameter kA grows.

Substituting (8.3.11) into (8.3.16) we get the following formula for the ratio
of the effective mass M to the electron mass m:
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M
m

12maw
2
6 . 90,9 17| _ p n2h?
-2 [71'7' * 7294(0, ¢) =1+ 2N'm \ 12maw” ®.3.17)

9'"(0. 6 2
x {195(0,4) +93(0,6) + 9300, 4) — 2 [;ﬁ,%] }

P 7r2h2 2 8 8 8
=1+ 5 | { 9200,9) +93(0,9) + 9400, q)

Here 9,(0, q) are theta-constants and ¢ = exp(inrw’ /w), ¢ = exp(—irw/w'). Sub-
stituting into the obtained formula the halfperiods w, w' defined by (8.3.12) we
get an expression for the effective mass for the Peierls state in terms of the
physical parameters N, . Since, according to (8.3.10), the parameter « depends
on the velocity v so does the effective mass. The two expressions given above
for the effective mass are both suitable to study one of the two limiting cases’
according to the value of the dimensionless parameter xA. These expressions
transform into each other by means of the imaginary Jacobi transformation. Let
us now consider the limiting cases.

1) The soliton limit, kA" = i/47T — 0. In this case ¢ = exp(—1/472kN) — 0
also. Writing the theta-constants in (8.3.17) in terms of the Taylor series we get
M 1 ot

L . 3.1
Y R T RSy 8:3.18)

This is a well-known formula for the effective soliton mass.
2) The charge-density wave limit, kA" = i/4rT — oo. In this case ¢ =

exp(—47r2nj\/') — 0. In accordance with the formula (8.3.17) the charge-density
wave effective mass is

4 2

M =1+2°7n* p./\ff; exp(—8mkN) =1+ p (é) . (8.3.19)
m m3a 2Nm \ o

Here A = (872h2N?/m)exp(—4n2xkN) is a width of a spectral gap. This ex-
pression for the charge-density wave effective mass coincides with a result of
Frohlich [8.15], who studied a uniform movement of the Peierls state in such a
limiting case. From (8.3.19) it follows that M/m — 1 at kN — oo.

Using our expression for the effective mass it is not difficult to get an estimate
for a conductivity o of quasi-one-dimensional conductor, e.g. by means of the

Drude-Lorentz formula o = e2A'7/M, where e is an elementary electric charge
and 7 is a relaxation time.

The mean current I, created by a uniform movement of the Peierls state with
a velocity v is defined by

I={J) (8.3.20)

where the expression for the microscopic current J has the well-known form
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J($) == Z(¢¢z "/’z"p)
= S Y — B+ e 3 P

For the following considerations we assume that the states in the conductivity
band are occupied, i.e.,

(8.3.21)

R T TN _
5 DY — ) =0
In this case the mean current has the well-known expression
I=ev) (W) =evN . (8.3.22)
For the microscopic current we get
Ta)=ev 9P =ev [N =Y (o1 - (')
= ev(N — ku(z")) (8.3.23)
=1{1 +25 [pla’ +w) — (plia’ +0)] }

When we measure the microscopic current at a fixed point z = 0 in the laboratory
frame of reference we obtain z' = —vt; therefore the microscopic current appears
to be a periodic function of time

J@) = 1{1 +2"-".-‘7§i [p(ivt+w)+ ’7—',”

_ vt
- 12_1; Z cosh™2 (-2? +ms) (8.3.24)

=00

=] |:1 +2 Z _ims/T__ Cos(i'rrsvt/w')}

sinh(irs/T)

For the period T and the frequency v of the microscopic current we get from
(8.3.24) the expressions

T=efl, v=2nl/e . (8.3.25)

We have given several expressions for the microscopic current. The second
expression is convenient for the study of the soliton limiting case and the third
one is suitable to investigate the charge-density wave limiting case. Let us now
consider the expressions for J(t) in these limiting cases.

1) The soliton limiting case, kA =i/4n7 — 0. For this case

J$)=T1 Y explisvt)=2aI Y é(wt—2ms) , (8.3.26)

8=—00 §=—00
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1.e., the current is just a periodic train of 27-pulses. This result is natural since in
the soliton limiting case the Peierls state is just a lattice of potential wells each
containing one electron (we do not take into account the electron spin).

2) The charge-density wave limiting case, kA" =i/4wT — oo. For this case

8wk N
J(t) =11+ m COS(l/t) ) (8327)

i.e., the current has only one harmonic.

Let us discuss these results. The current oscillations (or depending on exper-
imental situation, the voltage oscillations) with a frequency proportional to an
average current that follows from formulas (8.3.24, 25) have been discovered
in quasi-one-dimensional conductors about ten years ago [8.18,19]. Commonly
they are designated as “narrow band noise” but it seems more reasonable to call
them “current oscillations” as it has been proposed by the author of a review
article [8.19]. A lot of harmonics of current oscillations are often observed in
experiments. This finds a natural explanation via (8.3.24) and can hardly be ex-
plained by the Frohlich theory [8.15] that takes into account only one harmonic
of the lattice distortion in the Peierls state.

In conclusion we note that the papers [8.2, 3, 17, 20-22] allow to describe
from a unified point of view all equilibrium properties of quasi-one-dimensional
conductors with the Peierls state and the properties of the Frohlich conductivity
created by a uniform motion of this state.

8.4 Conclusion

In this section we discuss the development and generalization of the studies dealt
with in preceding sections.

First of all, it has to be mentioned that the authors of [8.20, 21] suc-
ceeded in calculating the temperature dependence of the boundaries of the spec-
trum of a single-band potential which is an extremal of the Peierls thermo-
dynamic functional. The results obtained there were used to give a classifica-
tion of quasi-one-dimensional conductors, related to the dimensionless quantity
& = (R2u/2m)'/?hw [ X2, where p is the chemical potential, w is the frequency
of acoustic phonons, A is the electron-phonon interaction constant. If « > k.,
the quasi-one-dimensional conductor is a conductor of the charge-density wave
type, and if k¥ < &, it is a conductor of the soliton (polaron) type. Analytical
calculations give . = 0.1326. Analytical expressions in good agreement with the
calculations were obtained for the energy and temperature values at which a gap
(k > K¢) or a discrete level (k < x.) appear in the spectrum. In [8.22], it was
shown that the equations arising from the variation of Peierls thermodynamic
functional are actually the self-consistency conditions that result from applying
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the approximating Hamiltonian method to the Frohlich Hamiltonian [8.23]. Con-
sequently, the method proposed in the preceding sections enables us to find ex-
act solutions of the self-consistency equations in the approximating Hamiltonian
method. Establishing this fact (which is well-studied within the framework of
the Peierls problem, but in fact has a much wider range of applications) appears
to be very important.

In [8.24, 25], the generalization of the Peierls problem, discussed in the
preceding sections, to the case of a discrete Schrodinger operator is treated.
The generalization of the Peierls thermodynamic potential to the case when its
extremals are many-band potentials is proposed in [8.3]. The variations of such
a thermodynamic potential were discussed in [8.26].

Different aspects of the Peierls problem are now being studied in an intensive
way, so that the list of references enclosed in this section is, regrettably, far from
complete.

It is to be emphasized that the Peierls problem has, besides its direct appli-
cation in solid-state physics, a more general significance, because its solution
leads us to the necessity of considering the deformation of Riemann surfaces
and different fields on them, of developing a spectral theory for the Schrodinger
operator with an almost periodic potential, of formulating a theory of infinite-
dimensional integrable Hamiltonian systems, of developing the theory of the
Kac-Moody algebras and loop groups etc.

In conclusion, we make some general comments concerning the role and
importance of finite-gap potentials in solid-state physics. The simplest periodic
potential is commonly represented by quantum physics text books as a potential
consisting of rectangular wells (the Kronig-Penny model). However, to determine
the boundaries of the spectrum that corresponds to this potential, it is necessary to
solve transcendental equations, and, moreover, the appropriate eigenfunctions are
so cumbersome that it is very difficult to use them to calculate the matrix elements
of any observables. Finite-gap potentials are free of these limitations and, because
of that only these potentials should play the same role in solid-state physics as
does the Kepler problem in atomic theory. We note that any periodic potential
generally having an infinite number of bands (similar to the Mathieu problem)
can be approximated by a finite-gap potential (provided narrow enough gaps in
the spectrum are disregarded) [8.27]. The matrix elements of any observables on
the eigenfunctions that correspond to finite-gap potentials can easily be calculated
analytically by the residue method. Therefore, finite-gap potentials are important
in solid-state physics. Finite-gap potentials have recently been applied in the way
indicated above to solve some specific problems in solid-state physics [8.28-32].
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