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Abstract We consider a general theory of curvatures of discrete surfaces equipped
with edgewise parallel Gauss images, and where mean and Gaussian curvatures of
faces are derived from the faces’ areas and mixed areas. Remarkably these notions are
capable of unifying notable previously defined classes of surfaces, such as discrete iso-
thermic minimal surfaces and surfaces of constant mean curvature. We discuss various
types of natural Gauss images, the existence of principal curvatures, constant curva-
ture surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets,
and interesting special cases such as discrete Delaunay surfaces derived from elliptic
billiards.

1 Introduction

A new field of discrete differential geometry is presently emerging on the border
between differential and discrete geometry; see, for instance, the recent books [1,6].
Whereas classical differential geometry investigates smooth geometric shapes (such
as surfaces), and discrete geometry studies geometric shapes with a finite number of
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2 A. I. Bobenko et al.

elements (such as polyhedra), discrete differential geometry aims at the development
of discrete equivalents of notions and methods of smooth surface theory. The latter
appears as a limit of refinement of the discretization. Current progress in this field
is to a large extent stimulated by its relevance for applications in computer graphics,
visualization and architectural design.

Curvature is a central notion of classical differential geometry, and various discrete
analogues of curvatures of surfaces have been studied. A well known discrete ana-
logue of the Gaussian curvature for general polyhedral surfaces is the angle defect
at a vertex. One of the most natural discretizations of the mean curvature of simpli-
cial surfaces (triangular meshes) introduced in [13] is based on a discretization of the
Laplace-Beltrami operator (cotangent formula).

Discrete surfaces with quadrilateral faces can be treated as discrete parametrized
surfaces. There is a part of classical differential geometry dealing with parametrized
surfaces, which goes back to Darboux, Bianchi, Eisenhart and others. Nowadays
one associates this part of differential geometry with the theory of integrable sys-
tems; see [9,17]. Recent progress in discrete differential geometry has led not only
to the discretization of a large body of classical results, but also, somewhat unex-
pectedly, to a better understanding of some fundamental structures at the very basis
of the classical differential geometry and of the theory of integrable systems; see
[6].

This point of view allows one to introduce natural classes of surfaces with constant
curvatures by discretizing some of their characteristic properties, closely related to
their descriptions as integrable systems. In particular, the discrete surfaces with con-
stant negative Gaussian curvature of [18] and [24] are discrete Chebyshev nets with
planar vertex stars. The discrete minimal surfaces of [3] are circular nets Christoffel
dual to discrete isothermic nets in a two-sphere. The discrete constant mean curva-
ture surfaces of [4] and [10] are isothermic circular nets with their Christoffel dual at
constant distance. The discrete minimal surfaces of Koebe type in [2] are Christoffel
duals of their Gauss images which are Koebe polyhedra. Although the classical theory
of the corresponding smooth surfaces is based on the notion of a curvature, its discrete
counterpart was missing until recently.

One can introduce curvatures of surfaces through the classical Steiner formula.
Let us consider an infinitesimal neighborhood of a surface m with the Gauss map s
(contained in the unit sphere S2). For sufficiently small t the formula

mt = m + ts

defines smooth surfaces parallel to m. The infinitesimal area of the parallel surface mt

turns out to be a quadratic polynomial of t and is described by the Steiner formula

d A(mt ) = (1 − 2Ht + K t2) d A(m), (1)

Here d A is the infinitesimal area of the corresponding surface and H and K are the
mean and the Gaussian curvatures of the surface m, respectively. In the framework of
relative differential geometry this definition was generalized to the case of the Gauss
map s contained in a general convex surface.
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A curvature theory for discrete surfaces based on mesh parallelity 3

A discrete version of this construction is of central importance for this paper. It
relies on an edgewise parallel pair m, s of polyhedral surfaces. It was first applied in
[19,20] to introduce curvatures of circular surfaces with respect to arbitrary Gauss
maps s ∈ S2. We view s as the Gauss image of m and do not require it to lie in S2, i.e.,
our generalization is in the spirit of relative differential geometry [22]. Given such a
pair, one has a one-parameter family mt = m + ts of polyhedral surfaces with parallel
edges, where linear combinations are understood vertex-wise.

We have found an unexpected connection of the curvature theory to the theory of
mixed volumes [21]. Curvatures of a pair (m, s) derived from the Steiner formula are
given in terms of the areas A(m) and A(s) of the faces of m and s, and of their mixed
area A(m, s):

A(mt ) = (1 − 2Ht + K t2)A(m), H = − A(m, s)

A(m)
, K = A(s)

A(m)
.

The mixed area can be treated as a scalar product in the space of polygons with parallel
edges. The orthogonality condition with respect to this scalar product A(m, s) = 0
naturally recovers the Christoffel dualities of [2] and [3], and discrete Koenigs nets
(see [6]). It is remarkable that the aforementioned definitions of various classes of dis-
crete surfaces with constant curvatures follow as special instances of a more general
concept of the curvature discussed in this paper.

It is worth to mention that the curvature theory presented in this paper originated
in the context of multilayer constructions in architecture [15].

2 Discrete surfaces and their Gauss images

This section sets up the basic definitions and our notation. It is convenient to use
notation which keeps the abstract combinatorics of discrete surfaces separate from
the actual locations of vertices. We consider a 2-dimensional cell complex (V, E, F)

which we refer to as mesh combinatorics. Any mapping m : i ∈ V �→ mi ∈ R
3

of the vertices to Euclidean space is called a mesh. If all vertices belonging to a
face are mapped to co-planar points, we call the mesh a polyhedral surface. If f =
(i1, . . . , in) is a face with vertices i1, . . . , in , we use the symbol m( f ) to denote the
n-gon mi1, . . . , min .

Definition 1 Meshes m, m′ having combinatorics (V, E, F) are parallel, if for each
edge (i, j) ∈ E , vectors mi − m j and m′

i − m′
j are linearly dependent.

Obviously for any given combinatorics there is a vector space (R3)V of meshes,
and for each mesh there is a vector space of meshes parallel to m. If no zero edges
(i, j) with mi = m j are present, parallelity is an equivalence relation. In case m is
a polyhedral surface without zero edges and m′ is parallel to m, then also m′ is a
polyhedral surface, such that corresponding faces of m and m′ lie in parallel planes.

A pair of parallel meshes m, m′ where corresponding vertices mi , m′
i do not coin-

cide defines a system of lines Li = mi ∨ m′
i , which constitute a line congruence.

Recall that a map L : i ∈ V �→ {lines in R
3} is called a line congruence, if the lines
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4 A. I. Bobenko et al.

corresponding to adjacent vertices are coplanar [6]. It is easy to see that for simply
connected combinatorics we can uniquely construct m′ from this line congruence and
a single seed vertex m′

i0
∈ Li0 , provided no faces degenerate and the lines Li intersect

adjacent faces transversely.
A special case of this construction is a parallel pair m, m′ of polyhedral surfaces

which are offsets at constant distance d of each other, in which case the lines Li are
considered as surface normals. The vectors

si = 1

d
(m′

i − mi )

define the mesh s called the Gauss image of m. Following [15,16], we list the three
main definitions, or rather clarifications, of the otherwise rather vague notion of offset:

• Vertex offsets: the parallel mesh pair m, m′ is a vertex offset pair, if for each vertex
i ∈ V , ‖mi − m′

i‖ = d. The Gauss image s is inscribed in the unit sphere S2.
• Edge offsets: (m, m′) is an edge offset pair, if corresponding edges mi m j and m′

i m
′
j

are contained in parallel lines of distance d. The Gauss image s in midscribed to
the unit sphere (i.e., edges of s are tangent to S2 and s is a Koebe polyhedron, see
[2]).

• Face offsets: (m, m′) is an face offset pair, if for each face f ∈ F , the n-gons m( f ),
m′( f ) lie in parallel planes of distance d. The Gauss image s is circumscribed to S2.

The polyhedral surfaces which possess face offsets are the conical meshes, where
for each vertex the adjacent faces are tangent to a right circular cone. The polyhedral
surfaces with quadrilateral faces which possess vertex offsets are the circular surfaces,
i.e. their faces are inscribed in circles.

Remark 1 Meshes which possess face offsets or edge offsets can be seen as entities
of Laguerre geometry [14], while meshes with regular grid combinatorics which have
vertex offsets or face offsets are entities of Lie sphere geometry [5,6].

3 Areas and mixed areas of polygons

As a preparation for the investigation of curvatures we study the area of n-gons in R
2.

We view the area as a quadratic form and consider the associated symmetric bilinear
form. The latter is closely related to the well known mixed area of convex geometry.

3.1 Mixed area of polygons

The oriented area of an n-gon P = (p0, . . . , pn−1) contained in a two-dimensional
vector space U is given by Leibniz’ sector formula:

A(P) = 1

2

∑

0≤i<n

det(pi , pi+1). (2)
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A curvature theory for discrete surfaces based on mesh parallelity 5

Here and in the following indices in such sums are taken modulo n. The symbol det
means a determinant form in U . Apparently A(P) is a quadratic form in the vector
space U n , whose associated symmetric bilinear form is also denoted by the symbol
A(P, Q):

A(λP + μQ) = λ2 A(P) + 2λμA(P, Q) + μ2 A(Q). (3)

Note that in Eq. (3) the sum of polygons is defined vertex-wise, and that A(P, Q)

does not, in general, equal the well known mixed area functional. For a special class
of polygons important in this paper, however, we have that equality.

Definition 2 We call two n-gons P, Q ∈ U n parallel if their corresponding edges are
parallel.

Lemma 3 If parallel n-gons P, Q represent the positively oriented boundary cycles
of convex polygons K , L, then (3) computes the mixed area of K , L.

Proof For λ,μ ≥ 0, the polygon λP + μQ is the boundary of the domain λK + μL ,
and so (3) immediately shows the identity of A(P, Q) with the mixed area of K , L .


�

In view of Lemma 3, we use the name mixed area for the symbol “A(P, Q)” in
case polygons P, Q are parallel. Next, we consider the concatenation of polygons
P1, P2 which share a common sequence of boundary edges with opposite orientations
which cancel upon concatenation. Successive concatenation of polygons P1, . . . , Pk

is denoted by P1 ⊕ . . . ⊕ Pk . It is obvious that A(
⊕

i Pi ) = ∑
A(Pi ), but also the

oriented mixed areas of concatenations have a nice additivity property:

Lemma 4 Assume that P1 ⊕ · · · ⊕ Pk and P ′
1 ⊕ · · · ⊕ P ′

k are two combinatorially
equivalent concatenations of polygons, and that for i = 1, . . . , k, polygons Pi , P ′

i are
parallel. Then

A(P1 ⊕ · · · ⊕ Pk, P ′
1 ⊕ · · · ⊕ P ′

k) = A(P1, P ′
1) + · · · + A(Pk, P ′

k). (4)

Proof It is sufficient to consider the case k = 2. We compute

A(P1 ⊕ P2, P ′
1 ⊕ P ′

2) = 1

2

d

dt

∣∣∣
t=0

A((P1 ⊕ P2) + t (P ′
1 ⊕ P ′

2))

= 1

2

d

dt

∣∣∣
t=0

A((P1 + t P ′
1) ⊕ (P2 + t P ′

2))

= 1

2

d

dt

∣∣∣
t=0

A(P1 + t P ′
1) + 1

2

d

dt

∣∣∣
t=0

A(P2 + t P ′
2)

= A(P1, P ′
1) + A(P ′

2, P ′
2).


�
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6 A. I. Bobenko et al.

3.2 Signature of the area form

We still collect properties of the mixed area. This section is devoted to the zeros of
the function A(x P + yQ), where P, Q are parallel n-gons in a 2-dimensional vector
space U . The following proof uses the fact that the area of a quadrilateral is expressible
by the determinant of its diagonals.

Theorem 5 Consider a quadrilateral P which is nondegenerate, i.e., three consec-
utive vertices are never collinear. Then the area form in the space of quadrilaterals
parallel to P is indefinite if and only if all vertices p0, . . . , p3 lie on the boundary of
their convex hull. If P degenerates into a triangle, then the area form is semidefinite.

Proof We choose an affine coordinate system such that P has vertices
(0

0

)
,
(1

0

)
,
(
ξ
η

)
,

(0
1

)
(cf. Fig. 1). Translations have no influence on the area, so we restrict ourselves to

computing the area of Q parallel to P with q0 = (0
0

)
. Then

q0 =
(

0

0

)
, q2 =

(
ξ ′

η′

)

⇒ q1 =

(
ξ ′ + η′

η
(1 − ξ)

0

)
, q3 =

(
0

η′ + ξ ′
ξ
(1 − η)

)
,

(5)

and

2A(Q) = det(q2 − q0, q3 − q1) = (ξ ′ η′) ·
(

(1 − η)/ξ

1
1
(1 − ξ)/η

)
·
(

ξ ′

η′

)
. (6)

The determinant of the form’s matrix equals (1− ξ −η)/4ξη, so the form is indefinite
if and only if two or none of ξ, η, 1 − ξ − η are negative, i.e., all vertices lie on the
boundary of the convex hull. In the degenerate case of three collinear vertices we
compute areas of triangles all of which have the same orientation. 
�
Proposition 6 Assume that n-gons P, Q are parallel but not related by a similarity
transform. Consider the quadratic polynomial ϕ(x, y) = A(x P + yQ).

1. Suppose there is some combination P ′ = λP + μQ which is the vertex cycle of
a strictly convex polygon K . Then ϕ factorizes and is not a square in R[x, y].

(a) (b)

Fig. 1 a Parallel quadrilaterals whose vertices lie on the boundary of their convex hull. b Parallel quadri-
laterals whose vertices do not lie on the boundary of their convex hull
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A curvature theory for discrete surfaces based on mesh parallelity 7

2. Assume that n = 4 and that some combination λP + μQ is nondegenerate. Then
ϕ is no square in R[x, y]. It factorizes ⇐⇒ the vertices of λP + μQ lie on the
boundary of their convex hull.

Proof 1. Change (λ, μ) slightly to (λ′, μ′), such that | λ
μ

λ′
μ′ | �= 0 and Q′ := λ′ P +μ′Q

still bounds a strictly convex polygon, denoted by L . Consider ϕ′(x, y) = A(x P ′ +
yQ′). As ϕ and ϕ′ are related by a linear substitution of parameters, it is sufficient to
study the factors of ϕ′: According to (3), the discriminant of ϕ′ equals

4(A(P ′, Q′)2 − A(Q′)A(P ′)) = 4(A(K , L)2 − A(K )A(L)),

which is positive by Minkowski’s inequality [21]. The statement follows.
In case 2 we observe that any polygon parallel to P arises from some x P +yQ by a

translation which does not change areas. It is therefore sufficient to consider the areas
of the special quads treated in the proof of Theorem 5. The matrix of the area form
which occurs there is denoted by G. Obviously ϕ factorizes ⇐⇒ det G ≤ 0 ⇐⇒
the area form is indefinite or rank deficient. We see that det G �= 0, so rank deficiency
does not occur (and consequently ϕ is no square). We use Theorem 5 to conclude that
ϕ factorizes ⇐⇒ the vertices of λP + μQ lie on the boundary of their convex hull.


�

4 Curvatures of a parallel mesh pair

Our construction of curvatures for discrete surfaces is similar to the curvatures defined
in relative differential geometry [22], which are derived from a field of ‘arbitrary’ nor-
mal vectors. If the normal vectors employed are the usual Euclidean ones, then the
curvatures, too, are the usual Euclidean curvatures.

A definition of curvatures which is transferable from the smooth to the discrete set-
ting is the one via the change in surface area when we traverse a 1-parameter family
of offset surfaces. Below we first review the smooth case, and afterwards proceed to
discrete surfaces.

4.1 Review of relative curvatures for smooth surfaces

Consider a smooth 2-dimensional surface M in R
3 which is equipped with a distin-

guished “unit” normal vector field n : M → R
3. It is required that for each tangent

vector v ∈ Tp M , the vector dn p(v) is parallel to the tangent plane Tp M , so we may
define a Weingarten mapping

σp : Tp M → Tp M, σp(v) = −dn p(v)

(a unit normal vector field in Euclidean space R
3 fulfills this property). Then Gaussian

curvature K and mean curvature H of the submanifold M with respect to the normal
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8 A. I. Bobenko et al.

vector field n are defined as coefficients of σp’s characteristic polynomial

χσp (λ, μ) := det(λid + μσp) = λ2 + 2λμH(p) + μ2 K (p). (7)

We consider an offset surface Mδ , which is the image of M under the offsetting map

eδ : p �→ p + δ · n(p).

Clearly, tangent spaces in corresponding points of M and Mδ are parallel, and corre-
sponding surface area elements are related by

d Aδ

d A

∣∣∣
p
= det(deδ

p) = det(id + δ dn) = det(id − δσp) = 1 − 2δH + δ2 K , (8)

provided this ratio is positive. This equation has a direct analogue in the discrete case,
which allows us to define curvatures for discrete surfaces.

4.2 Curvatures in the discrete category

Let m be a polyhedral surface with a parallel mesh s. We think of s as the Gauss image
of m, but so far s is arbitrary. The meshes mδ are offsets of m at distance δ (constructed
w.r.t. to the Gauss image mesh s). For each face f ∈ F , the n-gons m( f ), s( f ), and
mδ( f ) lie in planes parallel to some two-dimensional subspace U f . We choose the
determinant with respect to an arbitrary basis as an area form in the subspace U f , and
use it compute areas and mixed areas of faces m( f ) and s( f ). Those areas are denoted
by the symbol A. Then we have:

Theorem 7 If m, s is a parallel mesh pair, then the area A(mδ( f )) of a face f of an
offset mδ = m + δs obeys the law

A(mδ( f )) = (1 − 2δH f + δ2 K f )A(m( f )), where (9)

H f = − A(m( f ), s( f ))

A(m( f ))
, K f = A(s( f ))

A(m( f ))
. (10)

Proof Equation (9) can be shown face-wise and is then a direct consequence of (3).
As all area forms are scalar multiples of each other, neither H f nor K f depend on the
choice of area form. 
�

Because of the analogy between Eqs. (8) and (9), we define:

Definition 8 The functions K f , H f of (10) are the Gaussian and mean curvatures of
the pair (m, s), i.e. of the polyhedral surface m with respect to the Gauss image s.
They are associated with the faces of m.

Obviously, mean and Gaussian curvatures are only defined for faces of nonvanish-
ing area. They are attached to the pair (m, s) in an affine invariant way. There is a
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A curvature theory for discrete surfaces based on mesh parallelity 9

further obvious analogy between the smooth and the discrete cases: The Gauss curva-
ture is the quotient of (infinitesimal) corresponding areas in the Gauss image and the
original surface.

4.3 Existence of principal curvatures

Similar to the smooth theory, we introduce principal curvatures κ1, κ2 of a face as
the zeros of the quadratic polynomial x2 − 2H x + K , where H , K are the mean
and Gaussian curvatures. We shall see that in “most” cases that polynomial indeed
factorizes, so principal curvatures exist. The precise statement is as follows:

Proposition 9 Consider a polyhedral surface m with Gauss image s, and correspond-
ing faces m( f ), s( f ). Assuming mean and Gaussian curvatures H f , K f are defined,
we have the following statements as regards principal curvatures κ1, f and κ2, f :

1. For a quadrilateral f , κ1, f = κ2, f ⇐⇒ m( f ), s( f ) are related by a similarity.
If this is not the case, κi, f exist ⇐⇒ the vertices of m( f ) or of s( f ) lie on the
boundary of their convex hull.

2. Suppose some linear combination of the n-gons m( f ), s( f ) is the boundary cycle
of a strictly convex polygon. Then κi, f exist, and κ1, f = κ2, f ⇐⇒ m( f ) and
s( f ) are related by a similarity transform.

Proof We consider the polynomial

ϕ(x, y) := A(x · m( f ) + y · s( f ))

as in Prop. 6. The area of m( f ) is nonzero, otherwise curvatures are not defined. Thus,
ϕ(x, y) is proportional to

ϕ̃(x, y) := x2 − 2H f xy + K f y
2,

and linear factors of ϕ correspond directly to linear factors of

g(x) := ϕ̃(x, 1) = x2 − 2H x + K .

Thus, statements 1,2 follow directly from Prop. 6. 
�
As the condition regarding the convex hull of vertices is always fulfilled if these

vertices lie on the boundary of a convex curve, we have the following

Corollary 10 In case of a quadrilateral mesh m, principal curvatures always exist if
the Gauss image mesh s is inscribed in a strictly convex surface.

4.4 Edge curvatures

In a smooth surface, a tangent vector v ∈ Tp M indicates a principal direction with
principal curvature κ , if and only if −dn(v) = κv. For a discrete surface m with
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10 A. I. Bobenko et al.

Fig. 2 Edge curvatures κi,i+1 associated with a quadrilateral m0, . . . , m3 in a polyhedral surface m with
Gauss image s

combinatorics (V, E, F), a tangent vector is replaced by an edge (i, j) ∈ E . By con-
struction, edges mi m j are parallel to corresponding edges si s j in the Gauss image
mesh. We are therefore led to a curvature κe associated with the edge e, which is
defined by

e = (i, j) ∈ E 
⇒ s j − si = κi, j (mi − m j ) (11)

(see Fig. 2). For a quadrilateral mesh m : Z
2 → R

3 this interpretation of all edges as
principal curvature directions is consistent with the fact that discrete surface normals
adjacent to an edge are co-planar [16].

The newly constructed principal curvatures associated with edges are different
from the previous ones, which are associated with faces. For a quadrilateral m( f ) =
(m0, . . . , m3) with Gauss image s( f ) = (s0, . . . , s3), it is not difficult to relate the
edge curvatures with the previously defined face curvatures. From the expressions
given below, those shown by Eqs. (14), (15) are direct analogues of the smooth case.

Proposition 11 Consider a polyhedral surface m with Gauss image s, and corre-
sponding quadrilateral faces m( f ) = (m0, . . . , m3), s( f ) = (s0, . . . , s3). Then mean
and Gaussian curvatures of that face are computable from its four edge curvatures by

H f = κ01κ23 − κ12κ30

κ01 + κ23 − κ12 − κ30
, (12)

K f = κ01κ12κ23κ30

κ01 + κ23 − κ12 − κ30

(
1

κ12
+ 1

κ30
− 1

κ01
− 1

κ23

)
. (13)

Further, we determine α f such that x∗ := (m0 ∨ m2) ∩ (m1 ∨ m3) = (1 − α f )m1 +
α f m3. Likewise we determine β f such that x∗ = (1−β f )m2 +β f m0. Then the mean
and Gaussian curvature of the face m( f ) are given by

H f = (1 − α f )
κ23 + κ30

2
+ α f

κ01 + κ12

2
, (14)

K f = (1 − α f )κ23κ30 + α f κ01κ12.

H f = (1 − β f )
κ30 + κ01

2
+ β f

κ12 + κ23

2
, (15)

K f = (1 − β f )κ30κ01 + β f κ12κ23.
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A curvature theory for discrete surfaces based on mesh parallelity 11

Proof We use a coordinate system as in the proof of Theorem 5, with vertices mi

and si instead of vertices pi and qi . The following identities are interpreted as equal-
ity of rational functions in the vector space of quadrilaterals parallel to m f . The
condition

∑
κi,i+1(mi+1 − mi ) = 0 directly shows

(
ξ
η

) = 1
κ23−κ12

(
κ01−κ12
κ23−κ30

)
. By com-

paring the known coordinates s1 = (−κ01
0

)
and s3 = ( 0

−κ30

)
with (5) we see that

(
ξ ′
η′
) = − diag(κ23, κ12)

(
ξ
η

)
. Computing areas and mixed areas yields

A(m( f )) = ξ + η, A(s( f )) = −κ30ξ
′ − κ01η

′,
A(m( f ), s( f )) = ξ ′ + η′.

These equations imply (12), (13). Observing that α f = η
ξ+η

, we directly verify (14).
Equation (15) follows by permutation. 
�
Remark 2 Using the line congruence Li = mi ∨ (mi + si ) (cf. Sect. 2), for each edge
e = (i, j), we define a center of curvature associated with an edge mi m j as the point
ce = Li ∩ L j . The familiar concept of curvature as the inverse distance of the center of
curvature from the surface is reflected in the fact that the triangles 0si s j and cemi m j

are transformed into each other by a similarity transformation with factor 1/κe.

5 Christoffel duality and discrete Koenigs nets

We start with a general definition:

Definition 12 Polyhedral surfaces m, s are Christoffel dual to each other,

s = m∗,

if they are parallel, and their corresponding faces have vanishing mixed area (i.e., are
orthogonal with respect to the corresponding bilinear symmetric form). Polyhedral
surfaces possessing Christoffel dual are called Koenigs nets.

Duality is a symmetric relation, and obviously all meshes s dual to m form a linear
space. In the special case of quadrilateral faces, duality is recognized by a simple
geometric condition:

Theorem 13 (Dual quadrilaterals via mixed area) Two quadrilaterals P = (p0, p1,
p2, p3) and Q = (q0, q1, q2, q3) with parallel corresponding edges, pi+1 − pi ‖
qi+1 − qi , i ∈ Z (mod 4) are dual, i.e.,

A(P, Q) = 0

if and only if their non-corresponding diagonals are parallel:

(p0 p2) ‖ (q1q3), (p1 p3) ‖ (q0q2).
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12 A. I. Bobenko et al.

Fig. 3 Dual quadrilaterals

Proof Denote the edges of the quadrilaterals P and Q as in Fig. 3. For a quadrilateral
P with oriented edges a, b, c, d we have

A(P) = 1

2
([a, b] + [c, d]),

where [a, b] = det(a, b) is the area form in the plane. The area of the quadrilateral
P + t Q is given by

A(P + t Q) = 1

2
([a + ta∗, b + tb∗] + [c + tc∗, d + td∗]).

Identifying the linear terms in t and using the identity a + b + c + d = 0, we get

4A(P, Q) = [a, b∗] + [a∗, b] + [c, d∗] + [c∗, d]
= [a + b, b∗] + [a∗, a + b] + [c + d, d∗] + [c∗, c + d]
= [a + b, b∗ − a∗ − d∗ + c∗] = [a + b, 2(b∗ + c∗)].

Vanishing of the last expression is equivalent to the parallelism of the non-correspond-
ing diagonals, (a + b) ‖ (b∗ + c∗). 
�

Theorem 13 shows that for quadrilateral surfaces our definition of Koenigs nets is
equivalent to the one originally suggested in Refs. [6,7]. For geometric properties of
Koenigs nets we refer to these papers. It turns out that the class of Koenigs nets is
invariant with respect to projective transformations.

6 Polyhedral surfaces with constant curvature

Let (m, s) be a polyhedral surface with its Gauss map as in Sect. 4. We define special
classes of surfaces as in classical surface theory, the only difference being the fact
that the Gauss map is not determined by the surface. The treatment is similar to the
approach of relative differential geometry.

Definition 14 We say that a pair (m, s) has constant mean (resp. Gaussian) curvature
if the mean (resp. Gaussian) curvatures defined by (10) for all faces are equal. If the
mean curvature vanishes identically, H ≡ 0, then the pair (m, s) is called minimal.
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A curvature theory for discrete surfaces based on mesh parallelity 13

Fig. 4 Discrete Koenigs nets interpreted as a Gauss image s, and its Christoffel dual minimal net m = s∗
(courtesy P. Schröder)

Although this definition refers to the Gauss map, the normalization of the length
of s is irrelevant, and the notion of constant curvature nets is definable for discrete
surfaces equipped with line congruences. Indeed, a mesh “m + s” parallel to m, with
vertices on the lines of a congruence, is determined by the choice of a single seed
vertex, if some nondegeneracy conditions are met; m + s exists for any simply con-
nected neighbourhood of the seed vertex (cf. the text after Def. 1). The Gauss images
s = (m + s) − m arising in this way are unique up to scaling. It follows that con-
stance of curvatures is already determined by the line congruence we started with.
The vanishing of curvatures is already definable for a single face equipped with a line
congruence.

Theorem 15 A pair (m, s) is minimal if and only if m is a discrete Koenigs net and s
is its Christoffel dual s = m∗.

Proof We have the equivalence H = 0 ⇐⇒ A(m, s) = 0 ⇐⇒ s = m∗. 
�
This result is analogous to the classical theorem of Christoffel [8] in the theory of

smooth minimal surfaces. Figure 4 presents an example of a discrete minimal surface
m constructed as the Christoffel dual of its Gauss image s, which is a discrete Koenigs
net.

The statement about surfaces with nonvanishing constant mean curvature resembles
the corresponding facts of the classical theory.

Theorem 16 A pair (m, s) has constant mean curvature H0 if and only if m is a
discrete Koenigs net and its parallel m1/H0 is the Christoffel dual of m:

m∗ = m + 1

H0
s.

The mean curvature of this parallel surface (m + H−1
0 s,−s) (with the reversed Gauss

map) is also constant and equal to H0. The mid-surface m + (2H0)
−1s has constant

positive Gaussian curvature K = 4H2
0 with respect to the same Gauss map s.

Proof We have the equivalence

A(m, s) = −H0 A(m) ⇐⇒ A

(
m, m + 1

H0
s

)
= 0 ⇐⇒ m∗ = m + 1

H0
s.
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14 A. I. Bobenko et al.

For the Gaussian curvature of the mid-surface we get

K 1
2H0

= A(s)

A(m + 1
2H0

s)
= A(s)

A(m) + 1
H0

A(m, s) + ( 1
2H0

)2 A(s)
= 4H2

0 .


�
It turns out that all surfaces parallel to a surface with constant curvature have

remarkable curvature properties, in complete analogy to the classical surface theory.
In particular they are linear Weingarten (For circular surfaces this was shown in [20]).

Theorem 17 Let m be a polyhedral surface with constant mean curvature and s its
Gauss map. Consider the family of parallel surfaces mt = m + ts. Then for any t the
pair (mt , s) is linear Weingarten, i.e., its mean and Gaussian curvatures Ht and Kt

satisfy a linear relation

αHt + βKt = 1 (16)

with constant coefficients α, β.

Proof Denote by H and K the curvatures of the basic surface (m, s) with constant
mean curvature. Let us compute the curvatures Ht and Kt of the parallel surface
(m + ts, s). We have

A(m + (t + δ)s)

A(m + ts)
= 1 − 2H(t + δ) + K (t + δ)2

1 − 2Ht + K t2

=1−2δ
H − K t

1 − 2Ht + K t2 +δ2 K

1 − 2Ht + K t2 =1−2Htδ+Ktδ
2.

The last identity treats m + (t + δ)s as a parallel surface of m + ts. Thus,

Ht = H − K t

1 − 2Ht + K t2 , Kt = K

1 − 2Ht + K t2 .

Note that H is independent of the face, whereas K is varying. Therefore, with the
above values for Ht and Kt , relation (16) is equivalent to αH

1−2Ht = β−αt
t2 = 1, which

implies

α = 1

H
− 2t, β = t

H
− t2.


�
Remark 3 A similar result applies to constant Gauss curvature surfaces, with α =
−1/2t and β = −1/2 + 1/K + t2.

We see that any discrete Koenigs net m can be extended to a minimal or to a constant
mean curvature net by an appropriate choice of the Gauss map s. Indeed,
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A curvature theory for discrete surfaces based on mesh parallelity 15

Fig. 5 A Koebe polyhedron s.
The tangent cone from each
vertex si touches S2 along a
circle ci . These circles form a
packing, touching each other in
the points where the edges touch
S2. It follows that the edge
lengths are related to the opening
angles ωi of said cones: We have
‖si − s j ‖ = cot ωi + cot ω j

(m, s) is minimal for s = m∗;
(m, s) has constant mean curvature for s = m∗ − m.

However, s defined in such generality can lead us too far away from the smooth theory.
It is natural to look for additional requirements which bring it closer to the Gauss map
of a surface. These are exactly three cases of special Gauss images of Sect. 2.

Cases with canonical Gauss image For a polyhedral surface m which has a face
offset m′ at distance d > 0 (i.e., m is a conical mesh) the Gauss image

s = (m′ − m)/d

is uniquely defined even without knowledge of m′, provided consistent orientation is
possible. This is because s is tangentially circumscribed to S2 and there is only one
way we can parallel translate the faces of m such that they are in oriented contact with
S2. The same is true if m has an edge offset, because an n-tuple of edges emanating
from a vertex (n ≥ 3) can be parallel translated in only one way so as to touch S2.

It follows that for both cases a canonical Gauss image and canonical curvatures
are defined. In case of an edge offset much more is known about the geometry of s.
E.g. we can express the edge length of s in terms of data read off from m (see Fig. 5).
The edges emanating from a vertex si are contained in si ’s tangent cone, which has
some opening angle ω j . By parallelity of edges we can determine ω j from the mesh m
alone. The ratio between edge length in the mesh and edge length in the Gauss image
determines the curvature: κi, j = ±(cot ωi + cot ω j )/‖mi − m j‖ (we skip discussion
of the sign).

In case of a vertex offset m′ and a Gauss image s which is inscribed in the unit
sphere, we can locally find a 2-parameter family of such Gauss images, see [16].

7 Curvature of principal contact element nets. Circular minimal
and cmc surfaces

In this section we are dealing with the case when the Gauss image s lies in the two-
sphere S2, i.e., is of unit length, ‖s‖ = 1. Our main example is the case of quadrilateral
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16 A. I. Bobenko et al.

Fig. 6 Parallel Q-nets m and m + ts with the unit Gauss map s. All the nets are circular. The pair (m, s)
constitutes a principal contact element net

surfaces with regular combinatorics, called Q-nets. In this case a polyhedral surface
m with its parallel Gauss map s is described by a map

(m, s) : Z
2 → R

3 × S2.

It can be canonically identified with a contact element net

(m,P) : Z
2 → {contact elements in R

3},

where P(v) is the oriented plane orthogonal to s(v) through the point m(v). We will
call the pair (m, s) also a contact element net. Recall that according to [5] a contact
element net is called principal if neighboring contact elements (m,P) share a com-
mon touching sphere. This condition is equivalent to the existence of focal points for
all elementary edges (n, n′) of the lattice Z

2 � n, n′, which are solutions to

(m + ts)(n) = (m + ts)(n′)

for some t .

Theorem 18 Let m : Z
2 → R

3 be a Q-net with a parallel unit Gauss map s : Z
2 →

S2. We assume that s does not have degenerate edges. Then m is circular, and (m, s)
is a principal contact element net. Conversely, for a principal contact element net
(m, s), the net m is circular and s is a parallel Gauss map of m.

Proof Any quadrilateral whose edges are parallel to the edges of a circular quadrilat-
eral is itself circular, provided the latter edges are nonzero. Thus m is circular. Now
consider an elementary cube built by two parallel quadrilaterals of the nets m and
m + s. As corresponding edges of m, s are parallel, all the side faces of this cube
are trapezoids. They cannot be parallelograms (and therefore enjoy mirror symme-
try), because s has nonzero edges. This implies that the contact element net (m, s) is
principal (Fig. 6). 
�

The mean and the Gauss curvatures of the principal contact element nets (m, s) are
defined by formulas (10). Proposition 9 and Corollary 10 obviously imply:

123



A curvature theory for discrete surfaces based on mesh parallelity 17

Corollary 19 In a circular quad mesh m equipped with a Gauss image s inscribed in
the unit sphere, every face has principal curvatures.

Recall also that circular Koenigs nets are identified in [6,7] as the discrete isothermic
surfaces defined originally in [3] as circular nets with factorizable cross-ratios.

Both minimal and constant mean curvature principal contact element nets are
defined as in Sect. 6. It is remarkable that the classes of circular minimal and cmc
surfaces which are obtained via our definition of mean curvature turn out to be equal
to the corresponding classes originally defined as special isothermic surfaces charac-
terized by their Christoffel transformations. Since circular Koenigs nets are isothermic
nets we recover the original definition of discrete minimal surfaces given in [3] from
Theorem 15.

Corollary 20 A principal contact element net (m, s) : Z
2 → R

3 × S2 is minimal if
and only if the net s : Z

2 → S2 is isothermic and m = s∗ is its Christoffel dual.

Similarly, Theorem 16 in the circular case implies that the discrete surfaces with
constant mean curvature of [4,10] fit into our framework.

Corollary 21 A principal contact element net (m, s) : Z
2 → R

3 × S2 has constant
mean curvature H0 �= 0 if and only if the circular net m is isothermic and there exists
a discrete isothermic surface m∗ : Z

2 → R
3 dual to m, which is at constant distance

|m −m∗| = 1
H0

. The unit Gauss map s which determines the principal contact element
net (m, s) is given by

s = H0(m
∗ − m). (17)

The principal contact element net of the parallel surface (m + 1
H0

,−s) also has

constant mean curvature H0. The mid-surface (m + 1
2H0

, s) has constant Gaussian

curvature 4H2
0 .

Proof Only the “if” part of the claim may require some additional consideration. If the
discrete isothermic surfaces m and m∗ are at constant distance 1/H0, then the map s
defined by (17) maps into S2 and is thus circular. Again, as in the proof of Theorem 18,
this implies that the contact element net (m, s) is principal. Its mean curvature is given
by

− A(m, s)

A(m, m)
= − A(m, H0(m∗ − m))

A(m, m)
= H0.


�

7.1 Minimal s-isothermic surfaces

We now turn our attention to the discrete minimal surfaces m of [2], which arise by
a Christoffel duality from a polyhedron s which is midscribed to a sphere (a Koebe
polyhedron).
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18 A. I. Bobenko et al.

Fig. 7 Christoffel duality construction for s-isothermic surfaces applied to a quadrilateral P with incircle.
Corresponding sub-quadrilaterals Pj , P∗

j have vanishing mixed area

The Christoffel duality construction of [2] is applied to each face of s separately.
We consider a polygon P = (p0, . . . , pn−1) with n even and incircle of radius ρ. We
introduce the points qi where the edge pi−1 pi touches the incircle and identify the
plane of P with the complex numbers. In the notation of Fig. 7 the passage to the
dual polygon P∗ is effected by changing the vectors ai = q2i − z, bi = q2i+1 − z,
a′

i = p2i − q2i+1, b′
i = pi − qi . Apart from multiplication with the factor ±ρ2, the

corresponding vectors which define P∗ are given by

a∗
j = (−1) j/a j , b∗

j = −(−1) j/b j , a′∗
j = (−1) j/a′

j , b′∗
j = −(−1) j/b′

j .

(18)

The sign in the factor ±ρ2 depends on a certain labeling of vertices. The consistency
of this construction and the passage to a branched covering in the case of odd n is
discussed in [2]. For us it is important that both P and P∗ occur as concatenation of
quadrilaterals:

Pj = (p j−1q j p j q j ) for j = 0, . . . , n − 1 
⇒ P = P1 ⊕ . . . ⊕ Pn−1, (19)

and the same for the starred (dual) entities. The main result is the following:

Theorem 22 A discrete s-isothermic minimal surface m according to [2] (i.e., a
Christoffel dual of a Koebe polyhedron s) has vanishing mean curvature with respect
to s. Every face f has principal curvatures κ1, f , κ2, f = −κ1, f .

Proof We start by showing that A(Pj , P∗
j ) = 0 for all j . This can be derived from [2]

where it is shown that Pj and P∗
j are dual quads in the sense of discrete isothermic

surfaces [3]. Discrete isothermic surfaces are circular Koenigs nets [6], i.e., the quad-
rilaterals Pj and P∗

j are Christoffel dual in the sense of Definition 12. We can see
this also in an elementary way which for ρ = 1 is illustrated by Fig. 7: The angle
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A curvature theory for discrete surfaces based on mesh parallelity 19

αi = �(qi , z, pi ) occurs also in the isosceles triangle q∗
i z∗q∗

i+1, so non-corresponding
diagonals in Pi , P∗

i are parallel. By Theorem 13, A(Pi , P∗
i ) = 0.

Lemma 4 now implies that A(P, P∗) = ∑
A(Pj , P∗

j ) = 0. Thus all faces of m
(i.e., the P∗’s of the previous discussion) have vanishing mixed area with respect to s.
As the faces of s are strictly convex, Prop. 9 shows that principal curvatures exist.


�
Remark 4 If a Koebe polyhedron s is simply connected (so as to be dualizable) and a
quad graph, then a mesh m can have vanishing mean curvature with respect to s only if
m is the dual of s in the sense of [2]. This is because the condition A(m( f ), s( f )) = 0
determines m( f ) up to scale. This ‘only if’ implication holds also for slightly more
general meshes.

7.2 Discrete surfaces of rotational symmetry

It is not difficult to impose the condition of constant mean or Gaussian curvature on
discrete surfaces with rotational symmetry. In the following we briefly discuss this
interesting class of examples.

We first consider quadrilateral meshes with regular grid combinatorics generated
by iteratively applying a rotation about the z-axis to a meridian polygon contained in
the xz plane. Such surfaces have e.g. been considered by [12].

The vertices of the meridian polygon are assumed to have coordinates (ri , 0, hi ),
where i is the running index. The Gauss image of this polyhedral surface shall be
generated in the same way, from the polygon with vertices (r∗

i , 0, h∗
i ). Note that for

non-horizontal edges with hi+1 �= hi , parallelity implies

ri+1 − ri

hi+1 − hi
= r∗

i+1 − r∗
i

h∗
i+1 − h∗

i
. (20)

Figure 8 illustrates such surfaces. All faces being trapezoids, it is elementary to com-
pute mean and Gaussian curvatures H (i), K (i) of the faces bounded by the i-th and
(i +1)-st parallel. It turns out that the angle of rotation is irrelevant for the curvatures:

H (i) = rir∗
i − ri+1r∗

i+1

r2
i+1 − r2

i

, K (i) = r∗2
i+1 − r∗2

i

r2
i+1 − r2

i

. (21)

As both H (i), K (i) are continuous functions of the vertex coordinates these formulas
are valid also in the case hi = hi+1. The principal curvatures associated with these
faces have the values

κ
(i)
1 = r∗

i+1 + r∗
i

ri+1 + ri
, κ

(i)
2 = r∗

i+1 − r∗
i

ri+1 − ri
. (22)

Remark 5 The formula for κ2 given by (22) is a discrete analogue of the usual defini-
tion of curvature for a planar curve (arc length of Gauss image divided by arc length
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20 A. I. Bobenko et al.

Fig. 8 Left A polyhedral surface m which is a minimal surface w.r.t. to the Gaussian image s. Right
A polyhedral surface m′ of constant Gaussian curvature w.r.t. the Gauss image s′ (discrete pseudosphere)

of curve). The formula for κ1 can be interpreted as Meusnier’s theorem. This is seen
as follows: The curvature of the i-th parallel circle is given some average value of 1/r
(in this case, the harmonic mean of 1/ri and 1/rr+1). The sine of the angle α enclosed
by the parallel’s plane and the face under consideration is given by an average value
of r∗ (this time, an arithmetic mean). By Meusnier, the normal curvature “sin α · 1

r ”
of the parallel equals the principal curvature κ1, in accordance with (22).

The interesting fact about these formulae is that the coordinates hi do not occur in
them. Any functional relation involving the curvatures, and especially a constant value
of any of the curvatures, leads to a difference equation for (ri )i∈Z. For example, given
an arbitrary Gauss image (r∗

i , 0, h∗
i ) and the mean curvature function H (i) defined on

the faces (which are canonically associated with the edges of the meridian curve) the
values ri of the surface are determined by the difference equation (21) an an initial
value r0. Further the values hi follow from the parallelity condition (20).

Remark 6 The generation of a surface m and its Gauss image s by applying k-th pow-
ers of the same rotation to a meridian polygon (assuming axes of m and s are aligned)
is a special case of applying a sequence of affine mappings, each of which leaves the
axis fixed. It is easy to see that Eqs. (21) and (22) are true also in this more general
case.

The following examples of discrete surfaces of revolution assume that the Gauss
image is inscribed in the unit sphere, so we have the relation r∗

i = (1 − h∗
i

2)1/2.
The discrete parameterization of such a surface is thus completely determined by the
choice of the values h∗

i ∈ (−1, 1)(i ∈ Z).

Example 1 The mean curvature of faces given by (21) vanishes if and only if ri+1 :
ri = r∗

i : r∗
i+1. This condition is converted into the first order difference equation

Δ ln ri = −Δ ln r∗
i (i ∈ Z), (23)

where Δ is the forward difference operator. It is not difficult to see that the correspond-
ing differential equation (ln r)′ = −(ln r∗)′ is fulfilled by the catenoid: With the merid-
ian (t, cosh t) and the unit normal vector (− tanh t, 1/ cosh t) we have r(t) = cosh t
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Fig. 9 An external elliptic
billiard. The trajectory {Pi }i∈Z

is tangent to an ellipse

and r∗(t) = 1/ cosh t . We therefore call discrete surfaces fulfilling (23) discrete cat-
enoids (see Fig. 8, left).

Example 2 A discrete surface of constant Gaussian curvature K obeys the difference
equation KΔ(r2

i ) = Δ(r∗2
i ). Figure 8, right illustrates a solution.

7.3 Discrete surfaces of rotational symmetry with constant mean curvature
and elliptic billiards

There exists a nice geometric construction of discrete surfaces of rotational symmetry
with constant mean curvature, which we obtained jointly with Tim Hoffmann. This is
a discrete version of the classical Delaunay rolling ellipse construction for surfaces of
revolution with constant mean curvature (Delaunay surfaces).

Play an extrinsic billiard around an ellipse E . A trajectory is a polygonal curve
P1, P2, . . . such that the intervals [Pi , Pi+1] touch the ellipse E and consecutive tri-
ples of vertices Pi−1, Pi , Pi+1 are not collinear (see Fig. 9). Let us connect the vertices
Pi to the focal point B, and roll the trajectory P1, P2, . . . to a straight line �, mapping
the triangles B Pi Pi+1 of Fig. 9 isometrically to the triangles Bi Pi Pi+1 of Fig. 10. We
use the same notations for the vertices of the billiard trajectory and their images on
the straight line, and the points Bi are chosen in the same half-plane of �. Thus we
have constructed a polygonal curve B1, B2, . . .. Applying the same construction to the
second focal point A we obtain another polygonal curve A1, A2, . . ., chosen to lie in
another half-plane of �.
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Fig. 10 A discrete cmc surface with rotational symmetry generated from an elliptic billiard

Let us consider discrete surfaces m and m̃ with rotational symmetry axis � generated
by the meridian polygons constructed above: mi = Bi , m̃i = Ai . They are circular
surfaces which one can provide with the same Gauss map si := mi − m̃i .

Theorem 23 Let P1, P2, . . . be a trajectory of an extrinsic elliptic billiard with the
focal points A, B. Let m, m̃ be the circular surfaces with rotational symmetry gener-
ated by the discrete rolling ellipse construction in Figs. 9 and 10: mi = Bi , m̃i = Ai .
Both surfaces (m, s) and (m̃,−s) with the Gauss map s = m − m̃ have constant mean
curvature H, where 1/H = |A1 B| equals the major axis of the ellipse (see Fig. 9).

Proof The sum of the distances from a point of an ellipse to the focal points is inde-
pendent of the point, i.e.,

l := |Ai Bi |

is independent of i . Due to the equal angle lemma of Fig. 11 we have equal angles

β := � P1 P2 A1 = � B P2 P3 and γ := � P1 P2 B = � P3 P2 A2

in Fig. 9. Thus P2 in Fig. 10 is the intersection point of the straight lines (A1 B2) ∩
(B1 A2). Similar triangles imply parallel edges:

�P2 A1 A2 ∼ �P2 B2 B1 
⇒ (A1 A2) ‖ (B1 B2).

This yields the proportionality ri/ri+1 = r ′
i+1/r ′

i for the distances r to the axis �. For
the mean curvature of the surface m with the Gauss image s = m − m̃ we obtain from
(21):

H = 1

l

ri (r ′
i − ri ) − ri+1(r ′

i+1 − ri+1)

r2
i+1 − r2

i

= 1

l
.

The surface m̃ is the parallel cmc surface of Corollary 21. 
�
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Fig. 11 The angles between the
tangent directions and the
directions to the focal points of
an ellipse are equal

If the vertices of the trajectory P1, P2, . . . lie on an ellipse E ′ confocal with E , then
it is a classical reflection billiard in the ellipse E ′ (see for example [23]). The sum

d := |APi | + |B Pi |

is independent of i . The quadrilaterals Ai Ai+1 Bi+1 Bi in Fig. 10 have equal diago-
nals (i.e., they are trapezoids). The product of the lengths of their parallel edges is
independent of i :

|Ai Ai+1||Bi Bi+1| = d2 − l2. (24)

As we have shown in the proof of Theorem 23, rir ′
i is another product independent of i .

An elementary computation gives the same result for the cross-ratios of a faces of the
discrete surfaces m and m̃:

q = − 1

sin2 α

|Ai Ai+1||Bi Bi+1|
rir ′

i
,

where 2α is the rotation symmetry angle of the surface. We see that q is the same for
all faces of the surfaces m and m̃.

We have derived the main result of [11].

Corollary 24 Let P1, P2, . . . be a trajectory of a classical reflection elliptic billiard,
and m, m̃ be the discrete surfaces with rotational symmetry generated by the discrete
rolling ellipse construction as in Theorem 23. Both these surfaces have constant mean
curvature and constant cross-ratio of their faces.

The discrete rolling construction applied to hyperbolic billiards also generates dis-
crete cmc surfaces with rotational symmetry.

8 Concluding remarks

We would like to mention some topics of future research. We have treated curvatures
of faces and of edges. It would be desirable to extend the developed theory to define
curvature also at vertices. A large area of research is to extend the present theory to the
semidiscrete surfaces which have recently found attention in the geometry processing
community, and where initial results have already been obtained.
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