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On the Integrability
of Infinitesimal and Finite Deformations
of Polyhedral Surfaces

Wolfgang K. Schief, Alexander I. Bobenko and Tim Hoffmann

Abstract. It is established that there exists an intimate connection between isomet-
ric deformations of polyhedral surfaces and discrete integrable systems. In particular,
Sauer’s kinematic approach is adopted to show that second-order infinitesimal isomet-
ric deformations of discrete surfaces composed of planar quadrilaterals (discrete conju-
gate nets) are determined by the solutions of an integrable discrete version of Bianchi’s
classical equation governing finite isometric deformations of conjugate nets. Moreover,
it is demonstrated that finite isometric deformations of discrete conjugate nets are com-
pletely encapsulated in the standard integrable discretization of a particular nonlinear
�-model subject to a constraint. The deformability of discrete Voss surfaces is thereby
retrieved in a natural manner.
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1. Introduction

The study of infinitesimal and finite deformations of both polyhedral and smooth surfaces
has a long history. Various proofs of the fact that closed convex polyhedra are infinites-
imally rigid are due to Cauchy [10] (1813), Dehn [13] (1916),Weyl [28] (1917) and
Alexandrov [2] (1958). Analogous results for smooth surfaces were obtained by Lieb-
mann [21] (1899) and Cohn-Vossen [12] (1936). Apart from their significance in differ-
ential geometry, isometric deformations of smooth surfaces also find diverse application
in physics. For instance, it was observed by Blaschke [5] that the standard theory of shell
membranes which are in equilibrium and not subjected to external forces may be set in
correspondence with infinitesimal isometric deformationsof surfaces. Thus, the geomet-
ric determination of such deformations corresponds to finding solutions of the equilibrium
equations in membrane theory as set down and discussed by such luminaries as Beltrami,
Clapeyron, Kirchhoff, Lagally, Laḿe, Lecornu, Love and Rayleigh [22].
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The main aim of the present paper is to show that there exists an intrinsic connection
between isometric deformations of (open) quadrilateral surfaces and discrete integrable
systems. Thus, the study of isometrically deformable quadrilateral surfaces is canonically
embedded in the emerging field ofintegrable discrete differential geometry[8]. In partic-
ular, it is demonstrated that the deformation parameter maybe identified as the ‘spectral
parameter’ which constitutes the key ingredient in the theory of integrable systems [1].

Here, in the main, we focus on isometric deformations ofdiscrete conjugate nets
which constitute discrete surfaces composed of planar quadrilaterals. We adopt the kine-
matic approach due to Sauer [24] and retrieve his fundamental notion of reciprocal-
parallel discrete surfaces associated with the existence ofinfinitesimalisometric defor-
mations. We show that, remarkably, discrete conjugate netsadmit infinitesimal isometric
deformations ofsecond-orderif and only if the reciprocal-parallel surfaces constitutedis-
crete Bianchi surfaces. These constitute natural discrete analogues of an integrable class
of classical surfaces which was analysed by Bianchi [4] in connection with isometric de-
formations of conjugate nets. The nonlinear equation underlying discrete Bianchi surfaces
has been shown to be integrable [26] in a different geometriccontext, namely discrete
isothermic surfaces [8]. By construction, discrete Bianchi surfaces constitute particular
discrete asymptotic nets. Integrable reductions of discrete asymptotic nets including dis-
crete Bianchi surfaces have been the subject of [14].

If a discrete conjugate net admits afinite isometric deformation, then any quadri-
lateral undergoes a rigid motion which may be decomposed into a translation and a rota-
tion. We demonstrate that the rotational component interpreted as anSU.2/-valued lattice
function obeys apair of linear equations which bears the hallmarks of a ‘Lax pair’ [1] for
a discrete integrable system in that it depends parametrically on the deformation param-
eter and gives rise to adiscrete zero-curvature condition. As an illustration, it is shown
that the discrete zero-curvature condition contains as a special case the ‘Gauss map’ of
discreteK-surfaces. These are integrable [6] and have been proposed as natural discrete
analogues of surfaces of constant negative Gaussian curvature by Sauer [23] and Wun-
derlich [29]. As observed by Sauer, discreteK-surfaces are reciprocal-parallel todiscrete
Voss surfaceswhich have indeed been shown by Sauer and Graf [25] to admitfinite iso-
metric deformations. Finally, it is established that the discrete zero-curvature condition
may be formulated in terms of a standard integrablediscrete nonlinear� -model[8, 26]
subject to a constraint involving the deformation parameter.

2. Infinitesimal deformations of discrete surfaces

In the following, adiscrete surfaceF is defined as (the image of) a mapping

F W V.G/! R3;
whereV.G/ denotes the set of vertices of a cellular decompositionG of the plane. The
edges and (combinatorial) faces of the discrete surface arethose induced naturally by the
mappingF . A dual discrete surfaceF � is a mapping which is defined on the vertices of
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FIGURE 1. A cellular decompositionG (black vertices) and its dualG�

(grey vertices).

F �

T

FIGURE 2. Infinitesimal rigid motion of a quadrilateral.

the dual cellular decompositionG� (cf. Figure 1), that is,

F � W V.G�/! R3:
In the present paper, we are mainly concerned withquadrilateral surfacescorresponding
to the choiceG D Z2 as illustrated in Figure 2. However, we begin with a generic discrete
surfaceF W V.G/! R3 and consider a ‘deformed surface’

F � D F C � NF ;
where the constant� constitutes a ‘small’ deformation parameter, that is,j�j � 1, and
NF W V.G/! R3 defines the displacement of the vertices ofF . It is convenient to imagine

the edges of any face of the discrete surface as the boundary of a small piece of a surface.
Accordingly, it is meaningful to define aninfinitesimal isometric deformationF � of a
discrete surfaceF as a deformation which does not change the shapes of the facesto order
O.�/. In kinematic terms, when the discrete surface is being deformed, any face undergoes
an infinitesimal rigid motion, that is, a combination of an infinitesimal translation and an
infinitesimal rotation. Accordingly, ifP is a point on a facef , then its displacement
P � � P D � NP is given by

NP D T C F � � P; (2.1)

where the translationT and the oriented axis of rotationF � areindependentof P . This
is illustrated in Figure 2 for a quadrilateral surface. Since each face is associated with a
vector of rotationF �, we may regardF � as another discrete surface which is dual toF .
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FIGURE 3. Two adjacent faces and their associated vectors of rotation
F �
r andF �

l
.

Thus, the vertices, edges and faces ofF are in one-to-one correspondence with the faces,
edges and vertices ofF �, respectively. Similarly,T is defined on the faces ofG, that is,

T W V.G�/! R3:
We now focus on the relative motion of two facesfr andfl which are joined by an

edgee linking the verticesFu andFd as depicted in Figure 3. Thus, if we evaluate the
displacement relation (2.1) at the verticesFu andFd which belong to both facesfr and
fl , then we obtain the four relations

NFu D Tr C F �
r � Fu; NFd D Tr C F �

r � Fd ; (2.2a)

NFu D Tl C F �
l � Fu; NFd D Tl C F �

l � Fd : (2.2b)

The latter imply that thedual edgesŒF �
l
; F �
r � andŒFd ; Fu� areparallel, that is,

.F �
r � F �

l / � .Fu � Fd / D 0:
This merely expresses the fact that the relative motion of the two adjacent facesfr andfl
represents an infinitesimal rotation about the common edgeŒFd ; Fu�. Thus, the following
definition is natural.

Definition 2.1. Two combinatorially dual discrete surfacesF andF � are reciprocal-
parallel if dual edges are parallel.

The above reasoning may now be inverted and hence we are led toa result which is
due to Sauer [24] in the case of quadrilateral surfaces.

Theorem 2.2. A discrete surfaceF admits an infinitesimal isometric deformation if and
only if there exists a reciprocal-parallel discrete surfaceF �.

Proof. In the preceding, it has been established that an infinitesimal isometric deforma-
tion of a discrete surfaceF gives rise to a reciprocal-parallel surface generated by the
vectors of rotationF �. Conversely, ifF � constitutes a reciprocal-parallel discrete sur-
face, then the relations (2.2) imply that

Tr � Tl D �.F �
r � F �

l / � Fu; Tr � Tl D �.F �
r � F �

l / � Fd (2.3)

constitute necessary conditions on the vectors of translation associated with two adjacent
faces. In fact, the above pair uniquely defines a dual discrete surfaceT W V.G�/! R3 up
to a single vectorT0 defined on a facef0. In kinematic terms, the latter corresponds to a
uniform translation of the discrete surfaceF . In order to make good the assertion thatT
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FIGURE 4. The verticesF �
k

of a face dual to a vertexF .

is well defined, it is required to verify two properties. Firstly, the two relations (2.3) are
equivalent sinceF � is reciprocal-parallel toF and hence.F �

r � F �
l
/ � .Fu � Fd / D 0.

Secondly, the ‘closing condition’ associated with any closed polygon composed of edges
of F � is satisfied. Indeed, it is sufficient to consider the boundary of a dual face as de-
picted in Figure 4. If we denote the vertices of the face whichis dual to the vertexF by
F �
1 ; : : : ; F

�
n , then then relations

TkC1 � Tk D �.F �
kC1 � F �

k / � F; k D 1; : : : ; n;
hold (with the identificationTnC1 D T1) and the corresponding closing condition

nX

kD1
.TkC1 � Tk/ D �

nX

kD1
.F �
kC1 � F �

k / � F D 0

is satisfied. The ‘displacement’NF of the vertexF may now be defined by

NF D Tk C F �
k � F

since the latter is independent ofk. In this manner, one may construct a discrete surface

F � D F C � NF
which represents an infinitesimal isometric deformation ofF . �

2.1. Quadrilateral surfaces
We are now concerned with (portions of) quadrilateral surfaces

F W Z2 ! R3:
In this case, the relation between two reciprocal-parallelsurfacesF andF � is illustrated
in Figure 5. Here and throughout the remainder of the paper, we indicate unit increments
of the discrete variablesn1 andn2 which label the latticeZ2 by subscripts, that is, for
instance,

F D F.n1; n2/; F1 D F.n1 C 1; n2/; F12 D F.n1 C 1; n2 C 1/;
so that a quadrilateral̆ is represented byŒF; F1; F12; F2�. Similarly, overbars on sub-
scripts designate unit decrements. Thus, a vertexF is linked to the quadrilaterals̆, ˘ N1,˘N1N2 and˘ N2. Furthermore, we adopt the notation

�iF D Fi � F; �12F D F12 � F1 � F2 C F
for the first-order and mixed second-order difference operators, respectively.
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FIGURE 5. Schematic depiction of reciprocal-parallel quadrilateral
surfacesF andF �.

In the following, we are concerned with the deformation of discrete surfaces which
are composed ofplanar quadrilaterals.

Definition 2.3. A quadrilateral surface is termed adiscrete conjugate netif all quadrilat-
erals are planar.

Discrete conjugate nets constitute natural analogues of conjugate nets in classical
differential geometry (see [8] and references therein). Their reciprocal-parallel counter-
parts (if they exist) represent discrete versions of classical asymptotic nets.

Definition 2.4. A quadrilateral surface is termed adiscrete asymptotic netif all stars are
planar.

The following observation [25] which provides an importantconnection between
discrete conjugate and asymptotic nets is a direct consequence of the analysis undertaken
in the previous subsection. It is illustrated in Figure 6.

Theorem 2.5. A discrete conjugate net with nonplanar stars is infinitesimally isometri-
cally deformable if and only if there exists a reciprocal-parallel discrete asymptotic net.
The latter is uniquely determined up to a scaling and hence the deformation is unique.

The uniqueness of the reciprocal-parallel discrete asymptotic net is due to the fact
that any star of the discrete conjugate net determines the directions of the edges of the cor-
responding dual quadrilateral of the discrete asymptotic net. By assumption, this quadri-
lateral is nonplanar and hence it is known up to a scaling. However, if the length of one
edge of the discrete asymptotic net is arbitrarily prescribed, the scalings of all quadrilat-
erals are uniquely determined. In this connection, it proves useful to adopt the following
definition [19].

Definition 2.6. Two discrete conjugate nets areCombescure transformsof each other if
corresponding edges are parallel.
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FIGURE 6. Reciprocal-parallel discrete conjugate and asymptoticnets
F andF �.

It is evident that any discrete conjugate net admits an infinite number of Combescure
transforms. Their relevance in the context of discrete asymptotic nets is the content of the
following theorem.

Theorem 2.7. Any discrete asymptotic net with nonplanar quadrilateralspossesses an
infinity of reciprocal-parallel discrete conjugate nets. These are related by Combescure
transformations and admit an infinitesimal isometric deformation.

Proof. Since the stars of an asymptotic net are planar, each star maybe associated with
a unit normalN as illustrated in Figure 6. The reciprocal-parallel conjugate nets are con-
structed by successively drawing planes which are orthogonal to the vectorsN and have
the property that the four planes associated with any four ‘neighbouring’ normals meet at
a point. �

3. Finite deformations

The subject offinite isometric deformationsof polyhedral surfaces is classical and is
highlighted by Cauchy’s non-existence theorem [10] for deformations of convex poly-
hedra. Here, we confine ourselves to isometric deformationsof a discrete conjugate net
F W Z2 ! R3, that is a one-parameter family of discrete surfaces

F � W Z2 ! R3
which depends continuously on the parameter� in such a manner that the planar quadri-
laterals ofF � are congruent to those of the undeformed discrete conjugatenetF 0 D F .
In the following, it is understood that the term deformationimplies its finite character
while infinitesimal deformations are explicitly referred to as such.

In the previous section, it has been concluded that for any given discrete conjugate
net with nonplanar stars there exists at most a one-parameter family of infinitesimal iso-
metric deformations. Accordingly, finite deformations of such conjugate nets are unique
if they exist. In fact, this statement is still correct if onereplaces the condition of nonpla-
nar stars by the assumption that the discrete conjugate net is non-degeneratein the sense
that opposite edges of any star are not collinear. This may bededuced by considering a
non-degenerate complex of 2�2 planar quadrilaterals meeting at a vertex (cf. Figure 7).
Indeed, if we vary the angle between two adjacent quadrilaterals, then the remaining two
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FIGURE 7. The deformability of a 2�2 complex of four planar quadrilaterals.

FIGURE 8. A deformable ‘tessellation of the plane’.

quadrilaterals move in such a way that the complex is not torn. Thus, deformations of 2�2
complexes always exist. If we hold that angle constant, thenthe complex is rigid and if
the complex forms part of a discrete conjugate net, then the entire discrete surface is rigid.

In conclusion, if a discrete conjugate net is isometricallydeformable, then any Com-
bescure transform is likewise isometrically deformable. In fact, the deformability of a
discrete conjugate net is a property of itsnormals onlyand may therefore be dealt with in
the realm of spherical geometry. Accordingly, we may state the following:

Theorem 3.1. A non-degenerate discrete conjugate net admits at most a one-parameter
family of isometric deformations. It is isometrically deformable if and only if all its
Combescure transforms are isometrically deformable.

3.1. General considerations

The complete classification of deformable discrete conjugate nets has not been achieved
yet. Particular classes of such discrete surfaces were constructed by Sauer and Graf [25]
and Kokotsakis [17] in the 1930s. An interesting example is displayed in Figure 8 and
represents the ‘tessellation of the plane’ by means of copies of an arbitrary quadrilateral
which are glued at corresponding edges. Some of the known deformable discrete conju-
gate nets do not possess smooth counterparts. This is a first indication that the class of
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FIGURE 9. A complex of eight planar quadrilaterals is always de-
formable while a 3�3 complex is generically rigid.

˘1
˘4
˘7

˘2
˘5
˘8

˘3
˘6
˘9

FIGURE 10. Illustration of the fact that a discrete conjugate net isde-
formable if and only if its 3�3 complexes are deformable.

deformable discrete conjugate nets is richer than in the smooth setting. In this connection,
it is interesting to note that the conditions for the existence of isometric deformations
which preserve conjugate nets on smooth surfaces were givenby Bianchi [4] in as early
as 1892 and related to an integrable class of surfaces which have been termedBianchi
surfaces. This will be discussed in more detail in Section 4.4.

The problem of isometric deformations becomes nontrivial as soon as the discrete
conjugate net consists of at least 3�3 quadrilaterals. Indeed, if we consider a 3�3 com-
plex and remove a corner quadrilateral, then deformation ofthe ‘opposite’ 2�2 complex
determines the new position of the remaining four adjacent quadrilaterals (cf. Figure 9).
However, in general, it will be impossible to re-insert the ninth quadrilateral and form a
3�3 complex. Thus, a 3�3 complex is generically rigid but admits a unique one-parameter
family of isometric deformations if certain constraints onthe normals to the quadrilaterals
are satisfied. In fact, it is sufficient to focus on 3�3 complexes in the following sense:

Theorem 3.2. A non-degenerate discrete conjugate net is isometrically deformable if and
only if its 3�3 complexes are isometrically deformable.

Proof. Let F be a non-degenerate discrete conjugate net which is such that all its 3�3
complexes are isometrically deformable. We remove all quadrilaterals up to two neigh-
bouring ‘horizontal’ and two neighbouring ‘vertical’ strips which intersect at four quadri-
laterals˘1;˘2;˘4;˘5 as indicated in Figure 10. This ‘cross’ of quadrilaterals admits a
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�

˘2 ˘1
˘2n̆

2n�1

FIGURE 11. A polyhedral surface of Kokotsakis type.

one-parameter family of deformations. If it is deformed, then the assumption of the de-
formability of the 3�3 complexes implies that the quadrilateral˘9 may be inserted into
the existing part of the deformed surfaceF � to form a 3�3 complexŒ˘1�; : : : ;˘9��. The
complete deformed surfaceF � is constructed by repeating this procedure iteratively.�

Kokotsakis [17] investigated infinitesimal and finite deformations of a special class
of (open) polyhedral surfaces which contains, for instance, the above-mentioned 3�3
complexes and closed octahedra. His investigations naturally led to Cauchy’s theorem
in the case of convex octahedra and the infinitesimal deformability of the octahedra of
Bricard type [9]. Specifically, his polyhedral surfaces consist of a closed strip of2n planar
quadrilaterals̆ 1; : : : ;˘2n which are alternately attached to then edges andn vertices
of a rigid and closed (not necessarily planar) polygon� as indicated in Figure 11. In
particular, if� constitutes a planar quadrilateral, then it may be regardedas the central
quadrilateral of a 3�3 complex. In order to investigate the (infinitesimal) deformability
of this polyhedral surface, one now cuts the surface at the edge between the quadrilater-
als˘1 and˘2n and (infinitesimally) rotates the quadrilateral˘1 about the corresponding
edge of�. The remaining quadrilaterals then move accordingly and, in general, there now
exists a gap between the quadrilaterals˘1 and˘2n. If the motion is infinitesimal, then
the condition of a closed deformed strip imposes one constraint on the polyhedral surface.
However, if the motion is finite and one demands that the stripis closed forall possible
positions of the quadrilateral̆1, then this constraint constitutes a one-parameter family
of constraints the solution of which is, in general, unknown. In the case of a 3�3 complex,
it may be shown that the determination of solutions of these constraints amounts to finding
common zeros of certain polynomials. Once again, in general, the solution to this problem
is unknown. Nevertheless, as noted by Kokotsakis, direct inspection of these constraints
gives rise to a class of isometrically deformable 3�3 complexes which was first recorded
by Sauer and Graf [25]. Its extension to discrete surfaces isdiscussed below.
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FIGURE 12. Definition and properties of discrete Voss surfaces.

3.2. The deformability of discrete Voss surfaces

As stated in the preceding, it is not known under which circumstances a discrete conju-
gate net is isometrically deformable. However, there exists an important class of discrete
conjugate nets which admit isometric deformations. It consists of natural discrete ana-
logues of classical Voss surfaces [27]. The latter terminology is due to the fact that, in the
formal continuum limit, the coordinate polygons of any discrete Voss surface become two
families ofgeodesicconjugate lines. The definition of discrete Voss surfaces isdepicted
in Figure 12.

Definition 3.3. A non-degenerate discrete conjugate net which is such that opposite an-
gles made by the edges of any star are equal is termed adiscrete Voss surface.

The existence of discrete Voss surfaces is readily shown by considering well-posed
Cauchy problems. For instance, it is not difficult to verify that any arbitrarily prescribed
spatial stairway gives rise to a unique discrete Voss surface. Moreover, it may be shown
that the angle made by two adjacent quadrilaterals (dihedral angle) is constant along the
coordinate polygon containing the common edge. This property may be taken as an alter-
native definition of discrete Voss surfaces and is illustrated in Figure 12. The connection
between the ‘interior’ angles̨; ˇ and the dihedral angles�; � is given by [25]

tan
�

2
tan

�

2
D sin.˛ C ˇ/

sin˛ C sinˇ
: (3.1)

Thus, the one-parameter family of deformations of 2�2 complexes of Voss type may be
described algebraically by the transformation

tan
�

2
! � tan

�

2
; tan

�

2
! 1

�
tan

�

2
:

The deformability of discrete Voss surfaces is now an immediate consequence of the
above invariance.

Theorem 3.4. Discrete Voss surfaces admit a one-parameter family of isometric defor-
mations.
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e

FIGURE 13. Illustration of the deformability of discrete Voss surfaces.

Proof. It is sufficient to consider a discrete Voss surface composedof nine quadrilaterals
as displayed in Figure 13. If the top-right quadrilateral isremoved and the discrete surface
is isometrically deformed, then the dihedral angles changeaccording to

tan
�

2
! � tan

�

2
; tan

�

2
! 1

�
tan

�

2

tan
Q�
2
! � tan

Q�
2
; tan

Q�
2
! 1

�
tan
Q�
2

so that the quantity

tan
Q�
2

tan
Q�
2

is preserved. Relation (3.1) now implies that the angle madeby the edgese and Qe is
unchanged. Thus, the missing quadrilateral may be insertedback into the discrete surface
and the 3�3 complex is indeed deformable. �

Since discrete Voss surfaces are isometrically deformable, any discrete Voss surface
F admits a discrete asymptotic reciprocal-parallel netF � which is unique up to an overall
scaling. Moreover, the defining property of discrete Voss surfaces implies that opposite
angles in the quadrilaterals ofF � are equal. This is equivalent to stating that the lengths
of opposite edges of the quadrilaterals are equal. The latter is the defining property of
discrete (generalized) Chebyshev nets. Thus, based on the definition below, we have come
to the following conclusion [24]:

Definition 3.5. A discrete surface is called adiscreteK-surfaceor discrete pseudospher-
ical if the coordinate polygons form both a discrete asymptotic net and a discrete (gener-
alized) Chebyshev net.

Corollary 3.6. The reciprocal-parallel counterparts of discrete Voss surfaces are discrete
K-surfaces.

DiscreteK-surfaces have been proposed independently by Sauer [23] and Wunder-
lich [29] as natural discrete versions of classical pseudospherical surfaces, that is, surfaces
of constant negative Gaussian curvature. The significance of discreteK-surfaces ininte-
grable discrete differential geometry has been revealed in [6]. Atthe level of discrete
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FIGURE 14. Definition of the lattice functions̨ andˇ.

Voss surfaces, the connection with the theory of integrablesystems [1] is readily estab-
lished. Thus, relation (3.1) may be exploited to characterize Voss surfaces in the following
manner. If we arbitrarily prescribe two families of dihedral angles which are taken to be
constant along the respective coordinate polygons, then the angles of a discrete Voss sur-
face are constrained by the relation (3.1) which holds on each star and by the condition
that the four angles in any quadrilateral must add up to2�. If we regard the angles̨
andˇ as introduced in Figure 14 as functions defined on the vertices of the discrete Voss
surfaces, then the latter condition may be formulated as

˛ C ˇ1 C ˛12 C ˇ2 D 2�:
It may be satisfied identically by introducing a lattice function ! which is defined on the
quadrilaterals as illustrated in Figure 12. Thus, on each star of Voss type with angles̨; ˇ
and dihedral angles�; �, the angles̨ andˇ are parametrized by

˛ D !1 C !2
2

; ˇ D � � !12 C !
2

and the relation (3.1) becomes

sin

�
!12 � !2 � !1 C !

4

�
D tan

�

2
tan

�

2
sin

�
!12 C !2 C !1 C !

4

�
:

For given dihedral angles and modulo the Combescure transformation, any solution of
the above lattice equation gives rise to a unique discrete Voss surface. Remarkably, this
lattice equation is but another avatar of Hirota’s integrable discrete version of the classical
sine-Gordon equation [16]. Moreover, as demonstrated in Section 5.2, the deformation
parameter� turns out to play the role of a ‘spectral parameter’ in the corresponding Lax
pair [6].

4. Infinitesimal deformations of second order

It has been demonstrated that the existence of an infinitesimal isometric deformation of
a discrete surfaceF corresponds to the existence of a reciprocal-parallel discrete surface
F �. Accordingly, if there exists an infinitesimal isometric deformation ofF of second or-
der, then the reciprocal-parallel surface is infinitesimally deformable and the deformation
is such that the stars are unchanged except for the length of their edges. In particular, the
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FIGURE 15. The translationT and rotation� associated with finite deformations.

angles between the edges of the coordinate polygons are preserved and hence the defor-
mation is infinitesimallyconformal. If the original discrete surface constitutes a discrete
conjugate netF , then the second-order isometric deformation correspondsto an infinites-
imal conformal deformation of its discrete asymptotic reciprocal-parallel counterpartF �.

4.1. Finite deformations

In order to analyse second-order isometric deformations, it is convenient to make some
general statements about finite isometric deformations of arbitrary quadrilateral surfaces.
Thus, if a discrete surfaceF is isometrically deformable, then its (nonplanar) quadrilater-
als are subjected to rigid motions. Since any rigid motion may be decomposed into a trans-
lation and a rotation, the motion of any pointP on the quadrilateral̆ D ŒF; F1; F12; F2�
may be described by

P � D T .�/C ��1.�/P�.�/;

where we have made the standard identification of the ambientspaceR3 with the Lie
algebrasu.2/, that is,

Psu.2/ D hPR3 ; ei ; e D .e1; e2; e3/;

e1 D
1

i

�
0 1

1 0

�
; e2 D

1

i

�
0 �i
i 0

�
; e3 D

1

i

�
1 0

0 �1
�
;

so thatT 2 su.2/ constitutes the translation and� 2 SU.2/ encodes the rotation. Here,T
and� are independent ofP andT .0/ D 0; �.0/ D 1 so thatP 0 D P as required. As in
the case of infinitesimal deformations, each quadrilateralis associated with a translation
T and a rotation�. Hence,T and� are defined on the dual lattice (cf. Figure 15).

If we now consider the motion of the verticesF andF2 which are common to the
quadrilaterals̆ and˘N1, then

F � D T C ��1F�; F �2 D T C ��1F2�;

F � D TN1 C ��1
N1 F�N1; F �2 D T N1 C ��1

N1 F2�N1;
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and elimination ofF �; F �2 ; T; TN1 produces

��1.F2 � F /� D ��1
N1 .F2 � F /�N1: (4.1)

Similarly, consideration of the quadrilaterals̆and˘ N2 leads to

��1.F1 � F /� D ��1
N2 .F1 � F /�N2: (4.2)

Thus, if the discrete surfaceF is isometrically deformable, then the latter two edge re-
lations hold. Conversely, if for a given discrete surfaceF there exists a one-parameter
family of matrices�.�/ 2 SU.2/ with �.0/ D 1 which satisfies the edge relations (4.1),
(4.2), then the compatible relations

T � TN1 D ��1
N1 F�N1 � ��1F�; (4.3a)

T � TN2 D ��1
N2 F�N2 � ��1F�; (4.3b)

andT .0/ D 0 uniquely1 defineT 2 su.2/ and the discrete surfaceF admits a one-
parameter family of isometric deformations given by

F � D T C ��1F�:

It is noted that the existence ofT is guaranteed since, as in the case of infinitesimal
deformations, the associated closing condition is satisfied modulo the edge relations (4.1)
and (4.2).

4.2. Second-order deformations

Instead of demanding that the edge relations (4.1) and (4.2)be satisfied for all values of
�, we may now require that only the firstn nontrivial orders in� vanish. Here, we are
interested in the casen D 2 so that it is sufficient to deal with Taylor series about� D 0

which are truncated at the second level. Thus, we consider deformations of the form

P � D P C �.T � C ŒP; F ��/C �2

2
.S� C ŒP;G��C ŒŒP; F ��; F ��/;

whereP is any point on the quadrilateral̆ and

T � D T�; S� D T��; F � D ����1; G� D .���
�1/ � ;

evaluated at� D 0. Once again,T �; S�; F � andG� are su.2/-valued objects defined
on the quadrilaterals ofF . Deformations of this type do not change the quadrilateralsto
orderO.�2/ since it is readily seen that

D
OP � � P �; QP � � P �

E
D
D
OP � P; QP � P

E
CO.�3/

for any three pointsP; OP ; QP on˘. Hence, if such deformations exist, then we refer to
them as (infinitesimal) isometric deformations of second order.

1Up toT .�/ at one vertex, corresponding to a trivial translation ofF 0.
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Differentiation of the edge relation (4.1) and evaluation at � D 0 now produce

�ŒF2 � F;F ��C �2

2
.ŒF2 � F;G��C ŒŒF2 � F;F ��; F ��/

D �ŒF2 � F;F �
N1 �C

�2

2
.ŒF2 � F;G�

N1 �C ŒŒF2 � F;F
�
N1 �; F

�
N1 �/CO.�

3/;

and an analogous expansion obtains in the case of the second edge relation (4.2). The
requirement that the terms are linear in� vanish therefore imposes the conditions

ŒF2 � F;F � � F �
N1 � D 0; ŒF1 � F;F � � F �

N2 � D 0: (4.4)

These encapsulate nothing but the fact that an isometric deformation of first order exists
if and only if there exists a reciprocal-parallel discrete surfaceF �. The terms quadratic in
� may then be simplified and application of the Jacobi identityresults in

ŒF2 � F;G� �G�
N1 C ŒF

�
N1 ; F

��� D 0; (4.5a)

ŒF1 � F;G� �G�
N2 C ŒF

�
N2 ; F

��� D 0: (4.5b)

Since the closing condition for the translationT is satisfied for finite isometric deforma-
tions and its nature is such that it holds separately for any order in�, the defining relations
for the coefficientsT � andS� which are obtained from the Taylor expansion of (4.3) are
compatible. We therefore conclude that a discrete surfaceF admits an isometric deforma-
tion of second order if and only if there exists a reciprocal-parallel surfaceF � and another
dual surfaceG� which obey the pair (4.5).

4.3. Second-order deformations of discrete conjugate nets

In the case of second-order deformations of discrete conjugate nets, progress may be made
by exploiting a discrete version of the classical Lelieuvreformulae which encapsulate the
Gauss map for surfaces parametrized in terms of asymptotic coordinates [15]. To this
end, it is recalled that if a discrete conjugate netF admits an infinitesimal isometric
deformation, then the associated reciprocal-parallel netF � is discrete asymptotic. Thus,
if N denotes the unit normals to the planar stars of the discrete asymptotic net as depicted
in Figure 6, then there exist lattice functions� and� such that the connection between
the discrete asymptotic net and its unit normals is represented by

F �
1 � F � D �N1 �N; F �

2 � F � D �N �N2:
The compatibility (‘closing’) conditionF �

12 D F �
21 is given by

�2N12 �N2 � �N1 �N D �1N1 �N12 � �N �N2
so that multiplication byN1 andN2, respectively, yields

��2 D ��1:
The functions� and� may therefore be parametrized according to

� D ��1; � D ��2;
where� constitutes an arbitrary lattice function. Introduction of the scaled normal

V D �N
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then reduces the compatibility condition to

.V12 C V/ � .V1 C V2/ D 0:
Thus, the following statement may be made:

Theorem 4.1. If F � constitutes a discrete asymptotic net, then there exists a scaled nor-
malV such that thediscrete Lelieuvre formulae [7, 18]

F �
1 � F � D V1 � V ; F �

2 � F � D V � V2 (4.6)

hold. These imply thatV satisfies thediscrete Moutard equation

V12 C V D H.V1 C V2/ (4.7)

for some scalar lattice functionH . Conversely, for any given solution.V; H/ of the dis-
crete Moutard equation (4.7), the discrete Lelieuvre formulae (4.6) are compatible and
uniquely define a discrete asymptotic netF � with V being its scaled normal.

Since we are concerned with second-order isometric deformations of discrete conju-
gate nets, the condition (4.4), which enshrines the existence of an asymptotic reciprocal-
parallel netF �, may be replaced by the discrete Moutard equation (4.7) by virtue of
Theorem 2.7. Moreover, the identity

AB D hA � B; ei � hA;Bi1
which holds for anyA;B 2 R3 Š su.2/ shows that the remaining constraints (4.5) are
satisfied if and only if there exist functionsa andb such that

G�
1 �G� D 2a.F �

1 � F �/C 2F �
1 � F �;

G�
2 �G� D 2b.F �

2 � F �/C 2F �
2 � F �:

Elimination ofG� leads to the compatibility condition

a2.F
�
12 � F �

2 / � a.F �
1 � F �/

� b1.F �
12 � F �

1 /C b.F �
2 � F �/ D .F �

12 � F �/ � .F �
1 � F �

2 /

which may be expressed entirely in terms ofV by virtue of the discrete Lelieuvre for-
mulae. In fact, on use of the discrete Moutard equation, multiplication byV1;V2 andV
results in

a2 � b D hV12 C V ;V1i ; a � b1 D hV12 C V ;V2i ; a2 � b1 D hV1 C V2;Vi ;
respectively. These relations imply that�2.a C hV1;Vi/ D 0 and�1.b � hV2;Vi/ D 0

so that summation yields

a D �hV1;Vi C f .n1/; b D hV2;Vi � g.n2/
and hence

hV12 C V ;V1 C V2i D f .n1/C g.n2/:
Since the latter may be regarded as a definition of the functionH in the discrete Moutard
equation, we have established the following theorem:
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Theorem 4.2. A discrete conjugate netF admits an infinitesimal isometric deformation
of second order if and only if there exists a (discrete asymptotic) reciprocal-parallel net
F � whose scaled normalV obeys the vector equation

V12 C V D f .n1/C g.n2/
jV1 C V2j2

.V1 C V2/

for some functionsf andg or, equivalently,

V12 C V D H.V1 C V2/; �12 hV12 C V ;V1 C V2i D 0: (4.8)

In particular, if the scaled normalV of a discrete asymptotic netF � satisfies the con-
straint (4.8)2, then the associated reciprocal-parallel discrete conjugate netsF admit an
infinitesimal isometric deformation of second order.

4.4. Discussion

In 1892, Bianchi [4] observed that a conjugate net.x; y/ on a surfaceF is preserved by
a finite isometric deformation if and only if there exists a correspondence between the
conjugate lines onF and the asymptotic lines on another surfaceF � such that the Gauss
mapsN andN � coincide and the Gaussian curvature ofF � is constrained by

�
1p
�K�

�

xy

D 0:

Based on a parameter-dependent linear representation (cf.Section 5), Bianchi [3] derived
a Bäcklund transformation for the surfacesF � which have come to be known asBianchi
surfaces[11, 20]. An analytic description of Bianchi surfaces is readily obtained on use
of the Lelieuvre formulae [15]

F �
x D Vx � V ; F �

y D V � Vy ;

where the scaled normalV obeys the Moutard equation

Vxy D hV : (4.9)

The Lelieuvre formulae immediately provide an expression for the Gaussian curvature of
F �, namelyK� D �1=jVj4. Accordingly, the constraint which defines Bianchi surfaces
may be formulated as

.jVj2/xy D 0: (4.10)

It is evident that the pair (4.9), (4.10) which entirely encodes Bianchi surfaces constitutes
the natural continuum limit of (4.8). However, the latter has been derived in connection
with second-orderdeformations while the classical differential-geometricderivation is
based onfinite deformations. This discrepancy may be partly resolved by referring to the
fact that, in the classical setting, second-order isometric deformations of conjugate nets
may be shown to be finite. Thus, Bianchi surfaces are, in fact,retrieved by imposing thea
priori weaker condition of the existence of second-order deformations. Nevertheless, it is
emphasized that, in general, this statementdoes notapply in the discrete context, that is,
second-order isometric deformations of discrete conjugate nets are not necessarily finite.
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As in the smooth setting, the discrete Bianchi system (4.8) has been shown to be in-
tegrable [26]. Second-order isometric deformations of discrete conjugate nets may there-
fore be considered integrable and, remarkably, any discrete conjugate net which admits a
finite isometric deformation corresponds to a particular solution of the integrable Bianchi
system (4.8).

At present, it is not known how to formulate the existence of finite isometric defor-
mations in terms of constraints on the discrete Bianchi system. However, if we assume
that the modulus of the scaled normalV is constant, that is,

jVj D 1
without loss of generality, then the discrete Moutard equation (4.8)1 reduces to

V12 C V D hV ;V1 C V2i
1C hV1;V2i

.V1 C V2/;

and its algebraic consequences

�1 hV2;Vi D 0; �2 hV1;Vi D 0
reveal that the constraint (4.8)2 is identically satisfied. The discrete Lelieuvre formulae
(4.6) then imply thatF � constitutes a discrete (generalized) Chebyshev net, that is,

�1jF �
2 � F �j D 0; �2jF �

1 � F �j D 0;
so that discreteK-surfaces together with their reciprocal-parallel isometrically deforma-
ble discrete Voss surfaces are retrieved.

5. Integrability of finite deformations

In the preceding, it has been demonstrated that the discretesurfaces which are reciprocal-
parallel to isometrically deformable conjugate nets are necessarily of discrete Bianchi
type. In particular, discrete Voss surfaces correspond to integrable discreteK-surfaces.
Here, we investigate in more detail the connection with the theory of integrable systems
and demonstrate that the appearance ofintegrablediscrete differential geometry in the
context of isometric deformations is, in fact, no coincidence. Thus, it has been shown that
a discrete quadrilateral surfaceF is isometrically deformable if and only if there exists
anSU.2/–valued function�.�/ with �.0/ D 1 which obeys the relations (4.1) and (4.2),
that is,

ŒF2 � F; ���1
N1 � D 0; ŒF1 � F; ���1

N2 � D 0: (5.1)

Now, since�.0/ D 1, the quantity

F � D ��.0/
is su.2/-valued and differentiation of (5.1) with respect to the deformation parameter�
reproduces the condition for reciprocal-parallelism

ŒF2 � F;F � � F �
N1 � D 0; ŒF1 � F;F � � F �

N2 � D 0:
The pair (5.1) then implies that

ŒF �
1 � F �; �1�

�1� D 0; ŒF �
2 � F �; �2�

�1� D 0;
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which, in turn, shows that there exist real lattice functionsa.�/; b.�/ andc.�/; d.�/ such
that

�1 D L.�/�; L.�/ D a.�/.F �
1 � F �/C b.�/1; (5.2a)

�2 DM.�/�; M.�/ D c.�/.F �
2 � F �/C d.�/1: (5.2b)

Finally, the compatibility condition�12 D �21 produces thediscrete zero-curvature con-
dition

L2.�/M.�/ DM1.�/L.�/: (5.3)

The latter encodes a system of lattice equations if theSU.2/-valued functionsL.�/ and
M.�/ are assumed to admit the power series expansions

L.�/ D
1X

kD0
�kL.k/; M.�/ D

1X

kD0
�kM.k/:

The above analysis shows that any isometrically deformablequadrilateral surface
F gives rise to a system ofnonlinear lattice equations encoded in the discrete zero-
curvature condition (5.3) which constitutes the compatibility condition associated with
the�-dependentlinear system (5.2). A parameter-dependent linear representation of the
form (5.2a)1, (5.2b)1 constitutes the key ingredient in the mathematical treatment of a dis-
crete integrable system represented by the corresponding discrete zero-curvature condi-
tion (5.3) [1]. In fact, all isometrically deformable quadrilateral surfaces are encapsulated
in the following theorem.

Theorem 5.1. Let L.�/ and M.�/ be two parameter-dependentSU.2/-valued lattice
functions of the form

L.�/ D a.�/AC b.�/1; M.�/ D c.�/B C d.�/1;
which obey the discrete zero-curvature condition

L2.�/M.�/ DM1.�/L.�/ (5.4)

for some lattice functionsA;B 2 su.2/ anda.�/; b.�/; c.�/; d.�/ 2 R with

a.0/ D c.0/ D 0; b.0/ D d.0/ D 1 (5.5)

anda�.0/ ¤ 0, c�.0/ ¤ 0. Then, there exists a unique�.�/ 2 SU.2/ (up to an irrelevant
gauge matrix depending on�) with �.0/ D 1 which satisfies the linear system

�1 D L.�/�; �2 DM.�/�: (5.6)

If the quadrilateral surface

F � D ��.0/
admits a reciprocal-parallel discrete surfaceF , thenF is isometrically deformable.

Proof. The zero-curvature condition (5.4) guarantees that the linear pair (5.6) is compat-
ible. ItsSU.2/-valued solution is uniquely determined by the value of�.�/ at one vertex
which we may choose to be1 without loss of generality. The constraints (5.5) imply that
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L.0/ D M.0/ D 1 so that�.0/ D 1 everywhere and henceF � D ��.0/ 2 su.2/.
Differentiation of (5.6) and evaluation at� D 0 produce

F �
1 � F � D a�.0/AC b�.0/; F �

2 � F � D c�.0/B C d�.0/;
whereinb�.0/ D d�.0/ D 0 sinceF � 2 su.2/. Accordingly, the pair (5.6) gives rise to
the commutator relations

ŒF �
1 � F �; �1�

�1� D 0; ŒF �
2 � F �; �2�

�1� D 0;
which are equivalent to the conditions (5.1) for the existence of an isometric deformation
of a reciprocal-parallel surfaceF . �

5.1. Finite deformations of discrete conjugate nets

In general, there is no guarantee that the quadrilateral surfaceF � in Theorem 5.1 admits
a reciprocal-parallel counterpartF . This property must therefore be regarded as a con-
straint on theSU.2/-valued lattice functionsL.�/ andM.�/. In the case of isometric
deformations of discrete conjugate nets, this constraint may be implemented explicitly
since the quantitiesA andB may be expressed in terms of the scaled normalV by virtue
of the discrete Lelieuvre formulae (4.6) and the representation (5.2) ofL.�/ andM.�/.
Accordingly, Theorem 5.1 may be simplified and brought into the following form:

Theorem 5.2.LetA.�/ andB.�/ be two parameter-dependent matrix-valued lattice func-
tions of the form

A.�/ D ˛.�/S1S C ˇ.�/1; B.�/ D .�/S2S C ı.�/1;
which obey the discrete zero-curvature condition

A2.�/B.�/ D B1.�/A.�/ (5.7)

for some lattice functionsS 2 su.2/ and˛.�/; ˇ.�/; .�/; ı.�/ 2 R with

˛.0/ D .0/ D 0
and the inequalities

ˇ.0/ > 0; ı.0/ > 0; ˛�.0/ ¤ 0; �.0/ ¤ 0; detA.�/ > 0; detB.�/ > 0:

Then, the determinants ofA.�/ andB.�/ may be parametrized according to

detA.�/ D �21 .�/

�2.�/
; detB.�/ D �22 .�/

�2.�/
; �.�/ > 0;

and the linear system
 1 D A.�/ ;  2 D B.�/ (5.8)

admits a unique solution (up to an irrelevant gauge matrix depending on�) with

�.�/ WD  .�/

�.�/
2 SU.2/; �.0/ D 1:

The quadrilateral surface
F � D ��.0/

is discrete asymptotic and its reciprocal-parallel counterpartsF constitute isometrically
deformable discrete conjugate nets withS being a common normal.
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The above theorem states that all isometrically deformablediscrete conjugate nets
are enshrined in the discrete zero-curvature condition (5.7). Before we analyse this con-
dition in more detail, we present the proof and an illustration of Theorem 5.2.

Proof. It is readily verified that

A�A D 1 detA; B�B D 1 detB;

where

detA D ˛2jS1j2jS j2 � 2˛ˇ hS1; Si C ˇ2 (5.9a)

detB D ˇ2jS2j2jS j2 � 2ı hS2; Si C ı2: (5.9b)

The discrete zero-curvature condition implies that

detA2 detB D detB1 detA;

whence there exists a positive lattice function�.�/ such that

detA.�/ D �21 .�/

�2.�/
; detB.�/ D �22 .�/

�2.�/
:

Thus, if we introduce the quantities

�.�/ D  .�/

�.�/
; L.�/ D �.�/

�1.�/
A.�/; M.�/ D �.�/

�2.�/
B.�/;

thenL.�/;M.�/ 2 SU.2/ and the linear system (5.8) becomes

�1 D L.�/�; �2 DM.�/�; (5.10)

so that Theorem 5.1 applies. Indeed, evaluation of the identities (5.9) at� D 0 reveals that

ˇ.0/ D �1.0/

�.0/
; ı.0/ D �2.0/

�.0/
;

and henceL.0/ DM.0/ D 1. It therefore remains to show that the quadrilateral surface
F � D ��.0/ is discrete asymptotic. To this end, it is observed that differentiation of (5.10)
yields

�1�.0/ D
˛�.0/

ˇ.0/
S1S C

�
ˇ.�/

�.�/

�1.�/

�

�

ˇ̌
ˇ̌
�D0

1C ��.0/
and an analogous expression for�2�.0/. SinceF � D ��.0/ 2 su.2/, we conclude that

F �
1 � F � D ˛�.0/

ˇ.0/
S1 � S; F �

2 � F � D �.0/

ı.0/
S2 � S;

so thatS is indeed orthogonal to the stars of the quadrilateral surfaceF �. This concludes
the proof since, according to Theorem 2.7, any (non-degenerate) discrete asymptotic net
F � admits an infinite number of reciprocal-parallel discrete conjugate netsF . �
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5.2. Finite deformations of discrete Voss surfaces

As an illustration of Theorem 5.2, we make the choice

˛ D �; ˇ D 1;  D ��; ı D 1; S2 D �1, jS j D 1:
In this case, the discrete zero-curvature condition associated with the linear system

 1 D .�S1S C 1/ ;  2 D .��S2S C 1/ 
reduces to

�ŒS12.S1 C S2/ � .S1 C S2/S� D 0
or, equivalently,

.S12 C S/ � .S1 C S2/ D 0; hS12 � S; S1 C S2i D 0: (5.11)

The former relation is equivalent to the discrete Moutard equation

S12 C S D H.S1 C S2/
in which the functionH is determined by the consistency conditionjS12j D 1, leading to

S12 C S D
hS; S1 C S2i
1C hS1; S2i

.S1 C S2/: (5.12)

The algebraic consequences

�1 hS2; Si D 0; �2 hS1; Si D 0
then show that the additional requirement (5.11)2 is identically satisfied. Thus,S repre-
sents the Gauss map of discreteK-surfaces as discussed in Section 4.4 and the isometri-
cally deformable reciprocal-parallel discrete surfaces are therefore of discrete Voss type.

The above example highlights the geometric interpretationof the ‘eigenfunction’
�.�/ in the sense of soliton theory as the rotational component ofthe rigid motion un-
dergone by the quadrilaterals during an isometric deformation. Here, the deformation
parameter� plays the role of the ‘spectral parameter’ [1].

5.3. A discrete nonlinear� -model

Here, we embark on an analysis of the discrete zero-curvature condition (5.7) given by

.˛2S12S2 C ˇ21/.S2S C ı1/ D .1S12S1 C ı11/.˛S1S C ˇ1/:
Therein, we may assume without loss of generality that the normalS obeys the discrete
Moutard equation

S12 C S D H.S1 C S2/ (5.13)

by virtue of Theorems 4.1 and 5.2. Decomposition of the discrete zero-curvature condition
into its trace and trace-free parts yields

˛2 jS2j2 hS12; Si � ˛2ı hS12; S2i � ˇ2 hS2; Si C ˇ2ı
D 1˛jS1j2 hS12; Si � 1ˇ hS12; S1i � ı1˛ hS1; Si C ı1ˇ
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and

˛2 jS2j2S12 � S � ˛2ıS12 � S2 � ˇ2S2 � S
D 1˛jS1j2S12 � S � 1ˇS12 � S1 � ı1˛S1 � S:

The inner product of the latter withS andS1 C S2, respectively, gives rise to

˛2ı D �1ˇ; ˇ2 D �ı1˛; (5.14)

so that the above relations reduce to

H.˛2 jS2j2 � 1˛jS1j2/ D ˛2ı C ˇ2; (5.15a)

1

H
.˛2ıjS12j2 C ˇ2 jS2j/ D ˇ2ı � ı1ˇ: (5.15b)

Now, on the one hand, it is readily verified that the linear system (5.8) is invariant under

 ! � ; .˛; ˇ/! �1

�
.˛; ˇ/; .; ı/! �2

�
.; ı/:

On the other hand, the quadratic relations (5.14) guaranteethat there exist ‘potentials’�
and� such that

�1 D ˛�; �2 D ��; �1 D ˇ�; �2 D ı�:
Without loss of generality, we may therefore introduce the parametrization

˛ D �

�
; ˇ D �1

�1
;  D ��

�
; ı D �2

�2
:

Finally, if we set

� D �

�
;

then the relations (5.15) adopt the form

�12 � � D H
� jS2j2
�2
� jS1j

2

�1

�
; �2 � �1 D

1

H

� jS12j2
�12

� jS j
2

�

�
: (5.16)

Thus, it is required to determine all one-parameter (�) families of solutions of the coupled
system (5.13), (5.16) which are such thatS is independentof �. It is observed that the pair
(5.16) may be brought into the form

�2

�
2 hS1; Si � �1� �

jS1j2
�1

jS j2
�

�
D 0; �1

�
2 hS2; Si C �2� C

jS2j2
�2

jS j2
�

�
D 0;

which provides two first integrals.
In order to proceed, it turns out convenient to define the quantity

� D jS j
2

�
:

The system (5.13), (5.16) is then equivalent to thelinear system

S12 C S D H.S1 C S2/;
�12 � � D H.�2 � �1/;
�12 � � D H.�2 � �1/;
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subject to thenonlinearconstraint

�� D jS j2:
It is noted in passing that the choice

� D 1

f .�/
; � D f .�/

reduces this system to the Gauss map (5.12) of discreteK-surfaces corresponding to
isometrically deformable discrete Voss surfaces. In general, the change of variables

A D .�1/n1
� � �
2

; B D .�1/n2
� C �
2

; V D

0
@
S

A

B

1
A

gives rise to the vector equation

V12 C V D H.V1 C V2/; hV;Vi D 0;
where the inner product is defined by

hV; QVi D hS; QSi C A QA� B QB:
Since the functionH is determined by the requirement thatV constitutes a null-vector,
discrete conjugate nets which are isometrically deformable are encapsulated in the fol-
lowing theorem:

Theorem 5.3. Isometrically deformable discrete conjugate nets are encoded in one-
parameter (�) families of solutions of the vector equation

V12 C V D hV;V1 C V2i
hV1;V2i

.V1 C V2/; hV;Vi D 0;

which are such that the first three components ofV are independentof �. Here, the inner
product is taken with respect to the metricdiag.1; 1; 1; 1;�1/,

Remarkably, the above vector equation constitutes the standard integrable discretiza-
tion of a particularnonlinear�-model(see, e.g., [8, 26]). The complete characterization
of its families of solutions which admit the required dependence on a parameter� and are
compatible with the technical assumptions made in Theorem 5.2 is the subject of ongoing
research.
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87.

[11] B. Cenkl, Geometric deformations of the evolution equations and B̈acklund transformations,
Physica D18 (1986), 217–219.
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