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On the Integrability
of Infinitesimal and Finite Deformations
of Polyhedral Surfaces

Wolfgang K. Schief, Alexander |. Bobenko and Tim Hoffmann

Abstract. It is established that there exists an intimate connectetwéen isomet-
ric deformations of polyhedral surfaces and discrete natelg systems. In particular,
Sauer’s kinematic approach is adopted to show that secated-mfinitesimal isomet-
ric deformations of discrete surfaces composed of planadiglaterals (discrete conju-
gate nets) are determined by the solutions of an integraddeade version of Bianchi's
classical equation governing finite isometric deformatiohconjugate nets. Moreover,
itis demonstrated that finite isometric deformations ofdite conjugate nets are com-
pletely encapsulated in the standard integrable disatéiz of a particular nonlinear
o-model subject to a constraint. The deformability of disendoss surfaces is thereby
retrieved in a natural manner.
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1. Introduction

The study of infinitesimal and finite deformations of bothyt@dral and smooth surfaces
has a long history. Various proofs of the fact that closedsegmpolyhedra are infinites-
imally rigid are due to Cauchy [10] (1813), Dehn [13] (191@)ey! [28] (1917) and
Alexandrov [2] (1958). Analogous results for smooth suefagvere obtained by Lieb-
mann [21] (1899) and Cohn-Vossen [12] (1936). Apart fromirteignificance in differ-
ential geometry, isometric deformations of smooth sudaso find diverse application
in physics. For instance, it was observed by Blaschke [S]ttieastandard theory of shell
membranes which are in equilibrium and not subjected toreatdorces may be set in
correspondence with infinitesimal isometric deformatiohsurfaces. Thus, the geomet-
ric determination of such deformations corresponds torigpgblutions of the equilibrium
equations in membrane theory as set down and discussed lbjusninaries as Beltrami,
Clapeyron, Kirchhoff, Lagally, Lai®, Lecornu, Love and Rayleigh [22].
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The main aim of the present paper is to show that there existdrinsic connection
between isometric deformations of (open) quadrilaterdiases and discrete integrable
systems. Thus, the study of isometrically deformable gladral surfaces is canonically
embedded in the emerging fieldiotegrable discrete differential geome{8). In partic-
ular, it is demonstrated that the deformation parameter lpeaigentified as the ‘spectral
parameter’ which constitutes the key ingredient in the thedintegrable systems [1].

Here, in the main, we focus on isometric deformationglistrete conjugate nets
which constitute discrete surfaces composed of planarriatedals. We adopt the kine-
matic approach due to Sauer [24] and retrieve his fundarheot&on of reciprocal-
parallel discrete surfaces associated with the existendafoifitesimalisometric defor-
mations. We show that, remarkably, discrete conjugateaustst infinitesimal isometric
deformations o6econd-ordeif and only if the reciprocal-parallel surfaces constitdig
crete Bianchi surfacesThese constitute natural discrete analogues of an irikgcéass
of classical surfaces which was analysed by Bianchi [4] imeztion with isometric de-
formations of conjugate nets. The nonlinear equation uyiderdiscrete Bianchi surfaces
has been shown to be integrable [26] in a different geometitext, namely discrete
isothermic surfaces [8]. By construction, discrete Biarsthfaces constitute particular
discrete asymptotic netitegrable reductions of discrete asymptotic nets iriolydiis-
crete Bianchi surfaces have been the subject of [14].

If a discrete conjugate net admitdiaite isometric deformation, then any quadri-
lateral undergoes a rigid motion which may be decomposediitanslation and a rota-
tion. We demonstrate that the rotational component ingdepras a U(2)-valued lattice
function obeys gair of linear equations which bears the hallmarks of a ‘Lax pair’ [1] for
a discrete integrable system in that it depends paramigyramathe deformation param-
eter and gives rise to discrete zero-curvature conditio\s an illustration, it is shown
that the discrete zero-curvature condition contains asaiabcase the ‘Gauss map’ of
discreteK -surfaces These are integrable [6] and have been proposed as naisoedte
analogues of surfaces of constant negative Gaussian awevay Sauer [23] and Wun-
derlich [29]. As observed by Sauer, discrétesurfaces are reciprocal-paralleldiscrete
Voss surfacewhich have indeed been shown by Sauer and Graf [25] to difniié iso-
metric deformations. Finally, it is established that thecdete zero-curvature condition
may be formulated in terms of a standard integrali$erete nonlinear-model[8, 26]
subject to a constraint involving the deformation paramete

2. Infinitesimal deformations of discrete surfaces
In the following, adiscrete surfacd is defined as (the image of) a mapping
F:V(G) — R?,

whereV (G) denotes the set of vertices of a cellular decomposifiarf the plane. The
edges and (combinatorial) faces of the discrete surfacthase induced naturally by the
mappingF . A dual discrete surfacé™* is a mapping which is defined on the vertices of
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FIGURE 1. A cellular decompositiog (black vertices) and its dugt*
(grey vertices).

FIGURE 2. Infinitesimal rigid motion of a quadrilateral.

the dual cellular decompositigy* (cf. Figure 1), that is,
F*: V(G*) — R
In the present paper, we are mainly concerned githdrilateral surfacesorresponding

to the choiceg = Z? as illustrated in Figure 2. However, we begin with a geneiscreéte
surfaceF : V(G) — R? and consider a ‘deformed surface’
F€=F 4 €F,

where the constant constitutes a ‘small’ deformation parameter, that/é$,< 1, and
F : V(G) — R? defines the displacement of the verticeg-ofit is convenient to imagine
the edges of any face of the discrete surface as the bountiaigneall piece of a surface.
Accordingly, it is meaningful to define aimfinitesimal isometric deformatiof of a
discrete surfacé’ as a deformation which does not change the shapes of thettemeter
O(¢). In kinematic terms, when the discrete surface is beingrdedd, any face undergoes
an infinitesimal rigid motion, that is, a combination of afiniitesimal translation and an
infinitesimal rotation. Accordingly, ifP is a point on a facef, then its displacement
P€ — P = ¢P is given by

P=T+ F*x P, (2.1)
where the translatiofi’ and the oriented axis of rotatiafi* areindependenof P. This
is illustrated in Figure 2 for a quadrilateral surface. ®ieach face is associated with a
vector of rotationF*, we may regard”* as another discrete surface which is duaFto
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FIGURE 3. Two adjacent faces and their associated vectors of ootati
F¥andF}.

Thus, the vertices, edges and faceg'ddre in one-to-one correspondence with the faces,
edges and vertices @t *, respectively. Similarly7" is defined on the faces ¢f, that is,

T :V(G*) — R3.
We now focus on the relative motion of two facgsand f; which are joined by an
edgee linking the verticesF,, and F,; as depicted in Figure 3. Thus, if we evaluate the

displacement relation (2.1) at the verticEs and F,; which belong to both faceg, and
f1, then we obtain the four relations

F, =T, + FFx Fy, Fy =T, + F x Fy, (2.2a)

Fy =T + F x Fy, Fq =T + Fx Fy. (2.2b)
The latter imply that thelualedgeq F*, F*] and[F,, F,] areparallel, that is,
(F} — F}) < (Fy — Fq) = 0.

This merely expresses the fact that the relative motionefitlo adjacent faceg. and f;
represents an infinitesimal rotation about the common &ElgeF,]. Thus, the following
definition is natural.

Definition 2.1. Two combinatorially dual discrete surfacésand F* are reciprocal-
parallel if dual edges are parallel.

The above reasoning may now be inverted and hence we aredesuolt which is
due to Sauer [24] in the case of quadrilateral surfaces.

Theorem 2.2. A discrete surfacé” admits an infinitesimal isometric deformation if and
only if there exists a reciprocal-parallel discrete surdak™.

Proof. In the preceding, it has been established that an infinieEdssometric deforma-
tion of a discrete surfacé& gives rise to a reciprocal-parallel surface generated by th
vectors of rotationF*. Conversely, ifF* constitutes a reciprocal-parallel discrete sur-
face, then the relations (2.2) imply that

Ty =Ty = —(Ff — F*)x Fy, T, —Tj = —(F} — F") x F4 (2.3)

constitute necessary conditions on the vectors of traoslassociated with two adjacent
faces. In fact, the above pair uniquely defines a dual dissatfacel” : V(G*) — R3 up

to a single vectofly, defined on a facg. In kinematic terms, the latter corresponds to a
uniform translation of the discrete surfage In order to make good the assertion tiat
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FIGURE 4. The verticed"” of a face dual to a vertex.

is well defined, it is required to verify two properties. Fiysthe two relations (2.3) are
equivalent since”* is reciprocal-parallel ta&" and hencé F,* — F;*) x (F, — Fq) = 0.
Secondly, the ‘closing condition’ associated with any etbpolygon composed of edges
of F* is satisfied. Indeed, it is sufficient to consider the boupadra dual face as de-
picted in Figure 4. If we denote the vertices of the face wiisctiual to the vertext” by
Fr, ..., F}, then the: relations

Tk_;,_l—Tk:—(F]:_,’_l—F]:)XF, k=1,...,n,
hold (with the identificatior¥},,+; = 77) and the corresponding closing condition

n n
S (Tiy1 =Ty ==Y (Ffy —F)XF =0
k=1 k=1

is satisfied. The ‘displacemenk of the vertexF may now be defined by
F=T¢+ F'xF
since the latter is independent/ofin this manner, one may construct a discrete surface
F¢=F +¢F
which represents an infinitesimal isometric deformatioi of O

2.1. Quadrilateral surfaces
We are now concerned with (portions of) quadrilateral sg$a
F :7? - R>.
In this case, the relation between two reciprocal-parallelacesF and F* is illustrated
in Figure 5. Here and throughout the remainder of the papeindicate unit increments

of the discrete variables, andn, which label the latticéZ? by subscripts, that is, for
instance,

F=Fmy,ny), Fi=Fmn +1ny), Fpo=Fn +1n+1),

so that a quadrilaterab is represented byF, Fi, Fi», F>]. Similarly, overbars on sub-
scripts designate unit decrements. Thus, a veftéx linked to the quadrilaterals, ¢1,
<13 and<;. Furthermore, we adopt the notation

ANiF=F—F, ApF=F,—F —F+F
for the first-order and mixed second-order difference dpesarespectively.
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FIGURE 5. Schematic depiction of reciprocal-parallel quadriiate
surfacest” and F*.

In the following, we are concerned with the deformation cfodéte surfaces which
are composed giflanar quadrilaterals.

Definition 2.3. A quadrilateral surface is termediécrete conjugate neftall quadrilat-
erals are planar.

Discrete conjugate nets constitute natural analoguesmtigate nets in classical
differential geometry (see [8] and references thereingiiTreciprocal-parallel counter-
parts (if they exist) represent discrete versions of ctadsisymptotic nets.

Definition 2.4. A quadrilateral surface is termedd&crete asymptotic néftall stars are
planar.

The following observation [25] which provides an importaoinnection between
discrete conjugate and asymptotic nets is a direct consegud the analysis undertaken
in the previous subsection. It is illustrated in Figure 6.

Theorem 2.5. A discrete conjugate net with nonplanar stars is infinitedlynisometri-
cally deformable if and only if there exists a reciprocalgléel discrete asymptotic net.
The latter is uniquely determined up to a scaling and henealgformation is unique.

The unigueness of the reciprocal-parallel discrete asytigphet is due to the fact
that any star of the discrete conjugate net determines tbetitins of the edges of the cor-
responding dual quadrilateral of the discrete asymptadtc By assumption, this quadri-
lateral is nonplanar and hence it is known up to a scaling. é¥ew if the length of one
edge of the discrete asymptotic net is arbitrarily presatjtihe scalings of all quadrilat-
erals are uniquely determined. In this connection, it psavgeful to adopt the following
definition [19].

Definition 2.6. Two discrete conjugate nets ai@mbescure transfornaf each other if
corresponding edges are parallel.
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FIGURE 6. Reciprocal-parallel discrete conjugate and asymptuts
FandF*.

Itis evident that any discrete conjugate net admits an tefimimber of Combescure
transforms. Their relevance in the context of discrete gdgtit nets is the content of the
following theorem.

Theorem 2.7. Any discrete asymptotic net with nonplanar quadrilatenadssesses an
infinity of reciprocal-parallel discrete conjugate nethéeBe are related by Combescure
transformations and admit an infinitesimal isometric defation.

Proof. Since the stars of an asymptotic net are planar, each stabenagsociated with
a unit normalN as illustrated in Figure 6. The reciprocal-parallel comjiggnets are con-
structed by successively drawing planes which are orthalgorthe vectorsv and have
the property that the four planes associated with any foeigtbouring’ normals meet at
a point. O

3. Finite deformations

The subject offinite isometric deformationsf polyhedral surfaces is classical and is
highlighted by Cauchy’s non-existence theorem [10] forodefations of convex poly-
hedra. Here, we confine ourselves to isometric deformatibrasdiscrete conjugate net
F : 77> — R3, that is a one-parameter family of discrete surfaces

F¢:7? > R3
which depends continuously on the parametar such a manner that the planar quadri-
laterals of F€ are congruent to those of the undeformed discrete conjugate’ = F.
In the following, it is understood that the term deformatiowplies its finite character
while infinitesimal deformations are explicitly referremds such.

In the previous section, it has been concluded that for avgngiliscrete conjugate
net with nonplanar stars there exists at most a one-parafaetédy of infinitesimal iso-
metric deformations. Accordingly, finite deformations ath conjugate nets are unique
if they exist. In fact, this statement is still correct if oreplaces the condition of nonpla-
nar stars by the assumption that the discrete conjugats nehidegenerate the sense
that opposite edges of any star are not collinear. This majebleced by considering a
non-degenerate complex ok2 planar quadrilaterals meeting at a vertex (cf. Figure 7).
Indeed, if we vary the angle between two adjacent quadrdktethen the remaining two
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FIGURE 8. A deformable ‘tessellation of the plane’.

guadrilaterals move in such a way that the complex is not finaos, deformations of:22
complexes always exist. If we hold that angle constant, thercomplex is rigid and if
the complex forms part of a discrete conjugate net, thenrtieealiscrete surface is rigid.

In conclusion, if a discrete conjugate net is isometricdéjormable, then any Com-
bescure transform is likewise isometrically deformabtefdct, the deformability of a
discrete conjugate net is a property ofritrmals onlyand may therefore be dealt with in
the realm of spherical geometry. Accordingly, we may stiagefollowing:

Theorem 3.1. A non-degenerate discrete conjugate net admits at most garsamneter
family of isometric deformations. It is isometrically defable if and only if all its
Combescure transforms are isometrically deformable.

3.1. General considerations

The complete classification of deformable discrete corpigats has not been achieved
yet. Particular classes of such discrete surfaces wererootesd by Sauer and Graf [25]
and Kokotsakis [17] in the 1930s. An interesting exampleispldyed in Figure 8 and
represents the ‘tessellation of the plane’ by means of sapii@n arbitrary quadrilateral
which are glued at corresponding edges. Some of the knowmrdable discrete conju-
gate nets do not possess smooth counterparts. This is antiisaiion that the class of
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FIGURE 9. A complex of eight planar quadrilaterals is always de-
formable while a 3 complex is generically rigid.

FIGURE 10. lllustration of the fact that a discrete conjugate netds
formable if and only if its %3 complexes are deformable.

deformable discrete conjugate nets is richer than in theotimsetting. In this connection,
it is interesting to note that the conditions for the exiseiof isometric deformations
which preserve conjugate nets on smooth surfaces were giv&mnchi [4] in as early
as 1892 and related to an integrable class of surfaces wiaish been termeBianchi
surfaces This will be discussed in more detail in Section 4.4.

The problem of isometric deformations becomes nontriviaé@on as the discrete
conjugate net consists of at least3quadrilaterals. Indeed, if we consider a33com-
plex and remove a corner quadrilateral, then deformatichefopposite’ %2 complex
determines the new position of the remaining four adjaceatdlaterals (cf. Figure 9).
However, in general, it will be impossible to re-insert theth quadrilateral and form a
3x3 complex. Thus, ax83 complex is generically rigid but admits a unique one-paatam
family of isometric deformations if certain constraintstbe normals to the quadrilaterals
are satisfied. In fact, it is sufficient to focus or3complexes in the following sense:

Theorem 3.2. A non-degenerate discrete conjugate net is isometricaifgranable if and
only if its 3x3 complexes are isometrically deformable.

Proof. Let F be a non-degenerate discrete conjugate net which is suthlthis 3x3
complexes are isometrically deformable. We remove all glsdrals up to two neigh-
bouring ‘horizontal’ and two neighbouring ‘vertical’ o8 which intersect at four quadri-
lateralso!, ©2, o4, ¢ as indicated in Figure 10. This ‘cross’ of quadrilateralséd a
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FIGURE 11. A polyhedral surface of Kokotsakis type.

one-parameter family of deformations. If it is deformeceritthe assumption of the de-
formability of the 33 complexes implies that the quadrilatetsd may be inserted into
the existing part of the deformed surfagé to form a 3x3 complex[¢1€, ..., ©%€]. The
complete deformed surfade® is constructed by repeating this procedure iterativelyl

Kokotsakis [17] investigated infinitesimal and finite def@tions of a special class
of (open) polyhedral surfaces which contains, for instartice above-mentionedx3
complexes and closed octahedra. His investigations rtlea to Cauchy’s theorem
in the case of convex octahedra and the infinitesimal defoilityaof the octahedra of
Bricard type [9]. Specifically, his polyhedral surfaces sishof a closed strip dfn planar
quadrilateralso!, . .., ©2" which are alternately attached to theedges ana vertices
of a rigid and closed (not necessarily planar) polygoms indicated in Figure 11. In
particular, if ' constitutes a planar quadrilateral, then it may be regasdeithe central
guadrilateral of a 83 complex. In order to investigate the (infinitesimal) defability
of this polyhedral surface, one now cuts the surface at tige bdtween the quadrilater-
also! and<¢?” and (infinitesimally) rotates the quadrilatexal about the corresponding
edge ofl". The remaining quadrilaterals then move accordingly andeneral, there now
exists a gap between the quadrilateralsand ¢2”. If the motion is infinitesimal, then
the condition of a closed deformed strip imposes one canstra the polyhedral surface.
However, if the motion is finite and one demands that the strigosed forall possible
positions of the quadrilaterat!, then this constraint constitutes a one-parameter family
of constraints the solution of which is, in general, unknoimrthe case of a:83 complex,
it may be shown that the determination of solutions of thesstraints amounts to finding
common zeros of certain polynomials. Once again, in gen@bolution to this problem
is unknown. Nevertheless, as noted by Kokotsakis, diresgigntion of these constraints
gives rise to a class of isometrically deformable33complexes which was first recorded
by Sauer and Graf [25]. Its extension to discrete surfacdsaissed below.
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FIGURE 12. Definition and properties of discrete Voss surfaces.

3.2. The deformability of discrete Voss surfaces

As stated in the preceding, it is not known under which cirstamces a discrete conju-
gate net is isometrically deformable. However, there exastimportant class of discrete
conjugate nets which admit isometric deformations. It exiasof natural discrete ana-
logues of classical Voss surfaces [27]. The latter ternoigpis due to the fact that, in the
formal continuum limit, the coordinate polygons of any déte Voss surface become two
families of geodesiconjugate lines. The definition of discrete Voss surfaceescted
in Figure 12.

Definition 3.3. A non-degenerate discrete conjugate net which is such paisite an-
gles made by the edges of any star are equal is terndéexteete Voss surface

The existence of discrete Voss surfaces is readily showrobgidering well-posed
Cauchy problems. For instance, it is not difficult to verifyat any arbitrarily prescribed
spatial stairway gives rise to a unique discrete Voss serfisloreover, it may be shown
that the angle made by two adjacent quadrilaterals (dihedgle) is constant along the
coordinate polygon containing the common edge. This ptgmpeay be taken as an alter-
native definition of discrete Voss surfaces and is illustilah Figure 12. The connection
between the ‘interior’ anglas, g and the dihedral anglegs, v is given by [25]

m v sin(a + )

tan—tan—

= — 3.1
2 2 sina +sing (3.1)

Thus, the one-parameter family of deformations g2Zomplexes of Voss type may be
described algebraically by the transformation
1
tan? - Atanﬁ, tan~ — — tan—.
2 2 2 A2
The deformability of discrete Voss surfaces is now an im@edconsequence of the
above invariance.

Theorem 3.4. Discrete Voss surfaces admit a one-parameter family of éaendefor-
mations.



78 Wolfgang K. Schief, Alexander |. Bobenko and Tim Hoffmann

o

FIGURE 13. lllustration of the deformability of discrete Voss saagés.

Proof. It is sufficient to consider a discrete Voss surface compo$eihe quadrilaterals
as displayed in Figure 13. If the top-right quadrilaterakisoved and the discrete surface
is isometrically deformed, then the dihedral angles chagerding to

1
tanE — Atanﬁ, tanK — —tanK
2 2 2 A 2
- - - | -
tanE — )Ltanﬁ, tanK — —tanK
2 2 2 A 2
so that the quantity
m v
tan— tan—
2 2

is preserved. Relation (3.1) now implies that the angle madéhe edges ande is
unchanged. Thus, the missing quadrilateral may be insbeteklinto the discrete surface
and the X3 complex is indeed deformable. |

Since discrete Voss surfaces are isometrically deformablediscrete Voss surface
F admits a discrete asymptotic reciprocal-parallel Figwhich is unique up to an overall
scaling. Moreover, the defining property of discrete Vossases implies that opposite
angles in the quadrilaterals &f* are equal. This is equivalent to stating that the lengths
of opposite edges of the quadrilaterals are equal. The liattdne defining property of
discrete (generalized) Chebyshev nétsus, based on the definition below, we have come
to the following conclusion [24]:

Definition 3.5. A discrete surface is calleddiscreteK -surfaceor discrete pseudospher-
ical if the coordinate polygons form both a discrete asymptagicamd a discrete (gener-
alized) Chebyshev net.

Corollary 3.6. The reciprocal-parallel counterparts of discrete Vossfaoes are discrete
K-surfaces.

DiscreteK -surfaces have been proposed independently by Sauer [@3)ander-
lich [29] as natural discrete versions of classical psepdescal surfaces, that is, surfaces
of constant negative Gaussian curvature. The significahdescreteK -surfaces irinte-
grable discrete differential geometry has been revealed in [6]th&t level of discrete
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FIGURE 14. Definition of the lattice functionsg andpg.

Voss surfaces, the connection with the theory of integrapptems [1] is readily estab-
lished. Thus, relation (3.1) may be exploited to charaz#eviss surfaces in the following
manner. If we arbitrarily prescribe two families of diheldaagles which are taken to be
constant along the respective coordinate polygons, theartgles of a discrete Voss sur-
face are constrained by the relation (3.1) which holds o ater and by the condition
that the four angles in any quadrilateral must add upsto If we regard the angles
andp as introduced in Figure 14 as functions defined on the verti€¢he discrete Voss
surfaces, then the latter condition may be formulated as

Ol+,31+(,¥12+,32=27‘[.

It may be satisfied identically by introducing a lattice ftion w which is defined on the
guadrilaterals as illustrated in Figure 12. Thus, on eaghdft\Voss type with angles, 8
and dihedral angleg, v, the anglesx and$ are parametrized by

w1 + W w12 + w
= ﬂ:]{—i
2 2

and the relation (3.1) becomes

[ wip—wr — w1 + o o vV . (w2 +wr+w +w
sin = tanz tanz sin .

4 4

For given dihedral angles and modulo the Combescure tranatmn, any solution of
the above lattice equation gives rise to a unique discress ¥arface. Remarkably, this
lattice equation is but another avatar of Hirota’s intetgaliscrete version of the classical
sine-Gordon equation [16]. Moreover, as demonstrated ati®e5.2, the deformation
parameten turns out to play the role of a ‘spectral parameter’ in theesponding Lax
pair [6].

4. Infinitesimal deformations of second order

It has been demonstrated that the existence of an infinigds$gometric deformation of
a discrete surfac& corresponds to the existence of a reciprocal-parallefetiesurface
F*. Accordingly, if there exists an infinitesimal isometridolenation of F' of second or-
der, then the reciprocal-parallel surface is infinitesimakfarmable and the deformation
is such that the stars are unchanged except for the lengiieiofedges. In particular, the



80 Wolfgang K. Schief, Alexander |. Bobenko and Tim Hoffmann

F

I3, ¢1 T, ¢

Iz 913 | T5.93

£
FIGURE 15. The translatiol” and rotationp associated with finite deformations.

angles between the edges of the coordinate polygons arerpeelsand hence the defor-
mation is infinitesimallyconformal If the original discrete surface constitutes a discrete
conjugate nef’, then the second-order isometric deformation corresptmnas infinites-
imal conformal deformation of its discrete asymptotic peotal-parallel counterpaf™.

4.1. Finite deformations

In order to analyse second-order isometric deformatidris,donvenient to make some
general statements about finite isometric deformationstifrary quadrilateral surfaces.
Thus, if a discrete surfacg is isometrically deformable, then its (nonplanar) quadeit-
als are subjected to rigid motions. Since any rigid motioy bbeadecomposed into a trans-
lation and a rotation, the motion of any poiRton the quadrilaterab = [F, Fy, Fi2, F»]
may be described by

P€ =T(e) + ¢~ () Pg(e),
where we have made the standard identification of the ambjgatelR> with the Lie
algebrasu(2), that is,

Psu(l) = (P]]{:;ae) ’ e = (81762583)5

10 1 _1(0 i _1(1 0
“a=7lt o) 277l o) 77l o -1)

sothatl" € su(2) constitutes the translation agde SU(2) encodes the rotation. HerE,
and¢ are independent aP and7(0) = 0, ¢(0) = 1 so thatP® = P as required. As in
the case of infinitesimal deformations, each quadrilaisraksociated with a translation
T and a rotatiorp. Hence,I' and¢ are defined on the dual lattice (cf. Figure 15).

If we now consider the motion of the verticésand F, which are common to the
quadrilaterals> and <7, then

FE=T+ ¢ 'F¢, Ff =T + ¢ ' F29,
F =T+ ¢7' F¢y. F5 =Ti + ¢7 ' Fa¢hy.
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and elimination ofF ¢, F5, T, T7 produces

¢~ (F2 = F)p = ¢7 ' (F2 — F)dy. (4.1)
Similarly, consideration of the quadrilateratsand<; leads to
¢~ (F1 = F)p = ¢5 ' (F1 — F)¢s. (4.2)

Thus, if the discrete surfacE is isometrically deformable, then the latter two edge re-
lations hold. Conversely, if for a given discrete surfdtehere exists a one-parameter
family of matricesp (¢) € SU(2) with ¢(0) = 1 which satisfies the edge relations (4.1),
(4.2), then the compatible relations
T—T;=¢7'Fpi —¢~'Fo. (4.3a)
T—Ts=¢5' Fs — ¢~ F¢, (4.30)

and7(0) = 0 uniquely define7 e su(2) and the discrete surfacé admits a one-
parameter family of isometric deformations given by

F =T+ ¢ 'Fé.

It is noted that the existence df is guaranteed since, as in the case of infinitesimal
deformations, the associated closing condition is sadisfiedulo the edge relations (4.1)
and (4.2).

4.2. Second-order deformations

Instead of demanding that the edge relations (4.1) and k& Zptisfied for all values of
€, we may now require that only the firgtnontrivial orders ine vanish. Here, we are
interested in the case = 2 so that it is sufficient to deal with Taylor series abeut 0
which are truncated at the second level. Thus, we considerrdations of the form

2
PE =P+ e(T* + [P F*]) + 55" +[P.G*] + [[P. F*). F*]).
whereP is any point on the quadrilateral and

T*=T., S*=Te, F*=¢p"", G"= (¢ "),

evaluated at = 0. Once again7*, S*, F* and G* aresu(2)-valued objects defined
on the quadrilaterals af . Deformations of this type do not change the quadrilatdmals
order O(e?) since it is readily seen that

(ﬁe _ P€, pe —P€> - <ﬁ — PP P>+ 0(e?)

for any three points, P, P on <. Hence, if such deformations exist, then we refer to
them as (infinitesimal) isometric deformations of secorikar

lUp to T'(¢) at one vertex, corresponding to a trivial translationFdt.
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Differentiation of the edge relation (4.1) and evaluatida & 0 now produce

2
¢[F>— F, F*] + %([Fz _ F,G*| +[[F»— F, F*], F*))
2
= e[y — F. ]+ S (F, — F.GI1+ [[F, = F. {1 F{) + 0),

and an analogous expansion obtains in the case of the sedgedreation (4.2). The
requirement that the terms are lineakimanish therefore imposes the conditions
[F,— F.F*—F1=0, [Fi—F F*—F]=0. (4.4)

These encapsulate nothing but the fact that an isometrarmetion of first order exists
if and only if there exists a reciprocal-parallel discraieface F'*. The terms quadratic in
€ may then be simplified and application of the Jacobi idem&sults in

[Fo— F,G* —Gi + [F{, F*]] =0, (4.5a)

[Fi — F,G* =G5 + [F5, F*]] = 0. (4.5b)
Since the closing condition for the translatidnis satisfied for finite isometric deforma-
tions and its nature is such that it holds separately for adgrane, the defining relations
for the coefficientd* andS™* which are obtained from the Taylor expansion of (4.3) are
compatible. We therefore conclude that a discrete sufaadmits an isometric deforma-

tion of second order if and only if there exists a reciprgeatallel surfacd”* and another
dual surfaces* which obey the pair (4.5).

4.3. Second-order deformations of discrete conjugate nets

In the case of second-order deformations of discrete catgutets, progress may be made
by exploiting a discrete version of the classical Leliedamnulae which encapsulate the
Gauss map for surfaces parametrized in terms of asymptotidmates [15]. To this
end, it is recalled that if a discrete conjugate ietadmits an infinitesimal isometric
deformation, then the associated reciprocal-parallelFifets discrete asymptotic. Thus,
if N denotes the unit normals to the planar stars of the discsgtaptotic net as depicted
in Figure 6, then there exist lattice functiopsando such that the connection between
the discrete asymptotic net and its unit normals is reptesdny

Ff'—F*=pNyxN, Ff—F"=0NxN,.

The compatibility (‘closing’) conditionf}, = F; is given by

P2N12 X Ny — pN1 X N = 01Ny X Nip —aN x N,
so that multiplication byv,; and N,, respectively, yields

pp2 = 007.
The functionsp ando may therefore be parametrized according to
p =171, O =TTy,
wherert constitutes an arbitrary lattice function. Introductidrttee scaled normal
Y =1tN
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then reduces the compatibility condition to
Viz + V) x (V1 + V) = 0.
Thus, the following statement may be made:

Theorem 4.1. If F* constitutes a discrete asymptotic net, then there existaled nor-
malV such that thaliscrete Lelieuvre formulae [7, 18]

Ff —F*=VxV, Ff—F*=Vx)V, (4.6)
hold. These imply that satisfies theliscrete Moutard equation
Via+V=HWV + V) 4.7

for some scalar lattice functiof/ . Conversely, for any given soluti@iy, H) of the dis-
crete Moutard equation4(7), the discrete Lelieuvre formulad.g) are compatible and
uniquely define a discrete asymptotic #&t with V being its scaled normal.

Since we are concerned with second-order isometric detansof discrete conju-
gate nets, the condition (4.4), which enshrines the existe an asymptotic reciprocal-
parallel netF*, may be replaced by the discrete Moutard equation (4.7) kyeriof
Theorem 2.7. Moreover, the identity

AB = (A x B,e)— (A, B)1

which holds for any4, B € R = su(2) shows that the remaining constraints (4.5) are
satisfied if and only if there exist functiomsandb such that

G} —G* =2a(F} — F*) +2F x F*,
G; — G* = 2b(F; — F*) +2F; x F*.
Elimination of G* leads to the compatibility condition
ar(F5 — FS)—a(F] — F%)
—bi(Fiy — F{') + b(F3 — F*) = (F3 — F*) x (F{' — F3)
which may be expressed entirely in termsloby virtue of the discrete Lelieuvre for-

mulae. In fact, on use of the discrete Moutard equation, ipligation by V;, V, andV
results in

a—b=Vi+V V1), a—bi=Vi2+V.V2)., ar—by =V +WV),
respectively. These relations imply thas (a + (V1. V)) = 0andA;(b — (M, V)) =0
so that summation yields
a=—(WV,V)+ f(n), b=(V2.V)—g(n2)
and hence
Viz + V. V1 + V) = f(n1) + g(n2).

Since the latter may be regarded as a definition of the fumdifion the discrete Moutard
equation, we have established the following theorem:
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Theorem 4.2. A discrete conjugate ndt admits an infinitesimal isometric deformation
of second order if and only if there exists a (discrete asptgtreciprocal-parallel net
F* whose scaled norma obeys the vector equation

V1 + V5|2

for some functiong andg or, equivalently,
Vio+V=HWV1+V2), ApVi+V,V1+)V)=0. (4.8)

In particular, if the scaled normal of a discrete asymptotic net* satisfies the con-
straint (4.8),, then the associated reciprocal-parallel discrete corjiegnetsF admit an
infinitesimal isometric deformation of second order.

Vio+V = (2R

4.4, Discussion

In 1892, Bianchi [4] observed that a conjugate (xety) on a surfaceF is preserved by
a finite isometric deformation if and only if there exists arespondence between the
conjugate lines o' and the asymptotic lines on another surf@tesuch that the Gauss
mapsN and N * coincide and the Gaussian curvaturergfis constrained by

(=),

Based on a parameter-dependent linear representatideion 5), Bianchi [3] derived
a Backlund transformation for the surfacE® which have come to be known &sanchi
surfaceq11, 20]. An analytic description of Bianchi surfaces isdi#aobtained on use
of the Lelieuvre formulae [15]

FI=VyxV, Fy*=V><Vy,
where the scaled norm#l obeys the Moutard equation
Viy = hV. (4.9)

The Lelieuvre formulae immediately provide an expressmrttie Gaussian curvature of
F*, namelyK* = —1/|V|*. Accordingly, the constraint which defines Bianchi surface
may be formulated as

(V) = 0. (4.10)

It is evident that the pair (4.9), (4.10) which entirely edes Bianchi surfaces constitutes
the natural continuum limit of (4.8). However, the latteshzeen derived in connection
with second-orderdeformations while the classical differential-geomettarivation is
based orfinite deformations. This discrepancy may be partly resolved farrieg to the
fact that, in the classical setting, second-order isomeleformations of conjugate nets
may be shown to be finite. Thus, Bianchi surfaces are, inffatieved by imposing tha
priori weaker condition of the existence of second-order defaomatNevertheless, it is
emphasized that, in general, this statent@s notapply in the discrete context, that is,
second-order isometric deformations of discrete conpigats are not necessarily finite.
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As in the smooth setting, the discrete Bianchi system (4a8)deen shown to be in-
tegrable [26]. Second-order isometric deformations ofrdi® conjugate nets may there-
fore be considered integrable and, remarkably, any dsc@tjugate net which admits a
finite isometric deformation corresponds to a particular sofutibthe integrable Bianchi
system (4.8).

At present, it is not known how to formulate the existence mitdiisometric defor-
mations in terms of constraints on the discrete BianchiesgsHowever, if we assume
that the modulus of the scaled normals constant, that is,

V=1
without loss of generality, then the discrete Moutard eigua@.8) reduces to
(V. V1 +Va)
Vio+V=—-—"7""—WV+)V2),
12 14+ (V1,Vs) M 2)

and its algebraic consequences
AL (W, V) =0, A (V,V)=0
reveal that the constraint (48)s identically satisfied. The discrete Lelieuvre formulae
(4.6) then imply thatF"* constitutes a discrete (generalized) Chebyshev net,ghat i
A|Fy—F*| =0, AF—F*=0,

so that discrete&K -surfaces together with their reciprocal-parallel isameatly deforma-
ble discrete Voss surfaces are retrieved.

5. Integrability of finite deformations

In the preceding, it has been demonstrated that the dissuefeces which are reciprocal-
parallel to isometrically deformable conjugate nets areessarily of discrete Bianchi
type. In particular, discrete Voss surfaces correspondtegrable discret& -surfaces.
Here, we investigate in more detail the connection with Hesty of integrable systems
and demonstrate that the appearancentggrablediscrete differential geometry in the
context of isometric deformations is, in fact, no coincidenThus, it has been shown that
a discrete quadrilateral surfadeis isometrically deformable if and only if there exists
anSU(2)—valued functionp (¢) with ¢ (0) = 1 which obeys the relations (4.1) and (4.2),
that is,

[Fo— F.¢¢7'1 =0, [Fi—F.¢¢5'] =0. (5.1)
Now, sincep (0) = 1, the quantity

F* = $(0)

is su(2)-valued and differentiation of (5.1) with respect to theatefation parameter
reproduces the condition for reciprocal-parallelism

[Fa—F,F*—F]=0, [FK—-FF"—-F]=0.
The pair (5.1) then implies that
[Ff = F*. 1671 =0, [F; —F*.¢297'] =0,
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which, in turn, shows that there exist real lattice funcsiofx), b(¢) andc(¢), d(¢) such
that

¢1 = L(€), L(e) = a(e)(F — F*) + b(e)1, (5.2a)
¢ = M(e)o, M(e) = c(e)(Fy — F*) + d(e)1. (5.2b)
Finally, the compatibility conditiop,, = ¢, produces theliscrete zero-curvature con-
dition
Lo(e)M(€) = Mi(e)L(e). (5.3)

The latter encodes a system of lattice equations ifSb&2)-valued functionsC(¢) and
M(e) are assumed to admit the power series expansions

oo oo
L) =) c® M) =) FMm®.
k=0 k=0

The above analysis shows that any isometrically deformqbéalrilateral surface
F gives rise to a system afonlinear lattice equations encoded in the discrete zero-
curvature condition (5.3) which constitutes the comphtybcondition associated with
the e-dependenlinear system (5.2). A parameter-dependent linear representafithe
form (5.2a), (5.2b) constitutes the key ingredient in the mathematical treatroka dis-
crete integrable system represented by the correspondingete zero-curvature condi-
tion (5.3) [1]. In fact, all isometrically deformable quédteral surfaces are encapsulated
in the following theorem.

Theorem 5.1. Let L(¢) and M (¢) be two parameter-dependefi/(2)-valued lattice
functions of the form

L(e) =a(e)A+b(e)l, Mi(e) =c(e)B + d(e)1,

which obey the discrete zero-curvature condition

Lr(e)M(€) = M (€)L(e) (5.4)
for some lattice functiond, B € su(2) anda(¢), b(e), c(¢€), d(¢) € R with
a(0)=c(0)=0, b(0)=d0) =1 (5.5)

anda.(0) # 0, ¢c(0) # 0. Then, there exists a uniqgde) € SU(2) (up to an irrelevant
gauge matrix depending a) with ¢ (0) = 1 which satisfies the linear system
$1 = L(€)p, ¢ = M(e)¢. (5.6)
If the quadrilateral surface
F* = $(0)
admits a reciprocal-parallel discrete surfade, then F is isometrically deformable.
Proof. The zero-curvature condition (5.4) guarantees that tleatipair (5.6) is compat-

ible. Its SU(2)-valued solution is uniquely determined by the valug¢f) at one vertex
which we may choose to bewithout loss of generality. The constraints (5.5) implyttha
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L(0) = M(0) = 1 so that¢(0) = 1 everywhere and hencB* = ¢.(0) € su(2).
Differentiation of (5.6) and evaluation at= 0 produce

F'—F* =ac(0)A + bc(0), Fy — F* =ce(0)B + de(0),
whereinb(0) = d.(0) = 0 sinceF* € su(2). Accordingly, the pair (5.6) gives rise to
the commutator relations

[F' = F*.¢1¢7'1=0. [F} —F".¢2¢"'] =0,

which are equivalent to the conditions (5.1) for the exiseeof an isometric deformation
of a reciprocal-parallel surfacg. |
5.1. Finite deformations of discrete conjugate nets

In general, there is no guarantee that the quadrilatertdsiF * in Theorem 5.1 admits

a reciprocal-parallel counterpaft. This property must therefore be regarded as a con-
straint on theSU(2)-valued lattice function€(¢) and M(¢). In the case of isometric
deformations of discrete conjugate nets, this constraay be implemented explicitly
since the quantitied and B may be expressed in terms of the scaled novhay virtue

of the discrete Lelieuvre formulae (4.6) and the represemid5.2) of L(¢) and M (¢).
Accordingly, Theorem 5.1 may be simplified and brought it fiollowing form:

Theorem 5.2. Let. A(e) and B(¢) be two parameter-dependent matrix-valued lattice func-
tions of the form

Ale) = a(€)S1S + B(e)1.  B(e) = y(€)$28 + 8(e)1,
which obey the discrete zero-curvature condition
Az (€)B(e) = By(e).A(e) (5.7)
for some lattice functionS§ € su(2) anda(e), B(€), y(€),d(¢) € R with
@(0) = y(0) =0
and the inequalities
B(0)>0, 8(0)>0, ac0)#0, y(0)#0, detA(e)>0, detB(e)> 0.
Then, the determinants gf(¢) and5(¢) may be parametrized according to
73(e) ()
t2(e)’ t2(e)’

detA(e) =

detB(e) =

7(e) > 0,

and the linear system
V1 =AY, Yo =By (5.8)

admits a unique solution (up to an irrelevant gauge matrigeteding ore) with

P(e) := ve© e SU12), ¢(0)=1.
(€)
The quadrilateral surface
F* = $<(0)
is discrete asymptotic and its reciprocal-parallel couptats F' constitute isometrically
deformable discrete conjugate nets withbeing a common normal.
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The above theorem states that all isometrically deformdislerete conjugate nets
are enshrined in the discrete zero-curvature conditior) (Before we analyse this con-
dition in more detail, we present the proof and an illustratbf Theorem 5.2.

Proof. It is readily verified that
ATA = 1detd, B'B = 1dets,
where
detAd = o?|S1|%|S> — 2aB (S1. S) + B> (5.9a)
detB = B2|S,2|S|> —2y8 (S5, S) + 62. (5.9b)
The discrete zero-curvature condition implies that
detA, detB = detB3; detA,

whence there exists a positive lattice functidia) such that

_ (e _ 1)
detA(E) = _’:2—(6), detB(E) = ‘[2(6).
Thus, if we introduce the quantities
=L o= 2 a0, Mo = "L,
(€) 71(€) 72(€)
thenL(e), M(e) € SU(2) and the linear system (5.8) becomes
¢1 = L(€)p, ¢2 = M(e)g, (5.10)
so that Theorem 5.1 applies. Indeed, evaluation of theitile(5.9) at = 0 reveals that
_ul(0) _ ()
p0) = 70) 8(0) = 0)

and henceZ(0) = M(0) = 1. It therefore remains to show that the quadrilateral serfac
F* = ¢.(0) is discrete asymptotic. To this end, it is observed thaedéfhtiation of (5.10)

yields
065(0) ‘C(E) )
(0) = S$18 1 e (0
b0 = SB55 + (p01S) | 1480
and an analogous expression §gt (0). SinceF* = ¢(0) € su(2), we conclude that
* *_aS(O) * ok )/5(0)
F—F _ﬁ(O)SIXS’ F;—F _8(0)S2XS’

so thatS is indeed orthogonal to the stars of the quadrilateral serf&" . This concludes
the proof since, according to Theorem 2.7, any (non-degégediscrete asymptotic net
F* admits an infinite number of reciprocal-parallel discreigjogate netd-. |
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5.2. Finite deformations of discrete Voss surfaces
As an illustration of Theorem 5.2, we make the choice
a=¢, B=1 y=— 6&=1 S’=-1«|5|=1
In this case, the discrete zero-curvature condition aasetiwith the linear system
Vi=(eS1S+ Dy, Yo =(-€SS+ 1Dy

reduces to

€[S12(S1 + 82) — (81 + 52)8] =0
or, equivalently,

S12+S)x(S14+S52)=0, (S12—S5,51+S,)=0. (5.11)
The former relation is equivalent to the discrete Moutardatipn
Si2+ 8 =H(S1+ $2)

in which the functionH is determined by the consistency conditiéh,| = 1, leading to

S22+ 8 = %(51 + 52). (5.12)
The algebraic consequences

A (S2,8) =0, Ay(S5;,S)=0

then show that the additional requirement (5;1is)identically satisfied. Thus§ repre-
sents the Gauss map of discréfesurfaces as discussed in Section 4.4 and the isometri-
cally deformable reciprocal-parallel discrete surfacestiaerefore of discrete Voss type.

The above example highlights the geometric interpretatibtne ‘eigenfunction’
¢(¢) in the sense of soliton theory as the rotational componettefigid motion un-
dergone by the quadrilaterals during an isometric defdonatHere, the deformation
parametet plays the role of the ‘spectral parameter’ [1].

5.3. Adiscrete nonlineare -model
Here, we embark on an analysis of the discrete zero-cuevatndition (5.7) given by
(00281282 + B21)(¥S2S +61) = (y151281 + 61 1) (2S1 S + B1).

Therein, we may assume without loss of generality that thenabS obeys the discrete
Moutard equation

Sia+ S = H(S, + S») (5.13)

by virtue of Theorems 4.1 and 5.2. Decomposition of the @isczero-curvature condition
into its trace and trace-free parts yields

a2y|82|% (S12, S) — @28 (S12, S2) — B2y (S2, S) + Bad
= y12|S1* (S12. ) — y1B (S12. 1) — $1¢ (S1. S) + 818
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and
02y 8212812 X 8 — 228812 X Sy — oy Sa x S
= y1a|81|2512 X S —y1BS12 x S1 — 8181 x S.
The inner product of the latter witkt and.S; + S», respectively, gives rise to

0[28 = —ylﬂ, ,32)/ = —810[, (514)
so that the above relations reduce to
H(ozy|S2)? — y1e| S1%) = 28 + Bay, (5.15a)
1
E(a25|512|2+ﬂ2)/|52|) = B28 —818. (5.15b)

Now, on the one hand, it is readily verified that the lineateys(5.8) is invariant under
Vot @p) > ep) 08 > TR0,

On the other hand, the quadratic relations (5.14) guarah&tehere exist ‘potentialgt
andv such that

U1 =av, W =—yv, vi=pPWU, Vy=3FNL.
Without loss of generality, we may therefore introduce taemetrization

O N T )
1% 451 % 2%
Finally, if we set
o,
%
then the relations (5.15) adopt the form
o2 1817 1 (S22 |S)?
012—U=H(H—¢), 0'2—012—(| 12' —u) (516)
02 01 H 012 o

Thus, it is required to determine all one-parametgfdmilies of solutions of the coupled

system (5.13), (5.16) which are such tliait independentf ¢. It is observed that the pair

(5.16) may be brought into the form

_IsiPlse
01 o

S |% 1S |2
)ZO, A1 (2(52,5‘)-}-0’20—{—&&) =0,

Az (2 (Sl,S) — 010
(o)) o

which provides two first integrals.
In order to proceed, it turns out convenient to define the tityan
|S|?
T=—
o
The system (5.13), (5.16) is then equivalent tolthear system

Si2 + 8 = H(S1 + $2),
o012 —0 = H(tz — 11),

T2 — T = H(Uz —01),
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subject to thenonlinearconstraint
ot = |S|%.
It is noted in passing that the choice
1
o=——, 1= f(€)
AG)

reduces this system to the Gauss map (5.12) of disdesrirfaces corresponding to
isometrically deformable discrete Voss surfaces. In gantre change of variables

n 0 —T w0+ T S
A=(ED"—— B=(1""—— V=|4
B

gives rise to the vector equation
Vi +V=HV;+V,), (V,V)=0,
where the inner product is defined by
(V.V) = (S.S) + AA — BB.

Since the functiond is determined by the requirement thatconstitutes a null-vector,
discrete conjugate nets which are isometrically deformané encapsulated in the fol-
lowing theorem:

Theorem 5.3. Isometrically deformable discrete conjugate nets are dedoin one-

parameter €) families of solutions of the vector equation

(V.V1 +Vs)
(V1.V2)

which are such that the first three component&/aire independenof ¢. Here, the inner
product is taken with respect to the metdiag(1, 1, 1, 1, —1),

Vi +V = (Vi +Va), (V,V)=0,

Remarkably, the above vector equation constitutes thelatdrntegrable discretiza-
tion of a particulamonlinearo-model(see, e.qg., [8, 26]). The complete characterization
of its families of solutions which admit the required depemnck on a parameterand are
compatible with the technical assumptions made in Theor@ns3he subject of ongoing
research.
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