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We give an elaborated treatment of discrete isothermic surfaces and their analogues in
different geometries (projective, Möbius, Laguerre and Lie). We find the core of the
theory to be a novel characterization of discrete isothermic nets as Moutard nets. The
latter are characterized by the existence of representatives in the space of homogeneous
coordinates satisfying the discrete Moutard equation. Moutard nets admit also a
projective geometric characterization as nets with planar faces with a five-point
property: a vertex and its four diagonal neighbours span a three-dimensional space.
Restricting the projective theory to quadrics, we obtain Moutard nets in sphere

geometries. In particular, Moutard nets in Möbius geometry are shown to coincide with
discrete isothermic nets. The five-point property, in this particular case, states that a
vertex and its four diagonal neighbours lie on a common sphere, which is a novel
characterization of discrete isothermic surfaces. Discrete Laguerre isothermic surfaces
are defined through the corresponding five-plane property, which requires that a plane
and its four diagonal neighbours share a common touching sphere. Equivalently,
Laguerre isothermic surfaces are characterized by having an isothermic Gauss map.
S-isothermic surfaces as an instance of Moutard nets in Lie geometry are also discussed.

Keywords: discrete differential geometry; discrete surfaces; Möbius geometry;
Moutard equation; Lie quadric
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1. Introduction

This paper is a sequel to our paper ‘On organizing principles of discrete
differential geometry. Geometry of spheres’ (Bobenko & Suris 2007), where the
following discretization principles were formulated.

—Transformation group principle. Smooth geometric objects and their
discretizations belong to the same geometry, i.e. they are invariant with
respect to the same transformation group.

—Consistency principle. Discretizations of smooth parametrized geometries can
be extended to multidimensional consistent nets.
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Being applied to discretization of curvature line parametrizations of general
surfaces, these principles led to the definition of principal contact element nets.
These are nets of contact elements with the property that neighbouring contact
elements share a common sphere. In particular, it was shown that the points
and the planes of principal contact element nets build circular and conical
nets, respectively.

In the present paper, we turn to isothermic surfaces, which are a special class
of surfaces, with the first fundamental form in the curvature line parametrization
being conformal, possibly upon a re-parametrization of independent variables.
Thus, isothermic surfaces are immersions f : R2/R

3, with

hv1f ; v2f iZ 0; jv1f j2 Za1s
2 and jv2f j2 Za2s

2; ð1:1Þ

where the function s : R2/RC is the metric of the surface and the functions ai
depend only on ui (where uZ(u1, u2) are the independent variables). These
conditions may be equivalently represented as

v1v2f Z ðv2 log sÞv1f Cðv1 log sÞv2f and hv1f ; v2f iZ 0: ð1:2Þ

This important class of surfaces has been studied by classics (Darboux 1914–1927).
In particular, Darboux found a class of transformations of isothermic surfaces,
nowadays carrying his name. Remarkable permutability properties of Darboux
transformations have been established by Bianchi (1923; see also Eisenhart 1923).
Another important discovery by Darboux was the following characterization of
isothermic surfaces: if f̂Z fCe0C jf j2eN is the standard lift of the surface f into the
Minkowski space R

4,1 of pentaspherical coordinates, so that f̂ belongs to the light

cone L4,1 (the set of isotropic elements of this space), then the special lift yZsK1f̂ :

R
2/L

4;1 satisfies a Moutard equation (Moutard 1878)

v1v2y Z q12y; ð1:3Þ

with a scalar coefficient q12Zsv1v2ðsK1Þ : R2/R. Conversely, any solution of a
Moutard equation in the light cone L

4,1 is a lift of an isothermic surface f. (For the
reader’s convenience, we briefly recall the Möbius-geometric formalism in §3a.) In
the 1990s, a relation to the theory of integrable systems was discovered (Cieśliński
et al. 1995; Bobenko & Pinkall 1996; Burstall et al. 1997). The theory was extended
for isothermic surfaces in spaces of arbitrary dimension in Schief (2001) and Burstall
(2006). A modern overview of isothermic surfaces can be found in Hertrich-Jeromin
(2003).

In Bobenko & Pinkall (1996), the theory was discretized: discrete isothermic
surfaces were defined as special circular nets with factorized cross-ratios of
elementary quadrilaterals. This property is manifestly Möbius invariant. More-
over, it can be consistently imposed on three-dimensional nets (Bobenko & Pinkall
1999; Hertrich-Jeromin et al. 1999). Thus, discrete isothermic surfaces are an
instance of geometry satisfying both the discretization principles.

In this paper, we give an elaborated treatment of discrete isothermic surfaces
and their analogues in different geometries (projective, Möbius, Laguerre and
Lie), applying the discretization principles systematically. We find the core of the
theory to be a novel projective characterization of discrete isothermic nets as
discrete Moutard nets in the light cone.
Proc. R. Soc. A (2007)



3173Isothermic surfaces as Moutard nets
In the context of discrete differential geometry, discrete Moutard nets in
Euclidean spaces were introduced in Nimmo & Schief (1997), as solutions of the
discrete Moutard equation

t1t2yCy Z a12ðt1yCt2yÞ; ð1:4Þ
where ti is the shift in the ith coordinate direction of Z2, and a12 : Z

2/R is a
discrete scalar coefficient. In the context of discrete integrable systems, this
equation appeared earlier in Date et al. (1983). The multidimensional consistency
of discrete Moutard nets, or, more precisely, of their close relatives satisfying the
discrete Moutard equation with minus sign,

t1t2yKy Z a12ðt2yK t1yÞ ð1:5Þ
is related to the fact that equation (1.5) expresses the permutability properties of
the so-called Moutard transformation for the differential Moutard equation
(Bianchi 1923; Ganzha & Tsarev 1996; Nimmo & Schief 1997). The role played
by the discrete Moutard equation in the discrete differential geometry turns out
to be manifold. In particular, the so-called Lelieuvre representation of discrete
asymptotic nets involves discrete Moutard nets in R

3 (Konopelchenko & Pinkall
2000; Doliwa 2001; Doliwa et al. 2001). A closely related notion of discrete
Koenigs nets is worked out in Doliwa (2003).

Moutard nets, whose ambient space is regarded as the space of homogeneous
coordinates of RPN, turn out to admit a projectively invariant interpretation. For
multidimensional Moutard nets, f : Zm/RP

N , with mR3, such an interpretation
has been given previously (Doliwa 2007; planarity of tetrahedra formed by odd or
even vertices of any elementary cube). For two-dimensional Moutard nets,
f : Z2/RP

N , a projective characterization is given in §2. In the caseNR4, discrete
two-dimensional Moutard nets are characterized (definition 2.1) as nets with planar
faces possessing a five-point property: a vertex and its four diagonal neighbours span
a three-dimensional space (thus, in comparison with a generic net having planar
faces, the dimension drops by 1). We learned about this characterization of two-
dimensional Moutard nets from conversations with A. Doliwa (personal communi-
cation). In the case NZ3, the characterization is more involved (definition 2.3).

Why are both discretization principles (transformation group principle and
multidimensional consistency principle) applicable simultaneously? As discussed
in Bobenko & Suris (2007), the ultimate reason is the possibility of restricting the
basic multidimensional systems of the projective geometric origin (Q-nets,
asymptotic nets and line congruences) to quadrics. Recall that Q-nets, one of the
basic objects of discrete differential geometry, have been introduced in Doliwa &
Santini (1997) as maps f : Zm/RP

N , such that all elementary quadrilaterals
ðf ; ti f ; titj f ; tj f Þ are planar. In Doliwa (1999), it was shown that Q-nets can be
restricted to quadrics. Restriction to quadrics is of crucial importance, since
many of the classical geometries (such as Möbius, Laguerre, Lie geometries, as
well as Plücker line geometry, hyperbolic geometry, etc.) can be characterized by
a group of transformations preserving certain quadrics in a projective space.
Since Moutard nets are shown to belong to projective geometry, they also can be
restricted to quadrics. In the present paper, we investigate applications of this
idea to sphere geometries.

Moutard nets in the light cone L
NC1,1 of Möbius geometry are shown, in

§3, to coincide with discrete isothermic nets defined via factorized real
cross-ratios of elementary quadrilaterals. This result has been first found in
Proc. R. Soc. A (2007)
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(Bobenko & Suris 2005). Surprisingly, this very natural generalization of
Darboux’s characterization of smooth isothermic surfaces had to wait for almost
a decade after discrete isothermic surfaces were introduced in Bobenko & Pinkall
(1996). The five-point property, in this particular case, states that a vertex and
its four diagonal neighbours lie on a common sphere, which is a novel
characterization of discrete isothermic surfaces.

In §4, we proceed with Moutard nets in the basic quadric L4,2 of Lie geometry.
Such nets are special Ribaucour sphere congruences Z2/{spheres in R

3} with the
corresponding five-sphere property, a particular case being S-isothermic surfaces
(Bobenko & Pinkall 1999; Bobenko et al. 2006; Hoffmann, in preparation).

In Laguerre geometry, discrete surfaces are maps Z
2/{planes in R

3}. The
planarity offaces in theLaguerre quadric is equivalent to the conical property,while
the five-plane property requires that a plane and its four diagonal neighbours share
a common touching sphere. This is a definition of discrete Laguerre isothermic
surfaces (§5). Equivalently, discrete Laguerre isothermic surfaces are characterized
by having an isothermicGaussmap. The latter class was independently introduced
inWallner & Pottmann (in press). Smooth Laguerre isothermic surfaces have been
studied previously (Eisenhart 1923; Musso & Nicolodi 1997, 2000).
2. Discrete Moutard nets

In consideration of various nets f : Z2/X , we use the following notational
conventions: for some fixed u2Z

2, we write f for f(u); further fi for
tif ðuÞZ f ðuCeiÞ; and fKi for t

K1
i f ðuÞZ f ðuK eiÞ. Also, we freely use notations,

definitions and results from Bobenko & Suris (2007).
(a ) Projective Moutard nets

Definition 2.1 (Discrete Moutard net). A two-dimensional Q-net f : Z2/RP
N

(NR4) is called a discreteMoutard net if, for every u2Z
2, the five points f and fG1,G2

lie in a three-dimensional subspaceVZV ðuÞ3RP
N , not containing some (and then

any) of the four points fG1, fG2.

Thus, the defining condition of a discrete Moutard net deals with four
elementary planar quadrilaterals adjacent to one vertex. As a consequence of this
definition, all nine vertices of the four quadrilaterals of a discrete Moutard net lie
in a four-dimensional subspace of RPN.

Theorem 2.2 (Discrete Moutard equation). A discrete Moutard net f : Z2/RP
N

possesses a lift to the space of homogeneous coordinates y : Z2/R
NC1, satisfying the

discrete Moutard equation (1.5) with some a12 : Z
2/R (it is natural to assign the

real numbers a12 to the elementary squares of Z2).

Proof. We start with the observation that, for any Q-net f in RP
N, it is always

possible (and almost trivial) to find homogeneous coordinates for the four
vertices of one elementary quadrilateral satisfying the discrete Moutard equation
on that quadrilateral. Moreover, one can do this for an arbitrary choice of
homogeneous coordinates for any two neighbouring vertices of the quadrilateral.
Indeed, consider any homogeneous coordinates ~f ; ~f 1; ~f 2; ~f 12 2R

NC1 for the
Proc. R. Soc. A (2007)
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Figure 1. Constructing a Moutard representative for a projective Q-net with a three-dimensional
black cross.
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vertices of a planar quadrilateral, connected by a linear relation

~f 12 Z ~c21~f 1 C ~c12~f 2 Cr12
~f :

If we keep the representatives yZ~f , y1Z~f 1 (say) and set ~f 12Zr12y12 and
~f 2Zay2, with aZK~c21=~c12, then y satisfies the discrete Moutard equation (1.5)
within one elementary quadrilateral.

Now, for Q-nets with a special property formulated in definition 2.1, this
construction can be extended to the whole net. We start with arbitrary
representatives y, y1, and proceed clockwise around the vertex y. We then find
consecutively the representatives yK2, y1,K2, which assure the Moutard equation
on the quadrilateral (y, y1, y1,K2, yK2), the representatives yK1, yK1,K2, which
assure the Moutard equation on the quadrilateral (y,yK1,yK1,K2,yK2), and then
the representatives y2, yK1,2, which assure the Moutard equation on the
quadrilateral (y, yK1, yK1,2, y2) (figure 1).

In the remaining quadrilateral (y, y1, y12, y2), the representatives y, y1, y2 are
already fixed on the previous steps of the construction, so that we can dispose of
the representative y12 of f12 only. Observe that the point with the representative
y1Ky2 belongs to the plane P3RP

N of the quadrilateral (f,f1,f12,f2) (obviously)
and to the three-dimensional space V3RP

N through the points f, f1,K2, fK1,K2

and fK1,2, owing to the equation

y1K y2 Z ðy1K yK2ÞCðyK2K yK1ÞCðyK1K y2Þ
Zaðy1;K2KyÞCbðyK1;K2KyÞCgðyK1;2KyÞ:

By the hypothesis of the theorem, the point f1,2 lies in the latter spaceV. Therefore,
the whole line through f and f1,2 lies in the intersection PhV. Since NR4, we
conclude that, in general position, PhV is the line through f and f12. Thus, the
point with the representative y1Ky2 belongs to this line, therefore y1Ky2 is a linear
combination of y and y12. By a suitable choice of the representative y12 of f12, we
can make y1Ky2 proportional to y12Ky. Thus, the construction of representatives,
satisfying the Moutard equation, closes up around any vertex. This allows the
construction to be extended to the whole lattice Z2. &

A related analytical observation is due to Doliwa et al. (2007): a four-point
difference hyperbolic equation at1t2yCbt1yCct2yCdyZ0 yields a certain five-
point equation on the even and the odd sublattices of Z2 if and only if it is gauge
Proc. R. Soc. A (2007)
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equivalent to the discrete Moutard equation (1.4). However, the paper by Doliwa
et al. (2007) does not address the geometry behind the equations (in particular,
they consider only the complex fields y2C, and, in this context, there is no issue
of dimensions of spaces spanned by solutions of equations).

Definition 2.1 is not applicable in the case when some, and then all, of the
points fG1, fG2 lie in the three-dimensional space V through f, fG1,G2; in
particular, it cannot be used to define discrete Moutard nets in RP

3. We show
that theorem 2.2 remains valid if one defines discrete Moutard nets in RP

3 as
follows.

Definition 2.3 (Discrete Moutard net in RP
3). A two-dimensional Q-net

f : Z2/RP
3 is called a discrete Moutard net if, for every u2Z

2, the following
condition is satisfied: the three planes

PðupÞ Z ðf ; f12; fK1;2Þ; PðdownÞ Z ðf ; f1;K2; fK1;K2Þ and Pð1Þ Z ðf ; f1; fK1Þ

have a common line [ (1).

Remark 2.4. It is not difficult to see that, in the context of definition 2.1, with
NR4, the requirement of definition 2.3 is automatically satisfied. Indeed, in this
case, all nine points f, fG1, fG2 and fG1,G2 lie in a four-dimensional subspace of
RP

N. In this subspace, one can consider, along with the three-dimensional
subspace V, the three-dimensional subspaces V (up) containing the two
quadrilaterals (f, f1, f12, f2) and (f, fK1, fK1,2, f2), and V (down) containing the
quadrilaterals (f, f1, f1,K2, fK2) and (f, fK1, fK1,K2, fK2). Obviously, one has

PðupÞ ZV ðupÞhV ; PðdownÞ ZV ðdownÞhV and Pð1Þ ZV ðupÞhV ðdownÞ:

Generically, the 3 three-dimensional subspaces V, V (up) and V (down) of a four-
dimensional space intersect along a line [ (1).

Remark 2.5. There is an asymmetry between the coordinate directions 1 and 2
in definition 2.3. However, this asymmetry is apparent: the condition in
definition 2.3 is equivalent to the requirement that the three planes

PðleftÞ Z ðf ; fK1;2; fK1;K2Þ; PðrightÞ Z ðf ; f1;2; f1;K2Þ; Pð2Þ Z ðf ; f2; fK2Þ

have a common line [ (2). One way to see this is to consider a central projection of
the whole picture from the point f to some plane not containing f. In this
projection, the planarity of elementary quadrilaterals (f, fi , fij, fj) turns into
collinearity of the triples of points fi , fj and fij. The traces of the planes P(up),
P(down) and P(1) on the projection plane are the lines (f12, fK1,2), (f1,K2, fK1,K2)
and (f1, fK1), respectively, and the requirement of definition 2.3 turns into the
requirement for these three lines to meet in a point. Similarly, the traces of the
planesP(left),P(right) andP(2) on the projection plane are the lines (fK1,2, fK1,K2),
(f1,2, f1,K2) and (f2, fK2), respectively. The requirement for the latter three lines
to meet in a point is equivalent to the previous one—this is the statement of the
famous Desargues theorem (figure 2).

Another way to demonstrate the actual symmetry between the coordinate
directions 1 and 2 in definition 2.3 is to show that theorem 2.2 still holds in RP

3.
Indeed, the discrete Moutard equation (1.5) is manifestly symmetric with respect
to the flip 142.
Proc. R. Soc. A (2007)
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Proof of theorem 2.2 for NZ3. We start the proof exactly as in the general
case NR4. The only thing to be changed is the demonstration of the fact that the
point with the representative y2Ky1 lies on the line through f and f12. To do this
in the present situation, we first observe that, due to

y1K yK1 Z ðy1K yK2ÞCðyK2K yK1ÞZaðy1;K2KyÞCbðyK1;K2KyÞ;
the point with the representative y1KyK1 lies in the plane P(down). Obviously, it
lies also in P(1); therefore, it lies on the line [ (1). As a consequence of the property
of definition 2.3, it belongs also to the plane P(up). Now, from

y2K y1 Z ðy2K yK1ÞKðy1K yK1ÞZgðyK1;2KyÞKðy1K yK1Þ;
we find that the point with the representative y2Ky1 belongs to P(up), as well.
Since the point with the representative y2Ky1 also belongs (obviously) to the
plane of the quadrilateral ( f,f1,f12,f2), we conclude that it lies in the intersection

of the latter plane, with P(up)Z(f,f12,fK1,2), which is, in the generic case, the line
through f and f12. &
(b ) T-nets

Definitions 2.1 and 2.3 are essentially dealing with two-dimensional Q-nets.
However, the characterization of discrete Moutard nets given in theorem 2.2 opens
a way to define multidimensional Moutard nets, and, in particular, to define
transformations of Moutard nets with remarkable permutability properties.
Namely, it turns out that equation (1.5) can be posed onmultidimensional lattices.

Definition 2.6 (T-net). A map y : Zm/R
N is called an m-dimensional T-net

if, for every u2Z
m and for every pair of indices isj, there holds the discrete

Moutard equation

titjyKy Z aijðtjyK tiyÞ; ð2:1Þ
Proc. R. Soc. A (2007)
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with some aij : Z
m/R, in other words, if all elementary quadrilaterals

(y, yi , yij,, yj) are planar and have parallel diagonals.

Of course, coefficients aij have to be skew-symmetric, aijZKaji. We show that
three-dimensional T-nets are described by a well-defined three-dimensional
system (cf. Nimmo & Schief 1997).

Theorem 2.7 (Elementary hexahedron of a T-net). Given seven points y, yi
and yij (1%isj%3) in R

N, such that equation (2.1) is satisfied on the
three quadrilaterals (y, yi , yij, yj) adjacent to the vertex y, there exists a unique
point y123, such that equation (2.1) is satisfied on the three quadrilaterals
(yi , yij, y123, yik) adjacent to the vertex y123.

Proof. Three equations (2.1) for the faces of an elementary cube of Z3 adjacent
to y123 give

tiyjk Z 1CðtiajkÞðaij CakiÞ
� �

yiKðtiajkÞaijyjKðtiajkÞakiyk :

They lead to consistent results for y123 for arbitrary initial data if and only if the
following conditions are satisfied:

1Cðt1a23Þða12Ca31ÞZKðt2a31Þa12 ZKðt3a12Þa31;

1Cðt2a31Þða23Ca12ÞZKðt3a12Þa23 ZKðt1a23Þa12 and

1Cðt3a12Þða23Ca31ÞZKðt1a23Þa31 ZKðt2a31Þa23:

These conditions constitute a system of six (linear) equations for three unknown
variables tiajk in terms of the known ones ajk. A direct computation shows that
this system is not overdetermined but admits a unique solution

t1a23

a23

Z
t2a31

a31

Z
t3a12

a12

ZK
1

a12a23Ca23a31Ca31a12

: ð2:2Þ

With tiajk so defined, equations (2.1) are fulfilled on all three quadrilaterals
adjacent to y123. &

Equations (2.2) represent a well-defined birational map fajkg1ftiajkg, which
can be considered as the fundamental three-dimensional system related to
T-nets. It is sometimes called the ‘star-triangle map’.

Theorem 2.7 means that the defining condition of T-nets (parallel diagonals of
elementary planar quadrilaterals) yields a discrete three-dimensional system
with fields on vertices taking values in an affine space R

N. This system can be
considered as an admissible reduction of the three-dimensional system describing
Q-nets in R

N. Indeed, if one has an elementary hexahedron of an affine Q-net
y : Z3/R

N , such that its elementary quadrilaterals (y, yi , yij, yj) have parallel
diagonals, then the elementary quadrilaterals (yi , yij,, y123, yik) have this property
as well. To see this, observe that the point y123 from theorem 2.7 satisfies the
planarity condition, and therefore it has to coincide with the unique point defined
by planarity of the quadrilaterals (yi , yij, y123, yik).

The four-dimensional consistency of T-nets is a consequence of the analogous
property of Q-nets, since T-constraint propagates in the construction of a Q-net
from its coordinate surfaces. On the level of formulae, we have for T-nets, with
Proc. R. Soc. A (2007)
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mR4, the system (2.1), while the map fajkg1ftiajkg is given by

tiajk
ajk

ZK
1

aijajk Cajkaki Cakiaij
: ð2:3Þ

All indices i, j, k vary now between 1 and m, and, for any triple of pairwise
different indices (i, j, k), equations involving these indices solely form a
closed subset.

The multidimensional consistency of T-nets yields, in a usual fashion, Darboux
transformations with permutability properties (which in the present context
should be called discrete Moutard transformations). We refer to Bobenko & Suris
(2005) for the background on the relation of multidimensional consistency to
Darboux transformations, and give here only the formulae for the discrete
Moutard transformation of equation (2.1) into

yCij KyCZ aCij ðyCj KyCi Þ: ð2:4Þ

These formulae can be written as

yCi Ky Z biðyCK yiÞ; ð2:5Þ

where the quantities bi and the transformed coefficients aCij are defined by
equations

tibj
bj

Z
aCij
aij

Z
1

ðbiK bjÞaij Cbibj
: ð2:6Þ

It is not difficult to recognize in equations (2.4) and (2.5) the same Moutard
equation (2.1) on the (mC1)-dimensional lattice, with the superscript ‘C’ used
to denote the shift tmC1. Similarly, equations (2.6) are nothing but the star-
triangle formulae (2.3), with biZai,mC1.
(c ) Discrete Moutard nets in quadrics

We have seen that discrete Moutard nets (or, more precisely, their T-net
representatives) constitute an admissible reduction of Q-nets. The restriction to
a quadric constitutes another admissible reduction (Doliwa 1999). Imposing two
admissible reductions simultaneously, one comes to T-nets in quadrics. Let RN be
equipped with a non-degenerate symmetric bilinear form h$,$i (which does not
need to be positive definite), and let

QZ fy2R
N : hy; yiZ k0g; ð2:7Þ

be a quadric in R
N. We study T-nets y : Zm/Q. This leads to a discrete two-

dimensional system, since constructing elementary quadrilaterals of T-nets in Q
corresponding to elementary squares of the lattice Zm admits a well-posed initial-
value problem: given three points y, y1, y22Q, one finds a unique fourth point
y122Q, y12sy, satisfying the discrete Moutard equation

y12Ky Z a12ðy2K y1Þ:
Proc. R. Soc. A (2007)
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Indeed, the condition

hy12; y12iZ hyCa12ðy2K y1Þ; yCa12ðy2K y1ÞiZ k0

leads to a quadratic equation for a12, which has one trivial solution a12Z05
y12Zy and one non-trivial

a12 Z
hy; y1K y2i
k0K hy1; y2i

:

This elementary construction step, i.e. finding the fourth vertex of an elementary
quadrilateral out of the known three vertices, is symbolically represented in
figure 3.

Turning to an elementary cube of dimension mR3, we see that one can
prescribe all points y and yi for all 1%i%m. Indeed, these data are independent
and one can construct all other vertices of an elementary cube from these data,
provided one does not encounter contradictions. To see the possible source of
contradictions, consider in detail the case of mZ3. From y and yi (1%i%3), one
determines all yij by

yijKy Z aijðyjK yiÞ and aij Z
hy; yiK yji
k0K hyi; yji

: ð2:8Þ

After that one has, in principle, three different ways to determine y123, from three
squares adjacent to this point (figure 4). These three values for y123 have to
coincide, independently of initial conditions.

Definition 2.8 (Three-dimensional consistency). A two-dimensional system is
called three-dimensional consistent if it can be imposed on all two-dimensional
faces of an elementary cube of Z3.
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There holds a quite general theorem analogous to theorem 2.7 of Bobenko &
Suris (2007).

Theorem 2.9 (Three-dimensional consistency yields consistency in all higher
dimensions). Any three-dimensional consistent discrete two-dimensional system
is also m-dimensionally consistent for all mO3.

Proof. Goes by induction in m and is analogous to the proof of theorem 2.7
from Bobenko & Suris (2007). &

Theorem 2.10 (T-nets in quadrics are three-dimensional consistent). The two-
dimensional system (2.8) governing T-nets in Q is three-dimensional consistent.

Proof. This can be checked by a tiresome computation, which can, however,
be avoided by the following conceptual argument. T-nets in Q are a result of
imposing two admissible reductions on Q-nets in R

N, namely the T-reduction
and the restriction to a quadric Q. This reduces the effective dimension of the
system by 1 (which allows determination of the fourth vertex of an elementary
quadrilateral from the three known ones), and transfers the original three-
dimensional equation into the three-dimensional consistency of the reduced two-
dimensional equation. Indeed, after finding y12, y23 and y13, one can construct
y123 according to the planarity condition (as intersection of three planes). Then,
both the T- and the Q-condition are fulfilled for all three quadrilaterals adjacent
to y123, according to theorem 2.7 and the result of Doliwa (1999). Therefore,
these quadrilaterals satisfy our two-dimensional system. &

We also mention an important property of T-nets in quadrics used in the
sequel: the functions

ai Z hy; yii; ð2:9Þ
defined on edges of Zm parallel to the ith coordinate axes, satisfy

tiaj Zaj ; isj; ð2:10Þ

i.e. any two opposite edges of any elementary square carry the same value of the
corresponding ai. Indeed, equations

hyij ; yjiZ hyi; yi and hyij ; yiiZ hyj ; yi

follow from (2.8) by a direct computation.
A last but not least remark: quadrics Q, which are given by equation (2.7)

with k0Z0, can be projectivized, so that it is admissible to interpret y2R
N as

homogeneous coordinates in RP
NK1. In this case, restrictions of Q-nets and

Moutard nets in RP
NK1 to P(Q) are well defined.
3. Isothermic surfaces in Möbius geometry

(a ) Projective model of Möbius geometry

Recall (e.g. Hertrich-Jeromin (2003) or Bobenko& Suris 2005) that the basic space

of the projective model of Möbius geometry in R
N is the projectivization PðRNC1;1Þ

of the Minkowski space RNC1,1. The latter is the space spanned by NC2 linearly
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independent vectors e1; .; eNC2 and equipped with the Minkowski scalar product

hei; ejiZ
1; i Z j 2 f1;.;N C1g;
K1; i Z j ZN C2;

0; isj:

8><
>:

It is convenient to introduce two isotropic vectors e0Zð1=2ÞðeNC2KeNC1Þ and
eNZð1=2ÞðeNC2CeNC1Þ, satisfying he0; eNiZKð1=2Þ.

A point f2R
N is modelled in the space P(RNC1,1) by the element with

homogeneous coordinates f̂Z fCe0C jf j2eN, while a hypersphere S3R
N with

centre c2R
N and radius rO0 is modelled by the element with homogeneous

coordinates ŝZcCe0Cðjcj2Kr2ÞeN. Thus, points f 2R
NgfNg are in a one-

to-one correspondence with points of the projectivized light cone P(LNC1,1),
while hyperspheres (including planes) are in a one-to-one correspondence with

PðRNC1;1
out Þ, where

L
NC1;1 Z x2R

NC1;1 : hx; xiZ 0
� �

and R
NC1;1
out Z x2R

NC1;1 : hx; xiO0
� �

:

The incidence relation f2S is represented in the projective model by h f̂ ; ŝiZ0.
A k-sphere is a (generic) intersection of NKk hyperspheres S1; .; SNKk. As a

set of points, a k-sphere is modelled as a projectivization of the orthogonal
complement of the linear subspace spanned by ŝ1; .; ŝNKk. The latter space is a
(kC2)-dimensional linear subspace of RNC1,1 of signature (kC1, 1). Through any

kC2 points f1; .; fkC2 2R
N , in general position, one can draw a unique

k-sphere. It corresponds to the (kC2)-dimensional linear subspace spanned by
the vectors f̂ 1; .; f̂ kC2.

(b ) Discrete isothermic surfaces as Moutard nets

Definition 3.1 (Discrete isothermic surface). A two-dimensional circular net
f : Z2/R

N is called a discrete isothermic surface if the corresponding net

f̂Z fCe0C jf j2eN : Z2/L
NC1;1 is a lift of a discrete Moutard net in PðLNC1;1Þ.

From definitions 2.1 and 2.3, there follows a geometric characterization of
discrete isothermic nets.

Theorem 3.2 (Central spheres for discrete isothermic nets).
(i) A circular net f : Z2/R

N not lying on a two-dimensional sphere is a discrete
isothermic net if and only if, for every u2Z

2, the five points f and fG1,G2 lie on a two-
dimensional sphere not containing some (and then any) of the four points fG1, fG2.

(ii) A circular net f : Z2/S
23R

N is a discrete isothermic net if and only if,
for every u2Z

2, the three circles through f,

C ðupÞ Z circleðf ; f12; fK1;2Þ; C ðdownÞ Z circleðf ; f1;K2; fK1;K2Þ and

C ð1Þ Z circleðf ; f1; fK1Þ
have one additional point in common, which is also equivalent for the three circles
through f,

C ðleftÞ Z circleðf ; fK1;2; fK1;K2Þ; C ðrightÞ Z circleðf ; f1;2; f1;K2Þ and

C ð2Þ Z circleðf ; f2; fK2Þ
to have one additional point in common.
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Figure 5. Four circles of a generic discrete isothermic surface, with a central sphere.
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Figure 6. Four circles of a planar (or spherical) discrete isothermic net.
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Cases (i) and (ii) of theorem 3.2 are illustrated in figures 5 and 6, respectively.
Another characterization of discrete isothermic surfaces can be given in terms

of the cross-ratios. Recall (Bobenko & Pinkall 1996; Cieśliński 1997;

Hertrich-Jeromin 2003) that, for any four concircular points f, f1, f2, f122R
N,

their (real-valued) cross-ratio can be defined as

qðf ; f1; f12; f2ÞZ ðf1Kf Þðf12K f1ÞK1ðf12K f2Þðf2Kf ÞK1: ð3:1Þ

Here multiplication is interpreted as the Clifford multiplication in the Clifford
algebra C[ (RN). Recall that for x, y2R

N, the Clifford product satisfies
xyCyxZK2hx,yi, and that the inverse element of x2R

N in the Clifford algebra
is given by xK1ZKx=jxj2. Alternatively, one can identify the plane of the
quadrilateral (f, f1, f12, f2) with the complex plane C, and then interpret
multiplication in equation (3.1) as the complex multiplication. An important
property of the cross-ratio is its invariance under Möbius transformations.

Theorem 3.3 (Four cross-ratios of a discrete isothermic net). A circular
net f : Z2/R

N is a discrete isothermic net if and only if the cross-ratios
qZq(f, f1, f12, f2) of its elementary quadrilaterals satisfy the following condition:

q$qK1;K2 Z qK1$qK2: ð3:2Þ

Here, like in §2, the negative indices Ki are used to denote the backward shifts
tK1
i , so that, for example, qK1ZqðfK1; f ; f2; fK1;2Þ.
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Proof. Perform a Möbius transformation sending f to N. Under such a
transformation, the four adjacent circles through f turn into four straight lines
fG1fG2, containing the corresponding points fG1,G2. Formula (3.2) turns into the
following relation for the quotients of (directed) lengths:

lðf2; f12Þ
lðf12; f1Þ

$
lðf1; f1;K2Þ
lðf1;K2; fK2Þ

$
lðfK2; fK1;K2Þ
lðfK1;K2; fK1Þ

$
lðfK1; fK1;2Þ
lðfK1;2; f2Þ

Z 1: ð3:3Þ

If the affine space through the points fG1, fG2 is three-dimensional, then equation
(3.3) is equivalent to the fact that the four points fG1,G2 lie in a plane, which is a
sphere through fZN. This is the nZ4 particular case of lemma 3.4.

If, on the contrary, the four points fG1, fG2 are coplanar, then we are in the
situation as in figure 2, described by the Desargues theorem. Here, we apply the
Menelaus theorem (case nZ3 of lemma 3.4) twice to the triangleOðfK1; f2; f1Þ
intersected by the line (fK1,2,f12), and to the triangleOðfK1; fK2; f1Þ intersected by
the line (fK1,K2 f1,K2): both lines meet the line (fK1f1) at the same point [ (1) if and
only if

lðf2; f12Þ
lðf12; f1Þ

$
lðfK1; fK1;2Þ
lðfK1;2; f2Þ

ZK
lðfK1; [

ð1ÞÞ
lð[ ð1Þ; f1Þ

Z
lðfK2; f1;K2Þ
lðf1;K2; f1Þ

$
lðfK1; fK1;K2Þ
lðfK1;K2; fK2Þ

:

This yields (3.3). &

Lemma 3.4 (Generalized Menelaus theorem). Let P1, ., Pn be n points in
general position in R

nK1, so that the affine space through the points Pi is (nK1)-
dimensional. Let Pi ,iC1 be some points on the lines (PiPiC1) (indices are read
modulo n). The n points Pi,iC1 lie in an (nK2)-dimensional affine subspace if and
only if the following relation for the quotients of the directed lengths holds:

Yn
iZ1

lðPi;Pi;iC1Þ
lðPi;iC1;PiC1Þ

Z ðK1Þn:

This statement is due to Boldescu (1970) and Budinský & Nádenı́k (1972).

The claim of theorem 3.3 can be reformulated as follows.

Corollary 3.5 (Factorized cross-ratios for a discrete isothermic net). A circular
net f : Z2/R

N is a discrete isothermic net if and only if the cross-ratios
qZqðf ; f1; f12; f2Þ of its elementary quadrilaterals satisfy the following condition:

qðf ; f1; f12; f2ÞZ
a1

a2

; ð3:4Þ

with some edge functions ai satisfying the labelling property (2.10).

Clearly, functions ai are defined up to a common constant factor. Actually, it was
this characterization of discrete isothermic nets which was used as a definition in
the pioneering paper (Bobenko & Pinkall 1996).

Actually, edge functions ai in corollary 3.5 admit a nice geometric expression.
According to theorem 2.2, a discrete isothermic net f : Z2/R

N can be
characterized by the existence of representatives y : Z2/L

NC1;1 in the light
cone satisfying the discrete Moutard equation (1.5). We use the following
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notation for these T-net representatives:

y Z sK1f̂ Z sK1ðf Ce0 C jf j2eNÞ: ð3:5Þ
Thus, sK1 denotes the e0-component of the T-net representative y of an
isothermic net f. Now, equation (2.9) defines functions on edges,

ai ZK2hy; yiiZ
jfiKf j2

ssi
; ð3:6Þ

possessing property (2.10): any two opposite edges of any elementary square carry
the same value of the corresponding ai. The function s : Z2/R can be called the
discrete metric of the isothermic net f, since it is analogous to the metric s of a
smooth isothermic surface: formula jdif j2Zaissi is analogous to equation (1.1),
while formula (3.5) literally coincides with its smooth counterpart.

Theorem 3.6 (Cross-ratios through discrete metric). Edge functions ai
participating in the factorization (3.4) of the cross-ratios of elementary
quadrilaterals of a discrete isothermic net can be defined by equation (3.6).

Proof. Comparing the e0-components in the Moutard equation y12KyZ
a12ðy2K y1Þ, we find a12ZðsK1

12 KsK1Þ=ðsK1
2 KsK1

1 Þ. Therefore, we can rewrite the
Moutard equation as

1

s2
K

1

s1

� �
f̂ 12
s12

K
f̂

s

 !
Z

1

s12
K

1

s

� �
f̂ 2
s2
K

f̂ 1
s1

 !
;

which is equivalent to

f̂ 1K f̂

ss1
C

f̂ 12Kf̂ 1
s1s12

Z
f̂ 2K f̂

ss2
C

f̂ 12Kf̂ 2
s2s12

: ð3:7Þ

The R
N-part of the latter equation, i.e.

f1Kf

ss1
C

f12K f1
s1s12

Z
f2Kf

ss2
C

f12K f2
s2s12

; ð3:8Þ

can be rewritten with the help of equation (3.6) as

a1

f1Kf

jf1Kf j2
Ca2

f12K f1

jf12K f1j2
Za2

f2Kf

jf2Kf j2
Ca1

f12K f2

jf12K f2j2
: ð3:9Þ

In terms of the inversion in the Clifford algebra C[ ðRN Þ, this can be presented as

a1ðf1Kf ÞK1 Ca2ðf12K f1ÞK1 Za2ðf2Kf ÞK1Ca1ðf12K f2ÞK1: ð3:10Þ

Equation (3.10) is, in the generic case f12C f sf1C f2, equivalent to equation
(3.4). It is not quite straightforward to show this equivalence in the case of non-
commutative variables f 2 C[ ðRN Þ. But one can identify the plane of the
quadrilateral (f,f1,f12,f2) with C, and then equation (3.9) is the complex conjugate
of equation (3.10) where, now, all variables are commutative (complex numbers),
and, in this case, the equivalence to equation (3.4) is immediate after clearing
the denominators. &
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T-nets in the light cone L
NC1,1 are three-dimensional consistent. This also

yields the three-dimensional consistency of the cross-ratio equation (3.4) with a
prescribed labelling ai of the edges, i.e. of the two-dimensional equation

qðf ; fi; fij ; fjÞZ
ai

aj

: ð3:11Þ

Both constructions provide us with a well-defined notion of multidimensional
discrete isothermic nets, and therefore with Darboux transformations of discrete
isothermic nets with the usual permutability properties.

We conclude this section with duality of discrete isothermic nets.

Theorem 3.7 (Dual discrete isothermic net). Let f : Zm/R
N be a discrete

isothermic net, with the T-net representatives in the light cone

y Z sK1f̂ Z sK1ðf Ce0 C jf j2eNÞ : Zm/L
NC1;1:

Then, the R
N-valued discrete one-form df � defined by

dif
� Z

dif

ssi
Zai

dif

jdif j2
; i Z 1;.;m; ð3:12Þ

is closed. Its integration defines (up to translation) a net f � : Zm/R
N , called

dual to the net f. The net f � is a discrete isothermic net, with

qðf �; f �i ; f �ij ; f �j ÞZ
ai

aj

: ð3:13Þ

We also define the function s� : Zm/R as s�ZsK1. Then, the net

y� Z ðs�ÞK1f̂
�
Z ðs�ÞK1ðf �Ce0C jf �j2eNÞ : Zm/L

NC1;1

is a T-net in the light cone.

Proof. Clearly, for any pair of indices i, j, the function f̂ satisfies an equation
analogous to equation (3.7), which expresses the closeness of the R

NC1,1-valued

one-form defined by di f̂ =ðssiÞ. Unfortunately, the net obtained by integration of
this one-form does not lie, in general, in the light cone L

NC1,1 and cannot be
taken as the dual net f̂

�
. We use the following trick for the construction of the

dual net f̂
�
in the light cone. The R

N-part of equation (3.7), i.e. equation (3.8),
expresses the closeness of the RN-valued one-form dif

�Zdif =ðssiÞ, the integration
of which gives a dual net f � in R

N. Equation (3.13) follows immediately from
equation (3.12) and implies that f � is a discrete isothermic net. In particular, it is

a circular net, so that f̂
�
Z f �Ce0C jf �j2eN is a conjugate net in the light cone. It

remains to show that the so-defined f̂
�
is a Moutard net, with the T-net

representatives y�Zðs�ÞK1f̂
�
. This claim is equivalent to the closeness of the

discrete R
NC1,1-valued one-form di f̂

�
=ðs�s�i Þ. Since f̂

�
is a conjugate net in the

light cone, it is enough to prove the closeness of the R
N-valued one-form

dif
�=ðs�s�i Þ. But for s�ZsK1, we have

dif
�

s�s�i
Z ðssiÞdif � Z ðssiÞ

dif

ssi
Z dif ;

which is automatically closed. &
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4. Lie geometry: S-isothermic nets

(a ) Projective model of Lie geometry

Lie geometry (Blaschke 1929; Cecil 1992) is the geometry of oriented spheres in
R
N and their properties invariant with respect to Lie sphere transformations,

which preserve the oriented contact of spheres. The basic space of the projective
model of Lie geometry is P(RNC1,2), where the space of homogeneous coordinates
R
NC1,2 is spanned by NC3 linearly independent vectors e1;.; eNC3 and is

equipped with the pseudo-Euclidean scalar product

hei; ejiZ
1; i Z j 2 f1;.;N C1g;
K1; i Z j 2 fN C2;N C3g;
0; isj:

8><
>:

We use the same notations e0Z1=2ðeNC2KeNC1Þ and eNZ1=2ðeNC2CeNC1Þ as in
the Möbius case. An oriented hypersphere S3R

N with centre c2R
N and signed

radius r2R is modelled by the element of P(RNC1,2) with the homogeneous
coordinates ŝZcCe0Cðjcj2Kr2ÞeNCreNC3. An oriented hyperplane

PZfx 2R
N : hv; xiZdg with v2S

NK1 and d2R is modelled by the element of

P(RNC1,2) with the homogeneous coordinates p̂ZvC0$e0C2deNCeNC3. A
point x2R

N is modelled by the element of P(RNC1,2) with the homogeneous
coordinates x̂ZxCe0C jxj2eNC0$eNC3. Hyperplanes are interpreted as hyper-
spheres of an infinite radius, while points are interpreted as hyperspheres of radius
0. All the listed elements of P(RNC1,2) belong to the Lie quadric P(LNC1,2), where

L
NC1;2 Z x2R

NC1;2 : hx; xiZ 0
� �

:

Moreover, points of P(LNC1,2) are in a one-to-one correspondence with oriented
hyperspheres in R

N, including degenerate cases of hyperplanes and points. Two
oriented hyperspheres S1, S2 are in an oriented contact (i.e. are tangent to each
other with the unit normals at tangency pointing in the same direction) if and only
if hŝ1; ŝ2iZ0. This also holds if one or both hyperspheres turn out to be a
hyperplane or a point.

(b ) S-isothermic surfaces as Moutard nets in the Lie quadric

From now on we restrict our considerations to the case of surfaces and sphere
congruences in R

3, i.e. NZ3 and mZ2.
Two-dimensional nets in the Lie quadric L

4,2 are discrete congruences of
spheres. An interesting class of such congruences is constituted by discrete
Moutard nets in P(L4,2). We leave a general study of this class for a future
research, and describe here, as an example, a particularly interesting subclass, for
which the T-net representatives in L

4,2 have a fixed e6-component,

y Z
k

r
cCe0 Cðjcj2Kr2ÞeNCre6
� �

:

Omitting the constant and therefore non-interesting e6-component, we come to a
T-net in a hyperboloid of the Lorentz space of the Möbius geometry,

L
4;1
k Z x2R

4;1 : hx; xiZ k2
� �

:
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Definition 4.1 (S-isothermic net). A map

S : Z2/foriented spheres in R
3g

is called an S-isothermic net if the corresponding map

ŝ : Z2/L
4;1
k ; ŝZ

k

r
cCe0Cðjcj2Kr2ÞeN
� �

ð4:1Þ

is a T-net.

Thus, S-isothermic nets are governed by equation

ŝ12K ŝZ a12ðŝ2Kŝ1Þ and a12 Z
hŝ; ŝ1Kŝ2i
k2K hŝ1; ŝ2i

Z
a1Ka2

k2K hŝ1; ŝ2i
; ð4:2Þ

with the quantities aiZhŝ; ŝii depending only on ui. If (signed) radii of all
hyperspheres become uniformly small, rðuÞwksðuÞ, k/0, then in the limit we
recover discrete isothermic nets.

Consistency of T-nets in L
4;1
k (which is a particular case of theorem 2.10)

yields, in particular, Darboux transformations for S-isothermic nets (Hoffmann
in preparation). A Darboux transform ŝC : Zm/L

4;1
k of a given S-isothermic net

ŝ : Zm/L
4;1
k is uniquely specified by a choice of one of its spheres ŝCð0Þ.

We turn now to geometric properties of S-isothermic nets. First of all,
S-isothermic nets form a subclass of discrete R-congruences of spheres
(see Bobenko & Suris (2007) for a geometric characterization of discrete
R-congruences). Furthermore, consider the quantities hŝ; ŝii which have the
meaning of cosines of the intersection angles of the neighbouring spheres
(respectively, of their so-called inversive distances if they do not intersect). Then
these quantities hŝ; ŝii have the labelling property, i.e. depend only on ui.

There holds the following generalization of theorem 3.7.

Theorem 4.2 (Dual S-isothermic net). Let

S : Zm/foriented spheres in R
3g

be an S-isothermic net. Denote the Euclidean centres and (signed) radii of S by
c : Zm/R

3 and r : Zm/R, respectively. Then, the R
3-valued discrete one-form

dc� defined by

dic
� Z

dic

rri
; 1% i%m ð4:3Þ

is closed, so that its integration defines (up to a translation) a function
c� : Zm/R

3. We also define r� : Zm/R as r�ZrK1. Then, the spheres S� with
the centres c� and radii r � form an S-isothermic net, called dual to S.

Proof. Consider equation

ŝijK ŝZ aijðŝjKŝiÞ; ð4:4Þ

in terms of ŝ from (4.1). Its e0-part yields aijZðrK1
ij KrK1Þ=ðrK1

j KrK1
i Þ. This

allows us to rewrite equation (4.4) as

ðrK1
j KrK1

i ÞðŝijK ŝÞZ ðrK1
ij KrK1ÞðŝjKŝiÞ: ð4:5Þ
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A direct computation shows that the R3-part of this equation can be rewritten as

ciKc

rri
C

cijK ci
ririj

Z
cjKc

rrj
C

cijK cj
rjrij

; ð4:6Þ

which is equivalent to the closeness of the form dc� defined by (4.3). In the same
way, the eN-part of equation (4.5) is equivalent to the closeness of the discrete
form dw defined by

diw Z
diðjcj2Kr2Þ

rri
; 1% i%m:

For similar reasons, the second claim of the theorem is equivalent to the closeness
of the form

diw
� Z

di jc�j2Kðr�Þ2
� �

r�r �i
; 1% i%m;

where, recall, r �Z1/r. With the help of c�i Kc�ZðciKcÞ=rri, one easily checks
that the forms dw and dw� can be written as

diw Z hc�i Kc�; ci CciK ri
r
C

r

ri
and diw

� Z hciKc; c�i Cc�iK r

ri
C

ri
r
:

The sum of these one-forms is closed,

diðwCw�ÞZ 2hc�i ; ciiK2hc�; ci;
therefore they are closed simultaneously. &

An interesting particular case of S-isothermic surfaces is characterized by
touching of any pair of neighbouring spheres. In this case, the limit of small
spheres is not relevant, therefore it is convenient to restrict the considerations to
a fixed value of kZ1. Clearly, in this case, both scalar products aiZhŝ; ti ŝi, iZ1,
2, can, in principle, take values G1. However, it is easily seen from (4.2) that, in
the case a1Za2, one gets only trivial nets. Thus, we assume that

hŝ; ŝ1iZ hŝ2; ŝ12iZK1 and hŝ; ŝ2iZ hŝ1; ŝ12iZ 1: ð4:7Þ
Interestingly, these touching conditions are enough to enforce the Moutard shape
of a linear dependence of the spheres.

Theorem 4.3. S-isothermic surfaces with touching spheres can be characterized
by any of the following equivalent descriptions:

—Q-congruence of spheres (Q-net in the Lorentz space of Möbius geometry) with
touching spheres,

—R-congruence (Q-net in the Lie quadric) with touching spheres, and
—T-net in the Lie quadric with touching spheres,

which are listed in the order of a priori increasing restrictions.

Proof. Let ŝ, ŝ1, ŝ2 and ŝ12 be four linearly dependent oriented spheres in L
4;1
1 ,

pairwise touching so that equation (4.7) is fulfilled. (We remark that, in the
present situation, the geometric meaning of linear dependence is the existence of
Proc. R. Soc. A (2007)
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a common orthogonal circle through the touching points.) We make a general
position assumption that the spheres ŝ and ŝ12 do not touch, and likewise that
the spheres ŝ1 and ŝ2 do not touch. The linear dependence condition is written
as

ŝ12 Z lŝCmŝ1Cnŝ2: ð4:8Þ

Scalar product of this with ŝ1, ŝ2 leads to

1ClZmCnhŝ1; ŝ2iZKmhŝ1; ŝ2iKn0mZKnZ
lC1

1K hŝ1; ŝ2i
:

Similarly, a scalar product of equation (4.8) with ŝ, ŝ12 leads to

mKnZ lK hŝ; ŝ12iZ 1Klhŝ; ŝ12i 0 lZ 1:

Thus, the linear dependence has to be of the Moutard form

ŝ12K ŝZ a12ðŝ2Kŝ1Þ and a12 ZK
2

1K hŝ1; ŝ2i
: ð4:9Þ

&

5. Isothermic surfaces in Laguerre geometry

In Laguerre geometry, surfaces are viewed as envelopes of their tangent planes,
so that discrete surfaces are maps P : Z2/fplanes in R

3g.
Definition 5.1 (Discrete L-isothermic surface). A two-dimensional conical net

P : Z2/fplanes in R
3g is called a discrete L-isothermic surface if the

corresponding net p̂ : Z2/L
4;2 is a lift of a discrete Moutard net in P(L4,2).

Recall that, for an (oriented) plane PZfx 2R
3 : hv; xiZdg with the unit

normal vector v2S
2 and d2R, its representative p̂ in the Lie quadric L

4,2 is
given by

p̂Z vC0$e0 C2deNC1$e6:

Recall also that the vectors v : Z2/S
2 comprise the Gauss map for a given net

P : Z2/fplanes in R
3g, and that the net P is conical if and only if its Gauss map v

is circular (Bobenko & Suris 2007).
From definitions 2.1 and 2.3, there follows a geometric characterization of

discrete L-isothermic nets.

Theorem 5.2 (Central spheres for discrete L-isothermic nets).

(i) A conical net P : Z2/fplanes in R
3g not tangent to a two-dimensional

sphere is a discrete L-isothermic net if and only if, for every u2Z
2, the five

planes P and PG1,G2 are tangent to a two-dimensional sphere not touching
some (and then any) of the four planes PG1, PG2.
Proc. R. Soc. A (2007)



Figure 7. Five diagonally neighbouring planes of a generic discrete L-isothermic surface, with a
central sphere.
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(ii) A conical net P : Z2/ftangent planes of S23R
3g is a discrete

L-isothermic net if and only if, for every u2Z
2, the three cones through P

C ðupÞ Z coneðP;P12;PK1;2Þ; C ðdownÞ Z coneðP;P1;K2;PK1;K2Þ and

C ð1Þ Z coneðP;P1;PK1Þ

have one additional plane in common, which is also equivalent for the three cones
through P,

C ðleftÞ Z coneðP;PK1;2;PK1;K2Þ; C ðrightÞ Z coneðP;P1;2;P1;K2Þ and

C ð2Þ Z coneðP;P2;PK2Þ;

to have one additional plane in common.

The (generic) case (i) of theorem 5.2 is illustrated in figure 7.

Theorem 5.3 (Gauss map of an L-isothermic net is an isothermic net in
the sphere). A Gauss map of an L-isothermic net is a discrete isothermic net

in S
2. Conversely, if, for every u2Z

2, the four planes P, P1, P2, P12 of a net

P : Z2/fplanes in R
3g meet at a point and the Gauss map of the net P is

isothermic, then P is an L-isothermic conical net.

Proof. First, let P be an L-isothermic net. Then, for some c : Z2/R, the net
cp̂ is a T-net in the Lie quadric. As a consequence, cðvC1$e0C1$eNÞ is a T-net
in the light cone L

4,1 of the Minkowski space R
4,1 of the Möbius geometry for

NZ3. Therefore, the net v : Z2/S
23R

3 is isothermic.
Conversely, let the net v : Z2/S

23R
3 be isothermic. This is equivalent

to the existence of the function c : Z2/R, such that c(v, 1) is a T-net. If now
hv, xiZd is the equation of the plane P, then the existence of the common
Proc. R. Soc. A (2007)
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intersection point of the planes P,P1,P2,P12 yields that the function cd satisfies
the same Moutard equation as the function cv. Therefore, c(v,d,1) is a T-net, so
that p̂ is a discrete Moutard net. &

To conclude, we mention that, in the continuous limit, the results of this
section yield the following apparently new characterization of smooth
L-isothermic surfaces.

Theorem 5.4 (L-isothermic surfaces asMoutard nets in the Laguerre quadric). A
surface enveloping a two-parameter family of planes P : R2/fplanes in R

3g, with
PZfx 2R

3 : hv; xiZdg, v2S
2, d2R, is L-isothermic if and only if there exists a

function r : R2/R, such that rK1(v, d ) satisfies a Moutard equation (1.3).

This research was supported by the DFG Research Unit ‘Polyhedral Surfaces’.
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