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1 ORIGIN AND MOTIVATION: DIFFERENTIAL GEOMETRY

Long before the theory of solitons, geometers used integrable equations to
describe various special curves, surfaces etc. At that time no relation to math-
ematical physics was known, and quite different geometries appeared in this
context (we will call them integrable) were unified by their common geometric
features:

� Integrable surfaces, curves etc. have nice geometric properties,
� Integrable geometries come with their interesting transformations

(Bäcklund–Darboux transformations) acting within the class,
� These transformations are permutable (Bianchi permutability).

Since “nice” and “interesting” can hardly be treated as mathematically for-
mulated features, let us address to the permutability property. We explain it for
the classical example of surfaces with constant negative Gaussian curvature
(K-surface) with their Bäcklund transformations.

Let F : R
2 → R

3 be a K-surface and F1,0 and F0,1 its two Bäcklund trans-
formed. The classical Bianchi permutability theorem claims that there exists
a unique K-surface F1,1 which is the Bäcklund transformed of F1,0 and F0,1.
Proceeding further this way for a given point F0,0 on the original K-surface
one obtains a Z

2 lattice Fk,� of permutable Bäcklund transformations. From the
geometric properties of the Bäcklund transformations it is easy to see [1] that
Fk,� defined this way is a discrete K-surface.

The discrete K-surfaces have the same properties and transformations as
their smooth counterparts [2]. There exist deep reasons for that. The classical
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Figure 1. Surfaces and their transformations as a limit of multidimensional lattices

differential geometry of integrable surfaces may be obtained from a unifying
multidimensional discrete theory by a refinement of the coordinate mesh-size
in some of the directions.

Indeed, by refining of the coordinate mesh-size,

F : (εZ)2 → R
3 −→ F : R

2 → R
3,

discrete surface ε → 0 smooth surface

in the limit one obtains classical smooth K-surfaces from discrete K-surfaces.
Starting with an n-dimensional net of permutable Bäcklund transformations

F : (ε1Z) × · · · × (εnZ) → R
3

in the limit ε1 → 0, ε2 → 0, ε3 = · · · = εn = 1 one arrives to a smooth K-
surface with its n – 2-dimensional discrete family of permutable Bäcklund
transformations:

F : R
2 × Z

n−2 → R
3.

This simple idea is quite fruitful. In the discrete case all directions of the
multidimensional lattices appear in quite symmetric way. It leads to:

� A unification of surfaces and their transformations. Discrete surfaces and
their transformations are indistinguishable.

� A fundamental consistency principle. Due to the symmetry of the discrete
setup the same equations hold on all elementary faces of the lattice. This
leads us beyond the pure differential geometry to a new understanding of the
integrability, classification of integrable equations and derivation of the zero
curvature (Lax) representation from the first principles.

� Interesting generalizations to: n > 2-dimensional systems, quantum sys-
tems, discrete systems with the fields on various lattice elements (vertices,
edges, faces etc.).
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As it was mentioned above, all this suggests that it might be possible to de-
velop the classical differential geometry, including both the theory of surfaces
and of their transformations, as a mesh refining limit of the discrete construc-
tions. On the other hand, the good quantitative properties of approximations
delivered by the discrete differential geometry suggest that they might be put at
the basis of the practical numerical algorithms for computations in the differ-
ential geometry. However until recently there were no rigorous mathematical
statements supporting this observation.

The first step in closing this gap was made in the paper [3] where the conver-
gence of the corresponding integrable geometric numerical scheme has been
proven for nonlinear hyperbolic systems (including the K-surfaces and the
sine–Gordon equation).

Thus, summarizing we arrive at the following philosophy of discrete differ-
ential geometry: surfaces and their transformations can be obtained as a special
limit of a discrete master-theory. The latter treats the corresponding discrete
surfaces and their transformation in absolutely symmetric way. This is pos-
sible because these are merged into multidimensional nets such that their all
sublattices have the same geometric properties. The possibility of this multi-
dimensional extension results to consistency of the corresponding difference
equations characterizing the geometry. The latter is the main topic of this paper.

2 EQUATIONS ON QUAD-GRAPHS. INTEGRABILITY
AS CONSISTENCY

Traditionally discrete integrable systems were considered with fields defined
on the Z

2 lattice. One can define integrable systems on arbitrary graphs as flat
connections with the values in loop groups. However, one should not go that
far with the generalization. As we have shown in [4], there is a special class of
graphs, called quad-graphs, supporting the most fundamental properties of the
integrability theory. This notion turns out to be a proper generalization of the
Z

2 lattice as far as the integrability theory is concerned.

Definition 1 A cellular decomposition G of an oriented surface is called a
quad-graph, if all its faces are quadrilateral.

Note that if one considers an arbitrary cellular decomposition C jointly with
its dual C∗ one obtains a quad-graphD connecting by the edges the neighboring
vertices of C and C∗. Let us stress that the edges of the quad-graph D differ
from the edges of C and C∗.

For the integrable systems on quad-graphs we consider in this section the
fields z : V (D) �→ Ĉ are attached to the vertices of the graph. They are subject to
an equation Q(z1, z2, z3, z4) = 0, relating four fields sitting on the four vertices
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Figure 2. A face of the labelled quad-graph

of an arbitrary face from F(D). The Hirota equation

z4

z2
= αz3 − βz1

βz3 − αz1
(1)

is such an example. We observe that the equation carries parameters α, β which
can be naturally associated to the edges, and the opposite edges of an elementary
quadrilateral carry equal parameters (see Figure 2). At this point we specify the
setup further. The example illustrated in Figure 2 can be naturally generalized.
An integrable system on a quad-graph

Q(z1, z2, z3, z4; α, β) = 0 (2)

is parametrized by a function on the edges of the quad-graph which takes equal
values on the opposite edges of any elementary quadrilateral. We call such a
function a labelling of the quad-graph.

An elementary quadrilateral of a quad-graph can be viewed from various
directions. This implies that the system (2) is well defined on a general quad-
graph only if it possesses the rhombic symmetry, i.e., each of the equations

Q(z1, z4, z3, z2; β, α) = 0, Q(z3, z2, z1, z4; β, α) = 0

is equivalent to (2).

2.1 3D-Consistency

Now we introduce a crucial property of discrete integrable systems which later
on will be taken as a characteristic one.

Let us extend a quad–graph D into the third dimension. We take the second
copyD′ ofD and add edges connecting the corresponding vertices ofD andD′.
Elementary building blocks of so obtained “three-dimensional quad-graph” D
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Figure 3. Elementary cube

are “cubes” as shown in Figure 3. The labelling of D can be extended to D so
that the opposite edges of all elementary faces (including the “vertical” ones)
carry equal parameters (see Figure 3).

Now, the fundamental property of discrete integrable system mentioned
above is the three-dimensional consistency.

Definition 2 Consider an elementary cube, as on Figure 3. Suppose that
the values of the field z are given at the vertex z and at its three neighbors
z1, z2, and z3. Then the Eq. (2) uniquely determines the values z12, z23, and
z13. After that the same Eq. (2) delivers three a priori different values for the
value of the field z123 at the eighth vertex of the cube, coming from the faces
[z1, z12, z123, z13], [z2, z12, z123, z23], and [z3, z13, z123, z23], respectively. The
Eq.(2) is called 3D-consistent if these three values for z123 coincide for any
choice of the initial data z, z1, z2, z3.

Proposition 3 The Hirota equation

z12

z
= α2z1 − α1z2

α1z1 − α2z2

is 3D-consistent.

This can be checked by a straightforward computation. For the field at the
eighth vertex of the cube one obtains

z123 = (l21 − l12)z1z2 + (l32 − l23)z2z3 + (l13 − l31)z1z3

(l23 − l32)z1 + (l31 − l13)z2 + (l12 − l21)z3
, (3)

where li j = αi
α j

.

In [4, 5] we suggested to treat the consistency property (in the sense of
Definition 2) as the characteristic one for discrete integrable systems. Thus we
come to the central.



48 Alexander I. Bobenko

Figure 4. Zero curvature representation from the consistency

Definition 4 A discrete equation is called integrable if it is consistent.

Note that this definition of the integrability is conceptually transparent and
algorithmic: for any equation it can be easily checked whether it is integrable
or not.

2.2 Zero Curvature Representation from the 3D-Consistency

Our Definition 2 of discrete integrable systems is more fundamental then
the traditional one as systems having a zero curvature representation in a
loop group. Here we demonstrate how the corresponding flat connection in
a loop group can be derived from the equation. Independently this was found
in [6].

We get rid of our symmetric notations, consider the system

Q(z1, z2, z3, z4; α, β) = 0 (4)

on the base face of the cube and choose the vertical direction to carry an
additional (spectral) parameter λ (see Figure 4).

Assume the left-hand-side of (4) is affine in each zk . This gives z4 as a
fractional–linear (Möbius) transformation z2 with the coefficients depending
on z1, z3 and α, β. One can of course freely interchange z1, . . . , z4 in this
statement. Consider now the equations on the vertical faces of the cube in
Figure 4. One gets ψ2 as a Möbius transformation of ψ1

ψ2 = L(z2, z1; α, λ)[ψ1],

with the coefficients depending of the fields z2, z1, on the parameter α in the
system (4) and on the additional parameter λ which is to be treated as the spec-
tral parameter. The mapping L(z2, z1; α, λ) is associated to the oriented edge
(z1, z2). Going from ψ1 to ψ3 in two different ways and using the arbitrariness
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of ψ1 we get

L(z3, z2; β, λ)L(z2, z1; α, λ) = L(z3, z4; α, λ)L(z4, z1; β, λ). (5)

Using the matrix representation of Möbius transformations

az + b

cz + d
= L[z], where L =

(
a b
c d

)
,

and normalizing the matrices (for example by the condition det L = 1) we
arrive at the zero curvature representation (5).

Let us apply this derivation method to the Hirota equation. Equation (1) can
be written as Q = 0 with the affine

Q(z1, z2, z3, z4; α, β) = α(z2z3 + z1z4) − β(z3z4 + z1z2).

Performing the computations as above in this case we derive the well known
zero curvature representation (5) with the matrices

L(z2, z1, α, λ) =
⎛
⎝ α −λz2

λ

z1
−α

z2

z1

⎞
⎠ (6)

for the Hirota equation.

3 CLASSIFICATION

Here we classify all integrable (in the sense of Definition 2) one-field equations
on quad-graphs satisfying some natural symmetry conditions.

We consider equations

Q(x, u, v, y; α, β) = 0, (7)

on quad-graphs. Equations are associated to elementary quadrilaterals, the fields
x, u, v, y ∈ C are assigned to the four vertices of the quadrilateral, and the
parameters α, β ∈ C are assigned to its edges. We now list more precisely the
assumptions under which we classify the equations.

1. Consistency. Equation (7) is integrable (in the sense it is 3D-consistent).
2. Linearity. The function Q(x, u, v, y; α, β) is linear in each argument (affine

linear):

Q(x, u, v, y; α, β) = a1xuvy + · · · + a16, (8)

where coefficients ai depend on α, β. This is equivalent to the condition that
Eq. (7) can be uniquely solved for any one of its arguments x, u, v, y ∈ Ĉ.
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3. Symmetry. The Eq. (7) is invariant under the group D4 of the square sym-
metries, that is function Q satisfies the symmetry properties

Q(x, u, v, y; α, β) = εQ(x, v, u, y; β, α) = σ Q(u, x, y, v; α, β) (9)

with ε, σ = ±1.
4. Tetrahedron property. The function z123 = f (z, z1, z2, z3; α1, α2, α3), ex-

isting due to the three-dimensional consistency, actually does not depend on
the variable z, that is, fx = 0. This property holds (3) for the Hirota equation
as well as for all other known integrable examples.

The proof of the classification theorem is rather involved and is given in [5].

Theorem 5 Up to common Möbius transformations of the variables z and
point transformations of the parameters α, the three-dimensionally consistent
quad-graph equations (7) with the properties (2–4) (linearity, symmetry, tetra-
hedron property) are exhausted by the following three lists Q, H, A (x = z, u =
z1, v = z2, y = z12, α = α1, β = α2).

List Q:

(Q1) α(x − v)(u − y) − β(x − u)(v − y) + δ2αβ(α − β) = 0,
(Q2) α(x − v)(u − y) − β(x − u)(v − y) + αβ(α − β)(x + u + v + y)

− αβ(α − β)(α2 − αβ + β2) = 0,
(Q3) (β2 − α2)(xy + uv) + β(α2 − 1)(xu + vy) − α(β2 − 1)(xv + uy)

− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,
(Q4) a0xuvy + a1(xuv + uvy + vyx + yxu) + a2(xy + uv) + ā2(xu + vy)

+ ā2(xv + uy) + a3(x + u + v + y) + a4 = 0,

where the coefficients ai are expressed through (α, a) and (β, b) with a2 =
r (α), b2 = r (β), r (x) = 4x3 − g2x − g3, by the following formulae:

a0 = a + b, a1 = −βa − αb, α2 = β2a + α2b,

ā2 = ab(a + b)

2(α − β)
+ β2a −

(
2α2 − g2

4

)
b,

ā2 = ab(a + b)

2(β − α)
+ α2b −

(
2β2 − g2

4

)
a,

a3 = g3

2
a0 − g2

4
a1, a4 = g2

2

16
a0 − g3a1.

List H:

(H1) (x − y)(u − v) + β − α = 0,
(H2) (x − y)(u − v) + (β − α)(x + u + v + y) + β2 − α2 = 0,
(H3) α(xu + vy) − β(xv + uy) + δ(α2 − β2) = 0.
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List A:

(A1) α(x + v)(u + y) − β(x + u)(v + y) − δ2αβ(α − β) = 0,
(A2) (β2 − α2)(xuvy + 1) + β(α2 − 1)(xv + uy) − α(β2 − 1)(xu + vy) = 0.

Remarks
1. The list A can be dropped down by allowing an extended group of Möbius

transformations, which act on the variables x, y differently than on u, v. So,
really independent equations are given by the lists Q and H.

2. In both lists Q, H the last equations are the most general ones. This means
that Eqs. (Q1)–(Q3) and (H1), (H2) may be obtained from (Q4) and (H3),
respectively, by certain degenerations and/or limit procedures. This resem-
bles the situation with the list of six Painlevé equations and the coalescences
connecting them.

3. Note that the list contains the fundamental equations only. A discrete equa-
tion which is derived as a corollary of an equation with the consistency
property usually loose this property.

4 GENERALIZATIONS: MULTIDIMENSIONAL AND
NON-COMMUTATIVE (QUANTUM) CASES

4.1 Yang–Baxter Maps

It should be mentioned, however, that to assign fields to the vertices is not
the only possibility. Another large class of two-dimensional systems on quad–
graphs build those with the fields assigned to the edges.

In this situation each elementary quadrilateral carries a map R : X 2 �→ X 2,
where X is the space where the fields take values. The question on the three–
dimensional consistency of such maps is also legitimate and, moreover, be-
gan to be studied recently. The corresponding property can be encoded in the
formula

R23 ◦ R13 ◦ R12 = R12 ◦ R13 ◦ R23, (10)

where each Ri j : X 3 �→ X 3 acts as the map R on the factors i,j of the cartesian
product X 3 and acts identically on the third factor. The maps with this property
were introduced by Drinfeld [7] under the name of “set-theoretical solutions of
the Yang-Baxter equations”, an alternative name is “Yang-Baxter maps” used
by Veselov in his recent study [8].

The problem of classification of Yang–Baxter maps, like the one achieved
in the previous section, is under current investigation.
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4.2 Four-Dimensional Consistency of Three-Dimensional Systems

The consistency principle can be obviously generalized to an arbitrary dimen-
sion. We say that

a d–dimensional discrete equation possesses the consistency property,
if it may be imposed in a consistent way on all d–dimensional sublattices
of a (d + 1)–dimensional lattice

In the three–dimensional context there are also a priori many kinds of sys-
tems, according to where the fields are defined: on the vertices, on the edges,
or on the elementary squares of the cubic lattice. Consider three–dimensional
systems with the fields sitting on the vertices. In this case each elementary cube
carries just one equation

Q(z, z1, z2, z3, z12, z23, z13, z123) = 0, (11)

relating the fields in all its vertices. The four–dimensional consistency of such
equations is defined in the same way as in Section 2.1 for the case of one
dimension lower.

It is tempting to accept the four–dimensional consistency of equations of the
type (11) as the constructive definition of their integrability. It is important to
solve the correspondent classification problem.

We present here just one example of the equation appeared first in [9].

Proposition 6 Equation

(z1 − z3)(z2 − z123)

(z3 − z2)(z123 − z1)
= (z − z13)(z12 − z23)

(z13 − z12)(z23 − z)
. (12)

is four–dimensionally consistent.

4.3 Noncommutative (Quantum) Cases

As we have shown in [10] the consistency approach works also in the noncom-
mutative case, where the participating fields live in an arbitrary associative (not
necessary commutative) algebra A (over the field K).

In particular the noncommutative Hirota equation

yx−1 = 1 − (β/α)uv−1

(β/α) − uv−1
. (13)

belongs to this class. Now x, u, v, y ∈ A are the fields assigned to the four
vertices of the quadrilateral, and α, β ∈ K are the parameters assigned to its
edges. Note that Eq. (13) preserves the Weil commutation relations. This yields
the quantum Hirota equation studied in [11].
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Proposition 7 The noncommutative Hirota equation is 3D-consistent.

Similar to the commutative case the Lax representation can be derived from
the equation and the consistency property. It turns out that finding the zero curva-
ture representation does not hinge on the particular algebra A or on prescribing
some particular commutation rules for fields in the neighboring vertices. The
fact that some commutation relations are preserved by the evolution, is thus
conceptually separated from the integrability.
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