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1 Introduction

The original results presented in these lectures were proved in the recent series
of papers [3], [4], [6], [7]. We refer to these papers for more details, further
references and complete proofs. For the geometric background in discrete
differential geometry see in particular [2], [1].

2 Origin and motivation: Differential geometry

Long before the theory of solitons, geometers used integrable equations to de-
scribe various special curves, surfaces etc. At that time no relation to math-
ematical physics was known, and quite different geometries which appeared
in this context (called integrable nowadays) were unified by their common
geometric features:

– Integrable surfaces, curves etc. have nice geometric properties,
– Integrable geometries come with their interesting transformations acting

within the class,
– These transformations are permutable (Bianchi permutability).

Since ‘nice’ and ‘interesting’ can hardly be treated as mathematically for-
mulated features, let us discuss the permutability property. We shall explain
it in more detail for the classical example of surfaces with constant negative
Gaussian curvature (K-surface) with their Bäcklund transformations.

Let r : R2 → R3 be a K-surface, and r10 and r01 two K-surfaces obtained
by Bäcklund transformations of r. The classical Bianchi permutability the-
orem claims that there exists a unique K-surface r11 which is a Bäcklund
transform of r10 and r01. Moreover,

(i) the straight line connecting the points r(x, y)and r10(x, y) lies in the
tangent planes of the surfaces r and r10 at these points,
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Fig. 1. Permutability of the Bäcklund transformations

(ii) the opposite edges of the quadrilateral (r, r10, r01, r11) have equal
lengths,

‖r10 − r‖ = ‖r11 − r01‖, ‖r01 − r‖ = ‖r11 − r10‖.

This way a Z2 lattice rk,` obtained by permutable Bäcklund transforma-
tions gives rise to discrete K-surfaces. Indeed, fixing the smooth parameters
(x, y) one observes that

(i) the points rk,`, rk,`±1, rk±1,` lie in one plane (the ‘tangent’ plane of the
discrete K-surface at the vertex rk,`),

(ii) the opposite edges of the quadrilateral rk,`, rk+1,`, rk+1,`+1, rk,`+1 have
equal lengths.

These are exactly the characteristic properties [1] of the discrete K-surfaces,
r : Z2 → R3 .

One immediately observes that the discrete K-surfaces have the same
properties as their smooth counterparts. There exist deep reasons for that.
The classical differential geometry of integrable surfaces may be obtained
from a unifying multi-dimensional discrete theory by a refinement of the
coordinate mesh-size in some of the directions.

Indeed, by refining of the coordinate mesh-size,

r : (εZ)2 → R3 −→ r : R2 → R3,

discrete surface ε → 0 smooth surface,

in the limit one obtains classical smooth K-surfaces from discrete K-surfaces.
This statement is visualized in Fig.2 which shows an example of a continuous
Amsler surface and its discrete analogue. The subclass of Amsler surfaces is
characterized by the condition that the K-surface (smooth or discrete) should
contain two straight lines.

Moreover, the classical Bianchi permutability implies n-dimensional per-
mutability of the Bäcklund transformations. This means that the set of a
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Fig. 2. A continuous and a discrete Amsler surfaces

given K-surface, r : R2 → R3, with its n Bäcklund transforms r10...0, r010...0, . . . , r0...01

can be completed to 2n different K-surfaces ri1...in , ik ∈ {0, 1} associated to
the vertices of the n-dimensional cube C = {0, 1}n. The surfaces associated
to vertices of C connected by edges are Bäcklund transforms of each other.

Similar to the 2-dimensional case, this description can be extended to
an n-dimensional lattice. Fixing the smooth parameters (x, y), one obtains a
map,

r : (ε1Z)× . . .× (εnZ) → R3,

which is an n-dimensional net obtained from one point of a K-surface by
permutable Bäcklund transformations. It turns out that the whole smooth
theory can be recovered from this description. Indeed, completely changing
the point of view, in the limit ε1 → 0, ε2 → 0, ε3 = . . . = εn = 1, one arrives at
a smooth K-surface with an (n−2)-dimensional discrete family of permutable
Bäcklund transforms,

r : R2 × Zn−2 → R3.

This simple idea is quite fruitful. In the discrete case all directions of the
multi-dimensional lattices appear in a quite symmetric way. It leads to

– A unification of surfaces and their transformations. Discrete surfaces and
their transformations are indistinguishable.
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Fig. 3. Surfaces and their transformations as a limit of multidimensional lattices

– A fundamental consistency principle. Due to the symmetry of the discrete
setup the same equations hold on all elementary faces of the lattice. This
leads us beyond the pure differential geometry to a new understanding of
the integrability, classification of integrable equations and derivation of
the zero curvature (Lax) representation from the first principles.

– Interesting generalizations for d > 2-dimensional systems, quantum sys-
tems, discrete systems with the fields on various lattice elements (vertices,
edges, faces, etc.).

As it was mentioned above, all this suggests that it might be possible
to develop the classical differential geometry, including both the theory of
surfaces and of their transformations, as a mesh-refining limit of the dis-
crete constructions. On the other hand, the good quantitative properties of
approximations provided by the discrete differential geometry suggest that
they might be put at the basis of the practical numerical algorithms for
computations in differential geometry. However until recently there were no
rigorous mathematical results supporting this observation.

The first step in closing this gap was made in the paper [7] where a
geometric numerical scheme for a class of nonlinear hyperbolic equations was
developed and general convergence results were proved. We return to this
problem in Section 6, considering in particular the sine-Gordon equation and
discrete and smooth K-surfaces.

3 Equations on quad-graphs. Integrability as consistency

Traditionally, discrete integrable systems were considered for fields defined
on the Z2 lattice. Having in mind geometric applications, it is natural to
generalize this setup to include distinguished vertices with different combi-
natorics, and moreover to consider graphs with various global properties. A
direct generalization of the Lax representation from the Z2 lattice to more
general lattices leads to a concept of
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3.1 Discrete flat connections on graphs

Integrable systems on graphs can be defined as flat connections whose values
are in loop groups. More precisely, this notion includes the following compo-
nent elements:

– A cellular decomposition G of an oriented surface. The set of its vertices
will be denoted by V (G), the set of its edges will be denoted by E(G),
and the set of its faces will be denoted by F (G). For each edge, one of its
possible orientations is fixed.

– A loop group G[λ], whose elements are functions from C into some group
G. The complex argument, λ, of these functions is known in the theory
of integrable systems as the spectral parameter.

– A wave function Ψ : V (G) 7→ G[λ], defined on the vertices of G.
– A collection of transition matrices, L : E(G) 7→ G[λ], defined on the edges

of G.

It is supposed that for any oriented edge, e = (v1, v2) ∈ E(G), the values of
the wave functions at its ends are connected by

Ψ(v2, λ) = L(e, λ)Ψ(v1, λ). (1)

Therefore the following discrete zero-curvature condition is supposed to be
satisfied. Consider any closed contour consisting of a finite number of edges
of G,

e1 = (v1, v2), e2 = (v2, v3), . . . , en = (vn, v1).

Then
L(en, λ) · · ·L(e2, λ)L(e1, λ) = I. (2)

In particular, for any edge e = (v1, v2), if e−1 = (v2, v1), then

L(e−1, λ) =
(
L(e, λ)

)−1

. (3)

Actually, in applications the matrices L(e, λ) also depend on a point of
some set X (the phase-space of an integrable system), so that some ele-
ments x(e) ∈ X are attached to the edges e of G. In this case the discrete
zero-curvature condition (2) becomes equivalent to the collection of equa-
tions relating the fields x(e1), . . ., x(en) attached to the edges of each closed
contour. We say that this collection of equations admits a zero-curvature
representation.

3.2 Quad-graphs

Although one can, in principle, consider integrable systems in the sense of
the traditional definition of Section 3.1 on very different kinds of graph, one
should not go that far with the generalization.
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As we have shown in [3], there is a special class of graph, called quad-
graphs, supporting the most fundamental properties of integrability theory.
This notion turns out to be a proper generalization of the Z2 lattice as far as
integrability theory is concerned.

Definition 1. A cellular decomposition, G, of an oriented surface is called a
quad-graph, if all its faces are quadrilateral.

Here we mainly consider the local theory of integrable systems on quad-
graphs. Therefore, in order to avoid the discussion of some subtle boundary
and topological effects, we shall always suppose that the surface carrying the
quad-graph is a topological disk; no boundary effects will be considered.

Before we proceed to integrable systems, we would like to propose a con-
struction which, from an arbitrary cellular decomposition, produces a cer-
tain quad-graph. Towards this aim, we first recall the notion of the dual
graph, or, more precisely, of the dual cellular decomposition G∗. The vertices
in V (G∗) are in one-to-one correspondence with the faces in F (G) (actually,
they can be chosen to be certain points inside the corresponding faces, cf.
Fig. 4). Each e ∈ E(G) separates two faces in F (G), which in turn corre-
spond to two vertices in V (G∗). A path between these two vertices is then
declared to be an edge e∗ ∈ E(G∗) dual to e. Finally, the faces in F (G∗)
are in a one-to-one correspondence with the vertices in V (G). If v0 ∈ V (G),
and v1, . . . , vn ∈ V (G) are its neighbors connected with v0 by the edges
e1 = (v0, v1), . . . , en = (v0, vn) ∈ E(G), then the face in F (G∗) corresponding
to v0 is defined by its boundary, e∗1 ∪ . . . ∪ e∗n (cf. Fig. 5).

Fig. 4. The vertex in V (G∗) dual to
the face in F (G).

Fig. 5. The face in F (G∗) dual to the
vertex in V (G).

Now we introduce a new complex, the double D, constructed from G,
G∗. The set of vertices of the double ,D, is V (D) = V (G) ∪ V (G∗). Each
pair of dual edges, say e = (v1, v2) and e∗ = (f1, f2), as in Fig. 6, defines a
quadrilateral (v1, f1, v2, f2), and all these quadrilaterals constitute the faces
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of the cell decomposition (quad-graph) D. Let us stress that the edges of D
belong neither to E(G) nor to E(G∗). See Fig. 6.

v1 v2

f1

f2

Fig. 6. A face of the double

Quad-graphs D arising as doubles have the following property, the set
V (D) may be decomposed into two complementary halves, V (D) = V (G) ∪
V (G∗) (“black” and “white” vertices), such that the endpoints of each edge
of E(D) are of different colors. One can always color a quad-graph this way
if it has no non-trivial periods, i. e., it comes from the cellular decomposition
G of a disk.

Conversely, any such quad-graph D may be considered to be the double
of some cellular decomposition G. The edges in E(G), say, are defined then as
paths joining two “black” vertices of each face in F (D). (This decomposition
of V (D) into V (G) and V (G∗) is unique, up to interchanging the roles of G
and G∗.)

Again, since we are mainly interested in the local theory, we avoid global
considerations. Therefore we always assume (without mentioning it explicitly)
that our quad-graphs are cellular decompositions of a disk, thus G and G∗
may be well-defined.

For the integrable systems on quad-graphs we consider here the fields z
attached to the vertices of the graph2. They are subject to an equation

Q(z1, z2, z3, z4) = 0, (4)

relating four fields residing on the four vertices of an arbitrary face in F (D).
Moreover, in all our examples it will be possible to solve equation (4) uniquely
for any field z1, . . . , z4 in terms of the other three.

The Hirota equation,
z4

z2
=

αz3 − βz1

βz3 − αz1
, (5)

2 The systems with the fields on the edges are also very interesting, and are related
to the Yang-Baxter maps (see Section 5.1).
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is such an example. We observe that the equation carries parameters α and
β which can be naturally associated to the edges, and the opposite edges
of an elementary quadrilateral carry equal parameters (see Fig. 7). At this

z1 z3

z2

z4

β

β

α

α

Fig. 7. A face of the labelled quad-graph

point we specify the setup further. The example illustrated in Fig. 7 can be
naturally generalized. An integrable system on a quad-graph,

Q(z1, z2, z3, z4; α, β) = 0 (6)

is parametrized by a function on the set of edges, E(D), of the quad-graph
which takes equal values on the opposite edges of any elementary quadrilat-
eral. We call such a function a labelling of the quad-graph. Obviously, there
exist infinitely many labellings, all of which may be constructed as follows:
choose some value of α for an arbitrary edge of D, and assign consecutively
the same value to all “parallel” edges along a strip of quadrilaterals, according
to the definition of labelling. After that, take an arbitrary edge still without
a label, choose some value of α for it, and extend the same value along the
corresponding strip of quadrilaterals. Proceed similarly, till all edges of D are
exhausted.

An elementary quadrilateral of a quad-graph can be viewed from various
directions. This implies that system (6) is well defined on a general quad-
graph only if it possesses the rhombic symmetry, i.e., each of the equations

Q(z1, z4, z3, z2; β, α) = 0, Q(z3, z2, z1, z4;β, α) = 0

is equivalent to (6).

3.3 3D-consistency

Now we introduce a crucial property of discrete integrable systems which will
be taken characteristic.
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Let us extend the planar quad–graph D into the third dimension. Formally
speaking, we consider a second copy D′ of D, and add edges connecting each
vertex v ∈ V (D) with its copy v′ ∈ V (D′). In this way we obtain a “3-
dimensional quad–graph”, D, whose set of vertices is

V (D) = V (D) ∪ V (D′),
and whose set of edges is

E(D) = E(D) ∪ E(D′) ∪ {(v, v′) : v ∈ V (D)}.
Elementary building blocks of D are “cubes” as shown in Fig. 8. Clearly, we

z

z3

z1

z13

z12

z123

z2

z23

α1
α2

α1

α2

α2

α1

α2

α1

α3 α3

α3 α3

Fig. 8. Elementary cube

can still consistently subdivide the vertices of D into “black” and “white”
vertices, so that the vertices connected by an edge have opposite colors. In
the same way the labelling on E(D) is extended to a labelling of E(D). The
opposite edges of all elementary faces (including the “vertical” ones) carry
equal parameters (see Fig. 8).

Now, the fundamental property of discrete integrable system mentioned
above is the three–dimensional consistency.

Definition 2. Consider an elementary cube, as in Fig. 8. Suppose that the
values of the field z, z1, z2, and z3 are given at a vertex and at its three
neighbors . Then equation (6) uniquely determines the values z12, z23, and
z13. After that the same equation (6) produces three á priori different values
for the value of the field z123 at the eighth vertex of the cube, coming from the
faces [z1, z12, z123, z13], [z2, z12, z123, z23] and [z3, z13, z123, z23], respectively.
Equation (6) is called 3D-consistent if these three values for z123 coincide for
any choice of the initial data z, z1, z2, z3.

Proposition 1. The Hirota equation,

z12

z
=

α2z1 − α1z2

α1z1 − α2z2
,

is 3D-consistent.
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This can be verified by a straightforward computation. For the field at the
eighth vertex of the cube one obtains

z123 =
(l21 − l12)z1z2 + (l32 − l23)z2z3 + (l13 − l31)z1z3

(l23 − l32)z1 + (l31 − l13)z2 + (l12 − l21)z3
, (7)

where lij =
αi

αj
.

In [3] and [4] we suggested treating the consistency property (in the sense
of Definition 2) as the characteristic one for discrete integrable systems. Thus
we come to the central definition of these lectures.

Definition 3. A discrete equation is called integrable if it is consistent.

Note that this definition of the integrability is conceptually transparent
and algorithmic: the integrability of any equation can be easily verified.

3.4 Zero curvature representation from the 3D-consistency

We show that our Definition 3 of discrete integrable systems is more funda-
mental then the traditional one discussed in Section 3.1. Recall that normally
the problem of finding a zero-curvature representation for a given system is
a difficult task whose successful solution is only possible with a large amount
of luck in the guess-work. We show that finding the zero-curvature represen-
tation for a given discrete system with the consistency property becomes an
algorithmically solvable problem, and we demonstrate how the corresponding
flat connection in a loop group can be derived from the equation.

z1

ψ1

z2

ψ2

z3

ψ3

z4

ψ4

αβ

α

β

β

α

β

α

λ λ

λ λ

Fig. 9. Zero curvature representation from the consistency

We get rid of our symmetric notations and consider the system

Q(z1, z2, z3, z4; α, β) = 0 (8)

on the base face of the cube, and choose the vertical direction to carry an
additional (spectral) parameter λ (see Fig. 9).
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Assume that the left-hand-side of (8) is affine in each zk. This gives z4

as a fractional–linear (Möbius) transformation of z2 with the coefficients de-
pending on z1 and z3 and on α and β. One can of course freely interchange
z1, . . . , z4 in this statement. Now consider the equations on the vertical faces
of the cube in Fig. 9. One obtains ψ2 as a Möbius transformation of ψ1

ψ2 = L(z2, z1; α, λ)[ψ1],

with coefficients depending on the fields z2 and z1, on the parameter α in
system (8) and on the additional parameter λ, which is to be treated as
the spectral parameter. Mapping L(z2, z1; α, λ) is associated to the oriented
edge, (z1, z2). For the reverse edge, (z2, z1), one obviously obtains the inverse
transformation

L(z1, z2; α, λ) = L(z2, z1;α, λ)−1.

Going once around the horizontal face of the cube one obtains

ψ1 = L(z1, z4; β, λ)L(z4, z3; α, λ)L(z3, z2;β, λ)L(z2, z1; α, λ)[ψ1].

The composed Möbius transformation in the right-hand-side is the identity
because of the arbitrariness of ψ1.

Using the matrix notation for the action of the Möbius transformations,

az + b

cz + d
= L[z], where L =

(
a b
c d

)
,

and normalizing these matrices (for example by the condition detL = 1), we
derive the zero-curvature representation,

L(z1, z4;β, λ)L(z4, z3; α, λ)L(z3, z2; β, λ)L(z2, z1;α, λ) = I, (9)

for (8), where the L’s are elements of the corresponding loop group. Equiva-
lently, (9) can be written as

L(z3, z2;β, λ)L(z2, z1; α, λ) = L(z3, z4; α, λ)L(z4, z1;β, λ), (10)

where one has a little more freedom in normalizations.
Let us apply this derivation method to the Hirota equation. Equation (5)

can be written as Q = 0 with

Q(z1, z2, z3, z4; α, β) = α(z2z3 + z1z4)− β(z3z4 + z1z2).

Performing the computations as above in this case we derive the zero-
curvature representation for the Hirota equation (10) with the matrices

L(z2, z1, α, λ) =




α −λz2

λ

z1
−α

z2

z1


 . (11)
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Another important example is the cross-ratio equation,

(z1 − z2)(z3 − z4)
(z2 − z3)(z4 − z1)

=
α

β
. (12)

It is easy to show that it is 3D-consistent. Written in the form

α(z2 − z3)(z4 − z1)− β(z1 − z2)(z3 − z4) = 0,

it obviously belongs to the class discussed in this section. By direct compu-
tation we obtain the L-matrices,

L̃(z2, z1, α, λ) =




1 +
λαz2

(z1 − z2)
− λαz1z2

(z1 − z2)
λα

(z1 − z2)
1− λαz1

(z1 − z2)


 ,

which are gauge-equivalent to

L(z2, z1, α, λ) =

(
1 z1 − z2
α

λ(z1 − z2)
1

)
. (13)

4 Classification

We have seen that the idea of consistency is at the core of the integrability
theory and may be even suggested as a definition of integrability.

Here we give a further application of the consistency approach. We show
that it provides an effective tool for finding and classifying all integrable
systems in certain classes of equations. In the previous section we presented
two important systems which belong to our theory. Here we complete the list
of the examples, classifying all integrable (in the sense of Definition 3) one-
field equations on quad-graphs satisfying some natural symmetry conditions.

We consider equations

Q(x, u, v, y; α, β) = 0, (14)

on quad-graphs. Equations are associated to elementary quadrilaterals, the
fields x, u, v, y ∈ C are assigned to the four vertices of the quadrilateral, and
the parameters α, β ∈ C are assigned to its edges, as shown in Fig. 10.

We now list more precisely the assumptions under which we classify the
equations.

1) Consistency. Equation (14) is integrable (in the sense that it is 3D-
consistent). As explained in the previous section, this property means that
this equation may be consistently embedded in a three-dimensional lattice,
so that the same equations hold for all six faces of any elementary cube, as
in Fig. 8.
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x u

yv

α

α

β β

Fig. 10. An elementary quadrilateral; fields are assigned to vertices

Further, we assume that equations (14) can be uniquely solved for any

one of their arguments, x, u, v, y ∈ ĈP1. Therefore, the solutions have to
be fractional-linear in each of their arguments. This naturally leads to the
following condition.

2) Linearity. The function Q(x, u, v, y; α, β) is linear in each argument
(affine linear):

Q(x, u, v, y; α, β) = a1xuvy + · · ·+ a16, (15)

where coefficients ai depend on α and β.

Third, we are interested in equations on quad-graphs of arbitrary com-
binatorics, hence it will be natural to assume that all variables involved in
equations (14) are on equal footing. Therefore, our next assumption reads as
follows.

3) Symmetry. Equation (14) is invariant under the group D4 of the
symmetries of the square, that is, function Q satisfies the symmetry properties

Q(x, u, v, y;α, β) = εQ(x, v, u, y; β, α) = σQ(u, x, y, v; α, β) (16)

with ε, σ = ±1. Of course, due to symmetries (16), not all coefficients ai in
(15) are independent.

v y

x u

β β

α

α

Fig. 11. D4 symmetry

Finally, it is worth looking more attentively at expression (7) for the
eighth point in the cube for the Hirota equation and at the similar formula
for the cross-ratio equation
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z123 =
(α1 − α2)z1z2 + (α3 − α1)z3z1 + (α2 − α3)z2z3

(α3 − α2)z1 + (α1 − α3)z2 + (α2 − α1)z3
. (17)

Looking ahead, we mention a very amazing and unexpected feature of
these expressions: value z123 actually depends on z1, z2, z3 only, and does
not depend on z. In other words, four black points in Fig. 8 (the vertices of
a tetrahedron) are related by a well-defined equation. This property, being
rather strange at first glance, actually is valid not only in this but in all
known nontrivial examples. We take it as an additional assumption in our
solution of the classification problem.

4) Tetrahedron property. Function z123 = f(z, z1, z2, z3; α1, α2, α3),
existing due to the 3D-consistency, actually does not depend on variable z,
that is, fz = 0.

Under the tetrahedron property we can paint the vertices of the cube into
black and white, as in Fig. 8, and the vertices of each of two tetrahedrons
satisfy an equation of the form,

Q̂(z1, z2, z3, z123; α1, α2, α3) = 0. (18)

It is easy to see that under assumption 2) (linearity) function Q̂ may be also
taken to be linear in each argument. (Clearly, formulas (7) and (17) may also
be written in such a form.)

We identify equations related by certain natural transformations. First,
acting simultaneously on all variables z by one and the same Möbius trans-
formation does not violate our three assumptions. Second, the same holds for
the simultaneous point change of all parameters, α 7→ ϕ(α).

Theorem 1. [4] Up to common Möbius transformations of variables z and
point transformations of the parameters α, the 3D-consistent quad-graph
equations (14) with the properties 2), 3), 4) (linearity, symmetry and the
tetrahedron property) are exhausted by the following three lists Q, H, and A
where x = z, u = z1, v = z2, y = z12, α = α1, β = α2:

List Q

(Q1) α(x− v)(u− y)− β(x− u)(v − y) + δ2αβ(α− β) = 0,

(Q2) α(x− v)(u− y)− β(x− u)(v − y) + αβ(α− β)(x + u + v + y)
−αβ(α− β)(α2 − αβ + β2) = 0,

(Q3) (β2 − α2)(xy + uv) + β(α2 − 1)(xu + vy)− α(β2 − 1)(xv + uy)
−δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,

(Q4) a0xuvy + a1(xuv + uvy + vyx + yxu) + a2(xy + uv) + ā2(xu + vy)
+ã2(xv + uy) + a3(x + u + v + y) + a4 = 0,

where the coefficients ai are expressed in terms of (α, a) and (β, b) with
a2 = r(α), b2 = r(β), r(x) = 4x3 − g2x− g3, by the following formulas:
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a0 = a + b, a1 = −βa− αb, a2 = β2a + α2b,

ā2 =
ab(a + b)
2(α− β)

+ β2a− (2α2 − g2

4
)b,

ã2 =
ab(a + b)
2(β − α)

+ α2b− (2β2 − g2

4
)a,

a3 =
g3

2
a0 − g2

4
a1, a4 =

g2
2

16
a0 − g3a1.

List H:

(H1) (x− y)(u− v) + β − α = 0,
(H2) (x− y)(u− v) + (β − α)(x + u + v + y) + β2 − α2 = 0,
(H3) α(xu + vy)− β(xv + uy) + δ(α2 − β2) = 0.

List A:

(A1) α(x + v)(u + y)− β(x + u)(v + y)− δ2αβ(α− β) = 0,
(A2) (β2 − α2)(xuvy + 1) + β(α2 − 1)(xv + uy)− α(β2 − 1)(xu + vy) = 0.

The proof of this theorem is rather involved and is given in [4].

Remarks

1) List A can be omitted by allowing an extended group of Möbius transfor-
mations, which act on the variables x, y differently than on u, v, white and
black sublattices on Figs. 10 and 8. In this manner Eq. (A1) is related to (Q1)
by the change u → −u, v → −v, and Eq. (A2) is related to (Q3) with δ = 0
by the change u → 1/u, v → 1/v. So, really independent equations are given
by the lists Q and H.

2) In both lists, Q and H, the last equations are the most general ones.
This means that Eqs. (Q1)–(Q3) and (H1), (H2) may be obtained from (Q4)
and (H3), respectively, by certain degenerations and/or limit procedures. So,
one might be tempted to shorten these lists to one item each. However, on
the one hand, these limit procedures are outside our group of admissible
(Möbius) transformations, and, on the other, in many situations the “degen-
erate” equations (Q1)–(Q3) and (H1), (H2) are of interest in themselves. This
resembles the situation with the six Painlevé equations and the coalescences
connecting them.

3) Parameter δ in Eqs. (Q1), (Q3), (H3) can be scaled away, so that one
can assume without loss of generality that δ = 0 or δ = 1.

4) It is natural to set in Eq. (Q4) (α, a) = (℘(A), ℘′(A)) and, similarly,
(β, b) = (℘(B), ℘′(B)). So, this equation is actually parametrized by two
points of the elliptic curve µ2 = r(λ). The appearance of an elliptic curve in
our classification problem is by no means obvious from the beginning. If r
has multiple roots, the elliptic curve degenerates into a rational one, and Eq.
(Q4) degenerates to one of the previous equations of the list Q; for example,
if g2 = g3 = 0 then inversion x → 1/x turns (Q4) into (Q2).
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5) Note that the list contains the fundamental equations only. A discrete
equation which is derived from an equation with the consistency property
will usually lose this property.

5 Generalizations: Multidimensional and
non-commutative (quantum) cases

5.1 Yang-Baxter maps

As we mentioned, however, to assign fields to the vertices is not the only pos-
sibility. Another large class of 2-dimensional systems on quad–graphs consists
of those where the fields are assigned to the edges, see Fig. 12. In this situa-

α

a

α

a2

β b1 βb

Fig. 12. An elementary quadrilat-
eral; both fields and labels are as-
signed to edges

a

a2

a3

a23

b
b1

b3b13

cc1

c2c12

Fig. 13. Three–dimensional consis-
tency; fields assigned to edges

tion it is natural to assume that each elementary quadrilateral carries a map
R : X 2 7→ X 2, where X is the space where the fields a and b take values,
so that (a2, b1) = R(a, b; α, β). The question of the three–dimensional consis-
tency of such maps is also legitimate and, moreover, recently has begun to
be studied. The corresponding property can be encoded in the formula

R23 ◦R13 ◦R12 = R12 ◦R13 ◦R23, (19)

where each Rij : X 3 7→ X 3 acts as the map R on the factors i and j of the
cartesian product X 3, and acts identically on the third factor. This equa-
tion should be understood as follows. The fields a and b are supposed to be
attached to the edges parallel to the 1st and the 2nd coordinate axes, respec-
tively. Additionally, consider the fields c attached to the edges parallel to the
3rd coordinate axis. Then the left–hand side of (19) corresponds to the chain
of maps along the three rear faces of the cube in Fig. 13,

(a, b) 7→ (a2, b1), (a2, c) 7→ (a23, c1), (b1, c1) 7→ (b13, c12),
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while its right–hand side corresponds to the chain of maps along the three
front faces of the cube,

(b, c) 7→ (b3, c2), (a, c2) 7→ (a3, c12), (a3, b3) 7→ (a23, b13)

So, Eq. (19) assures that the two ways of obtaining (a23, b13, c12) from the
initial data (a, b, c) lead to the same results. The maps with this property
were introduced by Drinfeld under the name of “set–theoretical solutions
of the Yang–Baxter equation”, an alternative name is “Yang–Baxter maps”
used by Veselov. Under some circumstances, systems with fields on vertices
can be regarded as systems with fields on edges or vice versa (this is the
case, E.G., for systems (Q1), (Q3)δ=0, (H1), (H3)δ=0 of our list, for which
the variables X enter only in combinations like X − U for edges (x, u)), but
in general the two classes of systems should be considered to be different.
The problem of classifying of Yang–Baxter maps, like the one achieved in the
previous section, has been recently solved in [5].

5.2 Four-dimensional consistency of three-dimensional systems

The consistency principle can be obviously generalized to an arbitrary di-
mension. We say that

a d–dimensional discrete equation possesses the consistency property,
if it may be imposed in a consistent way on all d–dimensional sublat-
tices of a (d + 1)–dimensional lattice.

In the three–dimensional context there are also a priori many kinds of
systems, according to where the fields are defined: on the vertices, on the
edges, or on the elementary squares of the cubic lattice.

Consider 3-dimensional systems with the fields at the vertices. In this case
each elementary cube carries just one equation,

Q(z, z1, z2, z3, z12, z23, z13, z123) = 0, (20)

relating the fields in all its vertices. Such an equation should be solvable
for any of its arguments in terms of the other seven arguments. The four–
dimensional consistency of such equations is defined in the obvious way.

– Starting with initial data z, zi (1 ≤ i ≤ 4), zij (1 ≤ i < j ≤ 4), equa-
tion (20) allows us to determine all fields zijk (1 ≤ i < j < k ≤ 4)
uniquely. Then we have four different ways of finding z1234 correspond-
ing to four 3-dimensional cubic faces adjacent to the vertex z1234 of the
four–dimensional hypercube, see Fig. 5.2. All four values actually coincide.

So, one can consistently impose equations (20) on all elementary cubes of
the three-dimensional cubical complex, which is a three-dimensional gener-
alization of the quad-graph. It is tempting to accept the four–dimensional
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z z1

z2

z3

z12

z13

z23 z123

z4 z14

z24

z34

z124

z134

z234 z1234

Fig. 14. Hypercube

consistency of equations of type (20) as the constructive definition of their
integrability. It is important to solve the correspondent classification problem.

Let us give here some examples. Consider the equation

(z1 − z3)(z2 − z123)
(z3 − z2)(z123 − z1)

=
(z − z13)(z12 − z23)
(z13 − z12)(z23 − z)

. (21)

It is not difficult to see that Eq. (21) admits as its symmetry group the
group D8 of the cube. This equation can be uniquely solved for a field at
an arbitrary vertex of a 3-dimensional cube, provided the fields at the seven
other vertices are known.

The fundamental fact is:

Proposition 2. Equation (21) is four–dimensionally consistent.

A different factorization of the face variables into the vertex ones leads
to another remarkable three–dimensional system known as the discrete BKP
equation. For any solution x : Z4 7→ C of (21), define a function τ : Z4 7→ C
by the equations

τiτj

ττij
=

xij − x

xi − xj
, i < j. (22)

Eq. (21) assures that this can be done in an essentially unique way (up to
initial data on the coordinate axes, whose influence is a trivial scaling of the
solution). On any 3-dimensional cube the function τ satisfies the discrete
BKP equation,

ττijk − τiτjk + τjτik − τkτij = 0, i < j < k. (23)

Proposition 3. Equation (23) is four–dimensionally consistent.
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Moreover, for the value τ1234 one finds a remarkable equation,

ττ1234 − τ12τ34 + τ13τ24 − τ23τ34 = 0, (24)

which essentially reproduces the discrete BKP equation. So τ1234 does not
actually depend on the values τi, 1 ≤ i ≤ 4. This can be considered to be an
analogue of the tetrahedron property of Sect. 4.

5.3 Noncommutative (quantum) cases

As it was shown in [6], the consistency approach works also in the noncommu-
tative case, where the participating fields live in an arbitrary associative (not
necessary commutative) algebra A (over the field K). It turns out that finding
the zero curvature representation does not hinge on the particular algebra A
nor on prescribing some particular commutation rules for fields in the neigh-
boring vertices. The fact that some commutation relations are preserved by
the evolution is thus conceptually separate from the integrability.

As before, we deal with equations on quadrilaterals,

Q(x, u, v, y; α, β) = 0.

Now x, u, v, y ∈ A are the fields assigned to the four vertices of the quadri-
lateral, and α, β ∈ K are the parameters assigned to its edges.

We start our considerations with the following, more special equation,

yx−1 = fαβ(uv−1). (25)

(Here and below, any time we encounter the inverse x−1 of a non-zero el-
ement, x ∈ A, its existence is assumed.) We require that this equation do
not depend on how we regard the elementary quadrilateral (recall that we
consider equations on the quad-graphs). It is not difficult to see that this
implies the following symmetries:

fαβ(A) = fβα(A−1), (26)
fαβ(A−1) = (fαβ(A))−1, (27)

fβα(A) = f−1
αβ (A−1). (28)

In (28) f−1
αβ stands for the inverse function to fαβ , which has to be distin-

guished from the inversion in the algebra A in the formula (27).
All the conditions (26)–(28) are satisfied for the function which charac-

terizes the Hirota equation,

fαβ(A) =
1− (β/α)A
(β/α)−A

. (29)

The 3D-consistency condition for equation (25) is



20 Alexander I. Bobenko

fαjαk

(
fαiαj (ziz

−1
j )(fαiαk

(ziz
−1
k ))−1

)
=

fαiαk

(
fαiαj (ziz

−1
j )(fαjαk

(zjz
−1
k ))−1

)
zjz

−1
i .

Taking into account that fαβ actually depends only on β/α, we slightly abuse
the notations and write fαβ = fβ/α. Setting λ = αj/αi, µ = αk/αj , and
A = ziz

−1
j , B−1 = zjz

−1
k , and taking into account property (27), we rewrite

the above equation as

fµ

(
fλ(A)fλµ(BA−1)

)
= fλµ

(
fλ(A)fµ(B)

)
A−1. (30)

Proposition 4. The non–commutative Hirota equation is 3D-consistent.

To prove this theorem, one proves that function (29) satisfies this func-
tional equation for any λ, µ ∈ K and for any A,B ∈ A.

Alternatively, one proves the consistency by deriving the zero-curvature
representation. We show that the following two schemes for computing z123

lead to one and the same result:

– (z, z1, z2) 7→ z12 , (z, z1, z3) 7→ z13 , (z1, z12, z13) 7→ z123 .
– (z, z1, z2) 7→ z12 , (z, z2, z3) 7→ z23 , (z2, z12, z23) 7→ z123 .

The Hirota equation on face (z, z1, z13, z3),

z13z
−1 = fα3α1(z3z

−1
1 ),

can be written as a formula which gives z13 as a fractional–linear transfor-
mation of z3,

z13 = (α1z3 − α3z1)(α3z3 − α1z1)−1z = L(z1, z, α1, α3)[z3], (31)

where

L(z1, z, α1, α3) =
(

α1 −α3z1

α3z
−1 −α1z

−1z1

)
. (32)

We use here the notation which is common for Möbius transformations on C
represented as a linear action of the group GL(2,C). In the present case we
define the action of the group GL(2,A) on A by the formula

(
a b
c d

)
[z] = (az + b)(cz + d)−1, a, b, c, d, z ∈ A.

It is easy to see that this is indeed the left action of the group, provided that
the multiplication in GL(2,A) is defined by the natural formula

(
a′ b′

c′ d′

)(
a b
c d

)
=

(
a′a + b′c a′b + b′d
c′a + d′c c′b + d′d

)
.

Absolutely similarly to (31), we find that
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z23 = L(z2, z, α2, α3)[z3]. (33)

From (33) we derive, by a shift in the direction of the first coordinate axis,
the expression for z123 obtained by the first scheme above,

z123 = L(z12, z1, α2, α3)[z13], (34)

while from (31) we find the expression for z123 corresponding to the second
scheme,

z123 = L(z12, z2, α1, α3)[z23]. (35)

Substituting (31) and (33) on the right-hand sides of (34) and (35), respec-
tively, we represent the equality we want to demonstrate in the following
form,

L(z12, z1, α2, α3)L(z1, z, α1, α3)[z3]
= L(z12, z2, α1, α3)L(z2, z, α2, α3)[z3]. (36)

It is not difficult to prove that the stronger claim holds, namely that

L(z12, z1, α2, α3)L(z1, z, α1, α3) = L(z12, z2, α1, α3)L(z2, z, α2, α3). (37)

The last equation is nothing else but the zero-curvature condition for the
noncommutative Hirota equation.

Proposition 5. The Hirota equation admits a zero-curvature representation
with matrices from the loop group GL(2,A)[λ]. The transition matrix along
the (oriented) edge (x, u) carrying the label α is determined by

L(u, x, α;λ) =
(

α −λu
λx−1 −αx−1u

)
. (38)

Quite similar claims (3D-consistency, derivation of the zero-curvature rep-
resentation) hold for the noncommutative cross-ratio equation,

(x− u)(u− y)−1(y − v)(v − x)−1 =
α

β
.

6 Smooth theory from the discrete one

Let us return to smooth and discrete surfaces with constant negative Gaussian
curvature. The philosophy of discrete differential geometry was explained
in Section 2. Surfaces and their transformations are obtained as a special
limit of a discrete master-theory. The latter treats the corresponding discrete
surfaces and their transformations in an absolutely symmetric way. This is
possible because they are merged into multidimensional nets such that all
their sublattices have the same geometric properties. The possibility of this
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multidimensional extension results in the permutability of the corresponding
difference equations characterizing the geometry.

Let us recall the analytic description of smooth and discrete K-surfaces.
Let F be a K-surface parametrized by its asymtotic lines,

F : Ω(r) = [0, r]× [0, r] → R3.

This means that the vectors ∂xF , ∂yF , ∂2
xF and ∂2

yF are orthogonal to the
normal vector N : Ω(r) → S2. Reparametrizing the asymptotic lines, if
necessary, we assume that |∂xF | = 1 and |∂yF | = 1. Angle φ = φ(x, y)
between the vectors ∂xF , and ∂yF satisfies the sine-Gordon equation,

∂x∂yφ = sin φ. (39)

Moreover, a K-surface is determined by a solution to (39) essentially uniquely.
The corresponding construction is as follows. Consider the matrices U and
V defined by the formulas

U(a; λ) =
i

2

(
a −λ
−λ −a

)
, (40)

V (b; λ) =
i

2

(
0 λ−1 exp(ib)

λ−1 exp(−ib) 0

)
, (41)

taking values in the twisted loop algebra,

g[λ] = {ξ : R∗ → su(2) : ξ(−λ) = σ3ξ(λ)σ3}, σ3 =
(

1 0
0 −1

)
.

Suppose now that a and b are real-valued functions on Ω(r). Then the zero-
curvature condition,

∂yU − ∂xV + [U, V ] = 0, (42)

is satisfied identically in λ, if and only if (a, b) satisfy the system

∂ya = sin b, ∂xb = a, (43)

or, in other words, if a = ∂xφ and b = φ, where φ is a solution of (39). Given
a solution φ, that is, a pair of matrices (40), (41) satisfying (42), the following
system of linear differential equations is uniquely solvable,

∂xΦ = UΦ, ∂yΦ = V Φ, Φ(0, 0;λ) = 1. (44)

Here Φ : Ω(r) 7→ G[λ] takes values in the twisted loop group,

G[λ] = {Ξ : R∗ → SU(2) : Ξ(−λ) = σ3Ξ(λ)σ3}.

The solution Φ(x, y; λ) yields the immersion F (x, y) by the Sym formula,



Discrete differential geometry. Integrability as consistency 23

F (x, y) =
(
2λΦ(x, y; λ)−1∂λΦ(x, y;λ)

) ∣∣∣
λ=1

. (45)

(Here the canonical identification of su(2) with R3 is used.) Moreover, the
right-hand side of (45) at values of λ different from λ = 1 determines a family
of immersions, Fλ : Ω(r) → R3, all of which are K-surfaces parametrized by
asymptotic lines. These surfaces Fλ constitute the so-called associated family
of F .

Now we turn to the analytic description of discrete K-surfaces. Let ε be
a discretization parameter, and we introduce discrete domains,

Ωε(r) = [0, r]ε × [0, r]ε ⊂ (εZ)2,

where [0, r]ε = [0, r] ∩ (εZ). Each Ωε(r) contains O(ε−2) grid points. Let F ε

be a discrete surface parametrized by asymptotic lines, i.e., an immersion,

F ε : Ωε(r) → R3, (46)

such that for each (x, y) ∈ Ωε(r) the five points F ε(x, y), F ε(x ± ε, y), and
F ε(x, y ± ε) lie in a single plane, P(x, y). Let us introduce the difference
analogues of the partial derivatives,

δε
xp(x, y) =

1
ε

(
p(x + ε, y)− p(x, y)

)
, δε

yp(x, y) =
1
ε

(
p(x, y + ε)− p(x, y)

)
.

(47)
It is required that all edges of the discrete surface F ε have the same length, ε`,
that is, |δε

xF ε| = |δε
yF ε| = `, and it turns out to be convenient to assume that

` = (1 + ε2/4)−1. The same relation we presented between K-surfaces and
solutions to the (classical) sine–Gordon equation (39) can be found between
discrete K-surfaces and solutions to the sine–Gordon equation in Hirota’s
discretization,

sin
1
4
(
φ(x + ε, y + ε)− φ(x + ε, y)− φ(x, y + ε) + φ(x, y)

)

=
ε2

4
sin

1
4
(
φ(x + ε, y + ε) + φ(x + ε, y) + φ(x, y + ε) + φ(x, y)

)
. (48)

Consider the matrices Uε, Vε defined by the formulas

Uε(a; λ) = (1 + ε2λ2/4)−1/2

(
exp(iεa/2) −iελ/2
−iελ/2 exp(−iεa/2)

)
, (49)

Vε(b; λ) =(1 + ε2λ−2/4)−1/2

(
1 (iελ−1/2) exp(ib)

(iελ−1/2) exp(−ib) 1

)
.

(50)

Let a and b be real-valued functions on Ωε(r), and consider the discrete
zero-curvature condition,



24 Alexander I. Bobenko

Uε(x, y + ε;λ) · Vε(x, y;λ) = Vε(x + ε, y;λ) · Uε(x, y;λ), (51)

where Uε and Vε depend on (x, y) ∈ Ωε(r) by the dependence of a and b on
(x, y), respectively. A direct calculation shows that (51) is equivalent to the
system

δε
ya =

2
iε2

log
1− (ε2/4) exp(−ib− iεa/2)
1− (ε2/4) exp(ib + iεa/2)

, δε
xb = a +

ε

2
δε
ya, (52)

or, in other words, to equation (48) for the function φ defined by

a = δε
xφ, b = φ +

ε

2
δε
yφ. (53)

The formula (51) is the compatibility condition of the following system of
linear difference equations:

Ψε(x + ε, y; λ) = Uε(x, y;λ)Ψε(x, y; λ),
Ψε(x, y + ε; λ) = Vε(x, y;λ)Ψε(x, y; λ), (54)

Ψε(0, 0; λ) = 1.

So any solution of (48) uniquely defines a matrix, Ψε : Ωε(r) → G[λ], satisfy-
ing (54). This can be used to finally construct the immersion by an analogue
of the Sym formula,

F ε(x, y) =
(
2λΨε(x, y; λ)−1∂λΨε(x, y; λ)

) ∣∣∣
λ=1

. (55)

The geometric meaning of the function φ is the following. The angle between
edges F ε(x + ε, y) − F ε(x, y) and F ε(x, y + ε) − F ε(x, y) is equal to (φ(x +
ε, y) + φ(x, y + ε))/2; the angle between edges F ε(x, y + ε) − F ε(x, y) and
F ε(x− ε, y)−F ε(x, y) is equal to π− (φ(x, y + ε) + φ(x− ε, y))/2; the angle
between edges F ε(x− ε, y)− F ε(x, y) and F ε(x, y− ε)− F ε(x, y) is equal to
(φ(x−ε, y)+φ(x, y−ε))/2; and the angle between edges F ε(x, y−ε)−F ε(x, y)
and F ε(x + ε, y) − F ε(x, y) is equal to π − (φ(x, y − ε) + φ(x + ε, y))/2. In
particular, the sum of these angles is 2π, so that the four neighboring vertices
of F ε(x, y) lie in one plane, as they should. Again, the right-hand side of
(55), at values of λ different from λ = 1 determines an associated family F ε

λ

of discrete K-surfaces parametrized by asymptotic lines.
Now we are prepared to state the approximation theorem for K-surfaces.

Theorem 2. Let a0 : [0, r] → R and b0 : [0, r] → S1 = R/(2πZ) be smooth
functions. Then

– there exists a unique K-surface parametrized by asymptotic lines, F :
Ω(r) → R3 such that its characteristic angle, φ : Ω(r) → S1, satisfies

∂xφ(x, 0) = a0(x), φ(0, y) = b0(y), x, y ∈ [0, r], (56)
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– for any ε > 0 there exists a unique discrete K-surface F ε : Ωε(r) → R3

such that its characteristic angle φε : Ωε(r) → S1 on the coordinate axes
satisfies

φε(x + ε, 0)− φε(x, 0) = εa0(x), φε(0, y + ε) + φε(0, y) = 2b0(y), (57)

for x, y ∈ [0, r − ε]ε,
– The inequality

sup
Ωε(r)

|F ε − F | ≤ Cε, (58)

where C does not depend on ε, is satisfied. Moreover, for a pair (m,n) of
nonnegative integers

sup
Ωε(r−kε)

|(δε
x)m(δε

y)nF ε − ∂m
x ∂n

y F | → 0 as ε → 0, (59)

– the estimates (58), (59) are satisfied, uniformly for λ ∈ [Λ−1, Λ] with any
Λ > 1, if one replaces, in these estimates, the immersions F , F ε by their
associated families, Fλ, F ε

λ , respectively.

The complete proof of this theorem and its generalizations for nonlinear
hyperbolic equations and their discretizations is presented in [7]. It is ac-
complished in two steps: first, the corresponding approximation results are
proven for the Goursat problems for the hyperbolic systems (52) and (43),
and then the approximation property is lifted to the frames Ψε, Φ and finally
to the surfaces F ε, F . The proof of the C∞-approximation goes along the
same lines.

Moreover, a stronger approximation result follows from the consistency
of the corresponding hyperbolic difference equations. As it was explained in
Section 2, considering K-nets of higher dimensions and the corresponding
consistent discrete hyperbolic systems, one obtains in the limit smooth K-
surfaces with their Bäcklund transforms. The approximation results of The-
orem 2 hold true also in this case. Permutability of the classical Bäcklund
transformations then also easily follows.
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