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From the geometric study of the elementary cell of hexagonal
circle packings — a flower of 7 circles — the class of conformally
symmetric circle packings is defined. Up to Möbius transforma-
tions, this class is a three parameter family, that contains the
famous Doyle spirals as a special case. The solutions are given
explicitly. It is shown that these circle packings can be viewed
as discretization s of the quotient of two Airy functions.

The online version of this paper contains Java applets that let
you experiment with the circle packings directly. The applets
are found at http://www-sfb288.math.tu-berlin.de/Publications/
online/cscpOnline/Applets.html

1. INTRODUCTION

Circle packings �and more generally patterns� as dis�
crete analogs of conformal mappings is a fast de�
veloping �eld of research on the border of analy�
sis and geometry� Recent progress was initiated by
Thurston�s idea �	
�� about the approximation of
the Riemann mapping by circle packings� The cor�
responding convergence was proved by Rodin and
Sullivan �	
��� many additional connections with
analytic functions� such as the discrete maximum
principle and Schwarz�s lemma �Rodin 	
�� and
the discrete uniformization theorem �Beardon and
Stephenson 	

�� have emerged since then�
Circle packings constitute a natural topic for com�

puter experimentation and visualization� Computer
experiments demonstrate a surprisingly close anal�
ogy of the classical theory in the emerging �discrete
analytic function theory� �Dubejko and Stephenson
	

�� Although computer experiments give con�
vincing evidence for the existence of discrete analogs
of many standard holomorphic functions� Doyle spi�
rals �which are discrete analogs of the exponential
function� see Section �� are the only circle packings
that have been described explicitly�
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Circle packings are usually described analytically
in the Euclidean setting� that is� through their radii
function� On the other hand� circles and tangen�
cies are preserved by the fractional�linear transfor�
mations of the Riemann sphere �M�obius transfor�
mations�� It is natural to study circle packings in
this setting� i�e�� modulo the group of the M�obius
transformations� Z��X� He and O� Schramm �	

�
developed a conformal description of hexagonal cir�
cle packings� and used it to show that Thurston�s
convergence of hexagonal circle packings to the Rie�
mann mapping is actually C�� They describe circle
packings in terms of the cross�ratios

q�a� b� c� d� ��
�a� b��c� d�

�b� c��d� a�

of their touching points�
Schramm �	

� introduced circle patterns with

the combinatorics of the square grid �SG patterns��
In many aspects the SG theory is analogous to the
theory of the hexagonal circle packings� However�
the SG theory is analytically simpler� The corre�
sponding discrete equations describing the SG pat�
terns� in the Euclidean as well as in the confor�
mal setting� turn out to be integrable �Bobenko and
Pinkall 	


� Methods of the theory of integrable
equations made it possible to �nd Schramm�s circle
patterns that are analogs of the holomorphic func�
tions z� and log z �Agafonov and Bobenko �����
Discrete z� and log z had been conjectured earlier
�Schramm 	

� by Schramm and Kenyon�
One big question is which results on the Schramm�s
circle patterns carry over to the hexagonal setting�
in particular whether some discrete standard func�
tions can be described explicitly� This is closely
related to the question of integrability of the ba�
sic discrete equations for hexagonal circle packings
�the He�Schramm equation� see Section ��� In the
present paper the �rst simple step in this direction
is made� We study �surprisingly nontrivial� confor�
mal geometry of hexagonal circle packings� In terms
of this approach� a special class of conformally sym�

metric circle packings� which are generalizations of
Doyle spirals� is introduced and all such packings
are described explicitly�
Since this article deals with families of circle pack�

ings it seems natural to show not only arbitrar�
ily chosen members in the �gures� but to provide

z� z�

z�

z�z�

z�

FIGURE 1. A circle �ower �applet version available��

a possibility to present them all� Therefore there
is an interactive version of this paper available on�
line� It has some of the �gures replaced by applets�
which allow one to explore the families directly� See
the section on Electronic Availability at the end for
more information on this version�

2. GEOMETRY OF CIRCLE FLOWERS AND
CONFORMALLY SYMMETRIC CIRCLE PACKINGS

This paper concerns patterns of circles in the plane
called hexagonal circle packings� Their basic unit is
the �ower� consisting of a center circle tangent to
and surrounded by petals� A hexagonal �ower is il�
lustrated in Figure 	� the six petals form a closed
chain which wraps once in the positive direction
�counterclockwise� about the center� Whereas neigh�
boring petals touch� the circles of non�neighboring
petals of a �ower may intersect� We call a �ower im�

mersed if none of its circles degenerates to a point�
A hexagonal circle packing is a collection of oriented
circles where each of its internal circles is the cen�
ter of a hexagonal �ower� Orientations of the circles
should agree� at the touching points the orientations
of the touching circles must be opposite� A hexag�
onal circle packing can be labeled by the triangular
�hexagonal� lattice

HL � n�mei��� � C � for n�m � Z �

or by one of its subsets� A circle packing is called
immersed if all its �owers are immersed� Immer�
sions of the whole HL are called entire� Fractional�
linear transformations of the complex plane �M�obius
transformations� preserve circles� their orientation
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and their tangencies� In this paper we study circle
packings modulo the group of M�obius transforma�
tions�
The center circle of a �ower contains � points

z�� � � � � z� �see Figure 	� where it touches the petals�
We call them center touching points of a circle �ower�

Proposition 2.1. Let z�� � � � � z� be points ordered coun�

terclockwise on a circle C� The following three state�
ments are equivalent �

�i� There exists a �ower with the center C and center

touching points z�� � � � � z��
�ii� The multiratio m of z�� � � � � z� is equal to �	�

that is �

m�z�� z�� z�� z�� z�� z�� ��
�z��z���z��z���z��z��
�z��z���z��z���z��z��

� �	� (2–1)

�iii� There exists an involutive M�obius transforma�

tion M �M�obius involution� such that

M�zk� � zk�� �k mod ���

z� z�

r�r�

z� z� z�

r� r�r�

FIGURE 2. A �ower with one central touching point
at in�nity�

Proof. Mapping the point z� to in�nity by a M�obius
transformation one obtains two parallel lines and
�ve touching circles as in Figure �� An elementary
computation yields

zk�� � zk � �
p
rk��rk� for k � 	� � � � � �� (2–2)

where rk are the radii of the corresponding circles�
Together with r� � r� and �z� � z����z� � z�� � �	
this implies ���	��
On the other hand� given arbitrary r� � � and

ordered z�� � � � � z� satisfying ���	�� after normalizing
z� � � formula ����� provides us with the radii of
the touching circles as in Figure �� This proves the
equivalence of �i� and �ii��

To show the equivalence of �ii� and �iii�� de�ne
the M�obius transformation M through M�z�� � z��
M�z�� � z�� M�z�� � z�� Consider z� � M�z���
The invariance of the cross�ratios q�z�� z�� z�� z�� �
q�z�� z�� z�� z�� implies the equivalence of ���	� and
z� � z�� The same proof holds for M�z�� � z� and
M�z�� � z�� �

To each center touching point zk of a �ower� one
can associate a circle Sk passing through � touching
points zk��� zk��� wk� wk�� of the �ower containing
zk �see Figure ��� Here wk is the touching point
of petals Pk�� and Pk �the petals are labeled by the
corresponding touching points zk�� Indeed� mapping
the point zk by a M�obius transformation to �� it is
easy to see that the points zk��� zk��� wk� wk�� are
mapped to vertices of a rectangle� thus lie on a circle�
We call these circles s�circles of a �ower�

wk��

zk��

Sk

wk
zk

zk��
P

FIGURE 3. A conformally symmetric �ower �applet
version available��

Theorem 2.2. There exist a one�parameter family of

�owers with the same center touching points � More�

over � there exists a unique �ower F in this family �
which satis�es the following equivalent conditions �

�i� F is invariant with respect to a M�obius involution

M with a �xed point P �
�ii� All s�circles of F intersect in one point P �

We call the �ower F of the theorem conformally

symmetric�
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One can view the whole family of �owers using an
applet �see Electronic Availability at the end��

Proof. Keeping the points z�� � � � � z� in Figure � �xed
and varying r� one obtains a one parameter fam�
ily of �owers with the same touching central points�
Let us now construct the �ower F � The M�obius
involution of Proposition ��	 preserves the central
circle C� Consider the circles Ck� for k � 	� �� ��
orthogonal to C and passing through the pairs of
points fzk� zk��g� All these three circles intersect
in � points P and P �� which are the �xed points of
M lying inside and outside C� respectively� By a
M�obius transformation� map the point P to in�nity�
The M�obius involution M becomes M�z� � �z and
the circles C�� C�� C� become straight lines intersect�
ing in the center of C� To construct the �ower F �
connect the zk�points with even �respectively� with
odd� labels by straight lines and consider their in�
tersection points wk �see Figure ��� The circles Ck

passing through the triples wk� wk��� zk touch at
the points wk� Let us prove this fact for C� and C��
Indeed� the triangles ��w�� w�� z�� and ��z�� z�� z��
are similar� therefore the tangent lines to the circle
C� at w� and to the circle C at z� are parallel� The
tangent lines to C� at w� and to C at z� are also
parallel� Since the points z� and z� are opposite on
C� the circles C� and C� touch at w�� The circles Ck

w�
w�

w�

z�

z�

z�z�

z�

z�

w�

w�

w�

FIGURE 4. A normalized conformally symmetric �ower�

are the petals of the desired �ower F � which is obvi�
ously M �symmetric� The s�circles of this �ower are
the straight lines �zk� zk���� The latter obviously in�
tersect at in�nity� thus all the s�circles of F intersect
in the �xed point P of M �
The proof of �ii� �� �i� is similar� After mapping

the point P to in�nity the s�circles become straight
lines and the �ower is as in Figure �� Since the
circles in this �gure touch� their tangent lines at the
points zk� zk�� and wk�� are parallel� This implies
that zk and zk�� are opposite points on C� and the
�ower is symmetric with respect to the ��rotation
of C� �

Definition 2.3. A hexagonal circle packing is called
conformally symmetric or an s�circle packing if it
consists of conformally symmetric �owers� that is�
if the s�circles of each of its �owers intersect in one
point�

3. ANALYTIC DESCRIPTION OF CONFORMALLY
SYMMETRIC CIRCLE PACKINGS

In this section we describe all conformally symmet�
ric circle packings using the conformal description of
circle packings proposed by He and Schramm �	

��
To each central touching point zk of a �ower one

associates the cross�ratio

sk �� q�zk� zk��� wk��� wk� �
�zk�zk����wk���wk�

�zk���wk����wk�zk� �
(3–1)

�Note that our normalization of sk di�ers from the
one in �He and Schramm 	

��� Mapping zk to
�� one observes that tree other points in ���	� are
mapped to vertices of a rectangle� which implies that
sk is purely imaginary� Moreover� the cross�ratios of
an immersed oriented �ower are positive imaginary�
�isk � �� Also note that
sk � �q�zk��� zk��� wk��� zk� � q�zk� wk� zk��� zk����

(3–2)
and that s�k � q�zk��� zk��� wk��� wk� is the cross�
ratio of the four touching points lying on the s�circle
Sk�

Lemma 3.1. The cross�ratios sk of a �ower satisfy the

He�Schramm equation

sk � sk�� � sk�� � sksk��sk�� � � (3–3)

for all k mod ��
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Proof. Let mk be the M�obius transformation that
takes zk�zk���wk�� to the points����	� respectively�
By the de�nition of sk we have

sk � q�zk� zk��� wk��� wk� � q��� �� 	�mk�wk���

�sk � q�zk��� zk��� wk��� zk� � q�mk�zk���� �� 	����
thus

mk�wk� � 	� sk

and

mk�zk��� � �sk�
For Mk �� mk��m

��

� this yields Mk��sk� � ��
Mk��� � �� Mk�	� sk� � 	 and� �nally�

Mk �

�
� 	
	 sk

�
�

in the usual matrix notation for the M�obius transfor�
mations� The equality of the corresponding M�obius
transformations implies

M�M�M� � �M��

�
M��

�
M��

�
�

which is�
s� 	�s�s�

	�s�s� s��s��s�s�s�

�

� �
��s��s��s�s�s� 	�s�s�

	�s�s� �s�

�
�

Since the set of immersed �owers is connected and
s�s do not vanish the sign in this equation is the
same for all �owers� Taking all the circles with the
same radius one checks that the correct sign is plus�
which implies the claim� �

It is convenient to associate the touching points of a
hexagonal circle pattern �as well as the cross�ratios
sk� to the edges of the honeycomb lattice� Equation
����� is a partial di�erence equation on the honey�
comb lattice� The cross�ratios on the edges of each
hexagon satisfy ������ Moreover� it is easy to check
that the He�Schramm equation is su cient to guar�
antee the existence of the corresponding circle pack�
ing�

Proposition 3.2. Given a positive�imaginary function

s � E � iR � on the edges E of the honeycomb lat�

tice satisfying ����� on each honeycomb� there ex�

ists unique �up to M�obius transformation� immersed

hexagonal circle packing with the cross�ratios given

by the corresponding values of s�

Theorem 3.3. A circle �ower is conformally symmet�

ric if and only if its opposite cross�ratios sk are equal

sk � sk�� �k mod ��� (3–4)

Proof. The property ����� for conformally symmetric
�owers follows from �i� of Theorem ���� A simple
computation with the �owers in Figure � shows that
the map �s�� s�� of immersed conformally symmetric
�owers to �iR ��

� � �s�� s�� is surjective� Since a
�ower is determined through the s�s� the converse
statement follows� �

The general solution of ����� ���� on the whole HL
depends on three arbitrary constants and can be
given explicitly� There is a Java applet that lets you
explore this three parameter family of circle pack�
ings interactively �see section on Electronic Avail�
ability at the end��

a�n

c� a� b�

a�

b�
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ana��

c�

cn

c�n

a�n

a�n

bn

bn

cn

cn
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an

b�n

b�n

c� a�

FIGURE 5. Cross�ratios of conformally symmetric cir�
cle patterns�

Theorem 3.4. The general solution of ����� ���� is
given by

an � i tan��n� ���

bn � i tan��n� ���

cn � i tan��n� 	��

(3–5)

where � � �����	 and the cross�ratios sk on the

edges of the hexagonal lattice are labeled by an� bn� cn
as shown in Figure � �n varies over the integers��
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FIGURE 6. Continuation of conformally symmetric s
about a honeycomb�

Proof. We start with a simple proof of the consistency
of the following continuation of a solution of ������
������
Given s satisfying ����� and ����� on a honey�

comb H � that is� a� b� c in Figure � satisfying

a� b� c� abc � �� (3–6)

and a value of s on one of the edges attached to
the honeycomb �for example� d� in Figure ��� it
can be uniquely extended to the full six honeycombs
H�� � � � � H� neighboring H � Indeed� ����� and �����
yield

b� d� � d� � bd�d� � ��

thus d� �M��d�� is a M�obius transformation of d��
Passing once around the honeycomb H in this way
one can check that ����� implies the monodromy
M�obius transformation M � M� � � �M� is the iden�
tity� thus this continuation implies no constraints on
d��
Proceeding this way� one reconstructs s on the

whole lattice HL from its values on three adjacent
edges �a� b� d� above�� Then ����� and ����� imply

an � b�n � c� � anb�nc� � ��

an�� � b�n � c� � an��b�nc� � ��

and similar relations for other an� bn� cn� These iden�
tities become just the addition theorem for the tan�
gent function� implying the formulas in ������ which
can be checked directly� �

4. DOYLE SPIRALS

Denote byR the radius of the center circle of a �ower
and by R�� � � � � R�� the radii of its petals� Doyle
spirals are characterized through the constraint �see
�Beardon et al� 	

�� Callahan and Rodin 	

� for
a complete analysis of Doyle spirals�

RkRk�� � R�� RkRk��Rk�� � R� (4–1)

on the radii of the circles �see Figure �� where the
central radius is normalized to be R � 	�� Doyle
spirals have two degrees of freedom �for example the
ratios R��R and R��R� which are the same for the
whole spiral� up to similarities� Again� you can ex�
periment online with the two radii in a Java applet�

B

�

B

B

A

�
B

A

�

A

A

FIGURE 7. Radii of a Doyle spiral with the normal�
ized central radius R 	 � �applet version available��

Proposition 4.1. Doyle spirals are conformally sym�

metric�

Proof. The con�gurations of four touching circles
with the radii R� Rk��� Rk� Rk�� and with the radii
Rk��� Rk��� R� Rk�� di�er by scaling� This implies
sk � sk�� �use both ���	� and the second repre�
sentation of sk in ������ and the claim follows by
Theorem ���� �

Theorem 4.2. Doyle spirals and their M�obius trans�

formations can be characterized by the following two

equivalent properties �
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�i� The circle packing is conformally symmetric� and
the corresponding solution of ����� is �constant��
It is of the form ����� with �� �� 	 � ��� ���� and
�� � � 	 � � �mod �� or � equivalently �

an � a�� bn � b�� cn � c�� a�� b�� c� � iR ��

a� � b� � c� � a�b�c� � ��

�ii� The whole circle packing is invariant with respect
to the M�obius involution of each of its �owers �

Proof. All the �owers of a Doyle spiral di�er by scal�
ing� which implies �i�� Consider the Doyle spiral as
in Figure �� Computing the cross�ratios through the
radii� one shows that the map�
�A�B� � R

�

�

���
�a� b� c� � �iR ��

� � a� b� c� abc � �
�
�

is surjective� thus �i� characterizes Doyle spirals and
their M�obius transforms� The proof of the equiv�
alence �i� �� �ii� is elementary and is left to the
reader� �

It is an open problem whether Doyle spirals are the
only entire circle packings� Formulas ����� imply
that it is possible to have all cross�ratios being pos�
itive imaginary �necessary condition for entireness�
only when � � ��

Corollary 4.3. Doyle spirals are the only entire con�

formally symmetric circle packings �

5. AIRY FUNCTIONS AS CONTINUOUS LIMIT

Because of the property ���	�� Doyle spirals are in�
terpreted as a discrete exponential function�
In the conformal setting this interpretation can

also be easily observed� Indeed� let P � be a family of
circle packings approximating a holomorphic map�
ping in the limit 
 � �� He and Schramm �	

�
investigated the behavior of the cross�ratios sk in
this limit�

sk � i
p
��	 � 
�h�k��

where hk is called the discrete Schwarzian deriva�
tive �Schwarzian� of P � at the corresponding edge
of the hexagonal lattice� The discrete Schwarzians
converge to the Schwarzian derivative

S�f� ��

�
f ��

f �

�
�

� 	
�

�
f ��

f �

��
(5–1)

of the corresponding holomorphic mapping� More
precisely� there exist continuous limits

a � lim
���

h��� b � lim
���

h��� c � lim
���

h��

for the smooth functions a� b� c� �Note that we have
lim��� h

�
k � lim��� h

�
k���� Because of ����� these

functions satisfy

a� b� c � � (5–2)

at each point� The Schwarzian equals

S�f� � ��a� ��b� �c�� with � � e��i���

and� using ������ this also yields

�a � ReS�f��

�b � Re��S�f���

�c � Re���S�f���

���
�� (5–3)

We see that� because of Theorem ���� Doyle spirals
correspond to holomorphic functions with constant
Schwarzian derivative S�f� � const� The general
solution of the last equation is the exponential func�
tion and its M�obius transformations�
It is natural to ask which holomorphic functions

correspond to general conformally symmetric circle
packings� In Figure � one observes that each of the
cross�ratios an� bn� cn is constant along one lattice
direction� For the functions a� b� c above� this implies

a � a�Re z��

b � b�Re��z���

c � c�Re���z���

where z is the complex coordinate� Comparing these
equations with ����� we see that the Schwarzian is
a linear function of z�

S�f� � Az �B� A � R � B � C � (5–4)

Equation ����� can be easily solved by standard
methods� The general solution of S�f� � u�z� with
holomorphic u�z� is given by

f�z� �� ������

where ���z� and ���z� are two independent solu�
tions of the linear di�erential equation ��� � u�z���
By a shift and scaling of the variable z� equation

����� with A 	� � can be brought to the form
S�f� � z� (5–5)
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As solutions of the corresponding linear equation

��� � z�

we have the Airy functions Ai�z� and Bi�z�� On the
real line the �rst of these is given by

Ai�x� �
	

�

Z
�

�

cos
	
xt�

t�

�



dt�

�Spanier and Oldham 	
��� while the second is re�
lated to it by

Bi�z� � iq�Ai���z�� iqAi��z��

In the corresponding M�obius class of solutions of
����� it is natural to choose

f�z� ��
Bi�z��p�Ai�z�
Bi�z� �

p
�Ai�z�

� (5–6)

which is the most symmetric one� f�qz� � qf�z��
The corresponding circle packing� symmetric with
respect to the rotation z � qz� is shown in Figure ��

Remark. One observes that the approximation in Fig�
ure � is excellent� On the other hand the results
of Sections � and � imply that this approximation
holds in �nite domains only� For some large n � N �
some cross�ratios become negative imaginary� which
one can interpret as passing through in�nity� Thus�
the circle packing arrives at in�nity for �nite n�
By re�ning the discretization!taking � � � in
�����!one can approximate the above�mentioned
ratio of two Airy functions in an arbitrary �nite do�
main�
As mentioned in the introduction� in connection

with explicit examples� Schramm�s SG�patterns are
richer than the packings with hexagonal combina�
torics� SG�patterns corresponding to ratios of two
Airy functions were constructed in �Schramm 	

�
�compare Figure ��	�a of that paper with Figure ���
In contrast with our conformally symmetric circle
packings� the Schramm circle patterns correspond�
ing to them are entire� that is� they have regular
behavior for all �n�m� � Z

��
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ELECTRONIC AVAILABILITY

Since the families of circle packings discussed in this
paper have a �nite �and even small� number of pa�
rameters� it seemed natural to look for a way to
visualize whole families and experiment directly�
Java applets have been provided to illustrate the

families of circle packing �owers� the whole class of
conformally symmetric circle packings� and the spe�
cial case of Doyle spirals� They also let the viewer
wear �M�obius glasses�� allowing the application of
arbitrary M�obius transformation� which can help
gain intuition� �Except for Doyle spirals� the fam�
ilies are only de�ned modulo an arbitrary M�obius
transformation�� These applets can be found at
http�""www�sfb����math�tu�berlin�de"Publications"
online"cscpOnline"Applets�html�
The page http�""www�sfb����math�tu�berlin�de"

Publications"online"cscpOnline"index�html includes
these applets and the text of this paper� with in�
structions for the interactive �gures� This online
version renders a dvi �le inside a Java applet� It
requires a web browser that includes a Java virtual
machine �any recent browser does�� Note� however�
that rendering the pages is slow on older machines�
that�s why we also provide the applets separately�

REFERENCES


Agafonov and Bobenko ���� S� I� Agafonov and
A� I� Bobenko� �Discrete z� and Painlev�e equations��
Internat� Math� Res� Notices ������ ������� ��������


Beardon and Stephenson ���� A� F� Beardon and K�
Stephenson� �The uniformization theorem for circle
packings�� Indiana Univ� Math� J� ���� ������� �����
�����


Beardon et al� ���� A� F� Beardon� T� Dubejko� and
K� Stephenson� �Spiral hexagonal circle packings in
the plane�� Geom� Dedicata ���� ������� ������


Bobenko and Pinkall ���� A� I� Bobenko and U�
Pinkall� �Discretization of surfaces and integrable
systems�� pp� ���� in Discrete integrable geometry and
physics� edited by A� I� Bobenko and R� Seiler� Oxford
Lecture Ser� Math� Appl� ��� Oxford Univ� Press�
Oxford� �����


Callahan and Rodin ���� K� Callahan and B� Rodin�
�Circle packing immersions form regularly exhaustible
surfaces�� Complex Variables Theory Appl� ������
������� ��������



Bobenko and Hoffmann: Conformally Symmetric Circle Packings: A Generalization of Doyle’s Spirals 149

FIGURE 8. A conformally symmetric circle packing �with � 	 � 	 � in ������ and its smooth counterpart� The
vertices of the hexagons are the images of the points of a standard hexagonal grid under the map f from ������


Dubejko and Stephenson ���� T� Dubejko and K�
Stephenson� �Circle packing� experiments in discrete
analytic function theory�� Experiment� Math� ���
������� ��������


He and Schramm ���� Z��X� He and O� Schramm�
�The C��convergence of hexagonal disk packings to
the Riemann map�� Acta Math� ����� ������� ����
����


Rodin ���� B� Rodin� �Schwarz�s lemma for circle
packings�� Invent� Math� ���� ������� ��������


Rodin and Sullivan ���� B� Rodin and D� Sullivan�
�The convergence of circle packings to the Riemann
mapping�� J� Di�erential Geom� ���� ������� ��������


Schramm ���� O� Schramm� �Circle patterns with the
combinatorics of the square grid�� Duke Math� J� ����
������� ��������


Schramm ���� O� Schramm� �Circle packings and con�
formal geometry� a survey of selected topics�� ����� See
http���www�math�weizmann�ac�il��schramm�talks�


Spanier and Oldham ���� J� Spanier and K� B�
Oldham� An atlas of functions� Hemisphere Pub�
Corp�� Washington� �����


Thurston ���� W� P� Thurston� �The �nite Riemann
mapping theorem�� ����� Invited address� Interna�
tional Symposium in Celebration of the Proof of the
Bieberbach Conjecture� Purdue University�



150 Experimental Mathematics, Vol. 10 (2001), No. 1

Alexander I� Bobenko� Fachbereich Mathematik� Technische Universit�at Berlin� Str� �� Juni ���� ����� Berlin�
Germany �bobenko�math�tu�berlin�de�

Tim Ho mann� Fachbereich Mathematik� Technische Universit�at Berlin� Str� �� Juni ���� ����� Berlin� Germany
�timh�sfb����math�tu�berlin�de�

Received July ��� ����! accepted in revised form September �� ����


