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Discretization of Surfaces and Integrable Systems

Alexander I. Bobenko and Ulrich Pinkall
1 Introduction

Long before the theory of solitons, geometers used integrable equations to de-
scribe various special curves and surfaces. Nowadays this field of research takes
advantage of using both geometrical intuition and algebraic and analytic me-
thods of soliton theory in order to study integrable geometries, i.e. geometries
described by integrable systems.

The question of proper discretization of the geometries mentioned above has
recently become a subject of intensive study. Indeed, one can suggest various
discrete problems which have the same continuous limit and nevertheless have
quite different properties. Is there a particular discretization among them one
should choose? Interest in this problem is partially motivated by the importance
of discretizations for numerical solution of differential equations or variational
problems describing surfaces ®.

Taking into account the connection between the above-mentioned geometries
and integrable systems it is natural to suggest two approaches to define proper
discrete analogues of integrable geometries:

(i) to postulate natural discrete analogues of characteristic geometrical proper-
ties,
(ii) to construct a discrete integrable system corresponding to a given continous
one.

These two approaches turn out to be complementary and (as experience
shows) in those cases where both approaches are possible yield the same dis-
crete integrable geometry, i.e. a geometry corresponding to a discrete integrable
system. It is probably more natural to talk about different presentations rather
then about different methods. These two presentations, which we call geometric
and algebraic, are compared in Table 1.

The fundamental research in discrete systems is still in its infancy and many
of the concepts have to be developed by trial and error. This is very much so
in the special area of discrete integrable geometry, where we cannot present a
developed theory starting with a general definition?. Rather we have to work by

LAt this point we mention a recent construction [24] of compact constant mean curvature
surfaces based on a new discretization algorithm [42].

21t is remarkable that many definitions in the present chapter have several versions.
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Table 1 Geometric versus algebraic descriptions
Geometric description Algebraic description
Advantages | e Consistent (Definitions | @ General picture (Pro-
and properties are formu- | vides a sort of Klein’s Er-
lated in internal geometric | langen program in discrete
terms no reference to inte- | integrable geometry)
grable systems is needed) | o Computational methods
e Descriptive and wvisual | (Provides direct methods
(Geometric properties are | to prove statements and
intuitive) check conjectures)
Disadvantages | Does not explain why | Not as descriptive, intu-
different geometries have | itive and visual as the ge-
similar properties ometric description

examples and combinations of geometric and algebraic methods.

For the present chapter we have chosen a historical presentation. In fact, a
crucial point is a proper definition of the discrete geometry in question and we
show which method first provided us with the corresponding definitions.

The sine-Gordon equation

Gpt —sing =0

was probably the first known integrable equation. It was derived in differential
geometry to describe surfaces with constant negative Gaussian curvature (K =
const < 0). Another real realization of it — the elliptic sinh-Gordon equation

U,z +sinhu =0

is the Gauss equation for surfaces with constant mean curvature (H = const)
and with constant positive Gaussian curvature . In the late 1980s significant
progress in the theory of these surfaces was achieved (see [49, 44, 4, 38]) mainly
due to the methods developed in soliton theory. It was natural to try again to
make use of the cooperation of differential geometry and theory of integrable
equations to define discrete analogues of these surfaces.

As a result of this research, discrete surfaces with constant Gaussian or mean
curvature (we call them the discrete K- and H-surfaces) were defined in the early
1990s 3. The method of derivation, which was based on an integrable discretiza-

3The corresponding results were first presented in 1991 in the talks of the authors at the
conferences in Granada and Oberwolfach.
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tion of the Lax representations, and the corresponding results are presented in
Sections 3 and 4. Geometric properties of discrete K-surfaces are rather simple
and these surfaces had already been known for about 40 years before we started
to study them. First they were defined by Sauer [45] and investigated in detail
by Wunderlich [50] by purely geometric methods. Of course, the relation to dis-
crete integrable systems was at that time unknown. For our paper [10] we have
chosen the geometric presentation (which is complementary to the presentation
in Section 3): from the definition of Sauer and Wunderlich to the Lax represen-
tation and finite-gap integration. For a more algebraic loop group description
see [43].

Discrete H-surfaces turned out to be important for further progress in the
study of discrete integrable geometries. The geometric properties of discrete H-
surfaces are not as transparent as those of discrete K-surfaces. As a result, the
geometric Definition 11 of discrete H-surfaces, which consists of various ingredi-
ents of conformal and Euclidean geometries, wouldn’t have been guessed without
using the theory of integrable systems.

Keeping in mind that surfaces with constant mean curvature are isothermic
and that it is the isothermic parametrization which is discretized in Section 4,
it is natural to look for generalizations. Indeed, what are discrete isothermic
surfaces and, more generally, discrete curvature line parametrized surfaces? The
answer to the last question presented in Section 2.3 is more or less obvious: these
are circular lattices . The definition of discrete isothermic surfaces presented in
Section 5.2 and suggested® in [11] is more complicated and requires the notion
of cross-ratio (see Section 2.3). Based on these definitions a purely geometric
theory of the Darboux transformations of discrete isothermic surfaces and of
discrete H-surfaces has been developed in the contribution by Hertrich-Jeromin,
Hoffmann and Pinkall [30].

Circular lattices as a discretization of curvature line parametrized surfaces
allow a natural generalization to the three-dimensional case, which is a notion
of discrete triply orthogonal coordinate systems introduced in [6]. This gener-
alization based on a natural discretization of the Dupin theorem is discussed
in Section 5.1. One can proceed further: namely, a generalization of circular
lattices is the quadrilateral lattices introduced in [18]. These lattices provide a
natural discretization of conjugate coordinate systems (see the contribution of
Doliwa and Santini [19]). Algebraic and geometric descriptions in this case are
especially simple.

A special case of discrete H-surfaces (H = 0) is discrete isothermic minimal
surfaces (see [11] and Section 5.2). Via a discrete version of the Weierstrass
representation they are intimately related to discrete conformal mappings .

These mappings considered in Section 5.3 are special circular nets in a plane.

4Remarkably, circular lattices as a discretization of curvature line parametrization have
been used in computer-aided surface design [37, 41].

5 At this point we used the modern treatment of the isothermic surfaces of [15, 13].
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In the contribution of Hoffmann [27] it is shown how discrete H-surfaces can be
parametrized in terms of discrete conformal mappings . Algebraic properties of
discrete conformal mappings (in particular compatible constraints) are studied
in the contribution of Nijhoff [40]. Some of the constraints are important geo-
metrically. In particular, a discrete analogue of the power function z® can be
described in this way. This discrete mapping is discussed in [6], Section 6 and
the contribution of Hoffmann [27]. The discrete version of z® belongs to a re-
markable subclass of discrete conformal mappings. We finish our paper with the
discussion of this subclass, recently introduced by Schramm [47] and suggest a
generalization of his circular lattices to three-dimensional Euclidean space, which
we call Schramm-isothermic nets.

2 Parametrizations of surfaces and their discretization
2.1 Parametrized surfaces and nets

Surfaces in Euclidean 3-space studied by analytical methods are usually de-
scribed as maps
F:R =R,

where R is a two-dimensional manifold. Let (u,v) : U — R? be alocal coordinate
on a domain U C R. In these coordinates the fundamental forms are
I = < dF,dF >= Edu® + 2Fdudv + Gdv®
Il = — < dF,dN >= Ldu® 4+ 2Mdudv + Ndv*, (2.1)

where N : R — 52 is the Gauss map. The principal curvatures ki, ks are the
eigenvalues of the Weingarten operator

E F\'(L M

F G M N
of an immersion (EG — F? # 0). For the mean and the Gaussian curvature this
implies

g kitk EN+LG—2MF

2~ 2(EG-F?)
LN — M?
h=hbk =57

In the simplest case R coincides with R? or with some domain in R?. The theory
we are dealing with is essentially a local one. We will not distinguish these two
cases by notation and will write

F:R - R (2.2)

keeping in mind that F might be defined only on a domain in R?.
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To discretize surfaces described by integrable equations and for investigation
by analytical methods it is convenient to identify three-dimensional Euclidean
space with the space ImH of imaginary quaternions and to describe immersion
in terms of 2 x 2 matrices [5].

Let us denote the algebra of quaternions by H, the multiplicative quaternion
group by H, = H \ {0} and the standard basis of H by {1,1i,j,k}

j=k, jk =1, ki=j.

Using the standard matrix representation of H the Pauli matrices o, are related
to this basis as follows:

—Ol—ii—o_i—i'
o1 = 1 0 - , 02 = i 0 =1t),
1 0 . 10
= (0 )ik 1= (1 0), o9
The real and imaginary parts of the quaternion
q=qol + @i+ qj+ gk
are defined by
Re ¢ = qo, Imq Q@ = q1i+ q2j + g3k
with the corresponding norms
il =+/a5 +Mmql*,  |mgl=1/¢f +& +a.
The identification
3
X=-i) Xo0n€ImH +— X =(X1,X,,X;) € R, (2.4)

a=1

of R® and ImH provides us with the following matrix representation

B —iXs  —iX; - Xo
X= ( —iX1 + Xo iXs ) (2:5)

of vectors in R®. For the scalar and vector products of vectors in terms of
quaternions one has

XxY = %[X,Y],

1
<X,Y >= —Re (XY) = —5tr XV, (2.6)
XY =-<X,Y>1+XxV.
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Fig. 1. Quad-graph

In the following we do not distinguish between vectors in R®, imaginary quater-
nions or their matrix representation (2.5). In particular this convention will be
used for the immersion F' and the Gauss map N.

Considering surfaces in R? there is no need to deal with the most general
parametrization (2.1). It is well known [17] that surfaces with negative Gaussian
curvature allow asymptotic line parametrizations , i.e. parametrizations with
L =N =01in (2.1). On the other hand, any surface without umbilic points
(i.e. k1 # ko for all points of the surface) allows curvature line parametrizations
F=M=0.

Discrete analogues of these two kinds of parametrizations are presented in
the next two sections. Having in mind applications to the theory of integrable
systems, by a discrete surface we mean a “quadrilateral surface”, i.e. a surface
“made out of quadrilaterals”. More precisely, a discrete surface in the present
paper is a map

F:G — R3, (2.7)

where G is a graph of special topology, which we call a quad-graph . Let us
describe the topology of quad-graph, an example of which is presented in Fig.
1. Introduce the following notations:

v € V—-a vertex of G,

V = { vertices of G},

e = [v,v'] € E — the edge connecting the vertices v,v' € V,
E = { edges of G},

g = (v,0',v",v"") € @ the elementary quadrilateral of G with the vertices
v, """ eV
@ = { quadrilaterals of G}.

The vertices of an elementary quadrilateral are connected by exactly four
edges [v,v'], [v',v"], [",v""], [v"",v] € E (in particular [v,v"],[v',v""] € E). Each
edge of a quad-graph belongs to either exactly one or exactly two elementary
quadrilaterals. In the first case we say that the edge lies on the boundary 0G of
G.

Remark. Since the edges of the discrete surfaces studied in this chapter are
analogs of the asymptotic or of the curvature lines on smooth surfaces, one can
additionally assume that the number of edges meeting at each vertex is even.
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The case G = Z% or G C Z* closest to (2.2) has been elaborated most
extensively. To make the notation shorter we will write

F:7° >R (2.8)
also in the case when F is defined on a subset of Z2. We use the following
notation for the elements of discrete surfaces (n,m are integer labels):

F,.m for the vertices,
(Frt1,ms Fomly [Fnmt1, Fom] for the edges,
(Frnyms Frt1,ms Fe1,m+1, Fm+1) for the elementary quadrilaterals.

Each vertex F), ,, has 4 neighbours Fy,_1 ., Frt1,ms Fnym—1, From+1-

2.2 Discrete A-surfaces (asymptotic line nets)
Let us consider a surface F with negative Gaussian curvature. For each regular
point of F there are two directions where the normal curvature vanishes. These
are called asymptotic directions. We use asymptotic line parametrizations of F
F:R - R, (2.9)
(u,v) = F(u,v).

For such a parametrization one has L = N = 0 in (2.1), i.e. the vectors
F,, F,, Fuy, Fy, are orthogonal to the normal vector N

FU7FU7FUU7F’UUJ—N' (2-10)
The fundamental forms are as follows:

I = < dF,dF >= A?du® + 2AB cos ¢ du dv + B*dv?,
Il = — <dF,dN >=2Mdudv, (2.11)

where ¢ is the angle between asymptotic lines and
A =|F,|, B = |F,|. (2.12)

Our goal is to find a proper discrete version of this parametrization. Let us
mention two important geometric properties of asymptotic line parametrizations
which are easy to check and which we want to retain in the discrete case.

Property 1 Asymptotic coordinates (2.9, 2.11) can be characterized in terms
of F only:
Fuu, Fyy € span {Fy, F,}. (2.13)

The next property shows that the asymptotic line parametrization is natural in
affine geometry.

Property 2 (Affine invariance). Let F : R — R® be a surface parametrized
by asymptotic lines and A an affine transformation of Euclidean 3-space. Then
F=Ao0F:R — R is also a parametrization by asymptotic lines.
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Motivated by these two properties we define discrete asymptotic line para-
metrizations (we call them discrete A-surfaces because of asymptotic line and
affine) as follows:

Definition 1 (Narrow definition of discrete A-surfaces) A discrete A-surface
1S a map

F.7° >R
such that for each point F, . there is a (tangent) plane Py, which contains
E,.m and all its neighbouring points

Fn,ma Fn+1,m: Fn—l,m: Fn,m+1: Fn,m—l € Pn,m' (214)

This definition agrees with the two properties mentioned above of asymptotic
line parametrizations. The property (2.14) is obviously affinely invariant. The
discrete versions Fyi1,m — 2Fnm + Fuo1,my Fnm+1 — 2F5,m + Fyym—1 of the
second derivatives Fy,,, Fy, lie in the tangent plane P, ,, of the vertex Fj, ,,
which agrees with (2.13).

Definition 1 can be easily generalized for the case (2.7) of a quad-graph G.
In this way one can for example define discrete analogues of surfaces with non-
positive curvature and with a more complicated asymptotic line net. Let us
denote by NN (v) € V the set of the nearest neighbours of the vertex v, i.e. the
set of vertices of G which have common edges with v.

Definition 2 (Wide definition of discrete A-surfaces) A discrete A-surface is
a map of a quad-graph
F:G-R

such that for each point F(v) there is a (tangent) plane P,, which contains
F(v) € Py and all its neighbouring points

F(') € Py, Vo' € NN (v). (2.15)

Special classes of discrete A-surfaces are discrete K- surfaces considered in
Section 3 and discrete indefinite affine spheres considered in the contribution of
Bobenko and Schief [12].

2.3 Discrete C-surfaces (curvature line nets)

Let F be a surface without umbilics and
F: R = R, (2.16)
(u,v) = F(u,v).

be a curvature line parametrization of F. For a curvature line parametrization
both fundamental forms are diagonal: F' = M =0,

I = < dF,dF >= Edu® + G dv?,
II = — < dF,dN >= Ldu® + N dv?. (2.17)
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Property 3 Curvature line coordinates (2.16, 2.17) can be characterized in
terms of the immersion function F only

< Fy,,F, >=0, Fyu € span {Fy,, F,}. (2.18)
The next property shows that the notion of a curvature line parametrization
belongs to conformal (Mobius ) geometry.

Property 4 (Mébius invariance). Let F : R — R® be a surface parametrized
by curvature lines and M a Mébius transformation of Euclidean 3-space. Then
F=MoF :R = R is also a parametrization by curvature lines.

Proof. Since the Mobius group is generated by inversions in spheres it is enough
to prove Property 4 for the case of the inversion M in the unit sphere

(2.19)

The direct calculation shows that < F‘u, Fv >=0 and
~ < F,F, >\ = < F,F, >\ =
F,, = 22—\ F, -2—2— "\ F,,
(a ) " (ﬂ <FF> )
where « and (3 are defined by
Fuo :aFu+6Fv

To define discrete surfaces parametrized by curvature lines (we call these sur-
faces discrete C-surfaces because of curvature line and conformal) one needs the
notion of the cross-ratio of a quadrilateral (X, Xo, X3, X4) in three-dimensional
Euclidean space. The notion of the cross-ratio

_ (1= 2)(z8 —2)
(22 — 23) (24 — 21)

of four complex numbers 2, 22, 23,24 € C can be easily extended to points in R
by indentifying a sphere S, passing through Xi, Xo, X3, X4, with the Riemann
sphere CP'. We usually will just speak of the “cross-ratio ¢ € C’. One has to
keep in mind that g is only well defined up to complex conjugation, since S is
not oriented.

There is a quaternionic description [11] of the cross-ratio based on the iso-
morphism (2.4).

Definition 3 Let X, X5, X3,X4s € Im H be four points in R® and Q be the
quaternion

Q= (X; — Xo)(Xo — X3)7H( X3 — Xg)(Xy — X;)7t. (2.20)
The unordered pair of complexr numbers
{¢,7} =Re Q@ £ |Im Q|
is called the cross-ratio of the quadrilateral (X, X2, X3, X4).
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Lemma 1 The cross-ratio is invariant with respect to the Mdébius transforma-
tions of R3.

Lemma 2 The cross-ratio of a quadrilateral is real iff it is inscribed in a circleS.
The quadrilateral is embedded (i.e. its opposite edges do not intersect) iff ¢ < 0.

Definition 4 Let F : R — R® be a parametrized surface, (u,v) : U C R — R?
a local coordinate. A two-parameter € = (e1,€2) family of quadrilaterals F€ =
(F1, F», F3, Fy) with vertices

F(
F(
F(

(

F(u—e,v+ e

U — €1,V — €z),

U+ €1,V + €2

F )
F2 U+61,’U—62),
Fy ),
Fy )

is called an infinitesimal quadrilateral at (u,v).
We consider the limit € — 0,
€1 = €Ay, €2 = €y (2.21)
with some fixed A;,As € R. Up to terms of order O(e®) the vertices of the

infinitesimal quadrilateral coincide with

1
Fy,=F+ (- F, —eF,) + E(efFuu + engv + 26162 Fyy) + 0(63),

Fy =F + (e1F, — €2F,) + = (] Fyy + €3Fyy — 2€163F ) + O(€%),

Ll

Fy = F + (e1Fy + €2Fy) + = (] Fyy + €3 Fyy + 26162 F ) + O(€%),

[\]

1
Fy=F+ (—eF, +eF,)+ E(efFuu + 3 F,, — 26169 F ) + O(€%),

where F, F,, ..., F,, are the values of the immersion function and its derivatives
at (u,v). The following remark is trivial:

Lemma 3

(1) ¢(Ff) =q+ O(e),q € R <= Q(F*) =qI + O(e),e = 0
(i) ¢(F?) =q+0(*),¢ € R <= Q(F*) = ¢l + O(¢?),€ = 0

Theorem 1 Orthogonal and curvature line parametrized immersions F are
characterized in terms of infinitesimal quadrilaterals as follows:

(i) Q(F*) =qI+ O(e),q < 0,e > 0 <= F is orthogonally parametrized,

(ii) Q(F®) =ql +O(e?),q < 0,e = 0 < F is curvature line parametrized.

6a straight line is a special case
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Proof. To calculate the cross-ratio of the infinitesimal quadrilateral we note that
F* up to scaling is a translation of the quadrilateral with vertices at

X1 == 0, X2 == AlFu - EAlAQFUU + 0(62),
X3 = AlFu + AQFU + 0(62), X4 = AQFU — EAlAgFuv + 0(62).

Inverting it by the transformation (2.19) we map one of the points to infinity

Fu — EAzFuv 2
_ 1 0(e),
AL|[Fo — eAgFo|? (<)
= F; —EAlF
+0 2 , X, = v uv
(), X No||Fy — A o |P

X1=00, Xzz

- AF,+ASF,
P AE, + AP

+ O(€?).

The condition
Q(X17X27X37X4):q1+0(6l)7 l:1727 qe]R

is equivalent to
X3 =aX, + X4 + O(€), a=———, f=——.
1—gq 1—g¢q
This identity can be rewritten as

AlFu-f-Ang (8% Fu—EAzFuv < <Fu;Fuv >>
2 = — 1+ 2eAy—F—— 2.22
IMFy t MR A R S TN P G

ﬂ Fv_EAlFuv ( <Fv7Fuv >> l
p T (g 9o, 2w 7 ) 4 ().
Ay [|E|]? I E2 |

One can easily check that the zero oder (e°) term of this identity is equivalent
to < Fy,F, >=0, q <0, which proves the first statement of the theorem. The
term of order € in the case [ = 2 is equivalent to the condition that the vector F,
lies in the tangential plane. Due to Property 3 of curvature line parametrizations
this completes the proof.

This theorem motivates the following definition of discrete curvature line nets
(discrete C-surfaces):

Definition 5 (Narrow definition of discrete C-surfaces) A discrete C-surface
1S a map
F:7° >R

such that all elementary quadrilaterals (Fp m, Fnt1,m, Fnt1,m+1, Fnm+1) have
negative cross-ratios

Q(Fn,ma Fn—i—l,m: Fn+1,m+1: Fn,m+1) = dn,m, In,m < 0. (223)



14 A. Bobenko and U. Pinkall

The definition can be reformulated more geometrically using Lemma 2. It
can be also generalized” for the case of a quad-graph (2.7), which is for example
useful to define discrete analogues of surfaces with umbilic points .

Definition 6 (Wide definition of discrete C-surfaces) A discrete C-surface is

a map of a quad-graph
F:G-R

such that all elementary quadrilaterals are inscribed in circles.

Special classes of discrete C-surfaces are discrete H-, I- and M-surfaces con-
sidered in Sections 4, 5.2, and 5.3.

3 Discrete K-surfaces (constant negative Gaussian curva-
ture surfaces)

Discrete K-surfaces are natural discrete analogues of surfaces with constant neg-

ative Gaussian curvature. In this section we define discrete K-surfaces, study

their properties and construct some examples. More geometric presentation of

the theory can be found in [10]. For the loop group description see [43].

3.1 Smooth surfaces with constant negative Gaussian curvature

Here we present some fragments of the theory of smooth surfaces with constant
negative Gaussian curvature , most of which are classical. More detailed presen-
tations can be found in [2, 5].

Let
F:R—R.
be an asymptotic line parametrization (2.11) of a surface F with negative Gaus-
sian curvature. For the constant Gaussian curvature case K = det [1/det I = —1

we get the second fundamental form
II = 2AB sin ¢ du dv
and the following Gauss—Codazzi equations :

¢uv - AB Sin¢ =0, (31)
A, =B, =0. (32)

Such a parametrization with non-vanishing A and B is called a weak Chebyshev
net .

The Gauss—Codazzi equations are invariant with respect to the transforma-
tion

A — AA, B = \!B, AeR (3.3)

Every surface with constant negative Gaussian curvature posesses a one-para-

meter family of deformations preserving the second fundamental form, the Gaus-
sian curvature and the angle ¢ between the asymptotic lines. This deformation

“In this generalized definition the embeddedness of the quadrilaterals is not required.
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is described by the transformation (3.3). This one-parameter family of surfaces
is called the associated family.
Equations (3.1, 3.2) can be represented as the compatibility condition

Uy=Vu+[U,V]=0
for the following system:
v, =09, v,=V{y, (3.4)

gol Puf2  —Ade /2
T2\ AN 4,2 ’

— —¢y/2  BATlei?/?
T2\ Brxle /2 by/2 |

It can easily be checked that (for more detail see [5]) the following formulas
describe the moving frame of a surface with K = —1, |F,| = A, |F,| = A™'B
if one uses the isomorphism (2.4):

—ip/2

F, = —iAAT™! ( eigﬂ c 0 ) v, (3.6)
B __ 0 ei?/2

F, = _ZX\IJ 1 < g2 g ) T, (3.7)

N = —i¥ loy0. (3.8)

Matrices (3.5) belong to the loop algebra
gk = {61 e = 5u(2) : (=) = 53¢ (N)ors}
and ¥ in (3.6-3.8) lies in the corresponding loop group
GrN = {6+ Re = SU2) : 6(=)) = 736(N)ors ). (3.9)

The Sym formula [48] allows us to integrate (3.6, 3.7).

Theorem 2 Let ¢(u,v), A(u), B(v) be a solution of (8.1). Then the correspond-
ing immersion with K = —1,|F,| = M, |F,| = \™' B is given by
ov
F=20""— A=¢ 3.10
¥ a=d, (3.10)
where U(u,v,\ = et) € SU(2) is a solution of (3.4, 3.5). The Gauss map is
given by
N = —i¥ to30. (3.11)
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We consider not only immersions but more generally weakly regular surfaces,
i.e. the surfaces with A # 0, B # 0 for all u,v. In this case the change of coor-
dinates v — @(u),v — ©(v) reparametrizes the surface so that the asymptotic
lines are parametrized by arc-lengths (generally different for v and v directions)

A = |F,| = const, B = |F,| = const. (3.12)

This parametrization is called an anisotropic Chebyshev net (a Chebyshev net

if A= B). In this parametrization the Gauss equation and the system (3.4, 3.5)

become the sine-Gordon equation with the standard Lax representation [21].
Finally we also mention a well-known fact, which can be easily checked.

Proposition 1 The Gauss map N : R*> — S? of the surface with K = —1 is
Lorentz-harmonic, i.e.

Nuw =pN, p:R =5 R (3.13)
It forms in S? the same kind of Chebyshev net as the immersion function does
in R3:

|Nu| = AA, |N,|=A"'B. (3.14)
3.2 Discrete K-surfaces from a discrete Lax representation

Discrete surfaces with constant Gaussian curvature (we will also call these sur-
faces discrete weak Chebyshev nets or discrete K-surfaces) are defined by natural
discrete analogues of the properties (2.10, 3.2) of the corresponding smooth sur-
faces.

Definition 7 (Geometric definition of discrete K-surfaces) A discrete K-surface
is a discrete A-surface (see Definition 2)

F:G = R,

such that the lengths of the opposite edges of the elementary quadrilaterals are
equal.
In particular in the case G = 72 one has:

(i) For each point F,, n, there is a plane Py such that
Fn,m; FnJrl,m; anl,m; Fn,m+1; Fn,mfl € Pn,m;
(ii) the lengths of the opposite edges of the elementary quadrilaterals are equal

||Fn+1,m - Fn,m” = ||Fn+1,m+1 - Fn,m+1|| = A, 7é 0,
||Fn7m+1 - Fn7m]| = ||Fn+17m+1 - Fn+17m|| = B 7é 0,

where we have incorporated into the notation that A,, does not depend on m and
B,,, not on n.
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In our paper [10], we start with this geometrically motivated definition sug-
gested by Sauer (see [46] and references therein, in particular [45]) and studied
by Wunderlich [50] and show how integrable discrete systems appear. In the
present chapter we follow another path, which comes from the theory of inte-
grable systems: we discretize the Lax representation (3.4, 3.5) in a natural way,
preserving its loop group structure, and show how Definition 7 appears in this
approach 8.

A natural integrable discretization of the system (3.4, 3.5) looks as follows.
To each point (n,m) of the Z?lattice one associates a matrix ¥, ,,. These
matrices at two neighbouring vertices are related by

\I"n+1,m = Z/{n,mqln,m; \I!n,m+1 = Vn,m\pn,ma (315)

where the matrices U, ,, and Vy , are associated with the edges connecting the
points (n +1,m), (n,m) and (n,m + 1), (n, m) respectively. Having in mind the
continuous limit (e is a characteristic size of edges)

with U,V of the form (3.5), and preserving the group structure and the depen-
dence of A of the continuous case, it is natural to set

un7m - ( _AI_)’n m C_ln ;n ) ’ Vn,m - < _Aifgn m En TTL7 ) ’

where the fields a,b,c,d live at the corresponding edges. The compatibility
condition
Vn—i—l,mun,m = un,m+1vn,m (316)

in terms of these fields reads as follows:

n,m+1Cn,m — bn,m—i—ldn,m = Cn+1,man,m — dn—i—l,mbn,m:

bn,m—i—lén,m = cn+1,mbn,ma an,m—l—ldn,m = dn—i—l,man,m-
By a A-independent gauge transformation

-1 -1
Un,m — Gn—i—l,mun,mG Vn,m — Gn,m+1vn,mG

n,m? n,m

with the matrices

_{ 9nm O
Gn,m—< 5 ) (3.17)

In,m
at vertices one can normalize

bn,m =1, Cnym =1 for all n, m.

8We would like to mention that this method and not the one presented in [10] was how we
came to the notion of the discrete K-surfaces.
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Given g, this condition specifies all g, ,, in a unique way. The equations in
this gauge become as follows:

An,m+1 — ldn,m = Qnp,m + ldn—i—l,m:
an,m+1dn7m = dnJrl,m(_ln,m-

To simplify this system further, let us remark that the zeros of the left- and
right-hand sides of the equality (which itself follows from (3.16))

Vnt1,m (AN Unm (A) = Un,m41(N)Vn,m(N),
Un,m(A) = detUp,m, Vn,m(A) = det Vi m,

considered as functions of A, should coincide. Both terms in the products above
have a pair of symmetric zeros Ag, —Ag. We suppose that the zeros of up m41(A)
and ©p, ,,(A) coincide. This is equivalent to saying that the zeros A = £1/p,, of
Un,m(A) are m-independent and the zeros A = g, of vy, 4, (A) are n-independent

Un,m(A==%£1/p,) =0, Un.m(A = £¢m) = 0.
Applying these arguments one gets

1 . . ;
An,m = _ela"'m: dn,m = MJmew"'m

Pn

and the equations®

QApm+1 + Qpm = 6n+1,m - 5n,m7
eian,m+1 _ eian,m = Pnlm (e_ian,m _ ei5n+1,m)‘

The first equation can be easily resolved as

amm = thrl,m - hnﬂn; 6n,m = hn7m+1 + hn,m; (318)

where h,,,, can now be associated with the corresponding vertices. Finally, h,, ,,
satisfies the equation

exp(ihn+1,m+1 + ihn,m) - eXp(ihn+1,m + ihn,m+1) =
pnqm(l — exp(ihn+17m+1 + ihn+17m + ihn+17m + lhn,m)) (319)

This equation first appeared in a paper by Hirota [25] without any relation to
geometry. In the exponential form H,, ,,, = exp(ihy,,m) it looks as follows:

kn m + Hn+1 mHn m—+1
H H =— . . k = . 3.20
n+l,m+14In,m 1+ kn,mHn—i-l,mHn,m—i-l ’ n,m Pndm ( )

%by @ = o/ we mean o = o' (mod 27)
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Having in mind the loop group interpretation of Section 3.1, our goal is to
define in the discrete case a map ® : Z? — Gg[\], where Gk[)] is the loop
group (3.9). Let us multiply Uy, » and V, , by scalar factors to make their
determinants equal to 1:

0 1 0 1
Un,m= pimun,m, Vi,m= vam, (3.21)
1 gihntr,m—thn,m i\
Un,m(A) = ( b i 1 gmihntm ik m > (3.22)
Vam(N) =< R pniqueih"‘”+l+ih"‘” ) (3.23)
) mee—mn,mH—mn,m 1

0 0
Evidently ¢/ m, Vn,m satisfy the compatibility condition (3.16).

Theorem 3 (Algebraic definition of discrete K-surfaces) Let hy, m be a solution
of (3.19) and @, , : Z> = Gi[)] be a solution of the system

0 0
(I)n+1,m :Z/In,m q)n,m; q)n,m+1 :Vn,m q)n,m- (324)
Then the discrete surface described by the formula

~1 0®nm t

Fn7m = 2¢n7m77 )\ =e€ (325)

is a discrete K-surface in a sense of Definition 7. The Gauss map Ny, of this
surface (N m is defined as a unit vector orthogonal to the plane Py, ) is given
by

Ny = —i®, 7,038, . (3.26)

Proof. For the edges defined by (3.25) one has

0
0
Fotim — Fom = 2(};7371(” 1:,%71 ’ Z/al;l’m )(Pn’n“
0 0 ¥
Fn,m+1 - Fn,m = 2q>T_L7lm(V 1:,%71 ];;L’m )‘}mm;
0
aUn—l,m 0 —1

Factn = Fumn = 2075 (FL g1 )0,

0
0 Vn,m—l 0 —1

Fn,m—l - Fn,m = _2‘1)1:,%71( ot n,m—1

)P

All these vectors as well as Ny, ,,, (forming a frame associated with the vertex
F,.m) have common factors ®,,,, ! on the left and ®,, ,, on the right, which
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describe a rotation of this frame as a whole. Considering the local geometry of
the frame we can neglect this rotation. Direct calculation yields

0 ) .
o 9y o " 0 elhn,m—lhn+1,m
2U e = isinAR(N) ( o= ihn mFihng1,m 0 ’
0 ) )
0o Y o 0 ethn,m+ihn,mi1
2V L ™ = —isinAY () JR TS 0 )
0 . )
OUn_1.m O o " 0 ethn,m—=thn_1,m
—2== 5 1, U niLm = —181n An()‘) ( _ih +ihn 1 )
e thnmtihn_1m 0
0 ) )
a V — 0 _ .. v 0 elhn.m“l’lhn,m—l
-9 g,tm 1 % n,lm—l = ZSlnAm(/\) ( e—ihn,m—ihn,m—1 0 )
(3.27)
where we defined
2Ap 1 227 gm
sinAn(A) = —"—, sinA), () == ————-. 3.28

The vectors given by (3.27) are orthogonal to —io3, which proves the orthogo-

nality of the corresponding edges to Ny, . The property (ii) of Definition 7 of

the discrete K-surfaces evidently also holds.

3.3 Gauss map of discrete K-surfaces

Definition 8 A map N : Z2 — S? is called a Chebyshev net if < Npt1,m> No,m >
is independent of m and < Ny i1, Np,m > @5 independent of n.

Corollary 1 The Gauss map (3.26) forms a Chebyshev net. Under the action
of the associated family (A-family) the edges and the normals of the discrete
K-surface described in Theorem 3 transform as follows

< Npt1,m, Npm >=cos Ay (A), | Enst1,m — Fom|| = sin Ay (A),

< Npm+1, Nom >= cos A7 (N), | En,mt1 — Fnm|l =sin Ay (A),

where the angles A(X) are determined by (3.28).

This corollary allows us to interpret A¥(A) and A?, (A) as the angles between
the planes Pj11,m, Pn,m and between the planes Py, ;m+1, Pn,m respectively.

Corollary 2 The vectors of the normals and the edges of a discrete K-surface

as described in Theorem & are related as follows:

FnJrl,m - Fn,m = Np+1,m X Nn,m;
Fn,m—i—l - Fn,m = _Nn,m—l—l X Nn,m- (329)

Proof. Use the isomorphism (2.4) and the moving frame in the proof of Theorem
3.
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n-1,m+1 'n,m+1 n+l,m+1
(2 (1)
(p n,m (p nm
n,m
n-1,m n+l,m
X \J
() nm (p(

4)
nm

h—l,m-l n,m-1 n+1,m-1

FiG. 2. Angles between edges of a discrete K-surface

Definition 9 A map N : Z2 — S? is called Lorentz-harmonic if for any n,m
Not1,m+1 — Nnt1,m — Npma1 + Noym =
Prm(Nut1,m+1 + Nov1m + Nogmt1 + Nagm) (3.30)
with some p : Z2 — R.
A direct computation with the frames of Theorem 3 proves the following
Corollary 3 The Gauss map (3.26) is Lorentz-harmonic

3.4 The discrete sine-Gordon equation

The formulas (3.27) allow us to determine the angles between all edges (see Fig.
2 for the notations of the angles)

¢ = —hnmar — hngrm + 7,
¢$12,2n = hn—1,m + hnymt1,

¢n3,')m = —hn’m,1 - hnfLm + , (331)
¢§’L4)m = hpt1,m + hnym—t-

Let us consider again a small piece of a discrete K-surface and derive a difference
equation for the angles between edges, which can be regarded as a difference ana-
logue of the sine-Gordon equation (3.1). Now if we orient the lattice diagonally
(Fig. 3), the following theorem holds.

Theorem 4 The neighbouring angles between the edges of a discrete K-surface
satisfy the equation

¢u + ¢d - ¢l - ¢T‘ =2 arg(l - kleiwl) +2 arg(l - kreiwr): (332)

where
ki =par, kr = prar
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Fic. 3. Diagonally oriented lattice

are the products (see Section 3.2) associated with the quadrilaterals corresponding
to ¢; and ¢, respectively.

Proof. Using the symmetry of the quadrilateral

n,m n+1,m+1» n+1l,m n,m+1

the Hirota equation (3.19)
(A + 01 ) + 1= ki (exp(90)) + exp(id ) ). K = Pudim,
and the fact that the sum of angles around a vertex is equal to 27
O + B+ O + D =0,
one derives for ¢§11)m

¢£len + ¢§zll1,m—1 - ¢’Eblll,m - ¢£Ll,2’n—1 =
2arg(1 — ky—1,m exp(—id'); )) + 2arg(l — Ko exp(—ig\ ), 1))

Turning the lattice by 45° we get this equation in the form (3.32). For symmetry
reasons all the angles ¢(®), ¢(3), ¢(*) satisfy the same equation (3.32).

For obvious reasons equation (3.32) is called the discrete sine-Gordon equa-
tion. In the exponential form @ = exp(i¢) this equation reads as follows:

Ql_kl Qr_kr

1-kQi1—-FkQ, (3:34)

Qqu =

Let us consider now a Lorentz-harmonic Chebyshev net in S? generated by
the Gauss map N,, . The angles ¢ between the arcs of the great circles in S?
generated by the corresponding normals satisfy the following difference equation

Y + Pa — P — by = 2arg(1 + ke ) + 2arg(1 + ke ™). (3.35)
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Applications of the discrete sine-Gordon equation (3.34) extend beyond dif-
ferential geometry. This equation can be considered over a finite field. A cellular
automaton with a Lax representation has been constructed in this way in [7].
Equation (3.34), in contrast with (3.20), possesses a natural local Hamiltonian
structure. A quantum version of (3.34) has been derived in [9] based on the
results of [22]. For further results on quantization of this and similar models
see the contributions of Faddeev and Volkov [23], Kashaev and Reshetikhin [32],
and Kellendonk, Kutz, and Seiler [34]. A Lagrangian formalism for the discrete
sine-Gordon equation is presented in the contribution of Kutz [36].

3.5 Construction of discrete K-surfaces

A simple geometrical method described below allows us to construct all discrete
K-surfaces with periodic Gauss map. In particular, this class includes all discrete
K-cylinders. One constructs these surfaces solving the Cauchy problem with an
initial stairway (see Fig. 5) loop

Nn,m; Nn7m+1; Nn+17m+1; e ;Nn+N7m+M = Nn,m

on SZ.

All Ny, n,m € Z can be reconstructed using the property (3.30) of N to
be Lorentz-harmonic. Equation (3.30) uniquely determines N, m+1 by Npm,
Nn+17m; Nn+17m+1

< Nn+17m;Nn,m + Nn+1,m+1 >

n,m+1 ntl,m (1+ < Nn,m: Nn+1,m+1 >)

(Nn,m + Nn+17m+1)-

Obviously, the N-loop remains closed under this evolution. Finally, the formulas
(3.29) describe the corresponding discrete K-surface.

Note that to obtain a cylinder one should kill the translational period of
the immersion F}, ,, = Fy4N,m+Mm. Besides cylinders one can construct by this
method also discrete Amsler surfaces [26]. Geometrically, the discrete Amsler
surfaces can be characterized by the condition that they contain two straight
asymptotic lines. Analytically, this implies that the discrete sine-Gordon equa-
tion reduces to a discrete version of the Painlevé III equation .

This simple geometrical method does not allow us to control the global be-
haviour of the surface in the direction of the evolution of the N-loop (for example,
to control the periodicity). Thus this method is inappropriate if one wants to con-
struct, for example, compact discrete K-surfaces . Compact discrete K-surfaces
were constructed in [10] using analytic methods of the finite-gap integration the-
ory of equations (3.20, 3.32). An example of a discrete torus is presented in Plate
1.

The Bicklund transformation for discrete K-surfaces is of the same geometric
and analytic nature as for the smooth surfaces with constant negative Gaussian
curvature and is discussed in [50, 10, 29].
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4 Discrete H-surfaces (constant mean curvature surfaces)
4.1 Smooth constant mean curvature surfaces

Here we present some fragments of the theory of smooth surfaces with constant
mean curvature (CMC-surfaces), most of which are classical. For details see [5].
Let F be a smooth surface in R* and

F:R-R
a conformal parametrization of F. The fundamental forms are as follows:
I =< dF,dF >=e"dzdz,
Il = — <dF,dN >=
=(He* +Q+Q)dz*> +2i(Q — Q)dzdz + (He" — Q — Q) dz>,
where z is a conformal coordinate, () and H denote the Hopf differential and the
mean curvature

1
Q =<F.,,N >, <F.,;,N >= 5He“. (4.1)
The Gauss—Codazzi equations have the following form:
1_.. _
Uy + ine“ —2QQe " =0,
Q: — 1H e =0
z 2 z - .

In the CMC case H = const the Hopf differential is holomorphic @z = 0. In
the absence of umbilic points @ # 0, by a holomorphic change of coordinates
z — Z(z) the Hopf differential can be normalized to constant ) = const # 0.

Similar to (3.3) the Gauss—Codazzi equations of CMC-surfaces are invariant
with respect to the transformation

Q—AQ, Q-ATQ, Al =1
Every CMC-surface possesses a one parameter family of isometries preserving
the mean curvature. This A-family is called the associated family.
A conformal frame of a CMC-surface with the Hopf differential AQ is given
by

F. = —ie"/?¥! ( (1) 8 ) ¥, o= —ie"/2y! < 8 [1) > U, (4.2)

where ¥(z, 2, A) satisfies
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The Sym formula [4, 5] allows us to integrate (4.2, 4.3).

Theorem 5 Let U(z,z, A = e2*) be a solution of (4.2). Then F and N, defined
by the formulas
Felo 12§ i), N = —iblogd
I7i Y 3¥), 3
describe a CMC-surface with the metric e“, the mean curvature H and the Hopf
differential €**(Q) and its Gauss map.

We also mention a well known fact, which can be easily checked.

Proposition 2 The Gauss map N : R = S? of the CMC-surface is harmonic,
i.€e.

Nziqu, qR—)]R

Having in mind a proper discretization as our goal, we will use (as in Section
1) special parametrizations of the CMC-surfaces. If the Hopf differential is nor-
malized to be real Q € R, then the preimages of the curvature lines are the lines
x = const and y = const in the parameter domain and one obtains a conformal
curvature line parametrization . Such a parametrization and the surface which
admits it are called isothermic. This class of surfaces is more general then CMC
and is also described and discretized within the frames of the theory of integrable
systems. We come to this description later in Section 5.2.

Thus, umbilic-free CMC-surfaces are isothermic. Without loss of generality
we normalize

H=1, Q:%. (4.4)

It is a classical result that surfaces parallel to a CMC-surface and lying in the
normal direction at distances 1/(2H) and 1/H are of constant Gaussian and of
constant mean curvature respectively. To describe them let us introduce gauge
equivalent frames

1 1

- 0 N . - R

v=| x ¥, w:(A 0)@,
0 VA

where

] (4.5)
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where
N =¥ 'k¥

is the Gauss map of F.'° The surfaces f F are of constant mean curvature
H = 1. The surface F is of constant Gaussian curvature K = 4. Variation of t
preserves both principal curvatures of}" F,F; fm"}" F it is an isometry, whereas
for F the second fundamental form is preserved. Fort = 0 the parametrization
of f,f s isothermic.

This theorem can be proven by a direct computation [5] as well as the following

Proposition 3 The surfaces F and F are dual isothermic surfaces.!

In the normalized (4.4) isothermic coordinates the frame equations for ¥
become

U, =0U¥, U,=VU, (4.6)
1 —%uy e 1 eu/?
U= .
1 )
2\ w24 —emu/? %uy
(4.7
1 %um iNe /2 4 —e/?
V= . .
2\ inew? — %e‘“/z —%um

The matrices (4.7) belong to the loop algebra
I = {61 8" = su(2) : €(-A) = 036 (Nrs}
and ¥ in (4.6) lies in the corresponding loop group
G\ = {6+ S" > SU() : (=) = 536(N)os}. (4.8)

Here S! is the set || = 1.

4.2 Discrete H-surfaces from a discrete Lax representation

Let us discretize the CMC-surfaces in exactly the same way as we discretized
the surfaces with constant negative Gausssian curvature in Section 3. Our goal
is to define a map

®: 7% = Gg[\,

10The Gauss maps of .7:', F,F coincide. To make the mean curvature of F positive one should
change direction of the normal N = —N.

HEor a definition of dual isothermic surfaces see Section 5.2.
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where G [A] is the loop group (4.8), such that the matrices
Un,m = q)n—i-l,mq);,%n: Vn,m = CI)an_l(I);’%n (49)

depend on A in “the same way” as the elements (4.7) of the corresponding loop
algebra.
A natural choice is

1
1 a —Ae——f
U:— _ 1 A ,
a )\f+XE a
(4.10)
1
1 b - — —g
V== 1- _ A ,
g Ag+ yd b

where a, b, ¢, d, f, g are complex-valued fields defined on the corresponding edges.
a and (3 are chosen to normalize detid = detV = 1. If ed # 0,dg # 0 by a
diagonal gauge transformation (3.17) one can normalize

1

1

’
C

For o, B this implies
. 5 C 5C . . .
a® = N =+ A=+ af* +[e” + |,

g2 = x2d =29 2 g jap 4 a2
d d
In the sequel we basically make our calculations considering an elementary
quadrilateral. Sometimes we supress the arguments n,m of the functions of
n and m and denote increments and decrements of the discrete variables by
subscripts and overbars respectively, for example

Py = Py1 = Py 1,m+1P2 = @4 1 P12 = o1 = P11

q>i = q>’nfl,m ¢ = q>n7m q>1 = q>n+17m

To distinguish the fields defined on edges and vertices we use different notations
for the matrices U,V and their coefficients'? (see Fig. 4)

U= Z/{n,ma V= Vn,m; u = Z/{n,m+1; V= VnJrl,m-
The singularities of the left- and right-hand sides of the compatibility condi-
tion
VUu=u'v, (4.12)

1214 = Us, V' = V1 identifies these notations.
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®, P12
v %

® >,

F1Gc. 4. Notations

considered as functions of A, should coincide. Having in mind the smooth limit
it is natural to assume that the zeros of a(A) coincide with the zeros of a/(\).
This is equivalent to say that the zeros of au, ., (A) are m-independent and the
zeros of By, m(A) are n-independent. In particular this implies that

arg Cp,m independent of m,
arg dp,m independent of n. (4.13)

Using @ : Z? — Gg[)\] defined by (4.9, 4.10, 4.11, 4.13) one can define three
“parallel” discrete surfaces F ,F,F by the Sym formulas (4.5). The nets F JF
constructed in this way can be treated as discrete conformal CMC nets. An
analysis of the geometric properties of these nets might be helpful in looking for
a definition of general discrete conformal nets, which is still missing.

The algebraic description allows us to specify our discrete CMC nets further.
Taking into account the frame equations (4.16) in the isothermic parametrization
it is natural to perform the following additional reduction on the coefficients of
U,V: c is real-valued, d is purely imaginary. Later on we will show that this
constraint is compatible with (4.12).

Introducing on the edges the real-valued fields u,v

c=u, d=1v,
we have
1
1 a —Au — ~u
Z/{ - — 1 >‘ )
@ Au~t 4+ Xu a
(4.14)
1 b —ixv+ vt
V=-— i ~ ,
p vl — —v b
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Definition 10 (Algebraic definition of discrete H-surfaces). Let ® : Z* —
G\ be a map with Uy, m = <I>n+1,m<1>;’%n,Vn,m = <I>n,m+1<I>;’%n of the form
(4.9). We call the nets given by

. ., 0 1
Fom= —<I>n71m§<1>n,m + 5Nn,m, (4.15)
Fop=—0t 9 Ly (4.16)
n,m — n,m 8t n,m 2 n,m; .
Npm = ;0. k®0m, A=e t =0, (4.17)

discrete H-surfaces (discrete isothermic CMC surfaces) and the central net

4 0
Fpm = —q>n7}n§ nom (4.18)
a discrete surface with constant positive Gaussian curvature. The Gauss map of
these surfaces defined at vertices is given by the formula (4.17):

Nn,m = Npom — _Nn,m-

Remark. In the next section we will show that in addition one can assume
u > 0,v > 0 in this algebraic definition of nets. This assumption is natural in
view of the continuum limit (4.7).

In the following sections we prove the existence of the surfaces defined above
and study their geometric properties. The analysis of these geometric properties
will provide us with natural geometric definitions of discrete isothermic and
discrete H-surfaces.

4.3 Compatibility conditions
The compatibility conditions (4.12, 4.14) read as follows:

uu' = vv', (4.19)

ba—a'b=1i(u'v+v'u— 1 i), (4.20)
u'v  v'u

bu' — b'u = i(av' — a'v), (4.21)

b'u' — bu =i(av — a'v'). (4.22)

The first of these equations can be resolved by introducing a function w at
vertices:
u=ww, v = wywiy, v=wwy, v =wiws. (4.23)

Let us express a', b' using (4.21, 4.22)

,awiwr (wiy, + w?) + ib(wiwd, — wiw?)

wwiz(wi + wi) ’

(4.24)
_ bwiws (wiy + w?) + ia(w?wd — wiwi,)

b

wwis(wi + wi)
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Fi1c. 5. Stairway in Z?2

and substitute these expressions into (4.20). The equation obtained can be
resolved with respect to wis:

2
w? (|a*w3 + |b*w? + 2Im(ab)wiws) + (ﬂ + ﬂ)
w2 w1

w?(w? + w?)? + |a|2w? + |b]2w? — 2Im(ab)w,ws

2
Wiy =

(4.25)

The system (4.24, 4.25) is invariant with respect to the transformation

w — Sw, Wiz — SwWi2, W1 — s_lwl, wy — S_1UJ2,
which preserves u,v. Up to this transformation the systems (4.19-4.22) and
(4.24, 4.25) are equivalent.
Similarly to Section 3.5, discrete H-surfaces can be constructed by solving
the corresponding Cauchy problem for the system (4.24-4.25).

Theorem 7 Given a periodic'® stairway in Z? (see Fig. 5) with positive w
at its vertices and complex a and b defined at its horizontal and vertical edges
respectively, there exists a unique solution of (4.24, 4.25) in the same class of
functions on all lattice w : Z* — Ry, a,b:Z* — C.

Proof. Consider an elementary quadrilateral with given w,w;,ws > 0,a,b €
C. The numerator and denominator in (4.25) are both positive and this equation
uniquely determines wi2 > 0. After that, ¢’ and b’ are determined by (4.24).
One can describe the evolution in the opposite direction similarly. This evolution
determines a unique global solution on the whole lattice.

Integrating the frame equations (4.9) we construct by (4.15, 4.16) discrete
H-surfaces.

4.4 Geometric properties of discrete H-surfaces

Proposition 4 The maps f, F,F:7%> = R and N : Z> — S? defined by
(4.15-4.18) are discrete C-surfaces in the sence of the narrow Definition 5. The
cross-ratios of the elementary quadrilaterals of these surfaces are equal to

A 82
Q(F7F17F27F12):_

o
OéQ

(4.26)

13The period can be infinite.
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2
Q(F7F17F27F12):_$7
3? (u—ufl)(u'—u'fl)
F F,F5 Fis) = ——
Q( y L1, 472, 12) 052 (U+U71)(U’+U’71),
u+u ) (u +u' "t
Q(N7N17N27N12):_( )( )

(v—v )0 —v'1)’

where

o =2+ a* +u® +u?, B? = —2+4]b)* + v +0v7?
are independent of m and independent of n respectively: a = o', 3 = /'

31

(4.27)

Proof. The proposition is proven by direct computation. We present it for
F. i

As in the smooth case let us introduce

X VA 0
b=| , 1L |e
VA
It satisfies <i>1 = Zf[Cb, <i>2 = V& with
1 a —Au—u7t 1 b —iAv + vt
UZE u_1+lu a ’ V:B iv_l—iv b
A A
For the edges of F' = —® 1®,|,_o we have
B —F=9o"'U""U,®
By = &1V
Fao— B = &0 Vi
Fio — Fy = =Wl V.

~

ion @ 1...
and set ® = I. Substituting these expressions into formula (2.20) for the cross-

Considering the local geometry we can neglect the common rotation ® !
ratio and using the compatibility conditions (4.19) we obtain

Q= (F—-F)(F - Fo) ' (Frz - B)(F, - F)!
= U ){Wé((V{l)’l- (4.28)
For t = 0 the derivatives are
v 2w (0 1\ ~1
%—‘E<1o>——w>u
~ 2
VAL

ﬁ —

1 é ) = -

)
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Finally, substituting these expressions into (4.28) and using (4.12) we prove the
first formula of the proposition.

Remark. The curvature lines of the three parallel smooth surfaces .73' JF,F
(see Section 4.1) correspond. The property of the discrete surfaces F', F, F' to be
discrete C-surfaces may be regarded as a discrete analogue of this property.

The next proposition follows directly from (4.15, 4.16).
Proposition 5 The discrete H-surfaces F and F are at a constant distance
||Fn,m - me” =1L
In Section 5.2 we use the factorization property (4.26, 4.27) of the cross-ratio
to define discrete isothermic surfaces.

Proposition 6 The “parallel” discrete H-surfaces F and F are dual discrete
isothermic surfaces . 3
F=F".

Proof. The corresponding edges of these surfaces are equal to

. ~ 2w ((utut a
Fl—F_—ECP ( a Cu—u-l b,
- o 2wt u+tut a
F—F= 2 ® < a -l o,
. . 2w, (v—v! 1c
FZ_F__ﬁ(I) ( —ic v_l—v>q>’
. . 2iv—1 —_pt
B-F= %}2 q>_1< U—;)c v*fc—v >(I>
with the lengths
. . 2u . - 2u~!
|1y = Fll=—, [[lh-F|= ;
o) o
. . 2v . . 201
1B = Fll == I -Fl=—5

The edges are related by the formulas (5.7) for dual discrete isothermic surfaces.
Also by direct computation one can prove

Proposition 7 The distances between the neighbouring vertices of the discrete
H-surfaces F' and F are

S .o VaZ—4
1By~ Bl = 15 - = Y425,
b s ey VB4

12 = Fll = 17, - Bl = Y222 (4.29)
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F12 FQ
1 -, F
FQ F12

C
|

F A

Fia. 6. Elementary hexahedron of a pair of discrete H-surfaces

Proposition 8

(1) An elementary hexahedron (ﬁ',ﬁl,ﬁlg,ﬁz,F,Fl,Fm,Fz) lies on a sphere.

(ii) The quadrilaterals (ﬁ',ﬁ'l,Fl,F) and (ﬁ,ﬁz,FQ,F) are isosceles trapezoids
of two different types (non-embedded and embedded) (see Fig. 6).

(iii) Define the azis of the hexzahedron as the straight line connecting the centres
of the circles C and C of the circular quadrilaterals (ﬁ',ﬁ'l,ﬁ'u,ﬁ'g) and
(F,Fl,Flg,Fg) respectively. The axis of the hexahedron is orthogonal to
the planes of both quadrilaterals.

Proof. The first statement follows from the third one, and (ii) follows from
Propositions 5, 7. To prove (iii) one should build the planes passing orthogonally
through the middle points of the edges of the quadrilaterals (F,Fy, Fiy, Fy) and
(F,Fl,Flg,FQ). The axis of the hexahedron is the intersection line of these
planes.

Propositions 5, 6 suggest the following natural definition.

Definition 11 (Geometric definition of discrete H-surfaces)
A discrete isothermic surface F : 7.2 — R® s called a discrete H-surface if
there is a dual discrete isothermic surface F* : Z?> — R® at a constant distance

1

02
Starting with this definition Hertrich-Jeromin, Hoffmann, and Pinkall [30]
derived geometrical properties as well as the Darboux transformation of discrete

H-surfaces. Discrete analogues of the Delaunay surfaces are described by Hoff-
mann in [28] using a discrete version of the classical rolling ellipse construction.

||F’ﬂ7m nm”2
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4.5 A definition of the mean curvature for discrete isothermic sur-
faces

It is desirable to give a geometric definition of discrete H-surfaces completely
in internal terms without referring to dual isothermic surfaces. In the present
section we discuss the notion of the mean curvature function in the discrete case.

Lemma 4 Let (z,y) — F(x,y) be a conformal immersion with the Gauss map
(z,y) v N(x,y). The point S(x,y) is the centre of the mean curvature sphere
(central sphere) at the point F(z,y)

S(@,y) = F(z,y) + ~N(z,y)

H
if fore - 0
0 5 01 2
5 15(@,9) = Fla+enp)l + SIS(@,y) - Flay + e)|* =
1) 1) . .
=+ =) IS(z,y) — F(z,y)|I* + o(e?), (4.30)
0y 01

18(@,y) — F(a,y + ed)[| = ||IS(,y) — F(z,y — ed2)|| + o),
18(z,y) = F(z +ed,y)ll = [|S(z,y) = F(z — b, y)ll + o(e?),

Proof. Use the Taylor series expansion

1 €262 2
ISG) = Flo+ il = (57 = G < Fers N >+ (i) + o(e)

and the definition of the mean curvature

< Foo+ F,y,N >

H=
2[| F||?

s E: | = [1Ey ]

In the discrete case the relations (4.30) can be used as defining the centre of
the mean curvature sphere.

Lemma 5 Let F, F;, Fy, F5, F> be five neighbouring points of a discrete surface
F :7Z? = R® in general position'*. For any 61,6y there exists ezactly one point
S, such that

5 , 0 s (61 0 ,
2l - RIP+ S - Rl = () Is-FIP @3
IS-Fll=IS-Fl, IS-FRI=IS-Fl. (432

Proof. Let [ be the straight line for which the identities (4.32) are satisfied

[={Pel: |[|P-Fl|=|P-FlIP-Fl=|P-Fl}

14We assume that the planes equidistant from F; and Fj and from F» and F; intersect.
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Make [ a coordinate axis with an origin O. Let F'* be the orthogonal projection
of F to l. With each point F' we associate two coordinates (r, z) with the corres-
ponding labels. Here r = ||F' — F1|| > 0 is the distance of F' from the axis and
z € R is the axis coordinate of F': |z| = ||[F'}||. Note that z; = 21,22 = 2z5. In
these coordinates equations (4.31, 4.32) read as follows

0 2, 2y, 0 5 6 A
Z(z—2)+r)+ (-2’ +m) ==+2) (@—2)?
61 (52 62 51

where (0, z) are the coordinates of S. This is a linear equation with respect to x

2z 6—2(2’ —2z1)+ 6—1(2’ —29) ) = 6—2(2’2 —r? =22+ 6—1(,22 —ry —23).
o1 d2 01 )

2

In particular, x is infinite if
03(z — 21) + 07 (2 — 22) = 0. (4.33)

Definition 12 Let F : Z? — R® be a discrete isothermic surface (see Section
5.2) with constant cross-ratio of elementary quadrilaterals

62

1

__52 = Q(Fn,m:Fn+1,m:Fn+1,m+1:Fn,m+1)-
2

The point Sy, of Lemma 5 is the centre of the mean curvature sphere at the
point F, ,, and
1

||Fn,m - Sn,m”

is called the mean curvature at this point.

Hn,m =

Remark. In the geometrically most natural case §; = d5, the centre of the
mean curvature sphere is defined by

IS = Fi|* + IS = B|? = 2|IS - FIP?,
1S =Bl =1S-Fl, IS-El=I[5-F

The mean curvature vanishes (H = 0) if z = (21 + 22)/2, i.e. if there exists a
plane P,, ,,, (tangent plane) passing through the point F}, ,, such that the points
Foot,m, Fnt1,ms Fn,m—1, Fn,m+1 lie at the same distance from P, ,,, and two pairs
Fro1m, Fny1,m and Fp 1, Fyy i1 lie to the different sides of Py, .

For minimal surfaces (H = 0) in the general case ; # 02 formula (4.33)
implies Definition 20.

Theorem 8 The discrete surfaces F,F defined in Section 4.4 have constant
mean curvature H = 1 in the sense of Definition 12.

Proof. According to (4.26) d; = 3,92 = . Substitution of (4.29) into (4.31)
yields the result.
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5 Other integrable nets
5.1 Discrete O-systems (orthogonal coordinate systems)
The definition of discrete C-surfaces in Section 2.3 allows a natural generalization
to the three-dimensional case, which gives a notion of discrete triply orthogonal
coordinate systems. This generalization, based on a “discretization” of the Dupin
theorem (see below), was first suggested in [6].

We recall that an orthogonal coordinate system in three-dimensional Eu-
clidean space is an immersion

F:UCR — R, (5.1)
(u,v,w) = F(u,v,w).

such that for all points of U the three vectors

OF OF OF
ou’ v’ Odw
form an orthogonal basis.

The notion of orthogonal coordinate systems belongs to conformal geometry
because of the following obvious

Property 5 (Mdbius invariance). Let F : U C R® — R?® be an orthogonal
coordinate system and M a Mobius transformation of Euclidean 3-space. Then
F=MoF:UCR® — R is also an orthogonal coordinate system.

The general theory of these coordinate systems, developed at the end of the
19th and the beginning of the 20th century, as well as many concrete examples,
can be found in the fundamental book by Darboux [16] and in the book by
Bianchi [2]. A fundamental result in this theory is a theorem according to which
the coordinate surfaces of a triply orthogonal coordinate system cross along their
curvature lines.

Theorem 9 (Dupin). The immersion (5.1) forms a triply orthogonal coordi-
nate system iff for any point (ug,vo,wo) € U the three coordinate surfaces

F(UO/U/LU):F(uavoaw)aF(uavawo)

are curvature line parametrized.

This description can be discretized in a natural way using the notion of a
discrete C-surface.

Definition 13 (Wide definition of discrete O-systems as circular lattices) A
discrete orthogonal system is a map

F:73 - RS, (5.2)
(k7l7m) '_> F(k7l7m)

all elementary quadrilaterals of which are inscribed in circles.
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One can give a more restrictive definition.

Definition 14 (Narrow definition of discrete O-systems) A discrete orthogonal
system is a map (5.2) such that all elementary quadrilaterals have negative cross-
ratios

Q(Fie,t,m> Fiet1,0,m Fret1,041,m Fret41,m) <0,
Q(Frt,ms Frt1,0,ms Frt1 1.m+1, Frim+1) <0, (5.3)
Q(Fiet,ms Fei-+1,m Fei+1,m41, Fret,mt1) < 0.

Lemma 2 shows that (5.3) is equivalent to the requirement that the elemen-
tary quadrilaterals are inscribed in circles and embedded (i.e. the opposite edges
of the quadrilaterals do not intersect).

These definitions are Mobius invariant. Obviously, Theorem 9 also holds in
the discrete case.

Corollary 4 For any point (ko,lo,mo) € Z3 of a discrete O-system (5.2) the
three coordinate surfaces

F(k07lam)7F(k7l07m)7F(kalam0)

are discrete C-surfaces (in the sense of the wide and narrow definitions respec-
tively).

We call the hexahedrons with vertices {Fi,m, Fi+1,0,ms Fe+1,041,m» Fki+1,m.,
Frtm+1, Frt1,m+1, Fot1,141,m+1, Fri+1,m+1} elementary hezahedrons. Let us
say also that a hexahedron with planar faces is embedded if all its faces are
embedded.

Corollary 5 Fach elementary hexahedron of a discrete orthogonal system lies
on a sphere (and is embedded in the case of the narrow definition).

PTOOf. The circles C(Fk,l,m:Fk—i-l,l,m: Fk+1,l+1,m:Fk,l+1,m) and C(Fk717m,
Frt1.0,m> Frt1,0,m, Fr1,m+1) passing through the indicated points determine a
unique sphere!® S containing them. The circle C(Fy 1m, Fri1,m» Frit1,m+1,
Fiim+1) also lies on S since Fm,Frit1,m, Fkim+1 € S. This implies
Fi 1+1,m+1 € S. The same proof holds for all remaining points of the elemen-
tary hexahedron.

We call a discrete orthogonal system non-degenerate if the spheres of neigh-
bouring elementary hexahedrons are distinct.

Theorem 10 F : Z® D> U — R® is a non-degenerate discrete O-system iff all
its elementary hexahedrons lie on spheres. It is a discrete O-system in the sense
of Definition 14 iff the elementary hexahedrons are embedded.

Proof. The spheres of two neighbouring elementary hexahedrons intersect
along a circle. The embeddedness is also obvious.

15 A plane is a special case.
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Fia. 7. Miguel theorem

Remark. This theorem can be used as a definition of discrete O-systems.

Recently discrete orthogonal nets and their generalization—discrete conju-
gate nets—have become a focus of interest in the theory of integrable systems
(see the contribution of Doliwa and Santini in this volume and [14, 33, 20, 18]).
In particular, Ciesliriski, Doliwa, and Santini [14] have proven the following the-
orem.

Theorem 11 (Cauchy problem for discrete O-systems). A discrete O-system in
the sense of Definition 13 is uniquely determined by its three coordinate surfaces

F(0,0,0), F(e,0,0), F(e,00): 7.2 s ]Rig,
which are discrete C-surfaces of Definition 6.

The proof is based on:
Theorem 12 (Miguel) [1]. Let

F7F17F27F37F127F137F23

be seven points in Euclidean 3-space such that the vertices of each of the quadri-
laterals
(F,F1, Fio, ), (F, F1, Fi3, F3), (F, Fy, Fa, F3)

are concircular and the corresponding circles do not coincide. Then the circles
given by the point triples

{F1, Fi2, Fig}, {Fy, Fia, Fos}, {F3, Fi3, Fos}
intersect at one point =: Fio3. In particular, all eight points lie on a sphere (see
Fig. 7).

It is easy to see that the embeddedness property is not necessarily preserved
by the evolution described by the Miguel theorem . Therefore the Cauchy prob-
lem of Ciesliniski, Doliwa, and Santini may not have a solution if we stick to the
narrow Definitions 5 and 14.
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Algebraically, the same circular lattices have been obtained by Konopelchen-
ko and Schief [33] as a special case of discrete conjugate nets (planar quadrilate-
rals) by assuming a certain algebraic constraint inherited from the smooth case.
Bobenko and Hertrich-Jeromin described in [8] discrete O-systems as well as
discrete Ribaucour sphere congruences in terms of the Clifford algebra using the
spinor representation of the conformal group.

Note that the dimension of the Euclidean space is not important for the
considerations above. In exactly the same way one can consider circular lattices
of arbitrary dimension. Another generalization is given by O-systems in spaces
of constant curvature, which can be obtained by stereographic projection from
the circular lattices described above.

5.2 Discrete I-surfaces (isothermic surfaces)

Discrete isothermic surfaces are natural discrete analogues of isothermic surfaces.
The discrete I-surfaces as well as the discrete M-surfaces of the next section have
been defined in our paper [11], where one should look for details and for missing
proofs.

An isothermic surface is a surface the curvature lines of which comprise in-
finitesimal squares.

Definition 15 A conformal curvature line parametrization (z,y) — F(x,y) is
called isothermic. For the fundamental forms this implies

< dF,dF >= e"“(dz* + dy?), — < dF,dN >= e"“(kidz® + kady?).
A surface which admits isothermic coordinates is called isothermic.

Let us mention two important geometric properties of isothermic surfaces
which persist in the discrete case. Isothermic surfaces belong to conformal ge-
ometry due to:

Property 6 (Mdbius invariance). Let F : R2 — R® be an isothermic immer-
ston and M a Mobius transformation of Euclidean 3-space. Then F = Mo F :
R? — R3 is also isothermic.

Special Euclidean properties of isothermic surfaces are established in:

Property 7 (Dual surface). Let F : R2 — R3 be an isothermic immersion.
Then the immersion F* : R2 — R3 defined by the formulas

Fy=—e"F,, F;=¢"F, (5.4)
is isothermic. The Gauss maps of F and F* are antipodal
N =-N".
The map F — F* is an involution F** = F and the fundamental forms of F*
are as follows
< dF* dF* > = e “(dz* + dy*),
— < dF*,dN* > = kyda® — kydy®.
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Definition 16 The immersion F* : R2 — R® defined above is called dual to F.

Surfaces of revolution, quadrics, constant mean curvature surfaces without
umbilics, and Bonnet surfaces are isothermic. It is natural to define discrete
isothermic surfaces in such a way that this set includes the discrete H-surfaces
of Section 4. We do this by postulating property (4.26) of discrete H-surfaces
as a definition of discrete I-surfaces. Again, as in many previous cases, we have
narrow and wide definitions of discrete isothermic surfaces.

Definition 17 (Wide definition of discrete I-surfaces) A discrete isothermic
surface is a discrete C-surface F : Z.2 — R® such that the cross-ratios

n,m = Q(Fn,ma Frt1,m, Fag1,m+1, Fn7m+1)
of elementary quadrilaterals are negative ¢y, < 0 and satisfy the factorization
condition

In,mAdn+1,m+1 = n+1,mq9n,m+1- (55)
Equivalently, the cross-ratio qn m s a product of two factors
B

T2
an

(5.6)

Gn,m =

where a, does not depend on m and 3,, not on n.
A special case is a more geometric definition.

Definition 18 (Narrow definition of discrete I-surfaces) A discrete I-surface
is a discrete C-surface for which all elementary quadrilaterals are conformal
squares, i.e. they have cross-ratio —1.

The cross-ratio is Mobius invariant.

Theorem 13 (Mdbius invariance). Let F : 72 — R® be a discrete_isothermic
surface and M a Mdbius transformation of Euclidean 3-space. Then FF' = MoF :
7% — R® is also isothermic.

Property 7 of smooth isothermic surfaces also persists in the discrete case.

Theorem 14 (Dual discrete I-surface). Let F : Z? — R® be a discrete isother-
mic surface with cross-ratios (5.6). Then the discrete surface F* : Z* — R?
defined (up to translation) by the formulas

1 Fupim — Fam
i [|Fot1,m = Foml?’
* o _i Fn7m+1_Fn,m
e m T2n ||Fn,m+1 - Fn,m||2.

* *
n+l,m — Fn,m -

(5.7)

is isothermic. The cross-ratios of the corresponding quadrilaterals of F' and F™*
coincide 5
B

T2
an

Q(F;,ma ;+1,m>F;+1,m+1> ;,m+1) = (5-8)
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The discretization based on the loop group description of isothermic surfaces
is very similar to that of K- and H-surfaces. In the framework of conformal
geometry isothermic surfaces are described in terms of certain sphere congruences
[3, 13]. The Lax representation of isothermic surfaces is given in four-dimensional
matrices, because it is based on the spinor representation of the conformal group.
It turns out that, as in the cases considered in Sections 3 and 4, this algebraic
discretization provides us with the same definition (5.5) of discrete isothermic
surfaces. The details of the loop group discretization as well as the corresponding
Sym formula can be found in [11].

Remark. One can generalize the definition (5.5) to the case of discrete C-

surfaces given by Definition 5, i.e. assuming

O e

n

qn,m =

only. These nets possess natural multidimensional generalizations which are
special discrete orthogonal systems in the sense of Definition 13.

Definition 19 A discrete I-system is a map F : Z> — R® for which

By
Q(Fk,hm:Fk+17l,m>Fk+17l+1,ma Fk,l+17m) = a_;
k
Ym
Q(Fkt,m» Frr1.0,m> Frer1tm+1, Frtmy1) = o
k
Ym
Q(Fkt,m» Freir1,ms Fre g 1,m+1, Fitym+1) = B
[

holds with some o, 3,7 : Z — R.
All the coordinate surfaces of a discrete I-system are discrete I-surfaces. A
discrete I-system is uniquely determined by its Cauchy data

F(s,0,0), F(0,0,0), F(0,0,0):Z - &,  «a,8,7:Z R

A direct geometric proof of this is presented in the contribution by Hertrich-
Jeromin, Hoffmann, and Pinkall [30].

5.3 Discrete M-surfaces (minimal isothermic surfaces)

A special class of discrete H-surfaces is provided by discrete isothermic minimal
surfaces (discrete M-surfaces). Setting the mean curvature H of a discrete H-
surface equal to zero (see the Remark at the end of Section 4.5) we obtain the
following:

Definition 20 Let F : Z2 — R? be a discrete I-surface with constant cross-ratio
of elementary quadrilaterals

Q(Fn,maFn+1,m:Fn+1,m+1:Fn,m+1) =" —5-
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F1G. 8. Definition of discrete minimal isothermic surfaces

The surface F is called a discrete M-surface (minimal isothermic) if all the mean
curvature spheres of Definition 12 are planes. Equivalently, at each vertex F,, p,
there is a “normal” vector Ny, such that'®

< Fn+1,m _Fn,m:Nn,m >=< Fn—l,m _Fn.m:Nn,m >= Ctém
Amm
<Fn7m+1 _Fn,m;Nn,m >=< Fn,mfl _Fn,m;Nn,m >=— /32

Figure 8 visualizes this definition in the special case of the narrow definition
a = 3 =1 of discrete I-surfaces.

Investigating the dual isothermic surface one can show!” that F* lies on a
sphere and that for all points of a discrete M-surface A, ,,, = A is constant on

U C Z2. The normalization )

implies that the sphere of F* has unit radius.
Theorem 15 [11]. The following statements are equivalent:

(i) F:Z? — R3 is a discrete isothermic minimal surface normalized by (5.9).

(ii) The dual surface F* : 72 — R® lies on a sphere and without loss of gener-
ality one can assume that it coincides with the Gauss map N

F*=N:7*— 5>

This theorem allows us to reduce the dimension of the problem and to paramet-
rize discrete minimal surfaces by “holomorphic” data N. Indeed, applying

16 As in Section 4.5 one can justify these formulas by considering infinitesimal curvature line
quadrilaterals of minimal surfaces.

17The proof is the same as the one presented in [11] for the case @ = 3 = 1.
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stereographic projection S2 — C to N, we obtain a discrete isothermic net!'®
g : Z*> — C on the complex plane. The isothermic Gauss map N : Z% — S? is
the stereographic projection of g

. 29 |g|2—1>
Ny +iNy, N3) = , . 5.10
(N1 + N, V) <1+Ig|2 lg|*> +1 (5.10)

It has the same cross-ratio as F':

(9n+1,m - gn,m)(gn,m+1 - gn+1,m+1) _ 52
(gn+17m+1 - gn+17m)(gn,m - gn,m+1) a?

gn,m are complex numbers here.
Combining formulas (5.10) and (5.7) one gets an analogue of the Weierstrass
representation in the discrete case.

Theorem 16 Let g: Z? — C be discrete conformal. Then the formulas

Fn+17m - Fn,m =
1 1
B —
2a In+1,m — Gn,m
Fn7m+1 - Fn,m =
1

1
—Re|l —— =
23 <9n,m+1 — 9n,m

describe a discrete minimal isothermic surface. All discrete minimal isothermic
surfaces are described in this way.

(]- — In+1,m9n,m, Z(]- + gn+1,mgn7m)7gn+17m + gn7m)>

(]- - gn7m+1gn7m7 Z(]- + gn7m+1gn,m)7 gn7m+1 + gn,m))

Discrete H-surfaces can also be parametrized in terms of discrete conformal
mappings . This has been shown by Hoffmann [27] using a discrete version of
the Dorfmeister—Pedit—Wu factorization method.

Naturally we now come to investigation of the simplest integrable nets studied
in the present chapter, which are discrete conformal maps, described in the next
section.

6 Discrete conformal maps
6.1 Discrete isothermic nets in C

Definition 21 [11] (Wide definition of discrete conformal maps) A discrete
isothermic map in C

f:Z°-R =C

is called discrete conformal.

18 There are several reasons to call this net a discrete conformal mapping (see Section 6).
One of these reasons is the discrete Weierstrass representation of Theorem 16.
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In this section we stick to the narrow Definition 18

— (f’mm - fn+1,m)(fn+1,m+1 - fn7m+1) _
o = (fTH-l,m - fn+1,m+1)(fn,m+1 — fmm) =-1 (61)

of discrete isothermic nets.
Definition 21 is motivated by the following properties:

e f:D C C— Cis a (smooth) conformal (holomorphic or antiholomorphic)
map if and only if ¥(z,y) € D
lim ¢ (f(z,y), f(z +ey), flx + ey +e), flw,y +e) = 1.
e Definition 21 is Mobius invariant and the dual discrete conformal map
f*:Z? — C is defined (see Section 5.2) by
1 1
fovim=fom = —7=——==) fom1—fom = 57— (62)
+h ’ fn+1m_fnm At ’ fnm+1 fnm

The smooth limit of this duality is

— 1
(FYZ—F; (6.3)
where f is holomorphic and f* is antiholomorphic.
e Equation (6.1) is integrable. The Lax pair
\I!n—i-l,m = Un,m‘IIn,m \I"n,m—i-l = Vn,m\I!n,m (64)
found by Nijhoff and Capel (see the contribution of Nijhoff [40]) is of the
form
1 Un,m 1 Un,m
Un,m = A 1 ) Vn,m = _ A 1 y (6 5)
Up,m Un,m
where
Un,m = fn+17m - fnﬂn; Un,m = fn,m+1 - fn,m-

Definition 21 of a discrete conformal map as a discrete isothermic map is
too general for some purposes. For example, there clearly are isothermic nets
f :Z* — C which are far (see Fig. 9) from the behaviour of usual holomorphic
maps. (We are grateful to Tim Hoffmann who produced these and all other
Mathematica pictures in this section.)

Another class of maps f : Z? — C introduced by Schramm [47] has proper-
ties that bring them much closer to the well-known world of complex analysis.
Schramm’s maps can be viewed (in a sense to be made precise; see Section 6.4)
as a subclass of all discrete isothermic nets in C.
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FiG. 9. Two discrete conformal maps with close initial data n = 0,m = 0. The
second lattice describes a discrete version of the holomorphic mapping z2/3.

29 o
o)
z — .
21
21 Wa 1
o o
%)

FiG. 10. Parallelogram property

6.2 Discrete P-surfaces (nets with the parallelogram property)

First we show that a discrete isothermic net F' : Z%? — R3 can (almost) be
reconstructed from half of the points. Colour the points as black and white in
a checkerboard pattern and forget the white points. The black points form a
lattice in their own right. To investigate the property of this lattice, look at a
black point and its four neighbouring faces (Fig. 10). Mapping the central point
to infinity by an inversion, we see a quadrilateral of four white points and the
black points are the centres (recall that the cross-ratios gy, are —1) of the edges
of this quadrilateral.

Obviously, these four black points form a parallelogram. We call this property
of a net the parallelogram property and a net possessing it a P-net or discrete
P-surface.

Lemma 6

e Both sublattices (black and white) of a discrete I-surface form P-nets.
o A (black) lattice possesing the parallelogram property and an additional
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(white) point can be uniquely extended to a discrete I-surface.

Proof. The white quadrilateral in Fig. 10 is uniquely determined by one of
its vertices and the black parallelogram. Moreover, due to the parallelogram
property the quadrilateral exists for any choice of this (white) vertex. By con-
tinuation of this process one reconstructs the whole isothermic net.

Remark. One can interpret the extension construction described above as a
transformation of P-nets. Indeed, given such a (black) lattice, choose an arbi-
trary (white) point, extend them to a discrete I-surface, and delete the original
(black) sublattice. We end up with a new (white) P-net.

6.3 Equations for cross-ratios of P-nets in C
As we have seen above, a discrete conformal map is almost determined by its
(black) sublattice, which is a lattice in C with the parallelogram property. Denote
the last lattice by
z:7%— C.
To describe it algebraically let us introduce the cross-ratios

_ (ZnJrl,m - Zn,m)(znfLm - Zn,m+1)
Sn,m = (

)
Zn,m+1 — Zn—l—l,m)(zn,m - Zn—l,m)

" _ (Zn,m+1 - Zn,m)(zn—i-l,m - Zn+1,m+1)
n,m — (

Znt1,m+1 — Znmt1) (Znym = Znt1,m) '
Note that whereas the ¢ are cross-ratios of the lattice faces, the s are cross-ratios
of the corresponding parallelograms in Fig. 10:
(21— 2)(21 — 22) w1 —ws
(e —2)(z—21)  we —wy

Here we use the notations of Section 4.4. It is natural to think about s and ¢ as
defined on vertices and faces of the lattice respectively.

It is convenient to use the graphical notations of Fig. 11 for these cross-ratios.

Z2 %) 212

Zi z zZ1 z Z1
FiG. 11. Graphical representation for cross-ratios
The terms in the numerator and in the denominator of the cross-ratios are

denoted by solid and dashed lines respectively. The orientation of edges is cyclic.
The parallelogram property can be reformulated in terms of the cross-ratio s.
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Lemma 7 The following symmetries of the cross-ratio

are equivalent to the parallelogram property of the lattice.

This implies that under a 7/2 rotation both cross-ratios s,¢ transform the

same way:
1 1
5= ——, t— —. (6.6)
s t
In order to derive algebraic equations for s, t it is convenient to introduce one
more cross-ratio on the faces, which differs from ¢ by a modular transformation

T=1/(1-1).

Let us consider two horizontally neighbouring faces and denote by #;, .., sy, sS4
the cross-ratios associated with their faces and common vertices. The labels
here denote the 1(eft) and r(ight) faces and u(p) and d(own) common vertices of
these faces (Fig. 12). Do the same for vertical neighbours. Finally, considering
a quadrilateral with its four neighbouring quadrilaterals, we denote their cross-
ratios as shown in the third diagram of Fig. 12.

Su tu

Fia. 12. Labels in the identities (6.7) and (6.8)

Lemma 8 The neighbouring cross-ratios of a P-net in C satisfy the following
identities:

Su_ 1ot ﬁzil_tz, (6.7)
Sd ].—tl S| ]‘_td
1—t.)(1—t
t2_ ( ’r‘)( l) (68)

-t =t
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In these three equations the notations of the corresponding three diagrams of
Fig.12 are used.

Proof. Using the graphical notation for the cross-ratios one can immediately
see (Fig. 13) that

s T
Sd T,
* *
* *
0‘ ‘0
0“0
0‘ ‘0

F1a. 13. Proof of the identity s,/sq = T;/T;

Substituting the definition of T' we obtain the first of the identities (6.7). The
second one follows from the transformation property (6.6). The system (6.7) is
linear with respect to s. Eliminating s we obtain the compatibility condition
(6.8).

Equation (6.8) is the stationary (one discrete variable is excluded) 3D-Hirota
equation (for the 3D-Hirota equation see for example [35]).

The description of Lemma 8 is conformal: Mdobius equivalent lattices corre-
spond to the same solution of (6.7, 6.8).

Remark. A Cauchy problem.

Fig. 14. A well-posed Cauchy problem for system (6.7)

A canonical Cauchy problem for system (6.7) is obtained by prescribing s on
a vertical chain of lattice points and ¢ on adjoining faces, that is

SO,m; t()’m. (69)

This is schematically indicated in Fig. 14. Here, bullets and boxes represent
the Cauchy data sg,,, and to ,, respectively. Obviously, both si , (circles) and
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t_1,m (dashed boxes) may be calculated from the Cauchy data. It is evident that
iterative application of this procedure uniquely determines the solution of (6.7).

Conversely, a solution of (6.7) determines a P-net uniquely up to Mdbius
transformation. We summarize the results in the following (compare with [47])

Theorem 17

e The t and s invariants of a P-net in C satisfy the system (6.7).

e Conversely, given a solution (s,t) to the system (6.7) there exists a P-net
with these s,t as the lattice invariants.

o Two P-nets with the same invariants s,t differ by a Mdébius transformation.

e Suppose s,t satisfy (6.7). Then t satisfies the stationary 3D-Hirota equa-
tion (6.8).

e Conversely, suppose that t satisfies (6.8). Then there is a field s defined
on vertices such that s and t together satisfy (6.7). Moreover, s is unique,
up to multiplication by a complex constant.

This theorem can be proven by considerations similar to those used above
for the Cauchy problem. One starts with three arbitrary points (this ambiguity
corresponds to an arbitrary Mobius transformation of the lattice) and builds
the whole lattice using the corresponding cross-ratios s,t. The symmetries of
Lemma 7 are required; therefore given s at some point and three points of the
corresponding “cross” the remaining two points are uniquely determined. Iden-
tities (6.7) guarantee the compatibility of the construction.

Remark. Let us note that the last point of the theorem describes a one-
parameter family (associated family) of lattices corresponding to the same solu-
tion of (6.8). The family parameter plays the role of the spectral parameter.

6.4 Schramm’s constraint

Our first observation deals with general discrete P-surfaces in Euclidean 3-space
F :Z? - R®. With each vertex F one can associate four circles (1), C(?) C(3)
C™ | determined by the corresponding triples of points:

FF,F,eCY, FF,FFeC®, FF, FecC®, FF,F ecCWY,

The parallelogram property is equivalent to the condition that opposite circles
touch (with the same tangent line) each other. In Section 6.5 we study a special
class of discrete P-nets in R®. Before doing that let us continue the investigation
of a simpler case of P-nets in C, where we have the algebraic description of the
previous section in our disposal.

The following lemma, provides us with natural geometric and algebraic sub-
classes of discrete P-nets in C.

Proposition 9 The system (6.7) is compatible with the following constraints:

e Clircular constraint: t € R.
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F1G. 15. Schramm’s constraint

e Clircular orthogonal constraint: t € R and is € R.
e Schramm’s constraint: t < 0,is < 0.

Geometrically the circular constraint is equivalent to the condition that the ele-
mentary quadrilaterals are circular. The orthogonal circular constraint implies
that the circles intersect orthogonally. Schramm’s constraint implies in addition
to the previous two that the elementary quadrilaterals are embedded (the opposite
edges do not intersect) and the quadrilateral lattice is immersed.

The last claim is clarified in Fig. 15. Consider closed elementary quadrilater-
als with the edges comprised by the corresponding arcs of neighbouring circles.
These neighbouring quadrilaterals intersect only in their common vertices iff
is < 0. It is natural to call a circular lattice satisfying this condition immersed.

The (orthogonal) circular constraint is compatible even with the Cauchy
problem (6.7, 6.9): given real g ,,%50,m the solution ¢y m,,75,,m of the Cauchy
problem is real for all n,m € Z. Note that in the case of the circular constraint,

arg Sy, = const

on the whole lattice.

Schramm’s constraint is more delicate (and also more interesting) to investi-
gate. Schramm has defined his circle patterns with combinatorics of the square
grid [47] coming from questions in approximation theory. He has shown that
negative solutions ¢ < 0 of equation (6.8) satisfy a maximum principle, which
allows us to prove global results. In particular he has proved [47] that the
only embedding of the whole Z? is the standard circle pattern (where all circles
have constant radius). In terms of solutions of the Hirota equation (6.8) this
implies that ¢ = —1 is the only strictly negative solution on the whole lattice
t:Z? >R ={t<0}.

We call discrete P-nets in C satisfying Schramm’s constraint S-nets in C.
In a wide version of this definition only circular and orthogonal constraints are
required.

It is possible to generalize Schramm’s circle patterns, replacing Z?2 by a quad-
graph (see Section 2.1). Instead of having four vertices on every circle, one allows
various numbers N of vertices (and as a consequence N neighbouring and N half-
neighbouring circles. It is natural to call [6] such a singular point a branch point
of order N/4 —1.
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6.5 Discrete S-surfaces in R?* (Schramm isothermic surfaces)

The constraints of the previous section are too restrictive for discrete P-surfaces
in R?. Indeed, it is easy to see that a discrete P-surface in R® with circular
quadrilaterals (discrete C-surface) must lie on a sphere S?. Identifying S? with
C we end up with a circular P-net in C of the already considered type.

Definition 22 A discrete P-surface is called orthogonal if all parallelograms
defined as in Fig. 10 are rectangles. Equivalently, the circles CV, ... ,C*
defined in the previous section intersect orthogonally C® 1 C(+1),

Let us observe another possible characterization of circular orthogonal P-nets
in C. A simple corollary of equations (6.7) is the following:

Lemma 9 An orthogonal P-net in C with one circular elementary quadrilateral
(i.e. one real to o € R) is orthogonal circular, i.e. t,m € R, VYn,m.

This lemma motivates us to suggest the following generalization in the case
of space nets.

Definition 23 A discrete S-surface is a discrete orthogonal P-surface F : 7.2 —
R3 for which half of the quadrilaterals, say those of the form

(Fn,m; FnJrl,m; Fn+17m+1; Fn7m+1) With19 n+m= 0 (610)

are circular.

Let us denote the circles of (6.10) by C, », and assume that other quadrilat-
erals are non-circular, i.e. they uniquely define spheres Sy, ,,, such that

Fn,ma Fn+1,m: Fn+1,m+1: Fn,m—i—l € Sn,m with n +m = 1.

In this generic case at each point F}, ,,, we have a pair of touching spheres and a
pair of touching circles, which intersect these spheres orthogonally.

A discrete S-surface can be described as a sphere packing with this property.
Given a packing of touching spheres the C-circles are well defined, due to the
following:

Lemma 10 Let S1,S5,53,S54 be four spheres touching at the points P, = S1 N
SQ,PQ = Sz n S3,P3 = 53 n S4,P4 = 54 N 54. Then the points Pl,Pz,Pg,P4 lie
on a circle.

Proposition 10 (Sphere packing definition of discrete S-surfaces). A discrete
S-surface is described by a packing of touching spheres Sy n (n+ m = 1) such
that the circles Cp,m (n +m = 0) defined in Lemma 10 cut them orthogonally.

A natural subclass of these sphere packings are packings of mutually disjoint
touching balls with orthogonal circles as in Proposition 10. This is a proper
three-dimensional generalization of Schramm’s constraint.

9By g = 0 we denote a=0 (mod 2).
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F1G. 16. Discrete S-surface and its central extension

We have defined discrete P-surfaces as sublattices of discrete I-surfaces. Let
us describe the reconversion process for discrete S-surfaces. Let us add to a
discrete S-surface the centres of the spheres S and of the circles C (Fig. 16).
Obviously, all elementary quadrilaterals of the extended lattice are kites. In
particular, they are conformal squares (¢ = —1) and hence form a discrete I-
surface. All the notions here except the “kite form” are Mobius invariant. This
implies that the construction above holds for any choice of the “infinity point”.
Indeed, choose an arbitrary point Py, € R* U{oo}. Reflect it in all the spheres S
and all the circles 20 C'. We call the resulting extended lattice a central extension.
We have proved the first statement of the following:

Lemma 11 A central extension of a discrete S-surface is discrete isothermic.
All isothermic extensions of a discrete S-surface are central extensions with some
point Py, € R® U {o0}.

Due to Lemma 6 an isothermic extension of a discrete P-surface is uniquely
determined by one additional point. Take such a point and invert it in the
corresponding sphere or circle to determine P,,. The uniqueness implies that
the central extension with P, is the discrete I-surface we started with.

The class of discrete I-surfaces which are central extensions with Py, = oo
(i.e. with kite faces) is invariant with respect to the dualization transformation
of Theorem 14 (note that we are dealing with the narrow definition of discrete
I-surfaces ¢ = —1 and @« = 8 = 1 in (5.7). This allows us to define a dual discrete
S-surface as follows:

1. extend a discrete S-surface to kites (i.e. build the central extension with
Py =0,

2. dualize the kites using (5.7),

3. throw away the centres.

Proposition 11 The dualization transformation described above applied to a
discrete S-surface F' yields another discrete S-surface (which we call dual to F).

20The reflection in C is defined as follows. Consider the sphere S passing through C and
Py . Denote by S¢ the orthogonal sphere S¢ L S containing C. Reflect P in S¢. The image
lies on S.



Discretization of Surfaces and Integrable Systems 53

FiG. 17. Discrete conformal maps: EXP and S-EXP without and with circles.

One should prove that step 3 of the dualization procedure provides us with
an S-net. Central extensions with P, = oo are characterized by the property
that their faces are of the kite form and that the centres of touching spheres are
collinear with the point of contact. Both these properties are preserved by the
transformation (5.7).

Remark. The duality transformation preserves the planarity of lattices; there-
fore it is well defined for S-nets in C.

6.6 Examples of discrete conformal mappings

Keeping in mind the relation to holomorphic mappings, it is natural to look for
discrete relatives of the simplest holomorphic functions.

o 7:= discrete z
Z(n,m) :=n +im.
The standard lattice belongs to all classes considered in the present paper.

e EXP:= discrete e*
EXP,(n,m) := exp(2n arcsinhy + 2im arcsinvy), ~v € R

is a discrete conformal map. The Schramm exponent S-EXP is a little bit less
symmetric (see Fig. 17).

e TANH:= discrete tanh z
is a Mobius transformation of EXP (see [27]).

o 7N+l .= discrete zNt!, N € Z
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F1G. 18. A sector and the whole lattice of the discrete conformal map Z3.

is a discrete conformal mapping, obtained from the standard lattice by inter-
twining the inversion 1/z and the dualization.?! For the first one in this series
we obtain

1 1 1 1/z

— 5 _Z3(n,m) = =((n+im)® — (n —im)) & ...

5 2 n,m) = 5 (0 -+ im)° — (n — im))

The discrete conformal map Z2 = 22 — 7 is close to the smooth z2. A sector
of this map as well as the whole lattice is presented in Fig. 18.

Z(n,m) g (n,m) =

N~

3

Remark. Since the lattices Z and 1/7Z are both discrete conformal and S-nets
one can build a similar sequence ZQSN *1in the Schramm class replacing the trans-
formation (6.2) we used above by the duality transformation of S-nets described
in Proposition 11.

e 77:= discrete 27, 0 < v < 2 (for details see [6]).
Equation (6.1) can be supplemented with the following nonautonomous con-
straint:

(fn+17m - fn,m)(fmm - fnfl,m)
fn+1,m - fn—l,m

(fn,m+1 - fmm)(fn,m — fn,mfl)
fn,m—i-l - fn,m—l

Proposition 12 f : Z2 — C is a solution to the system (6.1, 6.11) iff there
exists a solution to (6.4, 6.5), which satisfies the following differential equation
in A:

d 1 1

1
ax- s PR W e e

Y fnm =2n (6.11)

+ 2m

A_y, (6.12)

211t is natural to combine the dualization transformation (6.2) with complex conjugation to
obtain maps close to holomorphic ones (compare with (6.3)). We denote this combination by
*.
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where the matrices Ay, A1, A_1 are as follows:

_1 n Un,mUn—1,m m Un,mUn,m—1
Aq = 4 Un,m + Un—1,m Un,m + Un,m—1
0 Y )
0 -
4
A = m ( Un,m  UnmUnm—1 >
Un,m + Un,m—1 1 Un,m—1
A= n < Un,m Un,m Un—1,m >
Un,m + Un—1,m 1 Un—1,m

The constraint (6.11) is compatible with (6.1).

In the case v = 1 the constraint (6.11) and the corresponding monodromy
problem (6.12) were obtained in [39] (see also the contribution of Nijhoff [40]).

Remark. The monodromy problem (6.12) coincides with the monodromy
problem of the Painlevé VI equation [31], which shows that the system can be
solved in terms of the Painlevé transcendents.

Let us assume v < 2 and denote Z2 = {(n,m) € Z*n,m > 0}. Motivated
by the asymptotics of the constraint (6.11) at n,m — oo and the properties

(Ry) €Ry, 27(iRy) € PR,

of the holomorphic 27 it is natural to give the following definition of the “discrete
2z"” which we denote by Z7.

Definition 24 Z7:72 — C is the solution of (6.1, 6.11) with initial conditions
Z7(0,00=0, Z7(1,0)=1, Z7(0,1)=e""/2

It is easy to see that Z7(n,0) € Ry, Z7(0,m) € e?™/?>R,, Vn,m € N.

It is not difficult to check that the discrete conformal map Z7 with v = 4/N,
N e N, N > 4 is a generalized Schramm circle pattern. (Recall that the central
points of the circles are also included). In this case the only branch point is at
the origin. We call the combinatorics of this pattern combinatorics of the plane
with one branch point of order N/4 — 1.

In the discrete as well as in the smooth case (up to a constant factor) one
has

(ZN)* = 7%,

Conjecture 1

o 77 Zf_ — C is an embedding, i.e. different open elementary quadrilaterals
of the pattern Z7(Z2) do not intersect.

e 77 is the only embedded discrete conformal map f : Zﬁ_ — C with

£(0,0)=0, f(n,0)eRy, f(0,m)€ ™R, Vn,meN
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o Up to a similarity Z*/N is the only embedded generalized Schramm circle
pattern with the combinatorics of the plane with one branch point of order
N/4—1.

Computer experiments made by Tim Hoffmann confirm the first conjecture

of the list. The second lattice in Fig. 9 is a sector of Z2/3,
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