theory of solitons, geometers used ;

ntegrable

of resear,
ical intuition and methods of soliton theo) =

TY in order to stud

equations to describe vagi.
takes admntage of using

. geometries described by integrable syste : R uACE
;ngtheory (ﬁ{;ite—gap integr‘a.tion, Rie;anz;il::::s;’;gxt:: ekl
ke applied to obtain new resl.l.lts in f{iﬁerent.ia.l geometry in the Iargec‘%‘l Ov:ere aut]l
ic methods (Lax representation, Bicklund transformation etc.) m.med :su::;:l
oroperties of integrable geometries. g

dy it was found that integrable discretizations (

c;:ete integrable systgms) of integrable g.eomeFries have natural properties. Looking for
er definitions of integrable nets and investigation of their geometrical and algebraical
erties has become a popular ﬁelc_l of’research in the 1990's. Numerous examples in
Euclidean, conformal, affine a.n(_i projective geometries were found and investigated. A
collection of achievements in this field can be found in the book [3].
In the first part of the present talk it is shown how the loop group interpretation of the
Backlund transformations implies the existence of the corresponding discrete integrable
tes. In the second part (sections 3,4) discrete integrable analogues of elastic
curves and of the Lagrange top are defined.

ie. those described by dis-

9 Discrete surfaces via Bicklund-Darboux (BD) transformations

(One of the most fundamental properties of surfaces described by integrable equations is
{he existence of the Bicklund transformation. It is well known [13].that these tr:u?sfor-
mations coincide with the Darboux or dressing transformations, which were analytically
[149] and algebraically [11] studied in the theory of solitons. .We show how t»he pro;:;;
intérpretation of the Bicklund transformations yields definitions of discrete integra
surfaces. ’ 2
: Analytic description. Dressing transjormaion. y o
Let G[A] be a loop group and (z,y) = ¥(A\z,y) € G[}] be a smooth map
hmic derivatives

1)
U =9, V=000 el

e dition
esponding loop algebra g[}] and satisfy the compatibility condt

()

U,,—Vx+[U1V]:0'
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il
1) € G[A]. We call D the D&rboux o
‘ m}ts A = {M;-- - Av}, where ¢,
Lker U(A:;) of W(A) are independent, o
{7, V have the same dependence on ) 5

¢ formation naturally yields the Permue s
’:'(rd:ri‘:Ig tEeD;:::g:'mation with the following dregg; tabil.
‘consi

“-‘Edata
A=k}, K=ok}

f5 ; ;
s wax matrix with the only degeneration point A,:
Dar
D D) =0, K =kerDy (M),

1k
b 50

with the data A, K can be constructed in two different ways
¢l

-i;(A) = D ir(A) Doy i (AVE(R) = Dy gir(A) Dy sy (A)E (),
(N, k= B(A)ke, ki = Dy, s (A1 )kn, kY = D, 1y U(As)ky.
es the permutability theorem

Dzt (A) D, g (A) = Dy, ar(A) D s ().

Unm = Duu,pn,mf)'): Dt — Dy,,..q,,m“),

(8)
are the corresponding kernels.
(4) in the loop group G[)] becomes
e
un,m+: Vn,m = n+l,man.m (ﬁ}

erpreted as a discrete analog of the frame equation (2). The discrete net
2:Z% - G[A], which satisfies

B i

Bert = Unm®p @

nm4] = Vn'mq)ﬂ'm
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the spectral parameter and the kernel
ation, which should be treated®
tion above can be trivially

' Prym; Gnm One °w an
as a discretization of (2)‘ iy
generalized for any splitting

N N

ﬁ AL, i = UK{-; A= {Ah-‘.,AN‘}, K, =1k,... K}

=1 i=t ang

data. The cases N =1 a:nd N = 2 correspond to discrete curves and
vely. For N > 2 we obtain an N-dimensional integrable net. This net
erpreted as a sequence of the BD-transformations of an integrable net of

on.
sested method applied to the classical case of surfaces with constant $epative
curvature yields a definition of the discrete K-surfaces. To show this we recall
Lknown properties of the Bicklund transformation (2]. Let (z,y) = r(z,y) € R®
ptotic line parametrization of a K-surface and 7(z,y) its Bicklund transform
also a,sympt.otic line parametrized.
%
ic description. Backlund transformation of K-surfaces.

en surface T there exists a two-parametric {g, ¢} family of BD-transformations
pmetrized by the length ||F — r|| = g, which is independent of (z,y) and the
¢ between the tangent vector i —r and the asymptotic z-line at some point (Zo, Yo)-
important properties of this transformation are:

's The vector 7(z,y) — r(z,y) lies in the intersection of the tangent planes of the
" surfaces r and 7 at the points r(z,y) and 7(z,y) respectively.

lanchi permutability theorem. Let r — r(j) — T[12) be a sequence of the BT. By
.ther sequence of the BT r — rz) — rg) this sequence can be completed to a
ing diagram (see Fig.1). Moreover -

lIry = 7l = lrpzy — rizll, llr =7l = lirpa = rwll-

meters one can obtain the differential equation (2) from (5) as a limite —+ 0, — I+eU,
e net @ approximates its smooth limit. Note that the net ® does not approximate the
(X, z,y). We have discretize not a particular surface but a particular class of surfaces.
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totic net, i.e. for each point . there exists a ol
¢ ‘thepariginal emooth surface r) such that S Dt

Fnmtl € p,.‘,“ 5

Tayms Fa—1,m> Tnt1ms Tam=1

'hs of the opposite edges of elementary quadrilaterals are equal

— ramll = lITat1m+1 — ramtlls [Iramer = Tomll = lrnsgmey — Togal]
.

properties describe a discrete analog of the Chebyshev net and can be used
ition of the discrete K-surfaces (for details see [3]). The angles ¢ correspo :’s
o vertices of an elementary guadrilateral (corresponding to the smooth g urf:: L
72}, T[12]) satisfy a difference equation (), which is an integrable discretization (He.s
a equation) of the sine-Gordon equation. 5
~ In a similar way the affine spheres with the indefinite Blaschke metric have heey

5 ed in [4]. The corresponding loop group is
e

Gl = {#:R. > SL(3,R) | Qa(aNQ" = #(\), T[4(— )T = g()},

TR, g 00
BRSNS 0= [ 0 ¢> 0 |, g¢=e™03,
0] DiEs

e dis : :
: D::::n aﬁnet l::pheres turg out to be discrete Lorentz-harmonic® asymptotic nets.
; 11se these properties to define the discrete affine spheres geometrically. The

sponding discrete inte ion 4 ; : e
;ﬂ" T grable equation is an integrable discretization of the Gauss
M uay = eu i e—zu.

1,m4 T
gt +7n,m and vy o+ Tn,m+1 are proportional

222



5 e

(K + ar?)dz,

o

curvature and T = —j tr (o3® 3-1) is th ¥
& e torsion of t
erve 7(0),7(L), 2(0), #(L). The Euler—La,gral::g eq::ﬁ?,:? :;

deyidd

x7'+er =7Xa+b & TxT"+ ' =T xq, (1)
%=l ®
d a € RB? is a Lagrange multiplier

L
£,=£+<a,f Tdz > .
e (9)

H‘e‘r the well-known smoke-ring evolution (8] of a curve

Pe=7"x7" (10)

t flow 7 (which is a reparametrization of the curve) is one of infinitely many
of (10). Comparing (7) and (10) one can prove the following character-

elastic curves.
ic property. A curve is elastic iff its smoke-ring propugation (10) is

of the curve.
ts characterization to define discrete elastic curves. A discrete framed
metrized curve is a map 7 : Z — R? with ||a+1 — || = 1. Frames

are defined on edges so that the tangent vector is equal
T, = Y — n1 = —i8; 0320 (11)

nctions U, = B,.4, ;! are defined at vertices. The smoke-ring evolution
es was defined in [6]; it is given by the Ablowitz-Ladik hierarchy [1].
Eed
Tt T a To % Tnt1
=, R e T
4 <, Th+1> at Mo Lol natl =

product to be < A, B >= —tr AB.
e first introduced by U. Pinkall in 1993
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Tos >,

; (1)
"[7]_ The torsion of the frame i con

Stagy
E_@lﬁ?ﬂ - (o) (13
i ¥ tr fn
Tt'-::n,_[ogues of (7, 8) and are also Lagrangih‘ The
crete 5
SU(2) is
a 5U(2) x SU( .
3 Tony >) — 20108t (2ann 1))+ <0, 37 (4
Jog(1+ < Ty Tnt1 =
o = ara. Finally we come to the fbunwin
multiplier and ¢ discrete curve v : {0, Ny R%Q
grange tic curves. A : : ' il ~
f discrete ela;‘} _, SU(2) satisfying (11) is called elast, G
& {1,

g ! (14). A dioerhl vnﬁaﬁampreserue@(l),Q(N)

and TN ~vo=

r 12 . e bending energy is
a=0 (cla.ssncal Elastlca) the b
n free case

2 ¥n
ot 1 Zlog(l + tan’ 5 )

:;g]e between T}, and Tp -

spinning top
f;he smooth elastic curves and treat the arclength

Parameter g of the
as the time variable. The Lagrangian (9) can be re

written as

L
£ (@49 + a0t <. T5)i,
0

3
D=—i} Qo= -20'3-1,

k=1

ith the Lagrangian of the Symmefric spinning top. In
) describe the evolution of the frame and of the axis of

§ the angular velocity vector in the moving frame of the top. The
and ¢ € R%is up to 5 constant the gravitational field. This
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i |
Figure 2: Evolution of the axis of the discrete tpmnm; top

-}q!
fi’s kinetic analogue [10]. The frame of an elast;
3 Ty t ;
L e i o Tt i i e
an

this observation and the discrete elastic curves defined above we naturally come

f.,]]owms‘“h P el :

¥ efinition of the discrete Lagrangian top. The motion of the discrete L i

o map ®:Z SU(2) @th the Ln-gr:angian (14) on any finite interval o;?z"fmﬂ'“"
Euler-Lagrange equations (12,13) imply for the motion of the frame

. tr Un Tyl X Tn — Ta(Tn + Tns1) T e
- — — n-intl
- (" T 8 e =l =i

Thus, for a fixed 7a equation (12) describes the motion of the frame completely.
One can find the integrals of (12)

a Ea T T =t Gty
3 - ~l- i e
: H <Pn:?n 2 1+ < Tnng—l B ; Where e 1+ = TanA-l >'

' Equation (12) can be rewritten as a well-defined map (Tn-1,Ts) = Ty for the axis
‘the top. A result’ is presented in Fig.2, the corresponding smooth version can be found
textbooks. The Lax representation for the discrete Lagrangian top follows from the
blowitz-Ladik L-A pair [1].

' In the case @ = 0 we obtain a Lagrangian system on 5% x 5
ulum.

- the discrete spherical
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tion of a rigid body about a fixed point is 2 classical problem of mechanics,

ion of the Euler case is known [12].
computer program is written by C. Gunn

only an
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