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1 Definition of a Discrete Conformal Map

Definition 1.1. A map f: Z — C is called discrete conformal (discrete holo-
morphic) if the cross-ratios of all its elementary quadrilaterals are equal to
-1:
n,m = q(fn,m: fn+1,m: fn+1,m+1: fn.m-t—l) H—
(fn,m T fn+1,m)(fn+l,m+1 = fn,m+1) S iH (1)
(fn+l,m W. fn+1.m+1)(fn,m+l o fn,m)
This definition appeared [1] in 1991 and is motivated by the following

properties:

~ e f: DC C — Cis a (smooth) conformal (holomorphic or antiholomor-
~ phic) map if and only if ¥(z, y) € D

 limg(f( ), flz+e y), flz+ey+o, (@ y+e)=-1 (2
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duality is (f)' = 1/ where f i ho I
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Eisfintegrable. The Lax pair

‘I'ﬂ+1,m = Un,m"l’n.m
\Pn,m+l = Vn,m‘pn,m (5]

1 by Nijhoff and Capel in [3] is of the form

1 —Un,m 1 —
Un‘m = ( o) 1 ), Vn,m = (_ 5% ﬂ,m)
‘Un,m 'un,m 1 ! {6)
Un,m = frtt,m = fa,m, Un,m = fn,m+1 — i (7]

Let us mention also that all the properties are preserved [2],[3] if g = -
replaced by

Qi
g

The discrete conformal maps defined above are quadrilateral patterns with
combinatorics of the square grid. Ramified coverings can be modelled by

ilateral patterns with more complicated combinatorics when N edges !
v meet at a vertex. In this case Z2 in the definition should be replaced by

|-graph G [4]

Examples
:= discrete z
Z(n, m) :=n+ tm.

mes that NV is even and N > 4.




(1, m) == exp(2n arcsinhy + 2im'arcsin-y), ye

%'
~» Various discrete rational, trigonometric and hyperbolic functions (for
~ example TANH := discrete tanh z) can be obtained from the first two

examples by various combinations of the transformations (3
Bicklund-Darboux transformations). e

e Z7: = discrete2?.

Equation (1) can be supplemented with the following nonautonomous con-
straint:

'Y(fn,m an 5) = 2(n - Q) (fn+1,m i f“sm)(fn,m e anl,m)

fn+1,m R fn—l,m

(@)
+2(m . 4 ﬁ) (fﬂ,erl = fﬂ‘m)(fn.m o fn,m-l)-

fn,m+1 e fn,mﬁl

Theorem 2.1. f: Z* — C is a solution to the system (1), (8) if and only
if there ezists a solution to (5), (6), which satisfies the following differential
equation in A:

d 1 i

1
a\lln,m =AY, ,, A= XAO 5 mAl aF mA-l» (9)

where the matrices Ay, A;, A_; are A-independent. The constraint (8) is
compatible with (1).

In the case v = 1 the constraint (8) and the corresponding monodrony
problem (9) were obtained in [5]. The calculation of the coefficients of A is
rather tedious. Correcting misprints in the monodrony problem presented in
[5] and generalizing it to the case v # 1 important for us, we get

i Un,mUn—1,m Un,mUn,m-1
e e e L S
AD = 4 (a n) Up,m T Un-1,m (ﬂ )'Un,m + Un,m-1
0 u ’
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Mébius invariant and can be
: T




3. Discrete Geometry

The monodromy problem (9) coincides With ¢

equation [6], which shows that the system (1) ansle(gne f the .
s of the Painlevé transcendents. ) can be Eul?»:l
Let us assume v < 2 and denote Z% = {(n, m) € 22. , 9
ed by the asymtotics of the constraint (8)atn, m — ’

il
(Ry) € Ry, 2"(iRy ) € emii2R, %

of the holomorphic z7 it is natural to give the following definitj,
“discrete 27 which we denote by Z7. T of th

Definition 2.1. Z7: 72 5 C is the solution of

(1), (8) with q — 8
and with initial conditions

:'6=l]
Z7(0, 0) =0, EAL(EPR0) Z7(0, 1) = ermif2.

It is easy to see that Z%(n, 0) €Ry, Z7(0, m) € YR, Yn, men

Conjecture 2.1. 27:72 - Cis an embedding,

i.e. different open elemgy.
tary quadrilaterals of the pattern 2 "(ZZ)

do not intersect,
Computer experiments made by Tim Hoffmann confirm this conjecture,
Conjecture 2.2. 27

s the only embedded discrete conformal map f : Zi -
C with

f(0,0)=0, f(n,0)eR,, f(0,m) € ™R, wp meN

We hope to prove these conjectures by combining geometrical methods
with the modern theory of the Painlevé equations [7], [6].
In the discrete as well as in the smooth case (up ¢

O constant factor) one
has

(2 =77,

Discrete Surfaces and Coordinate Systems

: : to the conformal (Mébing
jons of this section belong y 'O1US) geometry.
n?moextend the notion of the cross-ratio (1) tao POInts in g3 ;jan-
4 S passing through X1, Xz, X3, X4 € R¥ with ¢p,
Clrculay A

o AR ¢ Riemann
io is real when the four P~
cmsoi'-z;t::l;ﬁnitions of Section 1 to R? Ylelds_,ﬁ_hé

by D



> I-surface (discrete isothermic surface) is a map

Qn

my Frt1,mi1, Fomil) = B’ o, B:Z5 R (11)

il ¥ mpenim of the discrete confor,

mal maps listed in Section 1 hold
(for simplicity we set g, = —1):

o Infintesimal quadrilaterals of the smoot, isothermic surfaces satisfy (2).

e Definition 3.1 is Mdbius invariant

g (now with respect to the MGébius
transformations in B* U {oo}).

e The dual discrete I-surface is defined by

B =1

i ¥ 3 — n+1l,m n,m
|la|q n+l,m nm ”Fn+l,m = n,m”zj
h‘ Fr:,m-i-l o F):,m = Fﬂ,m+l ~ F"l;m

rIFn,m+1 3 Fn.m”2 ;

There exists a Lax pair [2] for (11). Special classes of the discrete I-surfaces
can be characterized as follows:

)

!:'! ¢ Discrete M-surfaces (minimal) [2] : The dual surface F* lies on a sphere.
The Gauss map of F is F*.

! e Discrete H-surfaces (constant mean curvature) [1],[8]: A dual surface
i F* is “parallel” to F, i.e. it lies in constant distance of F

! 1

l P~ B |l = 7 = const.

Then H is the mean curvature for both F and F*.

Discrete integrable systems are closely related to the Bécklund-Darboux
(BD) transformations of their smooth analogues. The loop group interpre-
tation (see for example [9]) of the BD-transformation naturally yields the

pPermutability theorem: given two BD-transformations D,, D,, there exist
ustormations D}, D} such that

DiD, = DD, (12)

the D’s lie in the corresponding loop group. Equation (12)
representation of the discrete 2-dimensional net. Moreover
Am can be generalized to the N-dimensional case for



~dimensional cube cap 1,

hat the diagram commutes.
cally interesting. Motivateq
rmutability theorem for the Bml“nd..h .
oy

" Fn+1 myl Fn+1.nH-1.h Fﬂ.m+1.t)

m, s ’

ﬂ'(Fn =y Fn+'l,m,h Fn+1,m,l+1a Fn.m,t+].)
511,

e, . IR i1, 15 Fo m+1,1+15 )

~ All the coordinate surfaces of a discrete I-system are discrete L.g, o)
alvtical description of the discrete I-systems via the BD transformagip,
thermic surfaces is given in [10]. :
discrete I-system is uniquely determined by its Cauchy data

-F(', 0, 0,), F(O, 0) '): F(O: ., Ur): Z— R31 , 3, e, Z—}R

‘direct geometrical proof of this is presented in [8].
The following generalization is motivated by the smooth limit and the
Mébius invariance of the curvature line parametrization.

Definition 3.3. A discrete C—surface (discrete curvature line parametrized
surface) is a map F: Z2 — R* such that all elementary quadrilaterals have
negative cross-ratios (i.e. they are concircular and embedded).

A 2-parametric family of spheres is called a Ribeaucour sphere congruence
the eurvature lines of the two enveloping surfaces do correspond [11].

ion 3.4. Two discrete C—surfaces F, F': Z2 — R® envelope a discrefe
¢ congruence if ¥V n, m € Z the vertices of the elementary hexahedron
L Brttmits Fomi1, Fomy Frirmy Frirmen, Foymet) e 008

R—Bpher.e congruences allow a natural quaternionic descrip-
| the special case of the discrete I-surfaces yields their &€

crete O-system (discrete triply-orthogonal coordinate
—+ R for which all elementary quadrilaterals bav®




n,m % = (Pumiy Fot1my, F"‘+1-n'n+1,t, bt
mml Freimig, F, 61T
It lm s Frong 1)

b . .5 and are embedded.

19 A less restrictive version of Definitions 3.3, 3

[ g i ] ‘4’ )

:i,neludes the condition g € R only (i.e. does not assum?:: iﬁ:::‘::.;ﬁ?
ed-

.
. —systems are sph i i
The dlsc.rete _0 sys phere packings with the combinator
(he cube grid. Smc'e the spheres comprise the “dual lattice” it is na;)l:fl zf
Inb ol them by half-integer numbers: the vertices of the hexahedreon H 1',:;
n,m

on the sphere Spid,m+d, 410 the vertex F), ,, is the intersection of § spheres

'%‘k%:m*%’u:%- 5 .
“The cross-ratios of the faces (the index labels the “center” of the corre-
sponding face)
Rn,m+§,l+% = Q(Fn.m,h Fn.m+1,h Fn.m+1,t+1; Fn,m,1+1)
Rn+%,m.i+% = q(Fn,m.!s Fn+1,m,h Fn+1,m,l+lu Fn.m,l+1)
Rn_‘_%,m_*.%'( (B 13 B T B e R TR )
satisfy

Rn+%,m,i+% ntim41, 43 =
Rn,m+%,!+% Rn+1,m+-§-,£+% Rn+%,m+-;-,! Rn+%,m+%,£+1'
last equation holds for any 8 points on a sphere and by modular trans-
tions of the cross-ratios of the n and [ faces

L Ru+%,m.l+%
= a(Frmgs Fnmt1i41) Fam+i1 ) =1 Rﬂ.m+%v‘+%
i= q(Fom> Frme1i41; Fomer s Famasi) =il R;i%'m’f%")_l'
med to a gauge-invariant form of the 3D Hirota bilinear diff:rneélcli

blattice. Directing the n—m-

see, for example, [12]) on a su .
one can write this equation as

front and up respectively
1= T)(1— Tr)

T T = =

-G

(13)




, 1(eft), r(ight), u(p) ang ﬂ("

o

jons in approximation theory, Schramyy, -

sed a more restrictive definition of discre

1. He considers circle patterns wity, e cc:n.

.me with the following characteristic Propertiey

there are 4 vertices.

o . )
2 pairs of touching circles in common, the pajrg il

nally.

circle of the pattern and C1, C3, Cy, Cj its nei
C orthogonally, then C; NC; € C' Vi # 5.

ghbors,

n is obviously Mdbius invariant. A pattern is embeddeq

m discs of the circles, which are not neighbors, are disjoing,

for the half-neighbors (touching circles) we say that the pattery
plan). | .

arily the midpoints of the circles one obtains a refinement

ith the following properties:

e are two kinds of vertices which alternate: at the original vertices
e pattern there are 2 perpendicular outgoing pairs of edges, whereas
going edges at the added vertices have the same length. This

es the properties of the smooth case: fz L fy and |fz| = |fy|
vely.

aterals of the refined lattice are of the “kite” shape, in par-

they have cross-ratio —1, thus providing a discrete conformal
the sense of Definition 11478

an Tmunemed Schram

ve, build the dual (4)
: with another §

to the lattice formed by the intersections of circles, which we
e a function on faces by

m circle pattern, construct its refinement as
of it, delete the added points. This recipe
chramm immersion, which we call dual.

é: Eq(fﬁd-l.ma fn+1,m+l» fn.m+1- fﬂnm)



‘ ﬂ=(1~Tr RS e S
- (%), EE( u)_ (14)
Bese use the notation of Section 3, where

Su b Sﬂ=m+1' Sq = Sn,m; = Tn+%sm+%! =17

B .. S-5. T i
= b= = =
r 'n+1,m; nans Ay Tn+%,m+§: Td_T“+%'m_%,

Taking a quadrilateral formed by the 4 vertices on a circle, the cross-ratios of
the 4 neighboring quadrilaterals satisfy the compatibility condition of (14)

S )
T many >

where T is the cross-ratio of the center quadrilateral. This is exactly the 3D
Hirota equation with a translational symmetry in the front—back direction
(cf. (13)).

The negative solutions of the discrete Cauchy-Riemann equations (14)
are in one to one correspondence with the Mobius equivalence classes of the
Schramm circle patterns [13]. Moreover, for a negative solution of (15) there
exists a one-parametric family of negative solutions of (14). (S is unique up
to a multiplication by a positive constant S — AS, A € R, ) and consequently
a one-parametric family (associated family) of circle patterns. Obviously, A
1n this construction plays the role of a spectral parameter. Equation (15)
possesses a maximum principle, which allows proof of global results. In par-
ticular it was proven in [13], that the only embedding of the whole Z? is the
standard circle pattern (where all circles have constant radius).

- Let us mention also an alternative description of this geometry. The equa-
the radii of the neighboring circles is

Tt +ra+ 1+ 1,) = rararir, (07 1 4 7 00, (16)

robably also integrable.
ible to generalize Schramm’s patterns replacing Z* by a quad—
ion 1). Instead of having 4 vertices on every circle, one
ers IV of vertices (and as a consequence N neighboring



ative vertices on a circle ¢ labeleg
., Capr the neighboring circles of ¢ with 1
'C N C;. Denote by H;, and G; the "ertithe
Fyyq such that the vertices G, Fy, Fy 1, H, are ¢ Ceg
' 105 2 around C

g(F, Fis2, Fiss Fi1), Ri: =q(G, Fin, g, F)
following equation
: RlR:;---RzM—]_ 4] R1R3...R2M_1

i .' RzR.;...RzM éz}.ﬂ...RzM i UT]

Jddition R’s are subject to constraints

I T

R; > 1,
Rm(Ripam(Riva.. Rivk1m(Rivk)...) > 1, k<2M_3
Rim(Ripim(Rizz--Riap—am(Ripan—3)..) =1, i=1, 41O "

em(R) =1— % and the indices are taken mod(2M). Note thy oty

constraints of (18) are independent. Given a solution to the Equatig,

constraints above one can define the field S on vertices by using (1

so get an associated family (S is defined up to a multiplication bya
ive constant A) of the generalized Schramm circle patterns. For M =)
s (17),(18) is equivalent to (15).

The discrete conformal map Z7 of Section 2 with v = 4/N, N € N, N»|
example of such a generalized Schramm circle pattern. (Recall that the
points of the circles are also included). In this case the only branci
t the origin. We call the combinatorics of this pattern combinatories
e with one branch point of order N/4 — 1.

e 4.1. Up to a similarity Z*" is the only embedded Schramm
- with the combinatorics of the plane with one branch point of

the choice in (15) by the modular transformation R = 1—-T- The
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‘ ahb Sl g‘.pi—m s
v closed loops, Which mog - -
. del]

CIXCle patterns. If, (o the combinaﬁ“:n:o :fmwdthe
can assign negative Numbers R

fine local coordinate chay
and then talk about a discrete confo

ir and
generalized
e four vertices described
: » Which satisfy (17) anq (18) one
r:::! a.cn: lo-:.:a.l Schramm’s circle pat)t.erna
: : vering.
It is tempting to suggest alsg the followin izati

circle patterns for surfaces. Let g be the space (;gf sg:z::::iz: ;;21:; gc?l;;nm‘s
a discrete sphere congruence sych that: the neighbouring sphereg j 48
orthogonally Snm L Spyym, Snm L 8, % h:H . mtem?m
spheres are tangent S, |5, the onchin

ts, wh

nm+1 V1, m and th

A +lmtl, S“- "Sn -1 ¥ -
points of half-neighbours build a ney, 7 - Zz':’mR:} ‘:hl?:h ih:ntthelto‘-‘chms
discrete conformal surface. g atural to call a
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