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1 Introduction

For more then 200 years the helicoid was the only known infinite total cur-
vature embedded minimal surface of finite topology. The situation changed
in 1993, when Hoffman, Karcher and Wei [9] discovered the genus one
helicoid - a minimal torus with one end, which has a form of the helicoid
at infinity. The genus one helicoid was constructed using the Weierstrass
representation. Karcher, Wei and Hoffman have solved the corresponding
period problem [11] and were able to produce detailed plots of the surface,
strongly suggesting that it is embedded.

The Gauss map of this surface has an essential singularity at the puncture.
This makes the problem familiar to specialists in the theory of integrable
systems, where the Baker-Akhiezer functions — functions with essential
singularities on compact Riemann surfaces — have become a basic tool of
the finite-gap integration theory (see for example [13], [1]).

In the present paper we describe allimmersed minimal surfaces of finite
topology with just one helicoidal end. Using the spinor Weierstrass repre-
sentation [19, 3, 15] these immersions are described in terms of holomorphic
spinors with essential singularities at the puncture, which we call the Baker-
Akhiezer spinors. Those are described explicitly, as well as the Gauss map,
which is a meromorphic function with an essential singularity at the punc-
ture. Further we discuss the periodicity conditions for the immersion and
show how they yield the Riemann surfaces, which are two-sheeted ramified
coverings. This motivates the following
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Conjecture 1 Any immersed minimal surface of finite topology with one
helicoidal end has normal symmetry: it is invariant with respect 13@f-
rotation about a line orthogonal to the surface.

In Sect. 6 we present a new description of the Karcher-Hoffman-Wei
genus one helicoid. Our description contains only one integration (one inte-
grationlessthenin[11]) and we hope can be usedto prove the embeddedness.
Chosing a different spin structure we construct a twisted genus one helicoid.
We complete the paper with the plots of the genus one helicoids produced by
W. Hornauer, who visualised the formulas of the present paper with the help
of the software Mathematica and the Mathematica packag#lucd.m
by U. Pinkall.

The class of immersions under consideration is rather rich and we be-
lieve contains many embedded examples. Beside the genus one immersed
helicoids only the helicoids with two vertically displaced handles can be
described in elliptic functions. To investigate other surfaces one should deal
with Riemann surfaces of higher genus and therefore can not rely on Math-
ematica. A similar problem of visualisation of the theta functional formulas
for all constant mean curvature tori [2] has been solved recently by M. Hell
[7], who developed a software for calculations on hyperelliptic Riemann
surfaces. To visualise the formulas of the present paper a modification of
this software is required. We hope that these problems will be overcome and
we will see embedded helicoids with many handles $oon

2 Spinor representation of minimal surfaces

The Weierstarss representation of minimal surfaces in terms of spinors was
formulated in [19]. Independently it was reinvented in [3] as a special case
of the spinor description for general not necessarily minimal conformal
immersions intoR®. These ideas were developed further [14,18,17,12]
into a general theory of the spinor representation of surfacBs ifi5, 10].
For the most elaborated treatment of the minimal surface case we refer the
reader to [15].

Let R be a Riemann surface agda spin structure on it, i.e. a complex
line bundle overR satisfyingS ® S = K, whereK is the holomorphic
cotangent bundle. The spin structures are parametrized by quadratic forms

s: H\(R,Zy) — Zo, 1)

that is
s(y1 4+ 72) = s(n) + s(72) + 71 0 72, (2)

1 M. Traizet using a different approach has produced a plot of a probably embedded
helicoid of genus 2
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where~y; o v is the intersection number of, with v,. For a compact
Riemann surface of gengswith 0 or 1 puncture there ag29 different spin
structures.

Theorem 1 (Spinor Weierstrass representation). leb be two not simul-
taneously vanishing holomorphic sections of a spin budieer a Riemann
surfaceR, i.e.|a|> + |b|* # 0 and for any holomorphic coordinate chart
(U, z) with simply connected C R there exist holomorphic functions
A, B : U — C such that

a=AVdz, b=BVdz

onU. Then

P
f(fq:::Rejg (—a® + b2, i(a® + b), 2ab) @A)

is a conformal minimal immersioR : R — R3 with the metric
evdzdz = (|a* + |b|*)% (4)

The Gauss map of the surface is the stereographic projection

. 29 lg|* — 1
Ny +iNg = —"——, = 5
T T P ®
of the meromorphic function
a
= . 6
9="7 (6)

All oriented minimal immersions are described in this way.
The spin structure of the immersion coincides with the spin structure

The last claim of the theorem needs explanation. It is known [16] that
immersions intdR? come with the corresponding quadratic form (1) (i.e.
with the corresponding spin structure), which can be described entirely in
geometrical terms (see below). The theorem allows us to reformulate this
geometrical characteristics in terms of holomorphic data.

There are various equivalent descriptions of the spin structures. For the
construction of concrete surfaces it is convenient to use the description of
[3], which allows us to compute easily the spin structure of the immersion
starting with the Weierstrass data. l.ebe a closed smooth contour &b
without self-intersections. Let : U, — V,, be a coordinate chart from an
annular neighborhood,, of v to an annular domailt, C C. Representing
the holomorphic differential> = D(z)dz associated to the spinebnV in
terms of this coordinate one obtains a holomorphic functionV,, — C.
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The square rood = /D may have the monodromy:1 by analytical
continuation alongy

AL (=1)PM A, 7)
We call so defineg(~y) € Z, the flip number of the spinat along~. The
flip numbers of the spinors andb in (3) coincide.

These flip numbers have a simple geometrical interpretation. Let us con-
sider the imagd™ = F'(~y) of v on the surface. The contodirtogether with
the normal fieldV of the surface or” define a closed orientable strip in
space. LetV € Z be the number of twists of this strip, or equaivalently,
the winding number of the contoufsand(I" + ¢ N ), wheree small. The
parity of twistsM(mod 2) equals to the flip number af, b

p(7) = Mp(y mod 2. (8)

Moreover these numbers byy) = p(v) define the quadratic form (1). One
can show that so defineds indeed a quadratic form o, (R, Z2).
LetR be a compact Riemann surface of gegusth O or 1 puncture and

acanonical basig, b1, . . ., ag, by of H1 (R, Z) on it. The spin structure (1)
can be characterized by the values of the quadratic form on the basic cycles
i = s(a;), Bi = s(bi) € Za. 9)

So defined vector

e=[0,B €2, a=(a,....00,8=(B....0)  (10)
is called the theta characteristics. The theta characteristics is evei=
a1+ ...ay6y = 0mod 2 and odd ifo e 3 = 1 mod 2. Embeddings have
even theta characteristics.
Usually one has in mind a "qualitatively correct” picture of the expected
minimal surface. Due to (8) the spin structi®f the holomorphic spinors
can be computed by using the "qualitatively correct” picture.

Corollary 1 (Relation to the standard Weierstrass representation)
The spinor representation (3) is equivalent to the standard Weierstrass
representation for minimal surface. Introducing the differentials

n= b27 E = abv (11)
one obtains two versions of the standard Weierstrass representation

P
F(P):= Re/Q (1— g% i(1+g%),29)m,

P 1 1

F(P) = Re /Q ( - 0:i(5 +9).2) (12)

whereg is the meromorphic Gauss map (6). The spin structure of the im-
mersion is determined by the holomorphic sectjgin (or equivalently by

VE) of S.
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3 Helicoid and helicoidal end singularity

The minimal immersion of the plané : C — R? with the data

z

g =e; & =1idz
is the helicoid
F(x,y) = 2(sinh z siny, — sinh z cos y, —y),

wherez = x + iy. We study immersions with the helicoidal asymptotics at
infinity. To analyse the singularity of the holomorphic data one should treat
C here as the punctured Riemann sph@re {oc}. Chosing the pucture at
the originw = 1/z, the helicoid is described as the minimal immersion of
the punctured sphei@ \ {0} with the holomorphic data

g=ew, E=—i—. (13)

The corresponding holomorphic spiners onC \ {0} are

_m 1 vVdw
a=e€e 4e2w s
w
T \/ d
b=e Te 7w 20, (14)

Note that herew is a local parameter, which vanishes at the puncture.

4 Baker-Akhiezer spinors as the Weierstrass data
for helicoids with handles

Let us assume that a minimal conformal immersionR — R3 with finite
topology and a helicoidal end exists. The corresponding Riemann surface is
a compact Riemann surfacéwith a punctureR = C'\ {Fy}. The spinors

a, b in the Weierstrass representation (3) are holomorphiR oWlotivated

by (14) we give the following

Definition 1 We call a minimal immersiolr : R = C' \ {R} — R? a
helicoid of genug if C' is of genusy and the Weierstrass spinoesb are
holomorphic orR and have the asymptotics

i 1 dw
—e 51 1))ezw
a= e (1 +o(1))eds YO,
i \/d
b:e_7(1+0(1))e_ﬁ ww, w— 0 (15)

at the punctureP,.
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These analytical properties bring us naturally to the notion of the Baker-
Akhiezer spinors. Le be a compact Riemann surface of gegusdy, a
point on it, andw a local parameter &, with w(Fy) = 0. Let S, be a spin
bundle onC'. Provided a canonical homology basis b1, . .., ag4, by Of C,
the latter can be characterized by Zgg asin (10).

Definition 2 LetC, Py, w, S. be as above and(z) = 3>~_, ¢,2" a poly-
nomial. We will call a section of S. which is holomorphic o' \ {Fy}
and has an essential singularity of the form

)\/ dw

$(P) = (1 + o(1))elw S w0 (16)

at P, a Baker-Akhiezer spinor.

To justify the name, let us note that in the theory of finite-gap integration
[13,4,1] functions with essential singularities on compact Riemann surfaces
are called the Baker-Akhiezer functions.

For generic datdC, Py, w, ¢, ¢} the Baker-Akhiezer spinors exist and
can be described explicitly. For this description we need some preparation.
More detailed presentation of the facts from the theory of compact Riemann
surfaces and theta functions, for what follows, can be found in [6,4,1]. The
Riemann theta function corresponding to the Riemann surfacégenus
g is an entire function of complex variables = (2, ..., z,) defined by
the formula

1 o o «
O, B](2) = exp(z(Bm+ =),m+ =)+ (z +mif,m+ <)),
0 PI) = 32 expl(Blm+ Fum+ 5)+ )

wherea, 8 € Z§ is the characteristics of the theta functidh,= B, ,,, is
the period matrix
Bn7m = / Um,
bn

of the normalized holomorphic differentialg, on C

/ U, = 2T%0n,m.-
Qn

The theta function is quasi-periodic with respect to the lattiggenerated
by the vector@niN + BM, N, M € Z9

Ola, B](z + 2miN + BM) = 17)
0la, B](2) exp(—5(BM, M) — (2, M) + mi((a, N) — (8, M))).

The torus
J(C)=C9/A
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is called the Jacobian variety 6fand the mapd : C' — J(C), defined by

P

A(P):/ v, v=(v1,...,04)

Py

is called the Abel map.
Let 29 be the unique differential holomorphic @n\ { Py}, which has
the form

0= dlg() +o1))

nearP, and is normalized by the condition
/ N1 =0, n=1,...,9.
an
Its vector ofb-periodsiV = (W1, ..., W,) has coordinates
W, = 9.
bn

Theta functions with odd characteristitganish at the origif[4](0) =

0. An odd characteristics is called non-singular if there exist 1, . . ., g}
such that
06[6]
5. (0 0.

For a generic Riemann surface all odd theta characteristics are non-singular.
For a non-singular odd theta-characteristics there exists a holomorphic sec-
tion hs of the spin bundleSs on C given by

w3(P) = 2 oyui(p). (18

i=1

A meromorphic section of,, for v even and non-singular (i.&{+](0) # 0)
with a simple pole aP, € C'is given by

P
b (p) = 20U () 19)

N[ )

All zeros of the theta function in the denominator of this formula except the
zero atP = P, are cancelled by the zeros of( P).

A modification of the last formula provides us with a formula for the
Baker-Akhiezer spinors.
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Theorem 2 For generic (i.e0[¢|(W) # 0)data{C, Py, w, s, ¢} there exists
exactly one Baker-Akhiezer spinor. It is given by the formula
P
(9[6]({3130 v+ W) efli:) 0na
016](Jp, v)0le] (W)

whereé is a non-singular odd theta characteristicesis the theta charac-
teristics (9) of the spin structure The Abelian integral of the second kind
/ 1192 27 is defined to have the asymptotics

W(P) =c hs(P), (20)

P . 1
/po 9 :q(ﬁ)—i-o(l), P—)PO

at Py and all the integration paths in (20) coincide. The normalization
constantc equals

9. 00[0]
c= ; 7z (0)V;, (21)
where V is the derivative of the Abel map/at
vg(Py) = Vidw. (22)

Proof is standard for the theory of the finite-gap integration. The existence
is proven by the formula (20). As in (19) all zeros but the on®at P

of the theta functiorr?[é](fli':J v) are cancelled b¥is(P). The shiftiW in the
argument of the theta function in the numerator implies th&t a section

of S5. The constant is chosen to satisfy the normalization (16). To prove
the uniqueness let us assume thds a section ofS, with the singularity
(16) atP,. The quotient) /v is a meromorphic function whose pole divisor
coincides with the divisor of|¢] (fg) v+ W), thus itis a non-special divisor

of degreeg. Due to the Riemann-Roch theorem such a function must be
constant) /¢ = 1.

Remark.The uniqueness implies thatis independent of the choice 6f

The Weierstrass spinois b are a special case of the spinors defined
above.

Corollary 2 For generic (i.ef[e](V/2) # 0) data{C, Py, w, s} there exist
unique spinors, b, holomorphic orC'\ { Py}, with the asymptotics (15) at
the punctureP,. These spinors are given by the formulas

v Ol([fv—1V) A In? s(p),
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wheref},z §2 is the normalized [, (2 = 0) Abelian integral of the second
kind with the asymptotics

p 1
N=——+o0(1), P — Py,

S @y o “
¢,V are defined in (21, 22) andl € are as in Theorem 2.

To identify formulas (23) and (20) faR?2? = %Q one should apply the
Riemann bilinear relation for the normalized Abelian differentials of the
first and the second kind:

==V,
bn

Corollary 3 The minimal immersion with the Weirstrass spinors (38) is
given by the formula

2 Po
2 P (P
[ or g 9)92[635((%% o)
Fy(P) = Re( QQ[E]CZ%V) NG P Lyeln
#i([ o vy §”>02[Zf((? ,
P):—QIm(/QPQ—”g 828122: v/ v).  (24)

The Gauss map is the stereographic projection (5) of

o) = (e MU =3V) e @)

[d(fpo v+ §V)

where< e > is the parity of the spin structure ¢ >= o 3 € Zs.

Proof. Only the formula for the third coordinate of the immersion has to be
proven. The differential

—ic2(=1)<e> O[] ([ v — SV)OL(fih v + §V)
0%[e](3V) 62(5](J2 v)

ab(P) = B(P)
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is meromorphic. To integrate it we use the identity (39) of Fay’s book [6],
which in our notations reads as follows:

0(ffv—e)0([v+e)
6%(e) 92[610;2 v)

0? logG
-+ Z 0,2%8,2] )Viv;(P)

W(P) =

for anye € C. Rewriting the theta functions with characteristjes =
[, 8] € Z3

Ole](z) = 0(z + miff + B%) exp(é(Ba, a) + (z + mif, %)),

and applying the identity of Fay and the transformation properties (17) we
get
02 log 6
P
ﬁzzazj €)Viv;(P),

ab(P —ZQ—@Z

t,5=1
with
1 Q
==V ' B—.
5 + w3 + 5
The last representation is equivalent to (24).

The Gauss map (25) is a special case of the Baker-Akhiezer functions in
the theory of finite-gap integration [13,4, 1].

RemarkWe call two local parametetsandw at Pp with w(Py) = w(FPp) =

0 equivalent ifdw/dw(0) = 1, since they yield the same spinerg. The
Weierstrass spinors (23) are parametrized by the corresponding equivalence
classesw], i.e. by elements of the tangent sp&ggC.

5 Periodicity conditions and two-sheeted coverings
For generic datdC, Py, [w], s}, the formulas (24) define a minimal immer-

sion with translation periods, whose Gauss map is well define® ono
obtain a helicoid of genug one should Kill all the translation periods.

Lemma 1 The formulas (24) define a helicoid of geryuiéf
Re / (—a? + b2, i(a? + b?), 2ab) = 0 (26)
Y

foranyy € H1(R,Z).
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Let us compare the number of free parameters of the{dat&y, [w], s}
with the number of constraints (26). The moduli space of compact Riemann
surfaces of genug > 2 has complex dimensiddy — 3; Py and[w] add com-
plex dimension 1 each. This yields for the real dimension of the parameter
space
dimr{C, Py, [w], s} = 6g — 2. (27)

On the other hand (26) is equivalent2g independent vector valued peri-
odicity constraints (26) with

’Y:alyblv"'aagabga

thus 6¢ independent real scalar constraints. The number of independent
constraints exeeds the dimension of the parameter space, which shows that
there exist no helicoid of genys> 2 with generic conformal structure.

The situation changes for Riemann surfaces, which admit a conformal
involution with fixed points. We show that in this case, natural from both
geometrical and analytical points of view, one has exactly as many free
parameters as periodicity conditions.

Let C — Cj be a ramified double covering of gengus= 2go + N — 1
of a compact Riemann surfacg of genusgy with 2N branch points at
Q1,...,Qan € Cy. If m: C — C is the conformal involution with fixed
points atQ1, . . ., Q2n, & canonical homology basis éf, (C, Z)

ay, b, ... » Ago > b907 Qgo+1, bg()+17 <oy A2gg,s b2907
a2g0+17 b2_go+17 oo 7a2g0+N—17 b2go+N—1

can be chosen [6] such thai,bs, ..., a4, by, IS @ canonical basis of
Hl(Co, Z) and

an + 7T(ago+n) = by, + 71'(bgoJrn) =0, 1 <n < go,
ai + m(a;) = b; + 7(b;) =0, 2g90+1<i<2g+ N -1

The involutionr acts on the spin structure characterized by o, (] € Zgg
in the chosen basis df, (C, Z) as follows:

~

W*[O‘aﬁ] - ﬂ*[(a,d,&), (ﬂ,,@,ﬁ)] = [(d,a,d), (ﬁv/BHB)]a

where

Oé:(Oél, ce ,Oégo),d:(OéQO_H, ey OéQgO), ol:(a2g0+1, NN 7052g0+N—1)7

ﬁ:(ala ey ﬁgo)vﬁ:(ﬁgo+la cee aﬁ?go)vﬂ: (/6290+17 ey ﬁ2go+N71)-
Let us call the datdC, Py, [w], s} admissiblaff

— C — (y is atwo-sheeted ramified covering as described above
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- ’/TP(] :PO
- 7 w] = —[w]
— s =s& e =e.

Theorem 3 Minimal immersions with admissible daf&’, P, [w], s} pos-
sess normal symmetry, i.e180° rotation about the first coordinate axis

(F17F27F3) — (Flv_F27_F3)'
The real dimension
6go + 4N — 4
of the space of admissible data coincides with the number of independent
periodicity conditions
Re/(—a2 2,0 + b%), 2ab) = O, (28)
Y
v =ai,b1,...,aq4,by,

Re/(z’(aQ +b?),2ab) = 0,
'AY

Y = a2go+1,b2gg+1, - -+ 5 Q299+ N—1, b2gg+ N—1-

Proof.7*a andr*b are sections of the same spin bunfll@enR. Comparing
the asymptotics of*a, 7*b at Py with (15) and using the uniqueness part
of Corollary 2 we get

ma = Fib, 7b = tia. (29)

In addition J
ab = —i(1+o0(1))

ﬁ7
which, combined with (29), implies the following identities for the holo-
morphic differentials in the Weierstrass representation

7r*a2 = —b27 W*b2 = —CZQ, W*a‘b = —ab. (30)

w — 0,

Let us labelPy = Q2n and chose another fixed poi@; as the starting
integration point in (3). Denoting bya path fromQ; to P € R one has

(F1, Fy, F3)(P) := Re /(—a2 +b%,i(a® + b?), 2ab) =
l
Re/ (—a® 4+ b?, —i(a® + b?), —2ab) =: (Fy, —Fy, —F3)(7P).
Tl

As one can see from (30) for afye H,(C,Z) with 7% = —4 the first
coordinate of the corresponding period vanishes

/dF1 =0.
’AY
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Thus for admissible data the periodicity condition (26) is equaivalent to
6go + 4N — 4 scalar equations (28). The moduli space(ff of genus

go > 2 has complex dimensioByy — 3, the points@+, ..., Qon and the
local parametefw] add complex dimensioRN + 1. This yields the same
number2(3gg + 2N — 2) for the real dimension of the parameter space of
admissible data. In cagg = 1 a slightly different counting yields the same
result.

Remark.It might seem that there exist other possible symmetries of the
data, which reduce the number of periodicity conditions to the number of
free parameters. It is tempting to analyse other symmetries of the Karcher-
Hoffman-Wei genus one helicoid (see Sect. 6) in this context. This surface
like the helicoid contains a "vertical” line. AS0° rotationr about this line is

a non-trivial symmetry of the surface corresponding to an anti-holomorphic
involution 7 : R — R of the Riemann surface. Fixed points ofmust
comprise exactly one real oval with the punctéeon it. One can easily see
that this symmetry reduces the numbers of parameters (27) and constraints
by half to3g — 1 and3g respectively, which shows that the immersion with
the symmetry- and without additional symmetries do not exist. Theorem 3
and this observation motivate the conjecture formulated in the introduction
of this paper.

RemarkWhen describing embeddings one can chose a badis @, Z)
such that = [0, 0].

Now we have reached the end of our analytic calculations for the case
g > 2 (the casgy = 1 is considered in Sect. 6). To solve effectively the
periodicity conditions we need the help of a computer (see discussion in the
introduction). We expect that there exisit many solutions to (28). Depending
on the number of the fixed points, the admissible data include the hyperellip-
tic casegy = 0, the coverings with only two branch point® = 1) and all
imtermediate cases. In the hyperelliptic case one should expect helicoidal
surfaces with handles displaced along the normal symmetry line. In the case
N = 1 the normal symmetry line intersects the surface at the origin only,
the handles are displaced in vertical direction. Probably all the intermediate
casegy # 0, N > 1 are also realizable.

6 Genus one helicoids

If C has genus 1 the Abel map establishes an isomorphism betWweaed

its Jacobian/ (C'). This allows us to rewrite the formulas of Sect. 4 in terms
of the Jacobi theta functions. We prefer however in this section not to refer
to these formulas (23). Instead we desciibas the factor

C=C/L, (31)
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whereL is the lattice

2win + 2wsm; n,m € 74, Im% >0
1

and based on the analytical properties of the Weiestrass spinbifer-
mulated in Definition 1, obtain a representation for them in terms of the
Weierstrass elliptic functions. Thus the presentation in this section is an
independent, simplified version of the one in Sect. 4.

Denote byw the coordinate o€ in (31) and chose the punctufg at
the originw(Pp). Let us denote the cycles @hcorresponding to the shifts

w — w + 2wy, w — w + 2ws

by 1 and~s respectively. A spin structurg on C' is characterized by its
values on the generators bf

a=s(m), B=s(73) € Za. (32)
The only holomorphic differential 06" is dw and
h =+vVdw

is a holomorphic spinor with the odd spin structure
= lo, f] = [1,1].

Remark The last statement agrees with the definition of the flip number in
Sect. 2. Indeed nat but

zp = exp(miw/wy), p=13

are annular coordinates along. In terms ofz,, the differential(v/dw)?
reads as follows w
dw = —F=

s dzy.
m

On thez,-planev, is the simple loopz,| = 1. For the flip number defined
by (7) this impliesp(y,) =1

Vaw TR _Jdw,  p=1,3. (33)
Let us denote by, the half-period
w2 = —W1 — Wws.

The same arguments show that under the shif2wnthe flip number of

vdw is also 1
Vilw "7,
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which agrees with (2).
Remarklt is easy to see that fgr= 1 there is a bijection
{C, Py, [w]} < L.

Let us note also that any dafé’, P, [w]} is admissable in the cage= 1.
The involutionr is given by

T = —Z.

The torusC = C/L is a two-sheeted ramified covering of the Riemann
sphereC'/.
Introduce the Weierstrass functions (see [5])

o(w) = wH'(l - %)e%JF;TQ, w = 2nwi + 2mws,
¢(w) *—loga(w):——i—zl( ! —i—l—i—ﬂ) (34)
dw w-—w w  w?’
__d BN e V. 1
p(w) == _dwC(w) ) Z ((w w)2 w2)'
They have the following periodicity properties:
o(w + 2w,) = — (W) 6 (),
C(w + 2Wu> = C(w) + 277;t (35)

p(w + 2wu) = p(w)a
wheren,, are the periods
N = C(wu), m +mn2+n3 =0.
The only pole of (w), p(w) and the only zero of (w) onC are at the origin

o(w) = w+ Ow?),
((w) = =+ O(u) (36)
1

p(w) = ] + O(w?), w — 0.
To describe different spin structures it is convenient to introducesthe
functions with characteristics
o(w — wy)
o(wy)

which have the following periodicity properties:

oy(w) == —e™® , v=1,23,

op(w+2w,) = —62"“(w+”*‘)01,(w), W # v,
op(w+ 2w,) = 62"”(w+“”)0,,(w). (37)
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The functionss, ¢ are odd, the functiong, o,, are even. The-functions
correspond to the theta functions and g¥unction corresponds to the
Abelian differentialf? of Sect. 4 for a different normalization.

There are 4 different spin structures @nwhich we label by the index
v € {0,1,2,3} as follows:

v|0[|1]2]|3
al|ll1]0]01
611]11]0]|0

Hereq, § are defined by (32). It is convenient to denote
oo(w) = o(w), wo := 0.
Theorem 4 For any L and any spin structure € {0, 1,2, 3} with

1
§+awl+ﬂw3€L

wherea, 8 andv are related as in the table above, there exist unique spinors
a, bwith the spin structure holomorphic orC/ L\ { P } and the asymptotics
(15) atthe puncturéy = {w = 0}. These spinors are given by the formulas

a(w)ze_%ia”@] 1) %whﬁ

o(w)o,(—3)
o) = -5 oW D) i) e
b(w) ey Vidw, (38)

Proof. The periodicity properties follow from (33, 35, 37). The asymptotics
atw = 0 follows from (36).

Theorem 5 The minimal immersion with the Weierstrass spinors (38) is
given by the formula

: L ew) 1, —c(w)y_dw
Fi() = Rel gy [ fio2w =)o) —iodw + =) ),
1 1 1. ey d
Fa(e) = Re(zrry [ (03w = )6 +odw + ) ),
Fiy(2) = ~2Tm(((2) + (5 +)2). (39)
The Gauss map is the stereographic projection (5) of
Gl I R
g(Z’)— O'(Z—|—%)e ’ _07
o(z) = 2= %)ea D L£0
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These formulas describe an immersed genus one helicoid if the following
periodicity conditions are satisfied:

1 2020 1 1 dw
— 2)eSw) 4 52 e Sw)y ST )
Re (03(%) /ZO (o5 (w 2)6 + o (w+ 2)6 )02(10)> 0,

1
Im(n, + p(i +wy)wy,) =0, w=1,3. (42)
Proof. The differentialab is meromorphic and can be easily integrated.
Indeed,ab is holomorphic everywhere off except atv = 0, where it has
a pole

ab(w) = (——5 + O(1))dw, w0, (42)

w

In addition,
1

ab(w, + 5) =0,
which, combined with (42), yields

) 1

ab(w) = i(p(w, + 5) = p(w))dw.

Integrating one obtains the formula for the third coordinate in (39). The
periodicity conditions (40),(41) follow from the formulas 6k (z), F3(z).
Using the involutionrz = —z one can easily check (like in Theorem 3) that
Fi(z) is always doubly periodic.

The integrals in (39) are along two independent cycle€’oWe have 4
real conditions (40),(41) on 2 complex parametersws € C.

The number of conditions (and parameters) can be reduced if one as-
sumes the real symmetry

w1 = W3, we = —2Rew;. (43)
Theorem 6 In the case of the rhombic torus (43) minimal surfaces de-
scribed by formulas (39) with the spin structures
v=0andv =2
have additional symmetries:1&0° rotation
T ¢ (F, Fo, F3) — (= F1, Fy, —F3)
about the horizontal liné, and a180° rotation

Ty (F1, Fo, F3) — (—F1, —F», F3)
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Fig. 1. The Hoffman-Karcher-Wei genus one helicoid, correspondingste= 0.61529 +
10.53298 andr = 2. The surface contains one vertical and one horizontal straight line. The
normal strips along; and-~s are both untwisted. The surface is probably embedded

about the vertical lind,,. Both{;, andl, lie on the surface. The surfaces
are immersed genus one helicoids if the following periodicity conditions are
satisfied:

Re( W11 /1 (JZ(WQ - 1 + tW1)€<(W2+tw1) +
0’3(5) -1 2
dt

- V= 44
o2(wy + twy) 0, (44)

1
o2 (wo + 3 + twy e Cwzttwn))
1
Ten( + (5 + w0)r) = 0.

Proof. For the rhombic torus and= 0 or v = 2 one has

o,(w) = o, (), p(% +uw,) €R.
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Fig. 2. The twisted genus one helicoid, correspondingto= 0.20651 + ¢ 0.26238 and
v = 0. The surface has the same symmetry group as the surface in Fig. 1 but a different spin
structure. The normal strips along and~y; are both twisted

Chosingzy = wo in the integrals (39) one obtains

(F1, Fo, F3)(2) = (= F1, F2, —F3)(2),
(Fl,FQ,Fg)(—Z) = (—Fl, —FQ,Fg)(Z).

The anti-holomorphic involutions
Thz = Z, TyZ = —Z

of C/L induce the corresponding symmetries of the surface. The preimages
of the straight lined,, andl, on the surfaces are the séitaz = 0 and
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Rez = wo respectively. The periodicity conditions (40, 41) fer= 1 and
1 = 3 coincide. Finally one has 2 real periodicity conditions (44) on one
complex parametey.

Numerical experiments with Mathematica show that in both cases({
andv = 2) the solutions of (44) are unique:

w3 = 0.61529 + ¢ 0.53298 forv =2,
w3 = 0.20651 + 7 0.26238 forv =20

The case = 2 gives anew representation for the famous Hoffman-Karcher-
Wei genus one helicoid found and investigated in [9], [11]. We hope that
the representation found in the present paper can help in the proof of the
embeddedness of the surface

The twisted genus one helicoid presented in Fig. 2 has the same symme-
tries as the helicoid of Hoffman, Karcher and Wei but the odd spin structure
v = 0. The surface has selfintersections.

Acknowledgements | would like to thank David Hoffman for helpful discussions and Wolf-
gang Hornauer for producing Figs 1,2.
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