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1 Introduction

For more then 200 years the helicoid was the only known infinite total cur-
vature embedded minimal surface of finite topology. The situation changed
in 1993, when Hoffman, Karcher and Wei [9] discovered the genus one
helicoid - a minimal torus with one end, which has a form of the helicoid
at infinity. The genus one helicoid was constructed using the Weierstrass
representation. Karcher, Wei and Hoffman have solved the corresponding
period problem [11] and were able to produce detailed plots of the surface,
strongly suggesting that it is embedded.

The Gauss map of this surface has an essential singularity at the puncture.
This makes the problem familiar to specialists in the theory of integrable
systems, where the Baker-Akhiezer functions – functions with essential
singularities on compact Riemann surfaces – have become a basic tool of
the finite-gap integration theory (see for example [13], [1]).

In the present paper we describe all immersed minimal surfaces of finite
topology with just one helicoidal end. Using the spinor Weierstrass repre-
sentation [19,3,15] these immersions are described in terms of holomorphic
spinors with essential singularities at the puncture, which we call the Baker-
Akhiezer spinors. Those are described explicitly, as well as the Gauss map,
which is a meromorphic function with an essential singularity at the punc-
ture. Further we discuss the periodicity conditions for the immersion and
show how they yield the Riemann surfaces, which are two-sheeted ramified
coverings. This motivates the following
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Conjecture 1 Any immersed minimal surface of finite topology with one
helicoidal end has normal symmetry: it is invariant with respect to a1800-
rotation about a line orthogonal to the surface.

In Sect. 6 we present a new description of the Karcher-Hoffman-Wei
genus one helicoid. Our description contains only one integration (one inte-
gration less then in [11]) and we hope can be used to prove the embeddedness.
Chosing a different spin structure we construct a twisted genus one helicoid.
We complete the paper with the plots of the genus one helicoids produced by
W. Hornauer, who visualised the formulas of the present paper with the help
of the software Mathematica and the Mathematica packagesmallucd.m
by U. Pinkall.

The class of immersions under consideration is rather rich and we be-
lieve contains many embedded examples. Beside the genus one immersed
helicoids only the helicoids with two vertically displaced handles can be
described in elliptic functions. To investigate other surfaces one should deal
with Riemann surfaces of higher genus and therefore can not rely on Math-
ematica. A similar problem of visualisation of the theta functional formulas
for all constant mean curvature tori [2] has been solved recently by M. Heil
[7], who developed a software for calculations on hyperelliptic Riemann
surfaces. To visualise the formulas of the present paper a modification of
this software is required. We hope that these problems will be overcome and
we will see embedded helicoids with many handles soon1.

2 Spinor representation of minimal surfaces

The Weierstarss representation of minimal surfaces in terms of spinors was
formulated in [19]. Independently it was reinvented in [3] as a special case
of the spinor description for general not necessarily minimal conformal
immersions intoR3. These ideas were developed further [14,18,17,12]
into a general theory of the spinor representation of surfaces inR3 [15,10].
For the most elaborated treatment of the minimal surface case we refer the
reader to [15].

Let R be a Riemann surface andS a spin structure on it, i.e. a complex
line bundle overR satisfyingS ⊗ S ∼= K, whereK is the holomorphic
cotangent bundle. The spin structures are parametrized by quadratic forms

s : H1(R,Z2) → Z2, (1)

that is
s(γ1 + γ2) = s(γ1) + s(γ2) + γ1 ◦ γ2, (2)

1 M. Traizet using a different approach has produced a plot of a probably embedded
helicoid of genus 2
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whereγ1 ◦ γ2 is the intersection number ofγ1 with γ2. For a compact
Riemann surface of genusg with 0 or 1 puncture there are22g different spin
structures.

Theorem 1 (Spinor Weierstrass representation). Leta, b be two not simul-
taneously vanishing holomorphic sections of a spin bundleS over a Riemann
surfaceR, i.e. |a|2 + |b|2 6= 0 and for any holomorphic coordinate chart
(U, z) with simply connectedU ⊂ R there exist holomorphic functions
A,B : U → C such that

a = A
√
dz, b = B

√
dz

onU . Then

F (P ) := Re
∫ P

Q
(−a2 + b2, i(a2 + b2), 2ab) (3)

is a conformal minimal immersionF : R → R3 with the metric

eudzdz̄ = (|a|2 + |b|2)2. (4)

The Gauss map of the surface is the stereographic projection

N1 + iN2 =
2g

|g|2 + 1
, N3 =

|g|2 − 1
|g|2 + 1

(5)

of the meromorphic function

g =
a

b
. (6)

All oriented minimal immersions are described in this way.
The spin structure of the immersion coincides with the spin structureS.

The last claim of the theorem needs explanation. It is known [16] that
immersions intoR3 come with the corresponding quadratic form (1) (i.e.
with the corresponding spin structure), which can be described entirely in
geometrical terms (see below). The theorem allows us to reformulate this
geometrical characteristics in terms of holomorphic data.

There are various equivalent descriptions of the spin structures. For the
construction of concrete surfaces it is convenient to use the description of
[3], which allows us to compute easily the spin structure of the immersion
starting with the Weierstrass data. Letγ be a closed smooth contour onR
without self-intersections. Letz : Uγ → Vγ be a coordinate chart from an
annular neighborhoodUγ of γ to an annular domainVγ ⊂ C. Representing
the holomorphic differentiala2 = D(z)dz associated to the spinoraonVγ in
terms of this coordinate one obtains a holomorphic functionD : Vγ → C.
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The square rootA =
√
D may have the monodromy±1 by analytical

continuation alongγ
A

γ−→ (−1)p(γ)A. (7)
We call so definedp(γ) ∈ Z2 the flip number of the spinora alongγ. The
flip numbers of the spinorsa andb in (3) coincide.

These flip numbers have a simple geometrical interpretation. Let us con-
sider the imageΓ = F (γ) of γ on the surface. The contourΓ together with
the normal fieldN of the surface onΓ define a closed orientable strip in
space. LetMΓ ∈ Z be the number of twists of this strip, or equaivalently,
the winding number of the contoursΓ and(Γ + εN)Γ , whereε small. The
parity of twistsMΓ (mod 2) equals to the flip number ofa, b

p(γ) = MF (γ) mod 2. (8)

Moreover these numbers bys(γ) = p(γ) define the quadratic form (1). One
can show that so defineds is indeed a quadratic form onH1(R,Z2).

LetR be a compact Riemann surface of genusg with 0 or 1 puncture and
a canonical basisa1, b1, . . . , ag, bg ofH1(R,Z) on it. The spin structure (1)
can be characterized by the values of the quadratic form on the basic cycles

αi = s(ai), βi = s(bi) ∈ Z2. (9)

So defined vector

ε = [α, β] ∈ Z2g
2 , α = (α1, . . . , αg), β = (β1, . . . , βg) (10)

is called the theta characteristics. The theta characteristics is even ifα•β =
α1β1 + . . . αgβg = 0 mod 2 and odd ifα•β = 1 mod 2. Embeddings have
even theta characteristics.

Usually one has in mind a ”qualitatively correct” picture of the expected
minimal surface. Due to (8) the spin structureS of the holomorphic spinors
can be computed by using the ”qualitatively correct” picture.

Corollary 1 (Relation to the standard Weierstrass representation)
The spinor representation (3) is equivalent to the standard Weierstrass

representation for minimal surface. Introducing the differentials

η = b2, ξ = ab, (11)

one obtains two versions of the standard Weierstrass representation

F (P ) := Re
∫ P

Q
(1 − g2, i(1 + g2), 2g)η,

F (P ) := Re
∫ P

Q
(
1
g

− g, i(
1
g

+ g), 2)ξ, (12)

whereg is the meromorphic Gauss map (6). The spin structure of the im-
mersion is determined by the holomorphic section

√
η (or equivalently by√

ξ) of S.
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3 Helicoid and helicoidal end singularity

The minimal immersion of the planeF : C → R3 with the data

g = ez; ξ = idz

is the helicoid

F (x, y) = 2(sinhx sin y,− sinhx cos y,−y),
wherez = x+ iy. We study immersions with the helicoidal asymptotics at
infinity. To analyse the singularity of the holomorphic data one should treat
C here as the punctured Riemann sphereC̄ \ {∞}. Chosing the pucture at
the originw = 1/z, the helicoid is described as the minimal immersion of
the punctured spherēC \ {0} with the holomorphic data

g = e
1
w , ξ = −idw

w2 . (13)

The corresponding holomorphic spinorsa, b on C̄ \ {0} are

a = e−
πi
4 e

1
2w

√
dw

w
,

b = e−
πi
4 e−

1
2w

√
dw

w
. (14)

Note that herew is a local parameter, which vanishes at the puncture.

4 Baker-Akhiezer spinors as the Weierstrass data
for helicoids with handles

Let us assume that a minimal conformal immersionF : R → R3 with finite
topology and a helicoidal end exists. The corresponding Riemann surface is
a compact Riemann surfaceC with a punctureR = C \ {P0}. The spinors
a, b in the Weierstrass representation (3) are holomorphic onR. Motivated
by (14) we give the following

Definition 1 We call a minimal immersionF : R = C \ {P0} → R3 a
helicoid of genusg if C is of genusg and the Weierstrass spinorsa, b are
holomorphic onR and have the asymptotics

a = e−
πi
4 (1 + o(1))e

1
2w

√
dw

w
,

b = e−
πi
4 (1 + o(1))e−

1
2w

√
dw

w
, w → 0 (15)

at the punctureP0.
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These analytical properties bring us naturally to the notion of the Baker-
Akhiezer spinors. LetC be a compact Riemann surface of genusg, P0 a
point on it, andw a local parameter atP0 with w(P0) = 0. LetSε be a spin
bundle onC. Provided a canonical homology basisa1, b1, . . . , ag, bg of C,
the latter can be characterized byε ∈ Z2g

2 as in (10).

Definition 2 LetC,P0, w, Sε be as above andq(z) =
∑N

n=1 qnz
n a poly-

nomial. We will call a sectionψ of Sε which is holomorphic onC \ {P0}
and has an essential singularity of the form

ψ(P ) = (1 + o(1))eq(
1
w

)

√
dw

w
, w → 0 (16)

at P0 a Baker-Akhiezer spinor.

To justify the name, let us note that in the theory of finite-gap integration
[13,4,1] functions with essential singularities on compact Riemann surfaces
are called the Baker-Akhiezer functions.

For generic data{C,P0, w, ε, q} the Baker-Akhiezer spinors exist and
can be described explicitly. For this description we need some preparation.
More detailed presentation of the facts from the theory of compact Riemann
surfaces and theta functions, for what follows, can be found in [6,4,1]. The
Riemann theta function corresponding to the Riemann surfaceC of genus
g is an entire function ofg complex variablesz = (z1, . . . , zg) defined by
the formula

θ[α, β](z) =
∑

m∈Zg

exp(
1
2
(B(m+

α

2
),m+

α

2
) + (z + πiβ,m+

α

2
)),

whereα, β ∈ Zg
2 is the characteristics of the theta function,B = Bn,m is

the period matrix

Bn,m =
∫

bn

vm

of the normalized holomorphic differentialsvm onC∫
an

vm = 2πiδn,m.

The theta function is quasi-periodic with respect to the latticeΛ generated
by the vectors2πiN +BM, N,M ∈ Zg

θ[α, β](z + 2πiN +BM) = (17)

θ[α, β](z) exp(−1
2(BM,M) − (z,M) + πi((α,N) − (β,M))).

The torus
J(C) = Cg/Λ
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is called the Jacobian variety ofC and the mapA : C → J(C), defined by

A(P ) =
∫ P

P0

v, v = (v1, . . . , vg)

is called the Abel map.
LetΩq be the unique differential holomorphic onC \ {P0}, which has

the form

Ωq = d(q(
1
w

) + o(1))

nearP0 and is normalized by the condition

∫
an

Ωq = 0, n = 1, . . . , g.

Its vector ofb-periodsW = (W1, . . . ,Wg) has coordinates

Wn =
∫

bn

Ωq.

Theta functions with odd characteristicsδ vanish at the originθ[δ](0) =
0. An odd characteristics is called non-singular if there existsi ∈ {1, . . . , g}
such that

∂θ[δ]
∂zi

(0) 6= 0.

For a generic Riemann surface all odd theta characteristics are non-singular.
For a non-singular odd theta-characteristics there exists a holomorphic sec-
tion hδ of the spin bundleSδ onC given by

h2
δ(P ) =

g∑
i=1

∂θ[δ]
∂zi

(0)vi(P ). (18)

A meromorphic section ofSγ for γ even and non-singular (i.e.θ[γ](0) 6= 0)
with a simple pole atP0 ∈ C is given by

kγ(P ) =
θ[γ](

∫ P
P0
v)

θ[δ](
∫ P
P0
v)
hδ(P ). (19)

All zeros of the theta function in the denominator of this formula except the
zero atP = P0 are cancelled by the zeros ofhδ(P ).

A modification of the last formula provides us with a formula for the
Baker-Akhiezer spinors.
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Theorem 2 For generic (i.e.θ[ε](W ) 6= 0) data{C,P0, w, s, q} there exists
exactly one Baker-Akhiezer spinor. It is given by the formula

ψ(P ) = c
θ[ε](

∫ P
P0
v +W )

θ[δ](
∫ P
P0
v)θ[ε](W )

e

∫ P

P0
Ωq

hδ(P ), (20)

whereδ is a non-singular odd theta characteristics,ε is the theta charac-
teristics (9) of the spin structures. The Abelian integral of the second kind∫ P
P0
Ωq is defined to have the asymptotics∫ P

P0

Ωq = q(
1

w(P )
) + o(1), P → P0

at P0 and all the integration paths in (20) coincide. The normalization
constantc equals

c =

√√√√ g∑
i=1

∂θ[δ]
∂zi

(0)Vi, (21)

where V is the derivative of the Abel map atP0

vk(P0) = Vkdw. (22)

Proof is standard for the theory of the finite-gap integration. The existence
is proven by the formula (20). As in (19) all zeros but the one atP = P0
of the theta functionθ[δ](

∫ P
P0
v) are cancelled byhδ(P ). The shiftW in the

argument of the theta function in the numerator implies thatψ is a section
of Sδ. The constantc is chosen to satisfy the normalization (16). To prove
the uniqueness let us assume thatψ̃ is a section ofSε with the singularity
(16) atP0. The quotient̃ψ/ψ is a meromorphic function whose pole divisor
coincides with the divisor ofθ[ε](

∫ P
P0
v+W ), thus it is a non-special divisor

of degreeg. Due to the Riemann-Roch theorem such a function must be
constantψ̃/ψ = 1.

Remark.The uniqueness implies thatψ is independent of the choice ofδ.

The Weierstrass spinorsa, b are a special case of the spinors defined
above.

Corollary 2 For generic (i.e.θ[ε](V/2) 6= 0) data{C,P0, w, s} there exist
unique spinorsa, b, holomorphic onC \ {P0}, with the asymptotics (15) at
the punctureP0. These spinors are given by the formulas

a(P ) = ce−
πi
4

θ[ε](
∫ P
P0
v − 1

2V )

θ[δ](
∫ P
P0
v)θ[ε](1

2V )
e

1
2

∫ P

P0
Ω
hδ(P ),

b(P ) = ce−
πi
4

θ[ε](
∫ P
P0
v + 1

2V )

θ[δ](
∫ P
P0
v)θ[ε](−1

2V )
e
− 1

2

∫ P

P0
Ω
hδ(P ), (23)
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where
∫ P
P0
Ω is the normalized(

∫
an
Ω = 0) Abelian integral of the second

kind with the asymptotics

∫ P

P0

Ω =
1

w(P )
+ o(1), P → P0,

c, V are defined in (21, 22) andδ, ε are as in Theorem 2.

To identify formulas (23) and (20) forΩq = 1
2Ω one should apply the

Riemann bilinear relation for the normalized Abelian differentials of the
first and the second kind: ∫

bn

Ω = −Vn.

Corollary 3 The minimal immersion with the Weirstrass spinors (38) is
given by the formula

F1(P ) = Re(
c2

θ2[ε](1
2V )

∫ P

Q
(iθ2[ε](

∫ P̃

P0

v − 1
2
V )e

∫ P̃

P0
Ω −

iθ2[ε](
∫ P̃

P0

v +
1
2
V )e

−
∫ P̃

P0
Ω

)
h2

δ(P̃ )

θ2[δ](
∫ P̃
P0
v)
,

F2(P ) = Re(
c2

θ2[ε](1
2V )

∫ P

Q
(θ2[ε](

∫ P̃

P0

v − 1
2
V )e

∫ P̃

P0
Ω

+

θ2[ε](
∫ P̃

P0

v +
1
2
V )e

−
∫ P̃

P0
Ω

)
h2

δ(P̃ )

θ2[δ](
∫ P̃
P0
v)
,

F3(P ) = −2 Im(
∫ P

Q
Ω −

g∑
i,j=1

∂2 log θ[ε]
∂zi∂zj

(
1
2
V )Vi

∫ P

Q
vj). (24)

The Gauss map is the stereographic projection (5) of

g(P ) = (−1)<ε>
θ[ε](

∫ P
P0
v − 1

2V )

θ[ε](
∫ P
P0
v + 1

2V )
exp

∫ P

P0
Ω
, (25)

where< ε > is the parity of the spin structure< ε >= α • β ∈ Z2.

Proof. Only the formula for the third coordinate of the immersion has to be
proven. The differential

ab(P ) =
−ic2(−1)<ε>

θ2[ε](1
2V )

θ[ε](
∫ P
P0
v − 1

2V )θ[ε](
∫ P
P0
v + 1

2V )

θ2[δ](
∫ P
P0
v)

h2
δ(P )
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is meromorphic. To integrate it we use the identity (39) of Fay’s book [6],
which in our notations reads as follows:

c2

θ2(e)
θ(
∫ P
P0
v − e)θ(

∫ P
P0
v + e)

θ2[δ](
∫ P
P0
v)

h2
δ(P ) =

−Ω +
g∑

i,j=1

∂2 log θ
∂zi∂zj

(e)Vivj(P )

for any e ∈ C. Rewriting the theta functions with characteristics[ε] =
[α, β] ∈ Z2

2

θ[ε](z) = θ(z + πiβ +B
α

2
) exp(

1
8
(Bα,α) + (z + πiβ,

α

2
)),

and applying the identity of Fay and the transformation properties (17) we
get

ab(P ) = iΩ − i
g∑

i,j=1

∂2 log θ
∂zi∂zj

(e)Vivj(P ),

with

e =
1
2
V + πiβ +B

α

2
.

The last representation is equivalent to (24).
The Gauss map (25) is a special case of the Baker-Akhiezer functions in

the theory of finite-gap integration [13,4,1].

Remark.We call two local parametersw andw̃ atP0 withw(P0) = w̃(P0) =
0 equivalent ifdw̃/dw(0) = 1, since they yield the same spinorsa, b. The
Weierstrass spinors (23) are parametrized by the corresponding equivalence
classes[w], i.e. by elements of the tangent spaceTP0C.

5 Periodicity conditions and two-sheeted coverings

For generic data{C,P0, [w], s}, the formulas (24) define a minimal immer-
sion with translation periods, whose Gauss map is well defined onR. To
obtain a helicoid of genusg one should kill all the translation periods.

Lemma 1 The formulas (24) define a helicoid of genusg iff

Re
∫

γ
(−a2 + b2, i(a2 + b2), 2ab) = 0 (26)

for anyγ ∈ H1(R,Z).
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Let us compare the number of free parameters of the data{C,P0, [w], s}
with the number of constraints (26). The moduli space of compact Riemann
surfaces of genusg ≥ 2 has complex dimension3g−3;P0 and[w] add com-
plex dimension 1 each. This yields for the real dimension of the parameter
space

dimR{C,P0, [w], s} = 6g − 2. (27)

On the other hand (26) is equivalent to2g independent vector valued peri-
odicity constraints (26) with

γ = a1, b1, . . . , ag, bg,

thus 6g independent real scalar constraints. The number of independent
constraints exeeds the dimension of the parameter space, which shows that
there exist no helicoid of genusg ≥ 2 with generic conformal structure.

The situation changes for Riemann surfaces, which admit a conformal
involution with fixed points. We show that in this case, natural from both
geometrical and analytical points of view, one has exactly as many free
parameters as periodicity conditions.

LetC → C0 be a ramified double covering of genusg = 2g0 +N − 1
of a compact Riemann surfaceC0 of genusg0 with 2N branch points at
Q1, . . . , Q2N ∈ C0. If π : C → C is the conformal involution with fixed
points atQ1, . . . , Q2N , a canonical homology basis ofH1(C,Z)

a1, b1, . . . , ag0 , bg0 , ag0+1, bg0+1, . . . , a2g0 , b2g0 ,

a2g0+1, b2g0+1, . . . , a2g0+N−1, b2g0+N−1

can be chosen [6] such thata1, b1, . . . , ag0 , bg0 is a canonical basis of
H1(C0,Z) and

an + π(ag0+n) = bn + π(bg0+n) = 0, 1 ≤ n ≤ g0,

ai + π(ai) = bi + π(bi) = 0, 2g0 + 1 ≤ i ≤ 2g0 +N − 1.

The involutionπ acts on the spin structure characterized byε = [α, β] ∈ Z2g
2

in the chosen basis ofH1(C,Z) as follows:

π∗[α, β] = π∗[(α, α̃, α̂), (β, β̃, β̂)] = [(α̃, α, α̂), (β̃, β, β̂)],

where

α=(α1, . . . , αg0), α̃=(αg0+1, . . . , α2g0), α̂=(α2g0+1, . . . , α2g0+N−1),

β=(α1, . . . , βg0), β̃=(βg0+1, . . . , β2g0), β̂=(β2g0+1, . . . , β2g0+N−1).

Let us call the data{C,P0, [w], s} admissibleiff

– C → C0 is a two-sheeted ramified covering as described above
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– πP0 = P0
– π∗[w] = −[w]
– π∗s = s ⇔ π∗ε = ε.

Theorem 3 Minimal immersions with admissible data{C,P0, [w], s} pos-
sess normal symmetry, i.e. a1800 rotation about the first coordinate axis

(F1, F2, F3) → (F1,−F2,−F3).

The real dimension
6g0 + 4N − 4

of the space of admissible data coincides with the number of independent
periodicity conditions

Re
∫

γ
(−a2 + b2, i(a2 + b2), 2ab) = 0, (28)

γ = a1, b1, . . . , ag0 , bg0 ,

Re
∫

γ̂
(i(a2 + b2), 2ab) = 0,

γ̂ = a2g0+1, b2g0+1, . . . , a2g0+N−1, b2g0+N−1.

Proof.π∗a andπ∗b are sections of the same spin bundleSε onR. Comparing
the asymptotics ofπ∗a, π∗b atP0 with (15) and using the uniqueness part
of Corollary 2 we get

π∗a = ∓ib, π∗b = ±ia. (29)

In addition

ab = −i(1 + o(1))
dw

w2 , w → 0,

which, combined with (29), implies the following identities for the holo-
morphic differentials in the Weierstrass representation

π∗a2 = −b2, π∗b2 = −a2, π∗ab = −ab. (30)

Let us labelP0 = Q2N and chose another fixed pointQ1 as the starting
integration point in (3). Denoting byl a path fromQ1 to P ∈ R one has

(F1, F2, F3)(P ) := Re
∫

l
(−a2 + b2, i(a2 + b2), 2ab) =

Re
∫

πl
(−a2 + b2,−i(a2 + b2),−2ab) =: (F1,−F2,−F3)(πP ).

As one can see from (30) for anŷγ ∈ H1(C,Z) with πγ̂ = −γ̂ the first
coordinate of the corresponding period vanishes∫

γ̂
dF1 = 0.
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Thus for admissible data the periodicity condition (26) is equaivalent to
6g0 + 4N − 4 scalar equations (28). The moduli space ofC0 of genus
g0 ≥ 2 has complex dimension3g0 − 3, the pointsQ1, . . . , Q2N and the
local parameter[w] add complex dimension2N + 1. This yields the same
number2(3g0 + 2N − 2) for the real dimension of the parameter space of
admissible data. In caseg0 = 1 a slightly different counting yields the same
result.

Remark.It might seem that there exist other possible symmetries of the
data, which reduce the number of periodicity conditions to the number of
free parameters. It is tempting to analyse other symmetries of the Karcher-
Hoffman-Wei genus one helicoid (see Sect. 6) in this context. This surface
like the helicoid contains a ”vertical” line. A1800 rotationτ about this line is
a non-trivial symmetry of the surface corresponding to an anti-holomorphic
involution τ : R → R of the Riemann surface. Fixed points ofτ must
comprise exactly one real oval with the punctureP0 on it. One can easily see
that this symmetry reduces the numbers of parameters (27) and constraints
by half to3g− 1 and3g respectively, which shows that the immersion with
the symmetryτ and without additional symmetries do not exist. Theorem 3
and this observation motivate the conjecture formulated in the introduction
of this paper.

Remark.When describing embeddings one can chose a basis ofH1(C,Z)
such thatε = [0, 0].

Now we have reached the end of our analytic calculations for the case
g ≥ 2 (the caseg = 1 is considered in Sect. 6). To solve effectively the
periodicity conditions we need the help of a computer (see discussion in the
introduction). We expect that there exisit many solutions to (28). Depending
on the number of the fixed points, the admissible data include the hyperellip-
tic caseg0 = 0, the coverings with only two branch points(N = 1) and all
imtermediate cases. In the hyperelliptic case one should expect helicoidal
surfaces with handles displaced along the normal symmetry line. In the case
N = 1 the normal symmetry line intersects the surface at the origin only,
the handles are displaced in vertical direction. Probably all the intermediate
casesg0 6= 0, N > 1 are also realizable.

6 Genus one helicoids

If C has genus 1 the Abel map establishes an isomorphism betweenC and
its JacobianJ(C). This allows us to rewrite the formulas of Sect. 4 in terms
of the Jacobi theta functions. We prefer however in this section not to refer
to these formulas (23). Instead we describeC as the factor

C = C/L, (31)



22 A.I. Bobenko

whereL is the lattice

2ω1n+ 2ω3m; n,m ∈ Z, Im
ω3

ω1
> 0

and based on the analytical properties of the Weiestrass spinorsa, b for-
mulated in Definition 1, obtain a representation for them in terms of the
Weierstrass elliptic functions. Thus the presentation in this section is an
independent, simplified version of the one in Sect. 4.

Denote byw the coordinate onC in (31) and chose the punctureP0 at
the originw(P0). Let us denote the cycles onC corresponding to the shifts

w → w + 2ω1, w → w + 2ω3

by γ1 andγ3 respectively. A spin structures onC is characterized by its
values on the generators ofL

α = s(γ1), β = s(γ3) ∈ Z2. (32)

The only holomorphic differential onC is dw and

h =
√
dw

is a holomorphic spinor with the odd spin structure

δ = [α, β] = [1, 1].

Remark. The last statement agrees with the definition of the flip number in
Sect. 2. Indeed notw but

zµ = exp(πiw/ωµ), µ = 1, 3

are annular coordinates alongγµ. In terms ofzµ the differential(
√
dw)2

reads as follows
dw =

ωµ

πizµ
dzµ.

On thezµ-planeγµ is the simple loop|zµ| = 1. For the flip number defined
by (7) this impliesp(γµ) = 1

√
dw

w→w+2ωµ−→ −
√
dw, µ = 1, 3. (33)

Let us denote byω2 the half-period

ω2 = −ω1 − ω3.

The same arguments show that under the shift on2ω2 the flip number of√
dw is also 1 √

dw
w→w+2ω2−→ −

√
dw,
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which agrees with (2).

Remark. It is easy to see that forg = 1 there is a bijection

{C,P0, [w]} ↔ L.

Let us note also that any data{C,P0, [w]} is admissable in the caseg = 1.
The involutionπ is given by

πz = −z.
The torusC = C/L is a two-sheeted ramified covering of the Riemann
sphereC/π.

Introduce the Weierstrass functions (see [5])

σ(w) := w
∏ ′(1 − w

ω
)e

w
ω

+ w2

2ω2 , ω = 2nω1 + 2mω3,

ζ(w) :=
d

dw
log σ(w) =

1
w

+
∑ ′(

1
w − ω

+
1
ω

+
w

ω2 ), (34)

℘(w) := − d

dw
ζ(w) =

1
w2 +

∑ ′(
1

(w − ω)2
+

1
ω2 ).

They have the following periodicity properties:

σ(w + 2ωµ) = −e2ηµ(w+ωµ)σ(w),
ζ(w + 2ωµ) = ζ(w) + 2ηµ (35)

℘(w + 2ωµ) = ℘(w),

whereηµ are the periods

ηµ = ζ(ωµ), η1 + η2 + η3 = 0.

The only pole ofζ(w), ℘(w) and the only zero ofσ(w) onC are at the origin

σ(w) = w +O(w5),

ζ(w) =
1
w

+O(w3) (36)

℘(w) =
1
w2 +O(w2), w → 0.

To describe different spin structures it is convenient to introduce theσ-
functions with characteristics

σν(w) := −eηνw σ(w − ων)
σ(ων)

, ν = 1, 2, 3,

which have the following periodicity properties:

σν(w + 2ωµ) = −e2ηµ(w+ωµ)σν(w), µ 6= ν,

σν(w + 2ων) = e2ην(w+ων)σν(w). (37)



24 A.I. Bobenko

The functionsσ, ζ are odd, the functions℘, σν are even. Theσ-functions
correspond to the theta functions and theζ-function corresponds to the
Abelian differentialΩ of Sect. 4 for a different normalization.

There are 4 different spin structures onC, which we label by the index
ν ∈ {0, 1, 2, 3} as follows:

ν 0 1 2 3
α 1 0 0 1
β 1 1 0 0

Hereα, β are defined by (32). It is convenient to denote

σ0(w) := σ(w), ω0 := 0.

Theorem 4 For anyL and any spin structureν ∈ {0, 1, 2, 3} with

1
2

+ αω1 + βω3 6∈ L

whereα, β andν are related as in the table above, there exist unique spinors
a, bwith the spin structureν holomorphic onC/L\{P0}and the asymptotics
(15) at the punctureP0 = {w = 0}. These spinors are given by the formulas

a(w) = e−
πi
4
σν(w − 1

2)
σ(w)σν(−1

2)
e

1
2 ζ(w)

√
dw,

b(w) = e−
πi
4
σν(w + 1

2)
σ(w)σν(1

2)
e−

1
2 ζ(w)

√
dw, (38)

Proof.The periodicity properties follow from (33, 35, 37). The asymptotics
atw = 0 follows from (36).

Theorem 5 The minimal immersion with the Weierstrass spinors (38) is
given by the formula

F1(z) = Re(
1

σ2
ν(

1
2)

∫ z

z0

(iσ2
ν(w − 1

2
)eζ(w) − iσ2

ν(w +
1
2
)e−ζ(w))

dw

σ2
ν(w)

),

F2(z) = Re(
1

σ2
ν(

1
2)

∫ z

z0

(σ2
ν(w − 1

2
)eζ(w) + σ2

ν(w +
1
2
)e−ζ(w))

dw

σ2
ν(w)

),

F3(z) = −2 Im(ζ(z) + ℘(
1
2

+ ων)z). (39)

The Gauss map is the stereographic projection (5) of

g(z) = −σ(z − 1
2)

σ(z + 1
2)
eζ(z), ν = 0,

g(z) =
σν(z − 1

2)
σν(z + 1

2)
eζ(z), ν 6= 0.
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These formulas describe an immersed genus one helicoid if the following
periodicity conditions are satisfied:

Re

(
1

σ2
ν(

1
2)

∫ z0+2ωµ

z0

(σ2
ν(w − 1

2
)eζ(w) + σ2

ν(w +
1
2
)e−ζ(w))

dw

σ2
ν(w)

)
= 0,

(40)

Im(ηµ + ℘(
1
2

+ ων)ωµ) = 0, µ = 1, 3. (41)

Proof. The differentialab is meromorphic and can be easily integrated.
Indeed,ab is holomorphic everywhere onC except atw = 0, where it has
a pole

ab(w) = (− i

w2 +O(1))dw, w → 0. (42)

In addition,

ab(ων +
1
2
) = 0,

which, combined with (42), yields

ab(w) = i(℘(ων +
1
2
) − ℘(w))dw.

Integrating one obtains the formula for the third coordinate in (39). The
periodicity conditions (40),(41) follow from the formulas forF2(z), F3(z).
Using the involutionπz = −z one can easily check (like in Theorem 3) that
F1(z) is always doubly periodic.

The integrals in (39) are along two independent cycles onC. We have 4
real conditions (40),(41) on 2 complex parametersω1, ω3 ∈ C.

The number of conditions (and parameters) can be reduced if one as-
sumes the real symmetry

ω1 = ω̄3, ω2 = −2Reω1. (43)

Theorem 6 In the case of the rhombic torus (43) minimal surfaces de-
scribed by formulas (39) with the spin structures

ν = 0 and ν = 2

have additional symmetries: a1800 rotation

τh : (F1, F2, F3) → (−F1, F2,−F3)

about the horizontal linelh and a1800 rotation

τv : (F1, F2, F3) → (−F1,−F2, F3)
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Fig. 1. The Hoffman-Karcher-Wei genus one helicoid, corresponding toω3 = 0.61529 +
i 0.53298 andν = 2. The surface contains one vertical and one horizontal straight line. The
normal strips alongγ1 andγ3 are both untwisted. The surface is probably embedded

about the vertical linelv. Both lh and lv lie on the surface. The surfaces
are immersed genus one helicoids if the following periodicity conditions are
satisfied:

Re(
ω1

σ2
ν(

1
2)

∫ 1

−1
(σ2

ν(ω2 − 1
2

+ tω1)eζ(ω2+tω1) +

σ2
ν(ω2 +

1
2

+ tω1)e−ζ(ω2+tω1))
dt

σ2
ν(ω2 + tω1)

) = 0, (44)

Im(η1 + ℘(
1
2

+ ων)ω1) = 0.

Proof. For the rhombic torus andν = 0 or ν = 2 one has

σν(w) = σν(w̄), ℘(
1
2

+ ων) ∈ R.
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Fig. 2. The twisted genus one helicoid, corresponding toω3 = 0.20651 + i 0.26238 and
ν = 0. The surface has the same symmetry group as the surface in Fig. 1 but a different spin
structure. The normal strips alongγ1 andγ3 are both twisted

Chosingz0 = ω2 in the integrals (39) one obtains

(F1, F2, F3)(z̄) = (−F1, F2,−F3)(z),
(F1, F2, F3)(−z̄) = (−F1,−F2, F3)(z).

The anti-holomorphic involutions

τhz = z̄, τvz = −z̄
of C/L induce the corresponding symmetries of the surface. The preimages
of the straight lineslh and lv on the surfaces are the setsImz = 0 and
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Rez = ω2 respectively. The periodicity conditions (40, 41) forµ = 1 and
µ = 3 coincide. Finally one has 2 real periodicity conditions (44) on one
complex parameterω.

Numerical experiments with Mathematica show that in both cases (ν = 0
andν = 2) the solutions of (44) are unique:

ω3 = 0.61529 + i 0.53298 for ν = 2,
ω3 = 0.20651 + i 0.26238 for ν = 0

The caseν = 2 gives a new representation for the famous Hoffman-Karcher-
Wei genus one helicoid found and investigated in [9], [11]. We hope that
the representation found in the present paper can help in the proof of the
embeddedness of the surface2.

The twisted genus one helicoid presented in Fig. 2 has the same symme-
tries as the helicoid of Hoffman, Karcher and Wei but the odd spin structure
ν = 0. The surface has selfintersections.

Acknowledgements I would like to thank David Hoffman for helpful discussions and Wolf-
gang Hornauer for producing Figs 1,2.

References

1. E.D. Belokolos, A.I. Bobenko, V.Z. Enolskii, A.R. Its, V.B. Matveev. Algebro-
Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994)

2. A. Bobenko. Constant mean curvature surfaces and integrable equations, Uspekhi
Matem. Nauk46:4 (1991) 3–42; English transl.: Russian math. Surveys46:4 (1991)
1–45

3. A. Bobenko. Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In:
Fordy A., Wood J. (eds) ”Harmonic Maps and Integrable Systems”, Vieweg (1994),
83–127

4. B. Dubrovin, I. Krichever, S. Novikov. Integrable Systems I. In: Contemprorary Prob-
lems of mathematics: Fundamental Directions, Itogi nauki i Tekhniki, VINITI AN
SSSR, Moscow, vol. 4 (1985) 210–315

5. A. Erdelyi. Higher transcendental functions, McGraw-Hill, New York 1953
6. J. Fay. Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics 352,

Springer, Berlin (1973)
7. M. Heil. Numerical tools for the study of finite gap solutions of integrable systems, PhD

thesis, TU Berlin 1995
8. D. Hoffman, J. McCuan. Embedded minimal ends with infinite total curvature, which

contain two straight lines (in preparation)
9. D. Hoffman, H. Karcher, F. Wei. Adding handles to the helicoid, Bulletin of the A.M.S.

(New Series)29 (1) (1993), 77–84
10. G. Kamberov, R. Kusner, P. Norman, F. Pedit, U. Pinkall, J. Richter, N. Schmitt. GANG

seminar on spinors and surfaces, Notes 1995–96

2 It is proven that the surface is asymptotically embedded [8] and the computer plots
strongly suggest that it is embedded



Helicoids with handles and Baker-Akhiezer spinors 29

11. H. Karcher, F. Wei, D. Hoffman. The genus one helicoid and the minimal surfaces that
lead to its discovery, In: ”Global Analysis in Modern Mathematics”, Publ. or Perish
(1993)

12. B. Konopelchenko, I. Taimanov. Constant mean curvature syrfaces via an integrable
dynamical system, J. Phys. A: Math. Gen.29 (1996) 1261–1265

13. I. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Us-
pekhi Matem. Nauk32:6 (1977) 183–203; English transl.: Russian math. Surveys32:6
(1977) 185–213

14. R. Kusner, N. Schmidt. The spinor representation of minimal surfaces in space, GANG
Preprint III.27 (1993)

15. R. Kusner, N. Schmidt. The spinor representation of surfaces in space, GANG Preprint
IV.18 (1996)

16. U. Pinkall. Regular homotopy classes of immersed surfaces, Topology24 (1985) 421–
434

17. J. Richter. Surfaces in terms of spinors, PhD thesis, TU Berlin 1995
18. N. Schmitt. Minimal surfaces with embedded planar ends, PhD thesis, University of

Massachusetts, Amherst, 1993
19. D. Sullivan. The spinor representation of minimal surfaces in space, Notes 1989


