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We study a doubly discrete quantum sine-Gordon equation, which is derived from the quantum Volterra model solved by
Faddeev and Volkov [Teor. Mat. Fiz. 92 (1992) 207]. The discrete quantum pendulum is obtained as the simplest special case.
The eigenfunctions of its Hamiltonian, displayed as densities on the phase space, are very localized around the classical energy

levels.

1. The classical system

Consider a classical particle moving on a circle
(parametrized by a coordinate geS'/2nZ) subject to
a potential V: S!' 5R. The equation of motion will look
like

§=fq), f=-V". (1)

Let us consider the mathematical pendulum, for
which V= —4kcosgq, and §= —4ksing. The phase
space of the system is a cylinder M=S!XR, para-
metrized by ¢ and p=4.

Here we will be concerned with time discrete sys-
tems. The most obvious way to discretize (1) is to
look for a sequence t—gq,, teZ satisfying

(2)

The use of a lattice constant A4 different from 1 for
the time discretization could be easily realized by
multiplying f with A2,

The main feature of (2) is that, as (1), it is still
a Hamiltonian system: The whole sequence ..., g_;,
do> 41, --- 1s uniquely defined by giving (g,_,, ¢,) for
any fixed teZ. So, for any fixed teZ, ¢,_, and g,

qi—1 _2qr+qz+l =f(41) .
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should be considered as the coordinate functions on
the phase space M, which is therefore diffeomorphic
to T2=S'xS'. The time evolution is then given by

T: M-M

(4=, 9)~ (9, 1) = (41, 29, + () ~q,—1).
(3)

Observe, that for any function g S'-R the map
(q,3)~(q,g(d)—q) preserves the standard sym-
plectic from dg A dgd on M.

Figure 1 shows some orbits of the map (3) with
f(q)=—4ksing, k=0.7.

Pictures like those in fig. 1 are familiar from KAM

Fig. 1. Four copies of phase space.
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theory, and in fact the present 7 is nothing else but
the so-called “standard map” which is a well-studied
example in chaos theory. The crucial point is, that
this T does not admit any continuous integral of the
motion: the system is not integrable.

Inspired by the idea of logking at solutions of the
pendulum equation as special solutions for the sine-
Gordon equation §—q”=ksing, namely those for
which g(x, t) =q(t), we consider the discrete analog
of the sine-Gordon equation in light-cone coordi-
nates:

qm+l,n+l _qm+l,n —4mn+1 +qm,n
=2arg[l+kexp(—igm+1,n) ]
+2arg[1+kexp(—igman+1)]- 4)

This equation describes the angles of discrete sur-
faces with constant negative curvature and was de-
rived and investigated in ref. [1].

The variables #, m are the cone variables. In order
to reduce eq. (4) to the discrete pendulum equation
we consider space independent solutions ¢,,.1.,_,
_=qm,n'

Then in the discrete time variable t=m+ n the dis-
crete pendulum equation reads as follows,

Ge1—2q9,+q_,=4arg[l+kexp(—ig,)] (5)

The corresponding new 7: M—M, for which the
standard map can be regarded as a perturbation, is
integrable, 1.e. there exists an integral of the motion

H=2(cos q,+cosq,_,)+kcos(g,+q,_,)
+k—l Cos(qn_'qn—l) .

def
Using Q, = exp(—ig,) (5) can be written as

Q,,+k>2
1+kQ,/)

Qn+1Qn—1=< (6)

In the following we find quantized analogs of (6)
and (4).

2. The quantum discrete Volterra model
Let us consider a stairway with matrices L and M
on its edges (L and M are associated to the different

kinds of edges) of the foliowing form,

400

PHYSICS LETTERS A

28 June 1993

/~

Fig. 2. Phase portrait of system (5).

Fig. 3.
uL —lk_l/z(ljl‘)_l
L=(Ak_1/va (uL)—l )>
uM —Akl/z(UM)—l
1‘4:(/11(1/21}]” (uM)_l ) (7)

Here the u and v are unitary operators, k is a param-
eter of the model, A is a spectral parameter.

The operators u, v of different edges commute and
on the same edge they satisfy the following com-
mutation relation,

uv=e"ou . (8)

In a recent paper [2] Faddeev and Volkov showed
that this model is integrable by the quantum inverse
transform method and described its discrete time
evolution. They constructed operators U, (shift op-
erators in cone directions) determining the evolu-
tion (see fig. 3)

L=U7'LU,, M=U_MU-".

This evolution has the following properties.
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(1) The matrices L, M have the same form as L,
M and the commutation relations for the # and v are
preserved (i.e. #,  commute in the same way as u
and v).

(2) The zero curvature condition is satisfied:
LM=ML.

The last equation is equivalent to the following
system,

utuM=aMat (9)
(") ~'oM=(3Y) 10", (10)
kl/Z(uL) —lUM+k_l/2ULuM

=k=12 (M)~ G+ kM, (11)

3. Quantum discrete sine-Gordon equation

Let us consider a bigger fragment of the lattice (see
fig. 4). The initial stairway is marked by the thick
line. We denote the four faces in fig. 4 by up, down,
left, right (u, d, £, r) and use these labels to distin-
guish fields on different edges and faces.

Starting with the discrete Volterra model we con-
struct an algebra of operators on faces. First, we as-
sociate to each face the pair of commuting operators

A=utuM =Mt , B=(vt) WwM=(M)-'pL.

Equation (11) can be written as follows

Fig. 4.
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(ut) ~'vt(e—"4+kB)
= (@) ~'(?")(e~"kA+B) ,
or equivalently

A+kBe?”

Ly 1, LemMY —1xM_
(08) ~tut (@) <M= T

where we use the fraction notation for commuting
operators. Combining two of these equations written
for the faces 2 and r with the trivial observation fol-
lowing from (9) and (10),
(ve)~tug () 'y = (uy") ' (v ) DR g

=Ag'By(vr) " tur (@) "'oY By Ay,
we finally get for C=BA~'= (%) 'wM@ut)-!
X (uM) —1
1+ ke?C, 1 +ke”C

4 =C —Col.

k+eC, 9 k+eiC,

Only for the operators on neighbouring faces the
commutation relations are nontrivial: C,C,=
e2C,C,, C4Cy=e"C,(Cy.

We prefer to change the sign of our “quantum an-
gle” along the diagonals. For the combinations of four
faces shown in fig. 2 we get consequently the follow-
ing redifinitions,

Qu=Cu» QQ=CIZa Qr=Cr_l’ Qd=Cd_I,
Qu=Ci', Q=Ci', &=C, Q4=Cqy.
In both cases the equation and the commutation re-
lations for Q look as follows,
k+eQy k+eQ;

1+e7kQ, 1 +e7kQ,”’

QaQr=¢"0, 04, QaQo=¢""0y04 (13)

(all other Q along the stairway commute with Q).
We call this equation the quantum discrete sine-
Gordon equation *'.

QuQa= (12)

4. The discrete quantum pendulum

The simplest reduction, which it is possible to im-

# Independently this equation was obtained by L.D. Faddeev.
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poseon (12) and (13), is @,= Q.. In this case we get
a sequence of unitary operators Q, satisfying

k+ei”Q, g
Qn+IQn—I=(m) ,
Qn+lQn=62innQn+] . (14)

For obvious reasons we call this system a (discrete)
quantum pendulum.

In a standard way the Hamiltonian of this quan-
tum pendulum can be calculated as

d
H= a tI.(Lilj‘ller}‘/[r) l1=0-

It turns out that H depends only on the Q,
H=k(e7Q,_1Q,+e~705Q%_1)
+hk~(e"Q, Q5+ 770, 07)
+2(0,+ Q05+ Q +QO%- 1) - (15)

The evolution operator U is a unitary operator trans-
forming Q, into Q, .,

Qu+y =UQ, U™, Vn. (16)

In case of rational y there is a finite dimensional rep-
resentation of the algebra of the @,, and U can be
calculated explicitly. As a matter of fact, let h=¢?"”
be such that #¥=1. Then, taking into account the
commutation relation Q,,,Q,,_; =hQ@,,_, O,.., the op-
erators ,, and Q,,_, can be represented in the fol-
lowing form,

0 0 1
1 0 0
| B
Qm—l= ’ 5
0 1 0
1 0
h
Qm=
0 pv=

Let F be a Fourier transformation matrix,

1
Fo= — hk=DU=1

\/—N h=exp(2wi/N) .
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Then

FQ,,_F*=Q,,, FQ,F*=Q%_,.

Comparing the first relation with (16), we have
U=DF,

where D is some diagonal matrix

D=0, exp(idy) .

To determine D we use the evolution equation
Qi1 =00, U*=DFQ,,F*D*=DQ%,_, D*

or, equivalently,

ﬁQm+k)2_ . e
(—1+\/Zka —DQm—lD Qm—l' (17)

Both matrices in (17) are diagonal. For the elements
of D this implies

1+khf—'/2)2

exp(id;4 ;) =exp(id)) (W

which completes the calculation of U.

Figure 5 presents eigenstates of H (15) for k=0.5,
h=exp(in/16). Let us explain how these pictures
were made. First we construct a coherent state ¥,
which is characterized by the fact that the probabil-
ity distributions of both observables Q,and Q,_, are
maximally localized around Q= 1. The state ¥y, can
be obtained as a solution of the following variational
problem. First one should consider a set S, of states
with a fixed value of Re< ?|Q, | D>,

Si{®e#| (D, @) =1,Re( D|Q,| P> =a} .

Here # is the Hilbert space, which is #=C" in our
case. The maximum
b= max Re{®|Q,_, | D>

PeS,y
is achieved in some state @% which is equal to
Dyo:= D2, when b=a. In fact, ¥y, is the ground state
of —(Q,+Q5+Q._  +05_)).

Then we obtain states ¥, =05 Q% _, Wy, which are
localized around the point (exp(2nik/N), exp(2ni//
N)) in the classical phase space S'xS'. To make a
picture of an eigenstate YeC» we then display the
“Husimi function” (k, /)| (¥, W) |2 by grey lev-
els. Figure 5 shows characteristic eigenstates out of
32, including the top and the bottom energy levels.
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The results presented in fig. 5 were obtained nu-
merically. Using the formulas of this section the op-
erator H was represented as an N XN dimensional
matrix, the eigenvector system of which was calcu-
lated using Mathematica [3]. The problem of ana-

Fig. S.

Iytical calculation of the spectrum and the eigen-
functions of H (QISM sometimes implies a possibil-
ity of this calculation) is now under consideration.
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5. Other related results

At the end we would like to mention some im-
portant papers closely related to the present one.

First of all we should mention refs. [4,5], where
the first examples of integrable quantum mappings
appeared and where their quantum Yang-Baxter
structure was investigated. These were examples of
quantum mappings associated with the lattice ana-
logues of the KAV and the MKdV equations. A first
discrete version of the quantum sine-Gordon equa-
tion (discrete space, continuous time ) was obtained
and investigated in ref. [6]. The Lax operator of that
paper has a similar form to the one used by us.

We would also like to refer to two good surveys
[7,8] on integrable classical symplectic mappings.
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