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1 Introduction

Many of the equations which now are called integrable have been known in dif-
ferential geometry for a long time. Probably the first was the famous sine-Gordon
equation, which was derived to describe surfaces with constant negative Gaussian
curvature. At that time many features of integrability of the sine-Gordon and other
integrable equations were discovered !, namely those which have clear geometrical
interpretation (for example, the Bicklund transform).

The theory of solitons appeared much later, in the 1960’s. Though it was oriented
basically to problems of mathematical physics, it deals in many cases with the same
equations. Moreover, the starting point of this theory — the representation (which
is called the Lax representation or Zakharov-Shabat representation) of the nonlinear
equation in a form of compatibility condition

Uy(A) = Va(A) +[UA),V(N)] =0
of two linear equations
v, =U\Y, U, =V(\Y

also has a transparent geometrical origin. In differential geometry it is the Gauss-
Codazzi equation represented as a compatibility condition of linear equations for
the moving frame (the Gauss-Weingarten equations). The spectral parameter A in
this representation describes deformations of surfaces preserving their properties:

spectral parameter A <= deformation parameter, (1.1)

1For the history of that period see the contribution of M.Melko and I.Sterling in this volume.
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that is, integrable surfaces come in families! For the integrable equations of math-
ematical physics, which were found first, A was interpreted as a spectral parameter
in the corresponding linear problem. Therefore it was quite natural to investigate
how the solution of this linear problem ¥ depends on A. This free treatment of A,
independent of its geometrical interpretation, resulted in the construction of pow-
erful analytical methods of solution for the nonlinear integrable equations. Some of
these methods do not have a transparent geometrical interpretation and therefore
are new to geometry. First of all here one should mention the finite gap integration
method. Whereas the dressing procedure in the soliton theory and the Backlund
transform essentially coincide and produce the same multisoliton solutions, only
a few of the simplest solutions constructed by the finite gap integration method
were known before. Although from the very beginning of the soliton theory a close
relation with the differential geometry was clear, the first new essential results in
classical differential geometry of surfaces were obtained in the late 1980’s (see the
survey [2] and [12]), when the methods of the finite gap theory were applied.

In the present paper we consider only the classical case of surfaces in a 3-dimensio-
nal Euclidean space. Our goal here is to reformulate the classical theory of surfaces
in a form familiar to the soliton theory, which makes possible an application of the
analytical methods of this theory to integrable cases. In Sect. 2 the moving frame for
a general surface is described in terms of quaternions ¥ € H,. Such a description
is more convenient for the analytical treatment since it analytically characterizes
the spin structure of the immersion and deals with 2 x 2 matrices. This analytic
characterization of the spin structure of the minimal surfaces is given in Sect. 3 in
terms of the Weierstrass representation. All the necessary results about the spinors
on the Riemann surfaces are presented in the Appendix.

All the rest of the paper is devoted to a description of integrable cases and their
deformation families (1.1). Some of these cases are well known, some are not well
known and some are possibly new. The list below presents these integrable cases:

1) Minimal surfaces: H = 0;

2) Constant mean curvature surfaces: H = const;

3) Constant positive Gaussian curvature surfaces: K = const > 0;
4) Constant negative Gaussian curvature surfaces: K = const < 0;

5) Bonnet surfaces: surfaces, possessing nontrivial families of isometries preserv-
ing principal curvatures;

6) Surfaces with harmonic inverse mean curvature: 3,9;(1/H) = 0, z is a con-
formal variable of the first fundamental form;

7) Bianchi surfaces: 9,0,(1/v/—K) = 0, z,y are asymptotic coordinates;

8) Bianchi surfaces of positive curvature: 8,0:(1/vVK) = 0, z is a conformal
coordinate of the second fundamental form.
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Only the cases 6 and 8 of this list can pretend to be new, and the case 8 is just
another real form of the Bianchi surfaces (case 7). The surfaces with 8,0:(1/H) =0
seems to be new, but upon seeing a wonderful 3-page long paper by Tzitzéica [16]
on affine spheres, shown me by Sergey Tsarev, where the Bullough-Dodd-Jiber-
Shabat equation f., = e/ — e~2f together with its representation (1.1) (“systéme
completement intégrable”) are presented, one would have to have a lot of courage
to claim that a new integrable case in differential geometry of surfaces is found.
Formulas for the moving frame of integrable surfaces can be integrated by an
expression, first suggested by A. Sym for the constant negative curvature surfaces
[15] (see also Sect. 8). Namely, the immersion function in many cases is given by

0
-1
v a)‘\I'.

We prove that with slight modifications this immersion formula is valid for all the
cases above except 1 and 5. |
I wish to thank Rob Kusner, Ulrich Pinkall, Konrad Voss and Peter Zograf for
valuable discussions.
The author was supported by the Alexander von Humboldt Stiftung and the
Sonderforschungsbereich 288 during the preparation of this work.

2 Surfaces in a 3-dimensional Euclidean space

2.1 Differential equations of surfaces

Let F be a smooth surface in a 3-dimensional Euclidean space. The Euclidean metric
induces a metric 2 on this surface, which in turn generates the complex structure
of a Riemann surface. The surface is covered by domains D; with U;D; = F, and in
each of these there is defined a local coordinate z; : D; — U, C C. If the intersection
D; N D; # 0 is non-empty, the glueing functions z; o zj—1 are holomorphic. Under
such a parametrization, which is called conformal, the surface is given by a the
vector-valued function:

F = (Fl,Fz,F3) : R—) R3,

and the metric is conformal: = e“dz;dz;. In the sequel we suppose that F is
sufficiently smooth. We also omit the superscript ¢ of the local coordinate z in case
when it is not confusing.

The conformal parametrisation gives the following normalization of the function
F(z,2):

1
<Fz,Fz >=< Fz,Fz >= 0, <FZ,F2 >= 56“, (21)

where the brackets mean the scalar product

<a,b>=a1b; + azbs + azbs,
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and F, and F; are the partial derivatives ‘?,—f and ‘g—g where

9 _1(9 8\ 2 _1(9 .0
9z 2\6z '8y)’ 9z 2\0z @ '8y

The vectors F,, F5 as well as the normal N,
<F, N>=<F;,N>=0, <N,N>=1, (2.2)

define a moving frame on the surface, which due to (2.1, 2.2) satisfies the following
Gauss-Weingarten (GW) equations:

g, = Ua, Oz — VO', o= (FZ,F;_,N)T, (2.3)

U, 0 Q 0 0 %HC-
U=| 0 0 sHe* |, V= 0 u: Q )(2.4)

—-H —-27*Q 0 —2Q -H O

where

1
Q=< F:z,N >, <Fu,N>=_He". (2.5)

The first and the second quadratic forms

<dF,dF > = <I dx, dz >, z=z+1y,
dy dy

dz dz
I
< (dy)’ (dy) g
are given by the matrices

0 1)’ 1(Q-Q) -(Q+Q)+He )

The principal curvatures k; and k; are the eigenvalues of the matrix IT - I?, which
gives the following expressions for the mean and the Gaussian carvatwres

H=1 (ki +k)=1tr (II-I7Y),
K = kiko = det (II - I™') = H? — 4QQe~2".

- The Gauss-Codazzi (GC) equations, which are the compatibility comditions of
equations (2.3, 2.4),

U -V, + [U,V] =0,
have the following form (cf. [17]):

— < dF,dN >

1 _
uzz + 5 H ‘e —2QQe " =0, (2.6)
Q:z = %Hze", (2.7)
Qz - lH;,e“. (2-8)

2
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2.2 Quaternionic description

We construct and investigate surfaces in R3 by analytical methods. For this purpose
it is more convenient to use 2 x 2 matrices instead of 3 x 3 matrices (2.4), therefore
first we rewrite the equations (2.3) for the moving frame in terms of quaternions.
This also allows us to control the spin structure of the immersion (see the next
section) and makes the presentation familiar to the specialists in the theory of

integrable equations.
Let us denote the algebra of quaternions by H, the multiplicative quaternion

group by H, = H\ {0} and their standard basis by {1,1i,j,k}
ij=k, jk =1, ki=]. (2.9)

The Pauli matrices o, are related with this basis as follows:

(0 LY. (0 =) _..
o1 = 1 O - ’02_ Z 0 - J’
agz(é _01)=z'k, 1=(é (1)) (2.10)

with the multiplication in (2.9) being just the matrix multiplication. We identify a
3-dimensional Euclidean space with the space of imaginary quaternions Im H

3
X=-i) Xaoa€ImH +— X =(X1,X;,X;) € R%. (2.11)

o=1

The scalar product of vectors in terms of matrices is then

<X,Y >= —%trXY. (2.12)

We also denote by F' and N the matrices obtained in this way from the vectors F

and N.
Let us take ® € H,,

d = ( _“5 b ) , lal> +15)° # 0, (2.13)
a
which transforms the basis i, j, k into the basis F;, Fy, N:
F, =e*/?®71i®, F, = e*/?2071j®, N = & 'k®. (2.14)
Then
F, = —ie%/23! ( (1) 8 ) b, F, = —ie*/23! ( 8 (1) )<1>, (2.15)

and all the conditions (2.1) are automatically satisfied.
The quaternion @ satisfies linear differential equations. To derive them we intro-

duce matrices
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U=0,8""1, V=0,0"1 (2.16)

The compatibility condition F,; = F3, for (2.15) implies

_._'“/2uz u/2 -1 0 0 _
et (3 o) e |(V ) Ve

_iou/2¥z 0 - uf25—1 0 1 ‘
= —1€ d~ ( 0 )<I> 1wet’“P [( 0 0 ,U| @,
or, egivalently,

2
uz = 2(Voo — V11), u, =2(Uy; —Uspp), U = —Wa,

O =

where Uy; and Vi are the matrix elements of U and V. In the same way the equalities
(2.15) imply
1 u 1 u/2
Fzz=§H6 N - U21=—V12-_—§H6

Fzz = uze + QN — U12 - _Qe—u/2
Fiz=u:F; +QN o Vy = Qe_u/z

Now only the coeffitients Us; and V;; are still not determined. To fix them, we recall
that ® was defined by (2.14) up to a multiplication by a scalar factor. We normalize

this factor by the condition
det ® = e*/2, (2.17)

the reason for which is clarified in the next section. For the traces of U and V this
implies

Uir + Uza = u, /2, Vi1 + Vag = uz/2.
Finally we get the following

Theorem 1 Using the isomorphism (2.11), the moving frame F,,F; N of the con-
formally parametrised surface (z is a conformal coordinate) is described by formulas
(2.14),(2.15), where ® € H, satisfies the equations (2.16) with U,V of the form

U=| 1 2 v=] _ 2y, : (2.18)
~Hev/? 0 Qe /2 —

2 2
Corollary 1 ® satisfies the Dirac equation

—u/2 0 az _ 1
e ( 8. 0 )<I>— 2H<I>. (2.19)



Surfaces in terms of 2 by 2 matrices. Old and new integrable cases 89

2.3 Spin structure

Let us now determine the dependence of ¢ on the holomorphic coordinate z.

Lemma 1

<1>s,,=(‘/g_z \/(;_Z)cb

is invariant under analytical changes of z.

Proof. Since e*dzdZ is invariant under analytical changes of z = w(z), u is trans-
formed as follows

e*%(z) = e*?(w)Vw'e', w' = dw/dz. (2.20)

The most general transformation of ¢ compatible with the formulas for the moving
frame (2.14, 2.15) is

c O
2= (5 7 )ew),
where
C w'
_E_:__ . (2.21)

To get the last formula we have to take into account the transformation law of the
metric (2.20). The normalization condition (2.17) implies for c

cc = Vw'w',
which, combined with (2.21), completes the proof
c=vuw'.

The local variation of ®(z, ) is described by system (2.16, 2.18). These equations
are compatible, therefore there is no local monodromy of ®. We see that

o= (0 vz ) (5 3)

consists of two spinors av/dz and bV dz. All the necessary information about spinors
is presented in the Appendix. The spinors av/dz, bv/dz may change sign around
cycles v of R.

Lemma 2 The spin structures of the spinors avdz and bvdz are the same. The
flip numbers of these spinors coincide: p®(y) = p°(y) for any contour v C R.
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Proof. This is straightforward. Since F is oriented, F,, F;, N are uniquely defined
on R, and formulas (2.14, 2.15) show that the only possible transformation of ®,,
on passing around v is

S, = (—1)79,,.

This spin structure, and generally the numbers p(y) € Z2, have a simple geo-
metrical interpretation. Let us consider a closed contour I' C F. I' together with
the normal field N of the surface at this contour defines a closed orientable strip in
space. Let Nr € Z be the number of twists of this strip, or equivalently, the winding
number of the contours I' and (I' + eN). , where € is small. Isotopies of the band
preserve Nr, whereas regular homotopies (self-intersections are allowed) preserve
Nr (mod 2), which we from now on denote by

P(T) € Z,

and call it the parity of twists.

Let us consider a little bit more general class of surfaces: surfaces with trans-
lational periods. For these surfaces the frame F,, F;, N is uniquely defined on R,
whereas the immersion function F' can have periods around cycles on R. All the
previous considerations of spin structures are valid also for surfaces with periods,
since only the formulas for the frames were used. The numbers P(T") € Z2 can also
be defined in this case. To do this we introduce a notion of a translation-holonomy
strip.

Definition 1 A translation-holonomy strip is a smooth curve in R3 equipped with a
smooth normal field N, such that the orthonormal frames, consisting of the normal
vector N and the tangential vector, coincide at the ends of the curve.

If F(s),N(s),
F:[0,1] — R} N:[0,1] — S?

is some parametrisation of the translation-holonomy strip, then

F, F

F10 = E: NO =N

We consider smooth homotopies of translation-holonomy strips and define the
parity of twists of a translation-holonomy strip S to be equal to a parity of twists
of a closed strip Sg smoothly homotopic to S

P(S) & P(Sy).

This is well-defined, i.e. P(S) is independent of the choice of closed strip Sg
homotopic to S, which also shows that P(S) is an invariant of the homotopy class.

Remark. The parity of twists of the straight strip {F(s) = fs, N(s) = #, (f,@) =
0; f,7 = const} is equal to 1!
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Theorem 2 If F : R — R? is a conformal parametrisation of a surface F with
translational periods and v C R is a closed contour, then the spinor flip number
p(7v) is equal to the parity of twists P(T):

p(v) = P(T),
where I' C F is the image of .
Proof. Let v(s), s € [0,1], v(0) = (1) be a parametrisation of the contour and

z = 2™ be a complex annular coordinate |2(y)| = 1 on 7. Formulas (2.14) imply
for the frame F;, N along ~:

__p—2mis
F, = 271,611./2@—1(8) ( eZ?ris, 60 ) (I)(S)a

N = —i®d 1(s)o3®(s).

By general rotation of the translation-holonomy strip in R3 we normalize ®(0) = I.
Since the parity of twists P(I") is preserved by the smooth homotopies of translat-
ion-holonomy strips, we can replace e*/2 by 1 when calculating P(T).

The curves ®(s) have different topology for different flip numbers p(~):

a) p(v) =0 = @) =1,
b) p(v) =1 = &(1) =-I.

The variety H, is simply connected, therefore by smooth homotopies of the trans-
lation-holonomy strips the curves ®(s) can be transformed in the cases a),b) above
respectively to

) B(s) = 1,
B o) = (<0 oo ).

For the immersion of the translation-holonomy strip it yields
0 e—27ris

a)F=—z’(62m-s 0 ) N=k = P()=0,

b) F = 2msj, ~ N=k = P(I) =1,
which proves p(y) = P(T').

Definition 2 The spin structure of ®,, is called the spin structure of the immer-
ston.

Usually, if a surface is given by its immersion function it is difficult to answer
the important geometric question of whether it is an embedding or not. Sometimes
existence of the self-intersection can be proved by purely topological arguments
analyzing the spin structure of the immersion. If R is a Riemann surface with G
handles and K punctures or holes, then this spin structure is characterized by the
numbers
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[, B,0] € Z§G+K

(see Appendix). The numbers «;, 8; describe flips along the handles, whereas the §;
describe flips around the holes or the punctures. As it is mentioned in the Appendix
the parity of the spin structure < a, 8 >€ Zs is invariant with respect to the choice
of the basis in H;(R,Z). As it was proved in [13], it completely classifies regular
homotopies of compact orientable immersions.

Theorem 3 [13] The parity of the spin structure completely classifies compact ori-
entable tmmersions with respect to reqular homotopies, i.e. there is a smooth homo-
topy F;, t € [0,1] of two immersions, Fo and Fy, of a surface of genus G which at
each moment remains an immersion if and only if the parities of the spin structures
corresponding to Fy and Fy coincide. For embeddings, < a,3 >= 0.

Corollary 2 If F is an embedding with G handles and K holes or punctures, then
<a,fB>=0, =0, k=1,...,K.

To prove this statement we consider a sphere big enough to contain all the handles
inside. Replacing the outside parts of the surface by the corresponding pieces of the
sphere (smooth glueing) and applying Theorem 3 to this compact surface we get
< a, 8 >= 0. The embeddedness of the ends imply the vanishing of the § s.

3 Minimal surfaces

In the case of minimal surfaces (H = 0) the system (2.16, 2.18) can be solved.
The elements a(z),b(z) of ® in (2.13) are holomorphic. The metric and the Hopf
differential are expressed in the terms of the spinors a(z), b(z) as follows:

e/ =|a|> + |b]?2, Q =a.,b—b.a.
Formulas (2.14, 2.15) for the frame yield

. —ab —b? ( —ab a?
sz— —’&( a2 ab), Fz—_"/(_l_)2 )a

1 a2 — b2  2ab
N = z|a|2+|b|2( 2a¢b B> —]a|* )°

Finally, for the coordinates of the immersion and the Gauss map we obtain the
Weierstrass representation:

I
!

z 2 Reg
Fl — R'e/ (92_1)77’ N]. — |g|2+17
— Sia | _ 2Img
F2 - Im (g + 1)7” N2 - |g|2 + 17 (3'1)
z 2 _ 1
F3 = _2Re/ an, N3 = :g:z i 1’
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where g = a/b is an analytic function and n = b%dz is a holomorphic differential on
R.

Proposition 1 The spin structure of the minimal immersion is given by the spinor
/N, where 1 is the holomorphic differential in the Weierstrass representation (3.1).
For any closed contour v C R the flip number p(7) of \/7 is equal to the parity of
twists P(I") of the corresponding normal strip I’ = F(v).

4 Dual surfaces

Let us consider the special case when the Hopf differential is real
Q €R. (4.1)

The second fundamental form is diagonal and the preimages of the curvature lines
are the lines £ = const and y = const on the parameter domain. A conformal
parametrisation with this property is called isothermal.

Definition 3 Surfaces which admit isothermal coordinates are called isothermal.

In terms of arbitrary conformal coordinate Property (4.1) can be reformulated as
follows:

Q(2,7) = 5a( D) (), (4.2)

where f(z) is holomorphic and ¢(z, Z) is real.

Definition 4 Let F'(z,Z) be a conformal immersion of an isothermal surface F with
Hopf differential of the form (4.2). Then a surface F*, defined via the immersion
function F* : R — R3 with the following formulas for the moving frame

F*=e “fF;, F;=e“fF,, N*=N, (4.3)
is called a dual surface

Proposition 2 The immersion F* : R = R3 defined above is a conformal para-
metrisation of an isothermal surface. The metric e* , the mean curvature H* and
the Hopf differential Q* of this surface are given by the formulas:

*

e =e “ff, H*=q, Q*:%Hf. (4.4)

Proof. The definition (4.3) of F™* is self-consistent since the equality F; = F7, is
equivalent to (e7*fF;); = se “ffgN = (e “fF,),. Here we use (4.2) and the
Gauss-Weingarten equations for F,,, F5;. The conformality of F'* is evident. The
expressions (4.4) are obtained by straightforward calculation, for example

1
Q*=—-—<F),N; >=—e"f < F;,(—HF, —2e7"QF3) >= §Hf,

which shows that F* is also isothermal.
Remark. F** = F up to a scaling in R3.
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5 Constant mean curvature (CMC) surfaces.

5.1 Formula for immersion

If the mean curvature of F is constant, then the Gauss-Codazzi equations

1 -
Uyz + ine” —2QQe " =0, Q: =0, (5.1)
are invariant with respect to the transformation
Q—-Q' =), |N=1, (5.2)

where A = e2* is a complex number of unit modulus which is the same for all
points of F. Integrating the equations for the moving frame with the coeflicient
@ replaced by Q' = AQ we obtain a one-parameter family F* of surfaces. The
transformation (5.2) does not effect the metric and the mean curvature, therefore all
the surfaces F* are isometric and have the same constant mean curvature. Treating

t as a deformation parameter we obtain a classical theorem of Bonnet.

Theorem 4 (Bonnet) Every constant mean curvature surface has a one-parame-
ter family of isometric deformations preserving both principal curvatures. The de-
formation is described by the transformations (5.2).

The invariance of the principal curvatures follows from the fact that K is an
isometric invariant K = —2u,ze ™.

The quaternion ® solving the system (2.16, 2.18) describes the moving frame
F,,F;, N (2.14, 2.15) on the surface. In [2] it was shown that knowing the family
®(z,2, ) for all X = €% allows us to integrate the formulas for the moving frame
explicitly replacing the integration with respect to z,Z by a differentiation with
respect to t.

Theorem 5 Let ®(z,2, A = ) be a solution of the system

o, =UN®, &;=V(\9,

-“2—" — Qe
U(A) = )
—;—He“/2 0
(5.3)
1
\ 0 —§H€u/2
V =
A 2

belonging to the quaternion group ®(z,z, A = €**) € H, with the norm det & = e*/2.

Then F and N, defined by the formulas
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1 __,0 o o
F = —-ﬁ(cp 1§¢ —i®7103®), N =—-i®d 1539, (5.4)
describe a CMC surface with metric e* the mean curvature H and Hopf differential

Qt — e2itQ.’
Conversely, let F' be a conformal parametrisation of a CMC surface with metric
e*, mean curvature H and Hopf differential Q*. Then F is given by Formula (5.4)

where ® is a solution of (5.3) as above.

Proof. First we note that both F' and N take values in the imaginary quaternions
ImH and therefore can be identified (2.11) with vectors in R3. The system (5.3) co-
incides with the quaternionic representation (2.18) for the equations for the moving
frame with the Hopf differential AQ. Differentiating (5.4), we get

_ 1 -1 BU()\) cx—1 _ . ‘u,/2 -1 0 0
F, = —H(<I> 5 ®—i® o3, U(N)]®) = —ie"/“P 10 P,
. _sou/25—-1 0 1
F; = e/ “P ( 0 0 )<I>,

which coincides with (2.15).

For a given e, H and Q! the surface is determined up to an Euclidean motion of
R3. The solution ®(z, z, A = €?*) € H,,det ® = e*/? is defined up to multiplication
on the right by a factor R(\) € SU(2). This right multiplication & — ®R(\)
describes all Euclidean motions of the surface

F -5 R 'FR+ R‘I%R; R € SU(2), R‘lg—tR € su(2). (5.5)
The immersion function F(z,2, A = e2*°) with a fixed A = e?** (one CMC surface

from the family) determines ®(z, Z, A\) uniquely up to the transformation
®(z,2,\) = ®(2,Z2, )VR()\), R\ =T +0(t—1t)?), t~to. (5.6)

System (5.3) represents itself the Lax representation for the nonlinear equations
(5.1). The Lax representation is a starting point of the integration procedure of the
soliton theory, which allows us to construct explicit solutions of the corresponding
nonlinear integrable equations. The main tool of this procedure is the study of the
analytic properties of ®(\) with respect to the spectral parameter A. Moreover, as a
by-product of the integration procedure, ®()) is also constructed. This explains why
formula (5.4) for the CMC immersion, which seems not to have been known classi-
cally, is very useful for analytic treatment of the surfaces. It allows us to eliminate
the double integration of the GW equations and supplies us with the final formula
for the immersion. For the CMC tori case this helps to control the periodicity of the
immersion and, finally, to describe all the CMC tori explicitly [2].

We also mention here a well known fact, which can be easily checked cf. [17].

Proposition 3 The Gauss map N : R = S? of the CMC surface is harmonic, i.e.
N,z =¢gN, q:R — R.
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Remark. In the neighborhood of a non-umbilic point @} # 0 by a conformal change
of coordinate z — Z(2) one can always normalize Q = H/2. In this parametrisation
the Gauss equation and the system (5.3) become the elliptic sinh-Gordon equation

U,z + Hsinhu =0

and its Lax representation.

5.2 Monodromy of ¢ and balanced diagrams

Let ®(z,2,\) be a solution of the system (5.3) as in Theorem 5, ®(z, 2z, A = %) €
H,, det ® = e*/2. It is defined on the universal covering of R. Under passage around
a closed contour v on R this solution gets a monodromy

®(2,2,)) — ®(z,2,)) = 8(2,2,)) "M(N).
Since the norm of ® is preserved, M is unitary
TM (X = e*) € SU(2).

Monodromy of the solution depends not on a particular cycle v but on its homotopy
class [y] € m1(R).

Lemma 3 Let F : R = R® be a CMC immersion defined by Formula (5.4) with
®(z,z,\ = e2"0) and suppose that the image of the contour v C R is a closed
contour I' = F() in R3. Then

TM(X = e2t) = £(I + A[Y](t — to)? + B[y](t — to)® + O(t — to)*), t ~ to, (5.7)

where the sign is determined by the spin structure of the immersion (see Section
2.8)

Proof. Formula (5.4) yields the following transformation law for the immersion
function under the passage around 7y

F— "F=M7'FM+ M%Mhﬂo, (5.8)

which implies "M (to) = £I, 0 "M/dt,_, =0.
Since M (\ = e?*) € SU(2), both A and B lie in the Lie algebra,
A, B € su(2)
and can be identified (2.11) with the vectors in R3.

Proposition 4 Let F : R = R3 be a CMC immersion. Then to any homology
class [['] € Hy(F,Z) there can be associated two vectors A[l'], B[['|. The maps A :
H\(F,Z) —» R? and B : Hi(F,Z) - R3 are homomorphisms. The group E(3) of
Euclidean motions
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F—sFRE=RFR+r, ReSU?2), resu(2 (5.9)
acts on A, B as follows (A, B € su(2)):
A— AR=R'AR, R— BRE=R'BR+[A% ] (5.10)

Proof. Proving Theorem 5 we have shown that the immersion function F'(z,z, A =
e?®0) determines the solution ®(z,Zz,\) uniquely up to the transformation (5.6).
This transformation does not affect the terms O((t — t9)?) and O((t — t9)3) of
the monodromy (5.7), therefore the vectors A[I'], B[I'] characterize the immersion
function F' and not a special ®. The Euclidean motion (5.9) transforms ® as follows:

& — SR =OR(I +r(t —t0)),
which implies
™M — M7 = (I —r(t—to) + O((t — to)*)R™" "MR(I + r(t — to))

for the monodromy and (5.10) for A and B.
The multiplication law for the monodromy "' +7"2M = "M - 72M yields

A[Pl +F2] =A[P1]+A[F2], B[F1+F2] =B[F1]+B[F2], I'; =F(’)’z’).

This shows that A and B are the homomorphisms H; (F,Z) — R?.

The maps A,B : H;(F,Z) — R3 were constructed in [9] by the variational
principle, which provides for these maps a more transparent geometrical and physical
interpretations (A[I'] and B[I'] were called force and torque respectively). Namely,
A[l'] and BI[I'] transform exactly as linear and angular momentum for a moving
body. If the translational force A[I'] is non-zero, then a natural “balancing” line in
R3 can be associated to [[] - the line along which the center of mass travels. For
surfaces of revolution the balancing line is exactly the axis. For many cases it is
proved that balancing line and homology class representative are “close” to each
other. Moreover, sometimes one can proceed further and build a balanced diagram
of the surface — a graph in R3 consisting of the segments of the balancing lines.
Using this approach one can characterize the structure of CMC embeddings [10], in
particular the localization of the surface with respect to its balancing diagram.

Remark. One more interpretation of the vector A[I'] can be given. For t ~ tg,t # to
the immersion is not periodic. Formula (5.4) implies

TF =F +2(t — to)A[T] + O((t — to)?),
which allows us to suggest the following interpretation for A[I']:

10
Al'l= ==("F - F
[ =52 (F - F)
Remark. There is one more map, which can be defined on homologies and is
standard in the theory of solitons. The right multiplication ® — ®R()\) transforms

YM as follows:

|t=t0 )
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™ — R (A)"MR(\).

The eigenvalues of "M ()), which we denote by [im*1(t), [m| = 1, are preserved by
this transformation. To each element [y] € H;(R,Z) there corresponds a function
Yim : §' — S1, which depends only on geometry of the surface and not on its

disposition.

5.3 Three parallel surfaces

It is a classical result that surfaces parallel to a CMC surface and lying in the normal
direction at distances 1/2H and 1/H are of constant Gaussian and of constant mean
curvature respectively. To see how this fact comes in our description of surfaces we
note that the formula (5.4) for the immersion is a sum of two vectors wherethe
second one is a normal vector. It is thus natural to consider the surface described

by the first term.

Proposition 5 Let F a CMC surface, described by F, N, ® as in Theorem 5. Then

0
FFe—r0'2a_F4 ——N, N*=i®103® = -N 5.11
H ot H o (5.11)
is a conformal parametrisation of another surface F* and its Gauss map. The metric
e*”, the mean curvature H* and the Hopf differential Q** of this surface are given

by

¥ = %? —v  H*=H, Q" =Q" (5.12)

The surface F* is dual to F.
Proof. Differentiating (5.11) we get

_,0U 21Q 5 w1 0 1
P —Ltg1%Vg ite—u/2g 3,
2 H o  H-° 0 0
| (5.13)
. 20Q oy —u2x—-1( 0 O
F; = He e P 1 0 P,

which shows the conformality of the parametrisation and orthogonality of F;, F}
to N*. Calculating scalar products via traces (2.12) we easily get (5.12)

" s 4Q0 . ({0 1 0 0Y) _ 4QQ -
e 2L F],F; >= 772 © tr 0 0 1 0 772

H* = —2* <F* N} >=
_ _ZQ;I e2it o= /24 (( ) (03, V])
Qt* = <F:,N; >= —%62“ "/2tr(( ) ,[0'3,U]) =
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Equating Q* and (4.2)
¢=H, f=2QH™

shows that (5.12) coincides with (4.4) and that (5.13) and (4.3) differ only by a sign.
This proves the duality of F and F*.

The immersion function of the original CMC surface can also be written in a form
of a logarithmic derivative with respect to ¢.

F =V = Ty,

where W9 is a gauge transformed quaternion

Uy = ( 1/8/X %)@, V= et

The coeflicients in the linear equations for W[y are the same as for @, but A is
inserted in a different way

U, _ 1
Pz —Qe u/2 0 ____Heu/Z
U = ( 2 y V[g] = 2X,, . (5.14)

%/\He“/z 0 Qe—/2 =

It is also natural to consider the intermediate case

1/vX 0 4 ;
\IJ[3]=( /8/_ \‘I/X)q), \/X:et/z,

where the parameter A enters symmetrically into the U — V pair

1_"‘21 ' _\/XQe—u/Z
Usj=| 1 )

'2—\/XH e“/ 2 0
(5.15)
0 1l g
Via) = 2V
3] = 1 = —u/2 Uz
—Qe -z
5y 2
Renaming F, ®,U,V by
F=Fy, ®=¥y U=Uy V=W
we can formulate the following already partially proved
Theorem 6 The formulas
F, = —-l-xp—l-a—xp[,-], 1=1,2,3 (5.16)

H i ot
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describe 3 parallel surfaces F1,Fs, F3,

1 1
Figy = Fy+ N, Fig = Fiyy + 52N, (5.17)

where

N'="
is their Gauss map. Surfaces F; and F2 are of constant mean curvature H and dual
F{ = F,. The surface F3 is of constant Gaussian curvature K = 4H?. Variation
of t preserves both principal curvatures of F1,F2, F3; for F1,Fo it is an isometry,
whereas for F3 the second fundamental form is preserved.

el (5.18)

Proof. All statements about F; and F; are already proved. The calculation of the
fundamental forms of F3 is quite similar to the calculations in Proposition 5. For
the first fundamental form we get

Q 1 1 QQ —u 1 u

A=< .F[3]Z,F[3]z >= —-2—1—{-62 t, B =< F1[3]2,F[3]5 >= 5@‘6 +§6 .
For the determinant of the first fundamental form

< dFy),, dFj3), >= A(dz)® + A(dz)? + 2Bdzdz,

[t — 2B+A+A  i(A-A)

BI=\ i4-A4) 2B-(A+A4) )’
this implies
QQ . 1.\
det Ij3) = (Fe —2¢ ] - | (5.19)

Since
< F3);, N: >=< F3)3, N; >=0,
the parametrisation of 3 is conformal with respect to the second fundamental form
— < dFi3},dN >= -2 < Fi3),, Nz > dzdz.
Calculating
QQ ., 1

vv —U _ _H 'u,,
H® T17°

we see that the second fundamental form I1j3) does not depend on ¢ and the Gaussian

curvature equals

K[3] = det II[3]/det I[3] = 4H?.

< F[3]Z,Nz >=

For the mean curvature of F3 we have
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H[g] = %tr(II[;g] . I_l) = (lHeu - -Q—Qe-_u

AB _ Hine”+QQe“”
4 H

det Ij3) i—Hze” — QQe™ ¥

Both principal curvatures of 73 are independent of ¢.

H=const

K=4H?=const

=const

Fig.1 Three parallel surfaces

Remark. Transformations 7; — F2 and F; — F3 can be singular. If F; is smooth,
then F, = F7 is degenerate (e*" = 0) at images of umbilic points (Q = 0) of F.
The surface F3 is degenerate at images of flat points of 77; K =20 implies u,; =0
and, finally, det Ij3; = 0 in (5.19).

6 Bonnet surfaces

In the present section we study the following

Problem. To characterize non-trivial families of isometric surfaces having the
same principal curvatures. By a non-trivial family of surfaces we mean surfaces
which do not differ by rigid motions. We suppose also that they do not contain
umbilics and are sufficiently smooth. This problem was first studied by Bonnet,
therefore we call these surfaces Bonnet surfaces. The most detailed results con-
cerning these surfaces are presented in papers by E. Cartan [3] and S. Chern [4],
where they were classified and, in particular, it was proved that they are Weingarten
surfaces (the principal curvatures are algebraically related).

As we have shown already in Sect. 5.1, the CMC surfaces possess non-trivial
isometries. In this section we exclude the CMC case and suppose that H is a non-
trivial function on F. To characterize other Bonnet surfaces let us note that since
e and H are both preserved, only the Hopf differential () can be varied by the
deformations. Since the Gauss equation (2.6) guarantees that QQ is also preserved,
the deformation parameter is inserted, in the GW equations via the transformation
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Q-Q,  @-3Q (6.1)

In this way we get the U — V system (5.3) (or Upyj, V1) in notations of Sect. 5.3),
where now X is allowed to depend on z and Z.

The transformation (6.1) does not effect the right hand sides of the Codazzi
equations (2.7, 2.8), therefore the left hand sides should also be preserved:

0@-:=(3-0.=0

These equations can be easily solved:

a+b N Ltb/a
bb — aa’ ~ 1+4a/b’

Q= (6.2)

where both a and b are holomorphic. The transformation

(a+kb), a-— ! (@ + kb),

1-k 1-k
1 -

1 T _

a —

preserves () and transforms A\

a+b\ [(b+ka
A = 2 .
A (a+b) (a+kb)

Now k is an independent parameter (k does not depend on z and Z). Deformations
correspond to the case

Al=1 < k=1

One can see that @ in (6.2) is of the form (4.2). In terms of a new conformal
variable Z (we avoid umbilic points):

2
(%) =a+b

() becomes real-valued

dz\’ b|?
=2 () = s

Further we omit the tilde and use the old notation z for this new isothermal coor-
dinate. Finally ) and A are parametrised by one holomorphic function

__l_b—a
T 2b+a

of an isothermal coordinate z:

h(z)
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1
5 (6.3)
_1—2ith k-1
14 25th’ k41

where t (or equivalently k) is a deformation parameter. For unimodular k = e?®
we have real valued t = tana.

(6.4)

Proposition 6 The Bonnet surfaces are isothermal and 1/Q is a harmonic func-
tion of an isothermal coordinate.

The harmonicity of 1/@Q is necessary but not sufficient. Substitution of (6.3) into
the Codazzi equations (2.7, 2.8) yields

thz - Bsz. (65)

Since h(z) is holomorphic, formula (6.5) shows that H depends on one variable s
only:

H,=H, = Hz (6.6)
where
_ dw 1
s =w+ W, Pl (6.7)
For the metric this implies
3 2(1/Q)= 2|h,|?

— dw — —_— .
H, (1/Q)?H, 52 (h+ h)?H,
Differentiating the metric twice:

|h2|? 1 (Hss)
Uz = 2 = - ’
(h+h)2  Jh)2\H, ),

and substituting all this into the Gauss equation (2.6), we get

2
((Z) —Hs) R2=2—Z , (6.9)
h+h
R= THE (6.10)

The vanishing of 2H, — H? implies the vanishing of H? — H,,, + HZ2, / H,, therefore
two cases are possible in principle:

i) 2H, — H? =0,
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ii) R depends on s only
R, = Ry = h.R, = hz:R;. (6.11)

The case (i) has no geometrical meaning, since formula (6.8) shows that H, must be

negative. Finally we end up with the following equation for h(z), which is equivalent,
to (6.11)

02 - 0? -
557 log(h + h) = 357 log(h + h).
This equation shows that (z = = + iy)
52
5207 log(1/Q) =0,
therefore 1/Q) must be a product of two functions, depending on z and y respectively
5 = P(2)ay).

The harmonicity condition allows us to find p and q explicitly, since the variables
separate

Pzz

=-dw (6.12)
p q

where | does not depend on z and y. To normalize the solutions of (6.12) we have a,
reparametrization z = az + b+ic (a,b,c € R) and a general scaling of R? at our
disposal. Also, reconstructing h(z) from p and q one can always add an imaginary
constant to h(z). This constant is not important for our calculations, since only the
sum h + h and the derivative h, are used, therefore we put this constant equal to
zero. After suitable normalization one can easily prove the following

Lemma 4 All non-constant normalized functions h(z), generated by solutions of
(6.12), are listed in the table below:

h w s R(s)
—1z/2 21z —4y —S
e? —e™? —(e7* + e %) -5
122 llo 2 arg z —lsin23
2i 0 & 2

1 e* —1 1 e* —1\ (e —1 1
2sinhz | —1 —1 i —sin?
A %% e | & Og((ez+z‘) (ez+z’)) 2"

1. e*-1 1 e —1\ (e -1 1
2coshz | =1 =) _ — = sinh 2
e B R 2°g((e2+1) (ez+1)) g e

where the corresponding coordinates w,s and the function R(s) are also indicated.

Y ' O
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Actually, not all the cases listed above are geometrically different. Only the cases
corresponding to different R(s) differ.

Lemma 5 Surfaces corresponding to the same R(s) and the same solution H(s)
of equation (6.9) belong to the same deformation family, i.e. the metrics and the
mean curvatures of these surfaces coincide and the Hopf differentials differ by the
transformation (6.1, 6.4).

Proof. Rewriting characteristics of surfaces in terms of variables w we see, that the
statement concerning the mean curvature is trivial since s = w+ w. The metric also
depends on s only

2|h|? 2

dzdz =

u(z"—z-) y = — — —
€ dzdz (h+ h)°H, RPH.

dwdib. (6.13)

The calculation for the Hopf differentials is more complicated:

h, (1 — 2ith)
hs (1 + 2ith)’

AQ(d2)* = o~ r(w, @, t)(dw)?, r(w,@,t) =

1
R(s)
Direct calculation for the cases 1-4 of the table above yields

—i1+tz) _ (1+itw/2)

r = . = — : , 6.14
' (1 +t12) (1—1ityw/2) (6.14)
L e-2ite’) _ (1-5;0)
27 e3(1+ 2itye?) (1+ E}Ew)’
2i2(1 — 2322 e2'D — tze =20
s = E ; 3 = - —2iw S 2iw)’ (6.15)
—2iZ(1 — 2t322?) (e — 2tze?w)
200 _ 1+ 4i4 o= 2i®
. 2cosh z(1 — 4itysinhz) 1 — 4ty
7 2coshz(l+ditysinhz) [, (1+4t) L.\’
e — e
1—4i,

where t; denotes the deformation parameter ¢ corresponding to the i-th case of the
table. The identification

1 1+ 44
. 2y =
ty) T 1— 4ty

) =

proves that the cases 1 and 2 as well as 3 and 4 are isomorphic.
For completeness let us write down the expression for the Hopf differential in case
5 in terms of the variable w:

AQs5(dz)? = rs(w, W, ts) (dw)?,

1
R(s)
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2% _og 1 — 4uts
: . _ eV —em W ——
. 2sinh z(1 — 4it5cosh z) B 1 + 4its (6.16)
®~ 2sinhz(1 + 4itscoshz) 2w _ 2w 1+ 4ats '
1 — 4aty

So there are 3 cases to consider, which we denote by A, B and C following E. Cartan

[3]:

A Ra(s) = ——;-sin2s,
B: Rp(s) = —% sinh 2s, (6.17)

C: Rc(s) = —S.

Till now the consideration was a local one and dealt with pieces of surfaces.
It turns out that it is possible to combine all these pieces into global surfaces in
such a way that the isometries preserving the principal curvatures are described by
translations along the surface. For this purpose the coordinate w rather then the
starting isothermal coordinate z is more convenient. Both the metric (6.13) and
the mean curvature depend on the real part of w only, whereas a change of the
imaginary part of w corresponds to the transformation (6.1, 6.4) of Q.

Theorem 7 The non-trivial families of isometric surfaces having the same princi-
pal curvatures are the CMC surfaces and families A, B, C, which can be described
as follows. The mean curvature H(s) = H(w + w) is a solution of (6.9) with a
negative derivative Hy; < 0 (here and below the coefficient R should be replaced by
Ra,Rp,Rc (6.17) for the cases A, B, C respectively), the metric equals

2
R2H,
and the Hopf differentials for the families A, B, C are as follows:

e (") dwdip = — dwdw, (6.18)

2 sin 2w

Qa(w,w)(dw)” = ~ sin2(w + w) sin 2w (dw)?,
@s(w, u‘;)(dw)z - sinh 2(quI—II-1}zlﬁz)usJinh 2w (dw) K (6.19)
Qc(w,w)(dw)? = - TR (dw)?.

The isometries preserving the principal curvatures are given by the shift transfor-
mations of these surfaces

w— w+ 1T, T € R. (6.20)

Proof. Only formulas (6.19) for @Q’s and the transformation (6.20) need clarifica-
tion. To get (6.19) we put t3 = 1/2, t5 = 0, t; = oo in (6.15, 6.16, 6.17). Clearly
the parameters t; can be fixed. The deformations described by them are given by
the shift (6.20) as well. To identify t; and T' we substitute (6.20) in (6.19):
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]. + 4Zt5 _ e_4iT 2
1—4its ’ T

The curvature lines on the w-domain for the cases A, B, C are presented in Fig.2.

2t3 = 6_4T,

BonnetA BonnetB

BonnetC

Fig. 2 Curvature lines in the w-domain for the cases A, B, C

A crucial point for the analytical description of the Bonnet surfaces is a solution
of equation (6.9). The coefficient R(s) in this equation is of the form

sinh as

R(s) = — (6.21)

a

for all the cases A (a = 2i), B (a = 2) and C (a — 0). Hazzidakis [6] was able to
integrate equation (6.9) once? with R(s) of the form (6.21):

H,, 2 H?
[(Hs) —20’1] +4H0‘1—20Hs —2H, =C, (622)
e 2
o(s) = (sinh as) : o1(s) = —a coth as,

where C' =const. One should mention that equation (6.22) has extra solutions com-
pared with (6.9).

2] am grateful to Prof. Voss, who pointed out to me this result of Hazzidakis
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Equation (6.9) arises as a compatibility condition of the system (5.3), starting

with which one can derive a Lax representation ® for equation (6.9) similar to those,
used for integration of the Painleve equations [5]. Following the usual terminology
of the soliton theory equation (6.9) can be called an integrable ordinary differential
equation. Nevertheless, a general integration of equation (6.9) seems not to be a
simple problem. One can find a solution H = r/s, where r is an arbitrary constant,
for the case C. The surface described by this solution is a cone.
. Surfaces dual to the Bonnet surfaces can be defined, since the latter are isother-
mal. Propositions 2 and 6 show that the inverse mean curvature 1/H of these dual
surfaces is harmonic. In the next section we show that the class of surfaces with
harmonic 1/H is much bigger then the surfaces dual to the Bonnet families and this
class can be put into the framework of soliton theory.

7 Surfaces with harmonic inverse mean curvature.

In Sect. 6 we generalized the Lax representation (5.3) (or Upy), V1) in the notations
of Sect. 5.3) to the case of A\ depending on z, z. Surfaces defined in this way retain
the property of the CMC surfaces of possessing isometries preserving the principal
curvatures and are described by solutions of an integrable ordinary differential equa-
tion. In the present section we suggest another generalization of the CMC surfaces,
namely the property H = const itself is generalized. Here we deal with the Lax rep-
resentation Ujg), Vo) (5.14) with A depending on z, Z, which gives rise to integrable
partial differential equations — the more usual situation for the soliton theory than
the one of Sect. 6.
The compatibility condition

Uz = Viztz + [Ug2), Vi) = 0 (7.1)
for the system (5.14) yields equation (2.6) and
1 (HY\ |, - 1 u
Qz = 5 (T)z e, Q. = 5(/\H)ze : (7.2)

We suppose that e*, H and @) correspond to some surface and therefore the GC
equations (2.6-2.8) are also satisfied. Subtraction of (7.2) from (2.7, 2.8) gives the
equations

(H G - 1)) =0, (H(A-1))z =0,

which can be easily solved:

. 1
- h+hR’

30ne can reproduce the integration step (6.22) using this Lax representation

R
A=-2, (7.3)
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where h(z) is holomorphic.
The transformation

1
h— h+4+ — teR
+2z‘t’ €

preserves H and transforms A
1 — 2iht

where t is an independent of z, Z parameter.
The form (7.3) of the mean curvature is equivalent to 1/H being a harmonic
function:

1
50, (1) =0

Here the complex structure is determined by the immersion. The parameter ¢ in
(7.4) can be considered as a deformation parameter.

Theorem 8 Let F be a conformally parametrised F : R — R3 surface with metric
e*, Hopf differential () and harmonic inverse mean curvature

.
= = h(2) + h(2), (7.5)

where h(z) is holomorphic. Then the compatibility condition (7.1, 5.14) with X of
the form (7.4) is satisfied for all t. There is a one-parametric deformation family of
surfaces Ft, t € R such that:

i) F = Ft=0,

i) The metrics e dzdz of F* are conformally equivalent

eu

' dzdz = _
¢ T T 2int)2(1 — 2iht)?

dzdz;

i) The inverse mean curvature 1/H* of F* is harmonic

1

where ht is given by
h
t _ :
W= 1 + 2iht’ (7.7)

i) The ratio of the principal curvatures k1 /ke is preserved by the deformation;
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v) Let ¥(z,Z,t) € H, be a quaternion, normalized so that det ¥ is independent
of t, which solves the system

\Pz - U[z]\I’, \Ijz —_ .‘/.[2]\1”

where X\ is of the form (7.4). Then the immersion function

0

F=9"1—-0 .
3 (7.8)
describes a conformal parametrisation F : R = R3 of Ft. Its Gauss map is
given by
N =9"'k¥, k= —ios. (7.9)

Proof. The calculations are quite similar to those of Sect. 5. FF and N given by
formulas (7.8, 7.9) lie in ImH. Differentiating F’

19072 OViz]
- v, F=012v
ot ot
we see, that the parametrisation is conformal and (2.1, 2.2) are satisfied. For the
metric, the mean curvature and the Hopf differential of F* determined by (7.8, 7.9)
we get

F,=v"1

ut U Va1 | _
e = 2< F,,F5; >= —tr( yaiarval
2N 00 0 1
— 2 I12_u —
= e (Y 0) (0 0))
(1 —2ht)2(1 + 2iht)?’
¢ ‘ oU,
_%eu Ht = <anNi >= %tl‘( 12 [0-3a‘/[2]])
1 1
= ——¢"H _ ,
2 (1 = 2iht)(1 + 2iht)
¢ _ _i oU|y Q
Q - <FZ,NZ >= 2tr ( [0‘3,‘/[2]]) (1+2’Lht)
The transformation of the mean curvature
H' = H(1 + 2iht)(1 — 2iht) (7.10)
can be rewritten in the form (7.6, 7.7). The Gaussian curvature K = —2u,ze ™™

transforms as follows:
K = K(1 + 2iht)*(1 — 2iht)?,

which, combined with (7.10), shows the conservation of (H?)?/K*, or equivalently,
proves (iv).
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Remark. For a given H the holomorphic function h(z) is determined uniquely up
to an imaginary constant

h(z) = h(z) + ic, c € R. (7.11)

The family F* is preserved by the transformation (7.10), which is equivalent to
a redefinition of the parameter ¢ only. Combining (7.7) with the transformations
(7.11) for h and h* we get a general Mobius transformation SL(2, R) for ia

b a(ih) + B
v(ih) + 6’
Remark. The Lax representation Ujg), Vi3] with A of the form (7.4) allows us to

apply the soliton theory to construct explicit examples of surfaces with the harmonic
inverse mean curvature. In particular the Backlund transformation can be derived.

’7=2t’ aaﬁa7a5€Ra 06—,8’)’21

8 Surfaces with negative Gaussian curvature

8.1 Quaternionic description

The calculations of this section are similar to those of Sect. 2.2.

Let us consider a surface F with negative Gaussian curvature. For each regular
point of F there are two directions in which the curvature vanishes. They are called
the asymptotic directions. We use the asymptotic line parametrisation of F

F:(z,y) € R? - R3.

For this parametrisation the vectors Fy, F,, F;, F,, are orthogonal to the normal
vector N

Fr,Fy,Frz,Fyy L N.
The fundamental forms are as follows:

I = < dF,dF >= A?(dz)? + 2AB cos ¢dzdy + B*(dy)?
I = —<dF,dN >=2< F;y,N > dzdy,

where ¢ is the angle between the asymptotic lines and
A =|F;|, B =|F,]. (8.1)

We consider weakly regular surfaces, i.e. suppose that A, B do not vanish. Let us
suppose also that the Gaussian curvature is strictly negative

1
K = —-p—2, P > 0. (8.2)

For the second fundamental form this implies
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1 detIl = < Fpy,N >2
p>  detI  A2B2sin?¢

and finally, choosing a suitable direction of the normal vector NV, we get

II = 2ABSH;¢ dx dy.
Let ® € SU(2) be a unitary quaternion, which transforms the basis
. ¢ .. P . P .. P
A(icos 5 + jsin 2), B(icos 5 —Jsin 2), k
to the basis Fy, Fy,N:
_ . -1 0 8—i¢/2
. . -1 0 6i¢/2
F, = -iB® ( e—idl2 g P, | (8.3)
N = —i® l0;39.

Then the first fundamental form is as above.
To derive linear differential equations for ®, as in Sect. 2.2 let us introduce the
matrices

U=%,9""' V=0¢,06"" (8.4)

lying in the imaginary quaternions su(2). Orthogonality: F,, L N, F,, L N, i.e.

A 0 e¥/2

B 0 eid/2
o = <rm=Ze(( S " )in)

shows that the off-diagonal parts of U and V are proportional to ®F,®~! and
®F,®~! respectively. One can calculate the coefficients of proportionality using the
identities

0

ABsin ¢

<Fx,Ny>=<Fy,Nz >=_ p

For U and V this implies

, ia 0 e i9/2

2 0
. ib 0 e%/2
V = —1lvV303 + "2— ( e"'id’/z 0 ) y

where
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a=—, b= —, ' (8°5)

and ugz, vz are some real coefficients. To calculate uz, v3 one should use the compat-
ibility condition Fy, = Fy, of (8.3):

. 0 e ¢/2 A 0 —ei¢/2
— 14y ( ci%/2 0 ) + 5¢y ( ci%/2 0 ) -
: 0 e i9/2
. 0 ei¢/2 B 0 ei¢/2
= —th ( e”¥/2 0 ) t g0 ( —e~/2 ) -

: 0 ei¢/2

which yields

. D __ Bzcosp— A,
= T YT T oBsing
(8.6)
_ by __ By — Aycos¢
Vs = Ut VST dGing
The diagonal part of the compatibility condition of (8.4)
Uy, —-V+[U,V]=0 (8.7)
yields the Gauss equation
Gzy + 20, — 2uy — absin g = 0, (8.8)
whereas the off-diagonal part gives rise to other formulas for u and v:
:ay+bi,_,cos¢, v____bm+a?cosc/) (8.9)
2bsin ¢ 2a sin ¢
Comparing (8.6) and (8.9) we get the Codazzi equations
ay+g—;a—g—;bcos¢ = 0,
(8.10)
Pz Py
b, + —b— — =
+ % 2pa cos ¢ 0
and one more representation for u, v
zb .
u= —Z—:% sin @, v= Zpa sin ¢. (8.11)

The following theorem is proved:
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Theorem 9 Using the isomorphism (2.11), the moving frame Fy, F,,, N of the sur-
face with negative Gaussian curvature K = —1/p? in the asymptotic line paramet-
risation is described by formulas (8.3), where ® € SU(2) satisfies equations (8.4)
with U,V of the form

. o 1a 0 e /2
U = —ilu="os—5 gsp o )
(8.12)
— - Py ib 0 e'?/?
V = —Z('U + 7)0'3 + E e_,i¢/2 0 .

The coefficients u,v here can be written in one of the equivalent forms (8.6, 8.9,
8.11). Equations (8.8, 8.10) are the Gauss-Codazzi equations.

8.2 Surfaces with constant negative Gaussian curvature

For the constant curvature case p = const the GC equations (8.8, 8.10) simplify a
lot

$zy —absing = 0, ay =b, =0

(which implies also u = v = 0 in (8.2)). These equations are invariant with respect
to the Lorentz transformation

a — Aa, b— b/, A €ER, (8.13)

which plays the role of the transformation (5.2) in the CMC case.
Treating

A= ¢, teR
as a deformation parameter we get the following

Theorem 10 FEvery surface with constant negative Gaussian curvature has a one-
parameter family of deformations preserving the second fundamental form

II = 2pabsin ¢pdzdy,

the Gaussian curvature and the angle ¢ between the asymptotic lines. The deforma-
tion is described by the transformation (8.13).

The quaternion ® solving the system (8.4) with U,V of the form (8.12), where
one should put u = v = 0, describes the moving frame of the surface F* with
|Fz| = paet,|F,| = pbe~*. As it was shown by A. Sym [15], knowing the family
®(z,y, ) for all A\ = e’ allows us to integrate the formulas for the moving frame
explicitly replacing the integration with respect to z,y by a differentiation with
respect to t.
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Theorem 11 Let ®(z,y,\ = e') € SU(2) be a solution of the system (8.4) with

We 10, _ig)2 0y b gy
U= . 4 2 V = L, 4 2\ .(8.14
_yeitz e ’ b g ity | B
2 4 2\ 4
Then F' and N defined by the formulas
F = 2p<I>_1:%¢I>, N =—i®"1030 (8.15)
describe a constant negative Gaussian curvature surface with the fundamental forms
I = p?(Ma%dz?® + 2abcos pdzdy + \~2b%(dy)?),

(8.16)
II = 2pabsin ¢ dzdy.

A surface with constant negative Gaussian curvature in asymptotic line parametri-
sation with the fundamental forms (8.16) is described by formula (8.15), where ®
s as above.

Proof. Both F and N lie in ImH. The system (8.14) coincides with (8.12) for F*.
Differentiating (8.15), we get

,oU . _
ﬁ y F. y — 2,0@ Eq),

which coincides with (8.3) for F*. The proof of the second part of the theorem is
identical to the proof of the corresponding part of Theorem 5. |

For the weakly regular surfaces, i.e. the surfaces with A # 0, B # 0 for all z, y,
the conformal change of coordinates £ — Z(z),y — §(y) reparametrises the surface
so, that the asymptotic lines are parametrised by arc-lengths (generally different for
z and y directions)

Fp, =2p®~ 19V

A = |F;| = const, B = |F,| = const.

In this parametrisation (which is called a Chebyshev net if A = B) the Gauss
equation and the system (8.14) become the sine-Gordon equation with the standard
Lax representation. Lastly we mention also a well known fact, which can easily be

checked.

Proposition 7 The Gauss map N : R? — S? of the surface with K = —1/p? =
const < 0 is Lorentz-harmonic, 1i.e.

N., =qN, ¢:R?> > R.

It forms in S? the same kind of Chebyshev net as the immersion function does in
R3

|INz| = a, |Ny| =0
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8.3 Bianchi surfaces

To generalize the Lax representation (8.14) to the case of A depending on z,y let
us first rewrite the GC equations of a surface in asymptotic line parametrisation in
the form

Gzy + 20y — 2uy —absing = 0,
aysing —2avcos¢p —2bu = 0, (8.17)
by sing + 2bucos¢d + 2av = 0,
as they come in the compatibility equation Uy, — V; + [U,V] = 0 with the U — V
pair (8.12).
If X is inserted into the U — V pair (8.12) in the same way as in Sect. 8.2
Bi . . ¢a: ZCLA 0 6—i¢/2
UZ) = —i(u—"F)os - —- ( cit/2 ,
(8.18)
B by b 0 e
vV ()\) = Z('l)+ 4 )0'3 + ) ( e__.i¢/2 0 ’

the Gauss equation is preserved, whereas the two last equations in (8.17) transform
as follows:

Aa, sin ¢ + A\yasin ¢ — 2 avcos ¢ — 2bA~ 1y 0,
(8.19)
A b, sing + (A1) bsing + 2(A" )bucosp +2xav = 0.
We suppose that p, ¢, a, b correspond to the some surface, therefore the GC equations
(8.17) are also satisfied. Subtracting (8.17) from (8.19) and using formulas (8.11)
for u,v, we get the equations

Low (L C L ye

which can be easily solved:

Ay =(A-

p=f(x)+g(y), A= _9lv) | (8.20)

where f(z) and g(y) are two arbitrary functions.
The transformation

1 1
- f—-= — — teR

preserves p and transforms A

_ [1+2tg
A—))‘—‘/l—th’ (8.21)
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where t is an independent of z,y parameters.
The form (8.20) of the Gaussian curvature K = —1/p? is equivalent to 1/v/—K
being Lorentz-harmonic

0,0, (\/_i—E) 0. (8.22)

Surfaces with a curvature of this form were investigated by Bianchi [1], therefore
they are called Bianchi surfaces, although may be it would be fairer to call them
Peterson surfaces after Peterson, who probably studied this problem first (see a
comment of Stéckel in [14] 4) .

Theorem 12 Let F be a surface with negative Gaussian curvature K = —1 /02,
F(z,t) its asymptotic line parametrisation and ‘

I = < dF,dF >= p®(a®(dz)? + 2abcos ¢ dz dy + b*(dy)?),
I = —<dF,dN >=2pabsin¢ dzdy

its fundamental forms. If p = 1/+/—K 1is Lorentz-harmonic (8.22)

p(z,y) = f(z) + g9(y),

then the compatibility condition Ufi —- VB 4 [UB,VB] =0 with \ of the form
(8.21) is satisfied for all t. There is a one-parametric deformation family of surfaces
Ft, t € R such that:

i) F = Ft=0,
i) the fundamental forms of F* are as follows:

I' = < dF'dFt >=
= (p")*((a*)*(dx)? + 2a'b’ cos ¢ dz dy + (b*)* (dy)?),

II' = — <dF* dN' >=2pta’b’sin ¢ dz dy,
1 p

t _ t_ = t .

@ = A b= ,\b’ p (1 + 2tg)(1 — 2tf)

In particular, the angle ¢ between the asymptotic lines is preserved, p' =
1/vV—K? is Lorentz-harmonic p*(z,y) = f(z) + g*(y), where f* and g* are
given by the formulas

f t 9

12 9 T ity

ft

iit) let ¥(z,y,t) € SU(2) be a solution of the system

v, =UBY, 7, = VB,

4] am grateful to Prof. Voss for showing me this paper
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where X\ is of the form (8.21). Then the immersion function

8
— -1
F =207 ¥ (»8.23)

describes an asymptotic line parametrisation of Ft. Its Gauss map is given by
N =9 k7, k = —i03.

We omit the proof of this theorem, which is given by a direct calculation analogous
to ones used to prove Theorems 8 and 11.

The Lax representation (8.18, 8.21) for the Bianchi surfaces was obtained in [11].
Using this representation the Backlund-Darboux transformation [11] and finite gap
solutions [8] were constructed.

9 Surfaces with positive (Gaussian curvature

At the end of the Sect. 5 the parametrisation conformal with respect to the sec-
ond fundamental form appeared, when the surface F3 of constant positive Gaussian
curvature was described. This parametrisation can be used to describe general sur-
faces with K > 0 since the second fundamental form of these surfaces is positive.
All calculations in this case are quite parallel to the calculations of Sect. 8. Here
we present the final results, which can be obtained by a simple replacement of the
symbols of Sect. 8:

p — —i0, r — z, Yy — Z,
—ia — c, —ib — ¢, 10 — Y.

The Gaussian curvature is positive

1
K=—2 o >0,
o

and the fundamental forms are follows:

I = < dF,dF >=0?(c*(dz)? + 2cccosh ) dz dz + &% (dz)?),
(9.1)
I = — <dF,dN >=20ccsinhy dzdz.

The mean curvature in this parametrisation is

" ="1coth .
g
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Theorem 13 The moving frame F,, Fz, N of the surface with positive Gaussian
curvature K = 1/0? in the parametrisation conformal with respect to the second
fundamental form is described by the following formulas

: _ 0 e ¥/2
F, = —iocd™! ( /2 0 )q),
o 0 e¥/?
Fz = —i0cP 1 ( e_¢/2 0 )@,
N = —i® 1039,
where ® € SU(2) satisfies the GW equations
¢, =U9, ¢ =V (9.2)
with U,V of the form
), c 0 e /2
U = ("'4_+U)0'3+§ €i¢/2 0 )
z C 0 6¢/2
V = (—T+V)03—§(6_¢/2 0 )

The coefficients u, v here are given by

0,C _0.C

sinh 1, V=

u= sinh 1.

4o0C  4oc

The Gauss-Codazzi equations are as follows:

Y.z +2uz — 2v; +cCsinhyp = 0,
Oz o,
z PO S h = ,
c +ZJC 2accos Y 0
o O3
2+ 5-C— s-ccoshyp = 0.
C +200 5y C €O Y

The following theorem is just a reformulation of the statements of Theorem 6
concerning the surface F3

Theorem 14 Every surface with constant positive Gaussian curvature K = 1/0?
has a one-parameter deformation family preserving the Gaussian and the mean cur-
vatures and the second fundamental form. This deformation is described by the trans-
formation

c — Ac, (‘:——)%é, A =e*, t € R.
Let ®(z,z,\ = e*) € SU(2) be a solution of the system (9.2) with
,\_ _—y _ﬂz _E
V = 4 2
C R l/Jz ’ _ L vr2

4 2/\
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Then F and N, defined by the formulas | |
5 |

F = —zo—cp-lacp, " N =—i®"105®,

describe a surface with constant positive Gaussian curvature and the fundamental
forms |

I = 0*(A\%c®(dz)? + 2cEcosh dzdz + \~2c~2(dz)?),
II = 2o0ccsinhy dzdz.

The surfaces of positive curvature analogous to the Bianchi surfaces are described
by the following

Theorem 15 Let F be a surface with positive Gaussian curvature K = 1/0? and
(9.1) be its fundamental forms. If o = 1/v/K is harmonic

o(z,2) = h(z) + h(2),
where h(z) is holomorphic, then the compatibility condition
UEBi _ VzBi + [UBi, VBi] —0

with the matrices

Bi __ (8 cA 0 e ¥/2
vt= (1‘+“)"3+7(ew2 A
B _ Yz _c 0 e¥/2
VR o= g e 2,\(e-‘/’/2 0o )’

and \ of the form

N Lo 2ith
1+ 2ith
is satisfied for all t. There is a one-parameter deformation family of surfaces F*,t €

R, such that:
i) F=Ft=0,;

i) the fundamental forms of F* are (9.1), where one should replace c,¢,o by

o
(1 + 2iht)(1 — 2iht)

coact=Xx, o8 =2"1¢ o=

In particular, ot = 1/VK* remains harmonic ot(z, 2) = h(z) + ht(z), where
ht(z) is given by

_ h
14 2iht’

ht

The ratio of the principal curvatures is preserved by the deformation,
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i) let U(z,2,t) € SU(2) be a solution of the system
v, =UB)¥, ¥,=UB@)0.

Then the immersion function

o
F=20"1_y
ot

describes the parametrisation of F* conformal with respect to the second fun-
damental form. Its Gauss map is given by

N = 0~ kv.

The formulas for the Bianchi surfaces of positive curvature are similar to the
formulas of Sect. 7 for the surfaces with harmonic inverse mean curvature. It would
be interesting to find a geometrical relation between these surfaces.

10 Appendix. Spinors and spin structures on Riemann sur-
faces

Let R be a Riemann surface (compact or not) and z a local coordinate on R.

Definition 5 Differentials f(z,z)Vdz and f(z,2)Vdz of order 1/2 are called spi-
nors on R if f(z,Z) have no local monodromy (no branch points) on R.

These two types of spinors can be considered in exactly the same way. ;From now
on we concentrate on the type fvdz, which means that under conformal changes
z = w(z) of the local parameter f(z,Z) transforms as follows:

f(2,2) = fw,0) T (10.1)

dz
Let us fix some spinor and investigate structures induced by it. Locally f(z, 2) is
defined up to a sign (but it has no branch points !). We show that it supplies closed
contours on R with nontrivial Z, numbers, allowing us to define a spin structure
— a quadratic form H;(R,Z3) — Z-

Let ¥ € R be an embedding of S in R, i.e. a smooth closed contour on R
without self-intersections (we shall also call such contours simple contours). In a
small neighborhood A(«) of v, which is topologically an annulus, we introduce a
complex coordinate z. Then it is possible to control the global behaviour of the
spinor along 7. The function f(z, Z) is not necessarily single-valued on A(y): it can
have monodromy +1 or -1 around ~y. The transformation law (10.1) shows that if z
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and w are two different coordinates on A(y) then the monodromies of f(z, z) and
f(w,w) along v are different if /dw/dz changes sign on passing around ~y. To avoid
this ambiguity we ask for z to be a map from A(y) to an annular domain on a
complex plane. Then the number p(y) € Z, is defined by the monodromy of the
spinor, written in terms of this annular coordinate

f(zaz) l) (_l)p(y)f(zaz)

We say that spinor changes or does not change sign along 7 if p(y) equals -1 or +1
respectively. It is not difficult to show that:

1) p(7y) is independent of the annular map z,
2) p(v) depends only on +, but not on A(7y),

3) p(v) depends only on the isotopy class of v, i.e. if ; is isotopic to 7, (there is
a smooth deformation of y; to 72, which is an embedding at each stage), then

p(m) = p(r2)-

Let us consider some characteristic examples.
Ezample 1. Let v be an embedding of S! in the complex z-plane. Then v/dz does
not change sign along vy

dz L

FEzample 2. Let C = C/{z — z + 2mi} be a cylinder represented as the complex
z-plane factored by a shift. To prove that v/ dz changes a sign around the cycle v of
the cylinder

V& R

we note that z is not the annular coordinate. In terms of coordinate w = e?* the
spinor v dz looks as follows

Vdw
Vdz = ——.
Vw
On the w-plane v is a loop |w| = const around the origin, so w-coordinate maps
v to an annulus. As we have seen in the first example, vV dw does not change sign
around v, whereas /w does.

Ezample 3. Let T = C/{z = 2+a, z = z+ b}, Im a/b # 0, be a torus. Example
2 shows that v/dz flips under passage around the cycles of the torus

Vdz  2H0 Vg,
Vdz 2 Ve, (10.2)
Vdz BT Vg,

since the annular coordinate w for any of the 3 contours above is constructed as in
Example 2
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Flip numbers associated with immersed contours in R can be introduced in exactly
the same way. Let v be an immersion of S! in R and z a conformal map of v to
a simple contour in C. Then the flip number p(v) is defined by the monodromy of
the spinor, written in the z—coordinate as

f(z,2) = (-1)P) f(z, z). (10.3)

For example, if 4 is a closed contour in the 2-plane having k points of self-
intersection, then the flip number of v/dz is equal to p(y:) = (—1).

This number p(7) is a characteristic not of the particular immersion v but of
the regular homotopy class [y] of v (two immersions ; and 7, are called regularly
homotopic if there is a deformation of 7; and < which is an immersion at each
stage).

Definition 6 A flip number p([y]) € Z2 of a regular homotopy class [y] is the
monodromy (10.83) of the spinor under passage around 7y, parametrised by annular
coordinate. |

Now we define another structure associated with the spinor - a map s from Z,-
homologies of R to Zs. The group H;(R,Z:) coincides with the cobordism group
of embedded sets of simple contours in R. The elements of this group are cobordant
classes of embedded sets of simple contours in R. Two embedded sets of simple
contours are called cobordant if one can be transformed into another by isotopies of
contours and “touching transformations”

X =

Proposition 8 There is a map s : H1(R,Zs2) = Z2 defined by the rule
s(e) =) plo) (10.4)

where o = ) oy is a representation of an element a € H1(R,Z3) by a sum of
simple non-intersecting contours ay.

when the contours touch.

Proof. We have seen already the invariance of p() with respect to isotopies. To
prove that s is well-defined by the above we must prove the invariance of s with
respect to the touching transformation. To show this we use the following

Lemma 6 Let P be a pair of pants, i.e. a Riemann surface, which is topologically
a sphere with 3 discs removed. The boundary OP = a + (3 + v consists of 3 simple
non-intersecting contours. Then

p(a) +p(B) +p(y) =0 (10.5)

(all the equalities here and below are in Zs ).
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Proof. Let z be a conformal map of P to the complex plane. The image of it is
a plane domain P C C, which is topologically a disc with 2 holes. The coordinate
z is an annular coordinate for all simple cycles on P. Identity (10.5) is the identity
for monodromy of f(z,2) in the plane domain P.

It is easy to see that the touching transformation always transforms two simple
contours into one simple contour, which is cobordant to their sum, or vice versa.
These three contours form a pair of pants, the equality (10.5) for which completes
the proof of the proposition.

Lemma 7 Let T be a torus or a torus with a hole and a,b be a canonical basis of
cycles (aob = 1) of T. Then the form s calculated at the element na+mb € H,(T,Z)
is given by

s(na + mb) = ns(a) + ms(b) + nm. (10.6)
Proof. Since we consider H;(T,Z,), the only equality to be proved is
s(a + b) = s(a) + s(b) + 1.

Let z be a flat coordinate of the torus. As we have seen in Example 3, v/dz changes
sign along any simple contour on 7. This means that f(z,Z) acquires the factors
(=1)5(a)+1 and (—1)*®)+1 along the cycles a and b respectively. The group of f(z, 2)
is multiplicative, therefore the factor along a+b is equal to (—1)%(®)+5(%) To calculate
s at a + b we should multiply the monodromy of f(z,z) by (—1) since v/dz changes
sign along a + b:

F(z,2)Vdz 2B (-1 @O f(z,2)Vdz,
which completes the proof.

Corollary 3 For any two cycles 1,72 on a torus or on a torus with a hole,

s(1 +72) = s(1) +s(r2) + Mo, (10.7)

where v, o y2 is the intersection number.

Proof. Let v1 = nija + m1b, v2 = nsa + mob. The following calculation proves
(10.7):

s(vi +72) = (n1+ng)s(a) + (my +my)s(b) + (n1 + nz)(my + my) =
= (nls(a) + mls(b) + nlml) + (ngs(a) + mzs(b) + nzmz) +
+ (nimg + namy) = s(y1) + s(y2) + 711 © 7.

Proposition 9 s : H,(R,Z;) — Z2 is a quadratic form, i.e. for any two elements
a,ﬂ S Hl(R, Zz),

s(a+B) = s(a) +5(8) + aop, (10.8)

where a o B is the intersection number.



Surfaces in terms of 2 by 2 matrices. Old and new integrable cases 125

Proof. Let us fix some standard basis of cycles on a Riemann surface R of genus
G with K holes or punctures and let

a = o +...1+ag+7,
B = b+...+Bc+06

be a decomposition of a and 8 in H;(R,Z,;), where a;,3; are the simple contours
corresponding to the i-th handle of R, whereas v and ¢ correspond to homology of
holes and punctures. These elements have the following intersection numbers:

ajofi=1 ajoa;=piofj=0a;00; =0, 1#j,
a;0y=aq;00=P;0oy=0;00 =706 =0.

Let us take a part of R corresponding to the ¢-th handle. This part can be chosen
to be topologically a torus with a hole. Corollary 3, applied to such a part, gives

s(a; + B;) = s(a:) + s(B;) + a; o B;.

Using this we easily get (10.8):
s(a+p) = Zs(ai + Bi) +s(y+9) =

- Z(S(ai) +5(8:)) + Zai o Bi + s(7) + s(8) =

1

=S(Zai+’y)+s(2ﬁi+5)+a0[3.

Definition 7 The quadratic form s : H1(R,Zs2) — Z5 is called a spin structure of
the spinor f(z,Z)Vdz

Let R be a Riemann surface with G handles and K punctures and d a contour
a homologous to zero surrounding all the punctures. Let us chose a basis ay, by, dk
of H1(R,Z) in such a way, that the cycles dx,k = 1,..., K surround each its own
puncture, the cycles a,,b,,n = 1,...,G form a canonical basis of the compact part
of R and do not intersect d. Then to the spinor there correspond characteristics
[, 8,68] € Z26+K

a:(aly-”aaG)a ﬂz(lgl""’ﬂG)’ 6=(61""’6K)’

where a,, = s(a,), Bn = s(bn), Or = s(dk). ,
Since d is homologous to zero the sum of 4 s in Z, always vanishes

(51+...+(5K=0.

All the other characteristics are independent, which shows that there are 226+K~-1

if K # 0 and 22K if K = 0 different spin structures.
The characteristics [a, 3, 6] depend on the choice of the basis of the compact part
of R and on the arrangement of the punctures.

/|
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Definition 8 The scalar product

G
<a,B>= Zazﬂz’ € Zy
1=1

is called the parity of the spin structure.

Proposition 10 The parity of the spin structure and the number of 8x's, which are
equal to zero are independent of the choice of basis in H1(R,Z).

The independence of the number of vanishing 6;'s is evident. The invariance of
the parity of the spin structure needs some calculation, which can be found, for
example, in [7]. One should consider a symplectic transformation, which relates
canonical bases a,b and a ,b and then prove < a,8 >=<a ,8 > using (10.8).
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