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WILLMORE TORI WITH UMBILIC LINES AND MINIMAL
SURFACES IN HYPERBOLIC SPACE

M. BABICH anp A. BOBENKO

1. Introduction. Let M be a torusin R2. The Willmore functional of M is defined
as

W=J H? ds, (1)
M

where H is the mean curvature and dS is an area element. Critical points of W are
called Willmore tori. Background information about Willmore surfaces can be
found in [19, 23].

We add one more interesting family of Willmore tori to those already known [22,
12, 5, 6, 13]. The main result of this paper is a construction of the Willmore tori
with umbilic lines. The tori we construct possess these properties:

(1) there is a plane &/ (infinity plane) intersecting M orthogonally and
decomposing it into 3 parts M = M, u M, u M_ (lying respectively above
o, on of, and below o),

(2) M, are minimal surfaces in hyperbolic spaces, realized as upper and lower
(with respect to &) half spaces with the Poincaré metric;

(3) M, is an umbilic set; i.e., for the points of M, two principal curvatures
coincide.

To construct these tori we use the methods of the integrable equations. These
methods were already successfully applied [17, 24, 6, 7] to differential geometric
classification of some submanifolds. In particular the case of constant mean curva-
ture (CMC) surfaces in 3-dimensional space forms R3, S3, H? has received a fairly
complete treatment in [24, 5, 6].

Our starting points are the results on description of the tori with CMCH, |H| > 1
obtained in [6], based on the solution of the corresponding Gauss equation Au +
sinh u = 0. In the present paper we are interested in the minimal surface case H = 0,
the Gauss equation of which is the elliptic cosh-Gordon equation

Au = cosh u.
The corresponding modifications were made in [2] and are presented in Section 2.
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152 BABICH AND BOBENKO

Because of the maximum principle there are no compact minimal surfaces in H3.
But it turns out that some of the minimal surfaces we construct are analytic tori in
two copies () of H? suitably glued. How we get Willmore tori in this way is explained
in Section 3.

To construct these tori we need doubly periodic solutions of the elliptic cosh-
Gordon equation (which necessarily blow up; the lines where u — +00 become later
preimages of the umbilic lines). More precisely to construct surfaces we use the
finite-gap solutions of the elliptic cosh-Gordon equation, which were found in [1].
These results as well as the formulas for the corresponding surfaces are presented
in Sections 4, 5.

In general, the surfaces are not tori. To describe a torus the immersion function
must be doubly periodic. The periodicity conditions (Section 7) are formulated
in terms of the spectral curve. Although they are rather complicated, it is possible
to investigate the simplest cases and to prove the nondegeneracy of these conditions.
The simplest tori constructed are of rectangular conformal type with closed mean
curvature lines (Section 9). The lowest possible genus of the spectral curve
determining these tori is 3 (Section 10).

The famous Willmore conjecture is that for any torus W > 2z2. This conjecture
is proved for the canal tori [16] and for the tori with the conformal type close
to square [20]. In Section 8 we derive a formula for the Willmore functional
W in terms of the spectral curve, without hope, however, of finding a torus with
W < 2n2,

The present paper is parallel ideologically and technically to [6, 5]. To follow
details of the theta function calculations, one can use these papers and the book [3].

We would like to mention also the recent paper [25], where minimal surfaces in
H? with one family of spherical curvature lines were constructed. These surfaces are
close to those of ours considered in Section 9; they are also generated by the genus-3
solutions of the elliptic cosh-Gordon equation with the symmetric spectral curve.
The relaton with Willmore tori and periodicity conditions we use in Section 10 are
not discussed in [25].

In Figures 2, 3 with the help of Mathematica [27] we present the simplest
examples of the surfaces constructed. They are described by Jacobi theta functions
and elliptic integrals. Unfortunately we can not, in the same way, construct pictures
of the tori since they are described by theta functions and abelian integrals of
the Riemann surfaces of genus > 1, which are not implemented in Mathematica.
At the present time this higher genus implementation is being developed in Berlin
by Sonderforschungsbereich 288, and we hope to be able to look at these tori
soon.

The authors are thankful to B. Palmer and U. Pinkall for useful discussions.

2. Minimal surfaces in hyperbolic space. Formula for immersion. A hyperbolic
space Q

{F,F} = —1
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is embedded into the Lorentz space R>!. The metric of R*!
{a, b} = a1b1 + a2b2 + a3b3 - aobo
induces a positively definite metric on Q.
Let M be a smooth orientable surface in Q. The metric { , } induces a complex
structure of a Riemann surface £ on M. Let

F:R®->McQcR¥!

be a conformal parametrization of M. This means that the immersion function is
normalized as

{Fz’Fz}={FE’FE}=0’

where z is some local parameter on & and F,, F; are the partial derivatives. Vectors
F, F,, F; may be supplemented with a normal N in such a way that

{F,,N}={F;, N}={F,N} =0, {N,N} =1.
Let us also introduce the notation
{Fzs FE} = 28“, {ins N} = 2Hheu’ {an N} = Ahy

where H* and A" are called respectively the mean curvature and the Hopf
differential. The Gauss curvature is equal to

K*= —1 — (H"? — 34" Fre 2.

The variation of the basis F, F,, F;, N with respect to motion along the surface
is described by the equations

o,=Uo,0;,=Vo,0 =(F, F,, F;, N) V)]
0 1 0 0
h
U= 0 u, 0 A;.
2¢O 0 2H"e"
0 —H' —iAke™ 0
0 0 1 0 )
V= 2e* 0 0 2H"*
o 0 us A"
0 —idbe™ —H" 0
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The constant mean curvature (CMC) condition
H" = const
leads to the Gauss-Peterson-Codazzi equation
Uz + 2((H"? — 1)e" — APA%e™ 2 =0, A}=0.

The case (H")?> > 1 is described in [5, 6]. Here we consider the case (H*)? < 1 (see
also [2]). In new variables

Zy = 532, ezi¢A = (sl;lAh, 6H =/ 1 - (H")2 (3)

we obtain the equations

riy — 26" — 3Ade™ =0 @)

==0. )

THEOREM 1. A CMC surface in Q, conformally parametrized, generates a
holomorphic quadratic differential A*(dz)?. The induced metric u(z, Z) satisfies (4).

The system (4, 5) can be represented as the compatibility condition
Ugz—-V,+[U,V]1=0
of the system
o, =Ud,0,;=V0 (6)

with the matrices

1/ 0 24" 1
U=§(Ae""2 u )’V 2 | Zev2 0 7

Zg

depending on an extra parameter A, which is called a spectral parameter in the
theory of integrable equations.
We note that U — V pair (7) satisfies the reduction

U(—I_l) = 0'2 V(A)O'z .
For the solution of the system (6) it gives

O(4) = 0, ®(— 17 )M(2) )
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with some matrix M(4) independent of z, Z. Here and below o, denote the Pauli

matrices
(01N (o -\ (1 o0
1=\ 0)%2T\G 0 )T \0 —1)

__Let us identify the Lorentz space with the space of (2 x 2) hermitian matrices
XT=X

3
X =(Xo, Xy, X, Xs)ERa'l“’X—_'XoI'*' Z X0y 9
k=1

with the scalar product
{X,Y} = -4tr(Xa,Y70,).

THEOREM 2. Let A"(zy)(dzy)? be a holomorphic quadratic differential on R, let
u(zy, Zy) be a solution of (4), and let

®o(zy, Zy, 4 = € %)
be a solution of (6). Then

L N-otew—
Jdet @, det @} /det @, det ®F

where ®% = ®7 in the variables (3) satisfy equations (2) for the moving frame and
describe a surface in Q with the mean curvature

F = 040, (10)

H =tanhg.
Proof. Since F = F* and det F = 1, we see that (10) describes a surface in Q.

Multiplying ®, by a complex number gives us det ®, € R. Further we suppose the
determinant to be real. Let us denote

O, =D, 0, = 0,D40,.
Using the identity
06,XTe, = X"1detX
for invertible matrices, we have (compare with [6])

F = Q;lfbl, N = d’;lda(bl .
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The functions ®, and ®, satisfy (6) with 4 = 1, = e %?%¢ and 1 = 1, = —e%e?*

respectively. To see the last fact we should take (8) into account. Direct calculations
prove all the identities (2). In particular, we have

{Fpp F5} = =3 t((U; — Uy)oy(Vy ~ Va)Ta,)
= 2e* cosh? g,
{Frzw N} = 36((U; — Up)Uy — Uy(Uy — Uy) + (U, — U,),)a3)
= e%%4 cosh g,
Fomz=0'((U; = UV = Va(U; = Uy) + (U — Up)s)®,
= 2¢"F cosh? q + 2e*N cosh g sinh g,

where U; = U(4;), ¥; = V(4,;). The change of variables (3) completes the proof.

Remark. The sign of \/det ®, det ®F in (10) determines a sheet of Q. For the
surfaces lying on both sheets of Q, which we will consider, the sign must be chosen
correctly (see Section 5).

Remark. We restrict ourselves to the most interesting case of the minimal
surfaces H = 0. In this case ¢ = 0, and 1 has to be taken on the unit circle. Further,
we do not distinguish

ZH=Z.

We will also use the Poincaré model (H-model) of the hyperbolic space, namely
the half-space model

Hi = {(Gl, G2) G3) € R3|iG3 > 0}.

It is related to that already described by the conformal map

F, F, 1
S:F F ? ’ *
e .

More precisely, if we denote by Q , the upper (F, = 1) and the lower (F, < 1) sheets
of Q, then

0:>H..

H, and H_ are separated by the infinity plane G; = 0. For the induced metric of
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the H-model we keep the same notation

3
! 3 dA,; dB;, (11)

dA, dB} =
{ } |G3|2 &

where |G;| is a euclidean distance from the point to the infinity plane <.

THEOREM 3. Let
O(z, z, A = %)

be a solution of (6) with some A and u. Then in the H-model the corresponding minimal
surface is described by the formulas

b+d A
G1 + iGz = 9’1_)+—dg, 3= = (12)
bb + dd bb + dd
where
a b
o= (C d),A= det @ det ®*. (13)

3. Minimal surfaces in hyperbolic space and Willmore surfaces with umbilics. We
will consider surfaces M in R3, which are sufficiently smooth (with immersion
function G = (G,, G,, G;): # > R3, G e ).

Decompose M into three parts M = M, U Mgu M_:

M, = {P e M|+ Gy(P) > 0}
M, = {P € M|G4(P) = 0}.

THEOREM 4. Let M be a smooth (€*) surface in R3 such that both M ;. are minimal
surfaces in H , respectively (i.e., with respect to the metric (11) ). Then

(i) M is a Willmore surface;
(ii) M, is an umbilic line.

Proof. We will use two metrics
{ , )theeuclidean metricinR3,
{, }=G3%*C, )thePoincaré metriconH, .

Let us consider the conformal parametrization G(z,Z) of M in R® This
parametrization is also conformal for the hyperbolic metric { , }. The normal
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vectors N¢ and N* differ by a factor

N* = G,N°,
since {(N¢, N°) = {N" N*} = L.

The first fundamental forms of the hyperbolic and euclidean models are 51mp1y
related

= {dG, dG) = G5%(dG, dG) = G32I°.

The expression for the second fundamental form is a little bit more complicated

1
= _-_ {d(G + tN"), d(G + tN™)} g 4ennli=o

1d
—{dG, dN"}¢ — 3q% {dG, dG}g yuwnli=0

= —G3UI° + G32N51I°. (14)

Here the upper indexes h an e denote hyperelliptic and euclidean models, and the
lower index of { , } denotes a point where it is calculated. Using the definitions of
the Gaussian and mean curvatures

K° = det(II°(I°)'), K" + 1 = det(II"(I")™"),
He = L te(115(1°)™Y), H* = 4 te(11P(I")7Y),
one can easily derive the relation
(H®)? dS° = ((H")* — 1) dS" + K*° dS® — K" dS", (15)

where dSe* are the area forms in e and h-models: dS* = G32 dS°. Let us integrate
(15) over some domain D« M, Dn M, =&

j (H®)? dse = J (H")* dS* — S*(D) + J K dS¢ — j K" ds*. (16)
D D D D

Due to the Gauss-Bonnet theorem, the last two integrals are reduced to the integrals
over the boundary dD. Let us consider variations of D vanishing along with their
derivatives on the boundary 0D. With respect to these variations the last two
integrals are constant. The minimal surfaces are critical for both integrals
{p (H"? dS" and [, dS*; therefore D is critical for the Willmore functional (1). This
proves that M, satisfy the Euler-Lagrange equation corresponding to (1). This is
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an elliptic equation
AH + 2H(H* — K)=0. 17

The simple behaviour of M near the infinity plane ./ (orthogonal intersection)
allows us to represent the surface in the neighbourhood of & as a graph. The
equation (17) shows that the graph function satisfies some elliptic equation of the
fourth order. Combined with general ¢* differentiability of G this fact allows us by
standard methods® ([4], p. 467) to prove that the same equation is valid for all
points of M. This finishes the proof of (i).

The equality (15) in particular gives

G3{G,,, N"} = G3A" = 4° ={G,,, N®). (18)
Zeros of A are the umbilic points of M
K — H? = — A°4°¢(G,, G;) 2.

Let us denote &, #y, #_ = R preimages of M, M, M_ respectively. Vanishing
of the derivative 4"/0Z on #, gives

A° 0A%/0z
G, 0G,/07" (19)

Since M is orthogonal to the infinity plane 7, the derivative dG/0z does not vanish
on #,. It determines a continous continuation of 4" to %, by the formula (19)

0A%/0z
h
= 3G./62 near 4,. (20)
Rewriting (19)
. 0A¢/0z
A® = 3 m— H (21)

we see that A° vanishes on M. The theorem is proved.
Holomorphicity of A* on %, and continuity on %, gives the following corollary.
COROLLARY 1. Let M be as in Theorem 4. Then A* = {F,,, N*} is holomorphic

everywhere on .

! The authors are thankful to Bennett Palmer for explanation of this.
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The aim of this paper is to construct Willmore tori with umbilic lines. If # is a
torus, it can be represented as a quotient C/A with respect to some lattice. There is
only one holomorphic quadratic differential on C/A. Therefore we can normalize

A=2, 22)

which reduces equation (4) and its Lax representaton to the form

tz = 4 cosh , (23)
0 e w2 —e
0, =Ud,0;=VO,U = <e-"/2 0 /2>, V= % s2 0 (24)

Finally, to construct a Willmore torus with umbilic lines, we should find a doubly
periodic solution of (23) such that the immersion function given by (12, 13, 24) is
also doubly periodic and describes a smooth torus in R3. It is possible to construct
these tori using the finite-gap doubly periodic solutions of (23).

4. Complex-valued finite-gap solutions of the cosh-Gordon equation. The equa-
tion (23) is one of the real versions of the sine-Gordon equation

U, = 4sinu,

finite-gap solutions of which are well known [18, 21, 8, 14, 3, 9]. Generally these
solutions are analytic functions of & and #, given by explicit formulas in terms of
theta functions. In this section we present these formulas as well as formulas for the
corresponding Baker-Akhiezer function in a modified form. This modification will
be used in the next section to get real-valued solutions of (23).

We start with introducing some standard ingredients of the theory. Consider the
Riemann surface X of the hyperelliptic curve

p = fjl (A — E). (25)

It is a double cover of A-plane with E;, 0, oo being ramification points. We denote
the hyperelliptic involution as

(4, 1) = (4, —p). (26)

Let a,, b,, n =1, ..., g be the canonical basis of cycles and du, be the normalized
holomorphic differentials on X

J du, = 2mid,,, .
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The associated period matrix

Bym =:J. du,,
b

defines the Riemann theta function with characteristics «, 8 € R?

B[a] (zy= ), exp {% (Bm+a),m+a) + {z+ 2xnip,m + a)} , (2n

ﬂ me 29

z € C?. For zero characteristics we will use the notation

0(z) = Gl:g:l (2).

The function v = ﬂ, multivalued on X, defines a Riemann surface X, which is
an unramified covering of X. This covering can be defined by a contour £ on X,
which fixes a branch of v on X'\ .. The function v is multiplied by a factor (— 1)<"¥>,
when a circuit of y is tranversed. Here {y, ¢ is the intersection number of y and Z.

We need also the abelian integrals of the second kind

‘20,w = J‘ d‘)o,ws
A=

normalized by the condition
f dQ, =0, n=1,...,9
and the asymptotic behaviour at the singularities:
dv
dQ.,—=dv,v— o, dQy—» ——,v—-0.
v

Recall that we have fixed a certain branch of v on X, Periods of dQ,, and dQ, over
the b-cycles we denote as

U, = '[ aQ., V,= f aQ,. (28)
b, b
Now we consider z and Z as independent complex variables. Let
g . g
£ =3 Mo+ ) Aibi=<(A;a) + <AL, b)
i=1 i=1

be a decomposition of the cycle & with respect to the chosen basis of cycles.
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¥,

The Baker-Akhiezer function = ( v
2

) is a vector-function on X, given by the

formula

_ B(u + QH(D)
" O(u + D)O(Q)

A, /2
e[ A /2] (u + Q)8(D)

V,(P) = exp(zQ, + iz2Qy). 29

A2
8(u + D)0 [ A /2] Q)

Y, (P) exp(zQ, + iz),

Here Q=2U +izV + D, u is an Abel map u= [f du, P=(Aw)eX, Qy, =
{7 dQy, o, U and V are the vectors of b-periods

U =(U1,..., Ug)’ V=(V1’---’ Vg),

and D e C7 is arbitrary. The paths of integration in u and Q, , are identical.

The functions /; and vy, are single valued on X. The divisor of poles 2 of ¥,
as well as i, is of degree g and is determined by the theta function in the denomina-
tors of .

In a standard way [3, 9, 8, 21] it is proved that y satisfies the system

Y, = U'p’ ¢E= W,

—u,/2 v _1/0 —e™
U=( v uz/Z)’ V_;(e“ 0 ) (30)

Let I be a path on X from co to P € X and v, be an analytic continuation of v
along this path. (We denote by f; the analytic continuation of the function f along
the path 1) Let I* be a path from oo to nP such that (&, I> — (&, I*} is odd. Then
Vi = V.. Let us denote Y, = Yy, Y = ¢ys. They comprise a matrix-valued function

on X
(¥ VT
‘P‘(wz )

which also satisfies the system (30). Considering this function at v = 0 we get the
formula for u

Ti ' i .
- 7<A1, A2> + 7 + Tuk.
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Here k is the parity of the intersection index (., ljo, ), Where [y , is 2 path from
A= o0 tod=0o0nX suchthat & = Iy ; — @, (7 is the hyperelliptic involution
of X).

From now on we set

A, Ay =1.

It turns out that real finite-gap solutions of (23) can be described by this specializa-
tion (see Section 5).

Remark. 1If ¥, and %, are two #-cycles on X with k = 0 and k = 1 respectively,
then the corresponding solutions are related in a simple way. Replacing %, by .,
we add to %, a small contour around the point A = 0 and in this way change a sign
of the local parameter at A = 0. Therefore, if u(z, Z) is a solution generated by %4,
then %, determines the solution u(z, —Z) + mi.

From now on we consider only the case k = 0 as determining two families of
solutions

0(Q,)
oW
| A/2 ]

8(Q_)

[A,/2]
WA

u, =2log
0

k=0, (31

€Q.)

u_ =2log +m (k=1), (32)

Beside the symbols + for these two families we keep the symbol &, which is equal
to O for the first and to 1 for the second families respectively.
We can summarize the above arguments in the following theorem.

THEOREM 5. The function
02, +u) 0(Q; —u
Q) 0(Q2.,) e:6(D,)
R AR 00D, + v
ve o[ ap)es o _”[AT/E]‘Q* W, ey |
A2 A2 6D, — u)
\ O[Az/z] @) H[Az/z] @)
(33)

wy =zQ, +iz2Q,

is a solution of (30) with u(z, f) given by (31,32).In(30) v = v,and {l, &) is even.
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The systems (30) and (24) are gauge equivalent

ve*? 0
q>=( . 1)\}'. (34)

We obtain also a useful formula for

d=y.y3 —¥ayt,

analysing its analytical properties. It is a meromorphic function on X with divisor
of poles 9 + n2 and divisor of zeros E; + -+ + E,, at the branch points of (25).
In addition vd(P) is a single-valued function on X and its asymptotics at A = «©
give d(c0) = —2. Finally we get the expression in terms of theta functions:

2
R I VA 55
70D —uwb(D +u) [A,)2 ] o
(SN C

Now we are in a position to present a final formula for @.

THEOREM 6. The matrix
ve ™ 20(Q, + u) ve™ 20(Q, — u)
exp(w4 63)
o= A2 A,/2 —=—  (36)
'o‘]m —9[1]9—
[A2/2 e W e[i‘ﬁ]mi)
2

solves (24 ) with u(z, Z) given by (31, 32). The paths of analytic continuation of v and
integration in u, Q are identical. The determinant of ® is

3" J0o s )
we| ° |w
2yeiki2 Ae(/(;i) l: ; 3/2 . 37)
1 1
G[Az/z]“’*)e[ ](0)9[ 2/2](0)

For the proof we use (31-35) and cancel ® by a nonessential constant right factor.

det® = —

5. Reality conditions. From now on we again consider z and z as complex
conjugate variables

z=x+1iy, Z=x—1iy.
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To construct surfaces we need real-valued u(z, Z). Real finite-gap solutions of the
equation (23) were constructed in [1]. Here we present the main results of this
paper.2

For the described complex finite-gap solutions to be real valued, X necessarily
has an antiholomorphic involution (see symmetry (8))

T:A—> =A%,

In particular, it implies that the genus of X is odd g = 2n + 1. More exactly, let us
consider the spectral curve

— N — —
p? = A4 — Exn 1)@ + Ezjsy) kIl (A= E)A+ ECYYA — Eun)(A + Eciy). (38)

A canonical basis of cycles can be chosen in such a way that t acts on it as (see
Figure 1):

0 = — Q4N TAin = — 0 TAaN+y = —A2N+1s
Tbl'=bi+N’ Tbi+N=bi’ szN‘f'l =b2N+19 i= 1,..., N. (39)
a3
__LE;l »
a
1 E2
I
1
- i
1
b
Rl & L
—_—— b,

_EII

FIGURE 1

2There are some misprints in [1]. The correct version of (5a, b) and z, in the final table is
zy = (i + V)t + (Vo + iV)x,
z; =,(iV° — Vot + (Vo —iV)x,
24 = iiVy — Vo)t + i(Vy — iVi)x + 23.

In the English translation of [1] the table with the final results is split into two parts, which makes it
completely nonunderstandable.
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-We use the matrix notation

ta=Ta,tb=—-Th,T=T =TT,

0 0
T=—|1 0],
0 1

S O M~

where I is the N x N identity matrix. The cycle % is

2N+1
L= Y a+byi, A =00,0,1),A,=(L11). (40)

n=1

THEOREM 7. Real finite-gap solutions of the equation (23) are given by the
SJormulas (31, 32 ), where X is a real curve (38) with the basis (39,40) and D, are

D, =id,,d,,d}),D_=d_,d_,d°, d,eCMdleR. 41)

Proof. A reciprocity law [11] for the abelian integrals of the second kind allows
us to express their periods in terms of the normalized holomorphic differentials

du, = —U,d(1/ /2, A~ 0,  du,= —V,d(\/2), 2 ~0.
For the branch of \/I fixed by the contour £ shown in Figure 1, we have

JAMP)SMUP) =i, P~0, (42)

when P is in a neighbourhood of 4 = 0. To prove (42) we mention the connection
of /A with

JHP) = (=1 (—i) exp(—i Y arg E) uP)1+o(1), P~0,
43)
1/J/AP) = p(P)A*(P)(L + o(1)), P~ oo

and the transformation law of u
u(tP) = (= 1)V exp (i Y arg E,) u(P)A~871(P).

The differentials du transform as

t™*du= —Tdu.
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The straightforward calculation

~TVd/A(P) = — T du(P) = du(tP) = — Ud(1//A(xP)) = iUd(/A(P)),

where A(P) ~ 0, proves the conjugation law

iTU = —V.
For Q, we have

The vectors D, given by (41) have the same symmetry as €2, .
The theta function also satisfies a simple conjugation law

o
e[ﬁ](z)=0[ T8 ]( %),

which is proved by the change of the summation index m = — Tn, taking into
account the symmetry of the period matrix B = TBT. Finally, we see that both theta
functions in (31) as well as the one in the nominator of (32) are real. On the other
hand, the theta function in the denominator of (32) is imaginary, since it is odd and

TA1,2 = _A1,25
520 ol 82 1o
o[apler=e[_aplema
_ A /2]
-0 _aa )
A, /2]
-6 [AZ/Z_ Q).
Since
enih/Z B(Qi)
1/2
[22Jes
is real, using (37) we may choose the square root in (13) as
o ]l syn]
()0 (W)
A = gemun 0 [ A2/2 (44)

Ay/2 /2 '
IR R AT
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This shows that in this case formulas (12, 13) describe an analytic surface in R3.
Due to Theorem 4 it is a Willmore surface. Taking into account the last factor in
{36) we have

A2

A /2] @)z, 2),

G,y = B(Qi)e[

where f(z, Z) does not vanish. This means that the umbilic line G5 = 0 on the z-plane
is given by the equation

A2

Az/z]m*) =4

B(Qi)BI:

6. Simplest surfaces. The simplest possible case under consideration is the case
of elliptic spectral curve

pr=iA-E@A+E?), EeR.
The integral
Q. +iQ = p/i (45)

is a function, its periods vanish, and arguments of the theta function depend only
on y for k = 0 and only on x for k = 1. We denote

Q,=Q, —iQy=2Q, — u/d
an additional integral to (45). For w.. in (36) we have
Wy = ulix +iQ,y, w_=Q,x + iyu/i.
Let us consider the k = 0 case and introduce
v = uf(2i).
Combining formulas (12, 13) and (36, 37), we get

05Uy + 0)85(Uy — v) — 0,(Uy + 0)8,(Uy — ) ,,,

G, +iG, = 23 i}
6;(Uy — v)03(Uy — v) + 6,(Uy — v)8,(Uy — v)
— __ 03(UY)01(Uy) __ L +w_+’ (46)
65(Uy — 0)03(Uy — v) - 6,(Uy — v)6,(Uy — v)
0,(1)0,(v)
h =222 7
0,(0)0,(0)|’
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where we used Jacobi theta functions [26] related with the ones we used before as

0,(v) = —G[iJ(Ziv), 8,(v) = O[é](Ziv),

05(v) = 9[8] Qiv),  0,(0) = 9[(1)] Qiv),

0(v)=0(v,q), q=e".

In (46) U is as above the b-period (28) of Q.

Theta functional factors in (46) are periodic in y. Due to the exponential factors,
formulas (46) generally describe surfaces of spiral shape. There are cases when these
surfaces are especially symmetric. Let us take a curvature line parametrization:
A = —1.Dueto (3, 22), the Hopf differential A = {(F,,, N) = —2G, is real, and the
parameter curves x = const, y = const are curvature lines on the surface. There are
two different cases:

(a) A= —1, E > 1, both g/ and Q, are imaginary,
(b) A= —1,E < 1, both /A and Q, are real.

We see that (a) gives surfaces of revolution. An example? of this surface is in
Figures 2a and 2b.

Family (b) consists of cones. If the ratio of the periods of the exponent and of the
theta functions in (46) is rational, i.e.,

QI(A; mi

then the cone closes up. The case with minimal possible number of folds equal to 2
is shown in Figure 3.

FIGURE 2a. Willmore surface of revolution, E = 2

3 The examples shown in Figures 2, 3 were calculated using Mathematica [27].



170 BABICH AND BOBENKO

FIGURE 2b. Meridian curve

FiGURE 3. Willmore cone with two folds, E = 0.53
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7. Periodicity conditions. In general the immersion G(z, Z) (12) determined by a
real finite-gap solution is not periodic. We derive periodicity conditions simultane-
ously for both cases k = 0 and k = 1 using, as above, the notation + to distinguish
them.

Let Z be a period of the immersion

G+ Z,% + Z) = G(z, ). 47)

Itis a period of the metric u(z, z). Due to the periodicity properties of theta functions,
the vector UZ + iV Z must be a lattice vector

UZ +iVZ =2niM + BN, M,NeZ°.
Let us consider an abelian differential
dd, =dQ Z + idQyZ — {du, N).

All periods of this differential are imaginary and proportional to 2xi
a b

LEMMA 1. The immersion G(z, Z) given by (12, 13, 36, 44) is a periodic function
(47) with a period Z if and only if there exists a differential dd, of the second kind
such that

(i) the only singularities of dw are at the points A = 0, o0 and they are of the form

dd, = Zd(\/), A~ oo,
do, = +iZd(1/ /D), A~0; (48)
(ii) for any closed cycle y on X
L, J. do, €Z; (49)
2mi J,
(iii)

1 A=e2id
- '[ dd, e Z. (50)

i Jo
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Proof. We already proved (i) and (ii). To prove (iii) we use the identities

foras[)
Ll 2]

— exp{—(u, Ny + 7i(CN, Ay) — (M, A, )} ot De)
A2 | B
o[ ozl (v - + ) o 37 |+
2 =exp{—Cw N)}—=— RENES)
0[A1/2] (Q . [N]) 9[A1/2](Q |
A,/2 * M A,/ +

N
[M] = 2niM + BN.

Under the shift z — z + Z the exponent in (36) acquires a factor

a=ert
exp {J (ZdQ, +iZ on)o3} ,

2]

which jointly with (51) gives the transformation law for @

A=e2é
Q—»(i(l) ?)Qexp{gj dd)i},

where d® , are defined by (48).

THEOREM 8. The immersion function G(z, Z) determined by (12, 13, 36, 44)
describes an analytic Willmore surface M.
(i) M is a Willmore torus if and only if G(z, z) is doubly periodic

Giz+2Z,,2+Z,)=G(z+ Z3, 2+ Z;) = G(z, 7).

(ii) G(z, z) is doubly periodic if and only if there exist on X two abelian differentials
of the second kind d®}. and d&% (the same sign for both) satisfying the conditions
(i)—(iii) (with Z, and Z, respectively) of Lemma 1.
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(ili) All these Willmore tori have umbilic lines with preimages on the z-plane given by

A, /2 B
(VAR

Proof. The properties (i), (ii) follow from Theorem 4 and Lemma 1. By the
maximum principle there are no compact minimal surfaces in H?; therefore the tori
constructed must intersect the infinity plane G; = 0. The metric u(z, Z) is singular
on the umbilic line (see Section 3)

1
et~ _— o 400.
1G]

Combined with (31, 32) this proves (iii).

There is a unique differential d&, with the asymptotics (48), normalized by the
condition that all its periods are imaginary. The number of periods is 4N + 2, but
due to

only 2N + 1 of them are independent. To prove (52) we compare the singularities
of the both sides using (42).

Finally for a doubly periodic immersion we get 2(2N + 1) intrinsic periodicity
conditions (49) 2N + 1for dd} and 2N + 1 for dd3 ) and 4 (real) extrinsic periodic-
ity conditions (50). All of them are conditions on the branch points of the spectral
curve (4N + 2 real parameters) and on the periods Z,, Z, (4 real parameters). The
situation is quite similar to the case of constant mean curvature tori (51, [6]. The
numbers of parameters and conditions coincide. It is not difficult to see that for any
N > 1 a countable number of spectral curves exists defining distinct Willmore tori
with umbilic lines. The case N = 1 is considered in Section 10. For general N this
statement can be rigorously proved by the methods of [10].

There is no restriction on the vector D .. The change of this vector in the directions
transversal to the plane Uz + iV Z changes the torus. This means that the Willmore
tori constructed have 2N — 1 commuting flows of deformations.

8. Willmore functional. Let IT be a fundamental region of the lattice A on the
z-plane. It is a parallelogram determined by the vectors Z,, Z,.
The relation (15) allows us to express the Willmore functional for tori as

W=J (H°)? ds® = —f (K" + 1) dS".
T2 T2

Here we used the minimality H" = 0 and the Gauss-Bonnet theorem for the tori
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[r2 K® dS°® = 0. On the other hand, the normalization (22) gives
Kt41=—e2

which together with dS* = 4e* dx dy, z = x + iy yields
Ww=4 J. e “dxdy. (53)
I

Fortunately, it is possible to perform integration in (53) explicitly and hence to
obtain a more effective formula for W. The substitution of the asymptotics

Yi2=014by v + )€™, V=00
in the equation y; = Vi gives
e "= —by;. (54)

On the other hand, a direct calculation, using (29), leads to the formula for b, ;:

0y 00, [0@+0ID) L,
2z = G op 88 + D)) -
, d 0
= ilk — EEEIOg O(Q + u) o
= +ik + i 9 log 0(Q), (55)
0z 0z

where p = v™! is a local parameter at 4 = oo, and k is defined by the condition that
dQ, = k dp at v = oo. To derive (55) we used the form of Abel’s map near 1 = «©

u=—Up, (56)

which is proved in a standard way using a reciprocity law [11] for dQ,, and du.
Because of (56) the derivative d/dp in (55) may be replaced by

d/0p - —3/0z.
A reciprocity law also allows us to define k in a more convenient way
aQ, =kdv, v—0.

Applying the Stokes formula to (53, 54, 55) we obtain the following theorem.
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THEOREM 9. For the constructed Willmore tori the Willmore functional is equal
to

W= J(H“)z ds® = F4ikS(IT),

where S(I1) is the area of fundamental pafallelogram IT.

9. Tori of rectangular conformal type. From now on we consider an asymptotic
line parametrization of minimal surfaces in Q

A=e* =i,
Due to (3, 22), A = {F,,, N) = 2iG, is imaginary, and curvature of the parameter
lines x = const, y = const on the surface is equal to the mean curvature. This is the
mean curvature line parametrization of surfaces in R>.

The case of tori of rectangular conformal type can be formulated in-terms of the
spectral curve. Namely, in this case X possesses a holomorphic involution

A— —1/A.

The equation of X is
2N+1
pr=2202 1 (A=-27" — e, (7
k=1

where the set of the points ¢, is invariant with respect to complex conjugation. The
coverings X — X, and X —» X, are given by

2N+1
X, = {(5’ t)lt} = kl:[r (s— ek)} )

2N+1
X, = {(s, )2 =(s>+4) kI=]1 (s— ek)} > (58)

s=A—ANt, =pd N, = pdN A+ A7),

Now the two integrals dd}* we are looking for can be considered as integrals on
X, and X, with singularities at s = co. Analysis of the singularities with the help
of (43, 58) shows that the following theorem holds.

THeoREM 10. The following specialization of the spectral data determines
Willmore tori, as above, of rectangular conformal type (Z,, =X,, Z,, =1iY,;
Z,_=X_,Z,_ =iY_, where + denote two families of solutions as above):
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(1) The spectral curve is of the form (57),
(2) do''? are differentials on X, , respectively with all periods integer multiples of
2mni and the asymptotics at s = 00:

SN+ SN+
dot =X+d( ),d@l . iY_d< ), (59)
t t
GN+2 GN+2
do? = iY+d< >, do? = X_d( > , (60)
3
1 s=2i
z _[ ol e Z. (61)
i Jo

The mean curvature lines of these tori are closed.

To finish the proof, we mention that the extrinsic periodicity conditions (50) for
dd? are automatically satisfied since s = 2i is a branch point of X ,.

Again we have equal numbers 2N + 3 of parameters (g, X, Y) and conditions
(2N + 1 intrinsic and 2 extrinsic (61)), which isolate a discrete set of the spectral
curves.

10. Simplest Willmore tori with umbilic lines. We consider the symmetric case
N =1 in more detail. We suppose that not all branch points of X are real

WR=AA -2 —e)A -2 —e)(A—-21—2), e eR. (62)
The genera of X, and X,
tl=6-e)s—e)s -t =(*+s—e)ls—e)is—&) (63)

are equal to 1 and 2 respectively.

10.1. Intrinsic periodicity. Since Jac(X ) is one dimensional, u,(z, Z) is always
periodic in the x-direction, and u_(z, Z) is periodic in the y-direction. The periodicity
in another orthogonal direction is described by the following theorem.

THEOREM 11. The solutions u,(z, Z) of equation (23), generated by the curve
(62), are doubly periodic if and only if q is rational

J‘ ds/t,
i

f ds/t,

i

eQ=Qu{w}, (64)

q=

S

where 132 are indicated in Figure 4.
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Proof. In Section 7 we saw that existence of the differential of the second kind
with all periods integer multiples of 2xi is equivalent to existence of the normalized
differential with the same singularity, b-period of which belong to the lattice of the
Jacobian. Let us denote by dd, the corresponding normalized differentials on X,
with the singularities (60). Then the condition

J div, =J dii, (65)
by Y+

must be satisfied, where dii, are the normalized holomorphic differentials of X ,, and
4 are some cycles on X,. On the other hand a reciprocity law [11] allows us to
express b-periods of d@, in terms of dii,,

di di,
a0, = —iv, P || o= x T 6
.[b,. - IY+ d(s—stz) s= v[b,. ® d(s_3t2) s =00 ( )

To use reality arguments, we choose the a-cycles coinciding with /' shown in
Figure 4. The normalized differentials change sign t* dii = - dii under the action of

T (S, t2) _>(§a _E2)

For the periods of d®, we have

J d6+,ij dd_ eR,
b, b,

which implies that y, must be decomposable with respect to I} respectively
(13 = Fl1}'%). Combining (65, 66) with the decomposition argument above, we
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get

—-iY,\ di,
—X_/d(s73t,)
with g2 an integer. The relation (67) is independent of the choice of basis of

holomorphic differentials. Written down in the basis ds/t,, s ds/t, it gives (64) and
determines the periods Y, X_.

= qli J. dit, + qzi '[ dil, (67)
s=00 1 2

10.2. Extrinsic periodicity. To getatorusitis now enough to satisfy the extrinsic
periodicity condition for dé& only, since for dd3 they are automatically satisfied
(see Section 8). Let us consider the elliptic curve

12 =56 — e —e™) (68)
and the differential de, on it with the asymptotics
do, = X, d(? 1), deo_ =iY_d@E?Y), §~o

and all periods imaginary. The real part of the integral ¥ da, is a well-defined
function. It is not difficult to prove the following lemma.

LEMMA 2. The zero sets of Re (%, do,

have the following properties:

Re J"’ i, = o} (69)

[+ )

(1) they consist of two ovals S, = S} U §%; )

(2) the S, are invariant with respect to the involution t - — £

(3) the projections $(S%), 5(S2) to the §-plane are curves connecting (e, o) and
(e, 2,) respectively;

(4) the (S} ) lie on thereal axis, and $(S2 ) intersect the real axis at one point only.

Let us choose X, and Y_ such that (see Figure 5)

J das, =J dés_ = 4. (70)
B a

Then all periods of dd . are imaginary and proportional to 2=i; i.e., the intrinsic
periodicity conditions are satisfied. Let us take some “rational” point P° on S%

po
j do, = mip, p=nmeQ,n,meZ. 71)

0
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The transformation
§—s=2(05—PJ)/P?, P°=P+iP}, (72)

reduces the curve (68) to the form (63) with both intrinsic and extrinsic periodicity
conditions satisfied by the differential d>, = m./P?/2 dés ., (X, = m\/P?2X,,
Y. =m/P?2Y.).

The restriction (64) can be rewritten in terms of the modulus of the elliptic curve

(68)
J t;!ds
1

J ;! ds
12
E3

where 112 are the same as in Figure 4. Elliptic curves (68) with rational g,(5)
determine Willmore tori with umbilics. The condition (73) is nondegenerate since
q,(9) is an analytic function different from a constant. The last fact for the plus
family u, is proved in the appendix by consideration of the limit § — 0.

Finally, the simplest Willmore tori with umbilic lines are described by the follow-
ing theorem.

4,(6) = €Q, 2=3E8—-e)E—e ) —PO)$s—P%), (713)

THEOREM 12.  Elliptic curve (68 ) with the conditions (70,71,73 ) satisfied generate
a one-parameter family of Willmore tori with umbilic lines. As above, they are
described by the formulas (12, 13, 36, 44) where the spectral curve (62) is of genus
3 and is related to the elliptic curve (68) by (63, 72). The mean curvature lines of
these tori are closed.

11. Branch point case. The formulas for the immersion obtained are not valid
when the point

}.=62i¢=E1

is a branch point of the spectral curve. In this case columns in (33) coincide and
det @ vanishes.
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Simple regularization gives a correct answer. Let p = /1 — E, be alocal parame-
ter at A = ¢?'%. We take the function

oy /op ¥, 1 1 1\(1/p 0)
¥, = = =_ 74
i (&//z/ap )= =3 L o 1)) (74
instead of (33). It satisfies the equations (30) and
0
det ¥,, = —det ¥, (75)

op

where det ¥ is given by (35).
The same transformation (34) provides us with a regularized function ®:

1
¢bp -
1/2

vem’k/Zai;){e(Qi + u)e"’i - log B(D + u)} VeﬂikIZO(Qi — u)e_wt

X
0 A, /2 o, _ /2 o,
a—p{@ [AZ/Z] Q. + we”: —log 6(D + u)} 0[A2/2:| Q, —ue

b

(76)

R

0[ 2/2] @)

A2
o = %{ [ ]( )0 I:A2/2:| (u) — log(8(D — w)é(D + u))}
" A2 .
[ ](0)9 [Az/z] ©)
As before (44), we choose the analytic square root (13)

Bap = 26782 | 2 02) )

A2
o /z]mg

THEOREM 13. If A =e€?"? is a branch point of the spectral curve, then the
corresponding Willmore surface is described by the formulas (12, 13, 76, 77). This
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immersion is doubly periodic if and only if there exist on X two independent abelian
differentials of the second kind d&', and d&% with the following properties:

(i) singularities of the form (48) (with Z, and Z, respectively ),
(i) all periods being integer multiples of 2mi,
(i) (extrinsic periodicity ) vanishing at J. = e*'*

ddL2 (L= e¥%) = 0. (78)

Proof. As above, (ii) is the intrinsic periodicity condition. It guarantees the
double periodicity of the metric and of the theta functions and their derivatives in
(12, 13, 76). Formulas (12, 13, 76) show that there is a linear term (in z and Z) in
G, + iG, coming from the derivative dw, /0p in (76). Generally, the surface deter-
mined by (12, 13, 76) with intrinsic periodicity conditions satisfied possesses two
translational periods parallel to the absolute. The condition of vanishing of these
periods is (iii).

APPENDIX
Let us consider the curve X, (63) with modulus
k = sin(} arg(e, — €,)) (0, 1)
and introduce the notations
p=k¥le, —e,,e=¢e, —|e, —e;].
We consider the case
k—0,e-0, pe2,=(1/23/2). (79)

The known analytic properties of the normalized (L, = 0; see Figure 5) elliptic
integral

X SS—SO
= d
2-[ ty ’

with period 4mi = [, d# allow us to represent it as
F = 2K(Z(u, k) — ik cn(u, k)) — i, v = 2u + iK’,
sn(v, k) = ih//1 — 2kh, cn(v, k) = \/1 — 2kh + h?/\/1 — 2kh,
h = k(s — e)/(2p).

Here we use the standard notations for the elliptic functions and integrals. (Z(u, k)
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is the Jacobi zeta function.) For finite s
|s — e| < const,

where the constant is independent of k. This implies # — 0 and the asymptotics ([15],
page 906) for (F/xi)? hold:

(F/mi)? = k2(1 — kh + h?)(1 + O(K*?)). (80)
Requiring Re # (s = 2i) = 0 gives
e = —/kp(l + 0(k?), (81)

which agrees with (79). Substituting (81) into (80) yields the following lemma.

LemMMA 3. For k — 0 it is always possible to choose the branch points (e ~ — \/Ep)
such that & (s = 2i) is imaginary. In this case

. <.9"(s = 2i)

i

)2 = k2(1 + kO(1)), (82)

where O(1) is uniformly bounded for p € 9,
Let us calculate now the asymptotics of the ratio (64) for k — 0. We set

Jztglds+J 2t;lds

ey & '
'[ t;t ds + .[ ' ds
ey ey

It is evident that rationality of ¢, is equivalent to rationality of (64). To calculate
the numerator of (83), we make a fractional linear transformation s — s,, mapping
the points +2i, e,, €, to the points +2, +p, (p, € R) respectively. This transforma-

tion implies
ds c ds, sy + igy
S-S+

¢y = —(g1 + D((g1 + (g, — a* + b*)(g, — €))7,

(84)
blgi +4) gi +4

= . = + ,
P1 (0—91)2+b2 S € — g1 9

4 b+ a®—4
gi=r |1+ 1+r—f ,"1=T,
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where we use the notation
e2 =a + lb.

Similarly, to calculate the denominator of (83) we make a fractional linear
transformation s — s,, mapping the points a + ib, e,, oo to the points +ib, +f,
(f; € R) respectively. This transformation implies

ds _ ic ds, S —fa
tr SR+ bk — f2) o2 — ar) + b3

ic; = —i((a — ey +r2)? + ) (S + (2 — a? + b*)(f2 — ey)) 2,

(85)

ri=(—a’+b:fr=—e +r,+a,

"%—ef“‘i' 4f;r,
(r,—e)+4 2 (r,—e)* +4°

a,=f;

If (k, p) is such that Re #(s = 2i) = 0 and the conditions (79) hold, we have

¢y = —k¥*(3p)72(1 + 2kp™?/3 + O(K?)),

¢, = pPk'(1 — kp?/8 + O(k?)),
gy = 4pk™ (1 + kp~? + O(k?)),
fi = —4pk (1 — kp~? + O(k?)),

fo=—2pk'*(1 + O(K*),

a; = p*k72(1 — k(p?/4 + 2p72) + O(k?)),
b, = 2p%k~(1 — kp?/4 + O(K?)).

Substituting the Taylor series for

/31 + ig, $2— /2
s; +ify’ V(52 — ay)? + b3
in (84, 85) we represent the nominator and denominator of (83) in the form of series

in k. The coefficients in these series are expressed in terms of complete elliptic
integrals of the curves

wi=(s1—4)6i—-p}), wi=(s]+b*)3—f7).
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Finally, we get

N= a4kl (1 LI 0(k2)) <2£:K(k1) _ %kssz(kl))

V3 6p*
2 . _ 4p k 3
— 2 ikepag —(1 + _(5 - —) 1+ 0(k3),
J3 P g \/l; 12p log(4p/</k) ( )

M= —ip’3’2k7’4(1 + kzlz) (K'(k) - 4(1 - kpZ)E’(k))(l + O(k?))

4 ko kp?
= —ip~ Y2k log E(l + S 1341 T %)(1 + 0(k?™9)),

where

ky=1=kZ, ki =2/p, 0.

LEMMA 4. Inthe conditions of the previous lemma the asymptotics for q, are valid:

4 log(4p®) — \/k/2

Formulas (82, 86) show that the map (k, p) — (q,, ) is nondegenerate and there
exist (k, p) generating rational pairs q,, ¢,. This completes the proof of the existence
of the tori.
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