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Laguerre geometries 115

3.9. Discrete asymptotic nets in Plücker line geometry 118
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Preface

The intended audience of this book is threefold. We wrote it as a textbook

on discrete differential geometry and integrable systems. A one semester

graduate course in discrete differential geometry based on this book was held

at TU Berlin and TU München several times. At the end of each chapter

we included numerous exercises which we recommend for the classes. For

some of them (marked with asterisks) solutions are supplied. The standard

undergraduate background, i.e., calculus and linear algebra, is required. In

particular, no knowledge of differential geometry is expected, although some

familiarity with curves and surfaces can be helpful.

On the other hand, this book is also written for specialists in geometry

and mathematical physics. It is the first monograph on discrete differential

geometry which reflects the progress in this field during the last decade,

and it contains many original results. The bibliographical notes at the end

of each chapter are intended to provide the reader with an overview of the

relevant research literature.

The third group at which this book is targeted are specialists in geometry

processing, computer graphics, architectural design, numerical simulations

and animation. There is a growing evidence of the importance of intelli-

gent geometric discretizations in these fields. Talking with researchers in

these fields, we were asked many questions regarding the discretization of

differential geometry. We hope to have answered some of them in this book.

All the readers are encouraged to read or at least to skim the Introduc-

tion (some parts of it assume a broader knowledge than the minimum) to

see the words and pictures and to get a sense of how the ideas fit together

and what does the book cover.

xi





Introduction

What is discrete differential geometry. A new field of discrete dif-
ferential geometry is presently emerging on the border between differential

and discrete geometry; see, for instance, the recent book Bobenko-Schröder-

Sullivan-Ziegler (2008). Whereas classical differential geometry investigates

smooth geometric shapes (such as surfaces), and discrete geometry studies

geometric shapes with finite number of elements (such as polyhedra), dis-

crete differential geometry aims at the development of discrete equivalents of

notions and methods of smooth surface theory. The latter appears as a limit

of refinement of the discretization. Current interest in this field derives not

only from its importance in pure mathematics but also from its relevance

for other fields: see the lecture course on discrete differential geometry in

computer graphics by Desbrun-Grinspun-Schröder (2005), the recent book

on architectural geometry by Pottmann-Asperl-Hofer-Kilian (2007), and the

mathematical video on polyhedral meshes and their role in geometry, nu-

merics and computer graphics by Janzen-Polthier (2007).

For a given smooth geometry one can suggest many different discretiza-

tions with the same continuous limit. Which is the best one? From the theo-

retical point of view, one would strive to preserve fundamental properties of

the smooth theory. For applications the requirements of a good discretiza-

tion are different: one aims at the best approximation of a smooth shape,

on the one hand, and at on the other hand, its representation by a discrete

shape with as few elements as possible. Although these criteria are different,

it turns out that intelligent theoretical discretizations are distinguished also

by their good performance in applications. We mention here as an example

the discrete Laplace operator on simplicial surfaces (“cotan formula”) intro-

duced by Pinkall-Polthier (1993) in their investigation of discrete minimal

xiii
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surfaces, which turned out to be extremely important in geometry processing

where it found numerous applications, e.g., Desbrun-Meyer-Alliez (2002),

Botsch-Kobbelt (2004), to name but two. Another example is the theory of

discrete minimal surfaces by Bobenko-Hoffmann-Springborn (2006), which

turned out to have striking convergence properties: these discrete surfaces

approximate their smooth analogs with all derivatives.

A straightforward way to discretize differential geometry would be to

take its analytic description in terms of differential equations and to apply

standard methods of numerical analysis. Such a discretization makes smooth

problems amenable to numerical methods. Discrete differential geometry

does not proceed in this way. Its main message is:

Discretize the whole theory, not just the equations.

This means that one should develop a discrete theory which respects

fundamental aspects of the smooth one; which of the properties are to be

taken into account is a nontrivial problem. The discrete geometric the-

ory turns out to be as rich as its smooth counterpart, if not even richer. In

particular, there are many famous existence theorems at the core of the clas-

sical theory. Proper discretizations open a way to make them constructive.

For now, the statement about the richness of discrete differential geometry

might seem exaggerated, as the number of supporting examples is restricted

(although steadily growing). However, one should not forget that we are

at the beginning of the development of this discipline, while classical differ-

ential geometry has been developed for centuries by the most outstanding

mathematicians.

As soon as one takes advantage of the apparatus of differential equations

to describe geometry, one naturally deals with parametrizations. There is

a part of classical differential geometry dealing with parametrized surfaces,

coordinate systems and their transformations, which is the content of the

fundamental treatises by Darboux (1914-27) and Bianchi (1923). Nowadays

one associates this part of differential geometry with the theory of integrable

systems; see Fordy-Wood (1994), Rogers-Schief (2002). Recent progress

in discrete differential geometry has led not only to the discretization of

a large body of classical results, but also, somewhat unexpectedly, to a

better understanding of some fundamental structures at the very basis of

the classical differential geometry and of the theory of integrable systems.

It is the aim of this book to provide a systematic presentation of current

achievements in this field.

Returning to the analytic description of geometric objects, it is not sur-

prising that remarkable discretizations yield remarkable discrete equations.
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The main message of discrete differential geometry, addressed to the inte-

grable systems community, becomes:

Discretize equations by discretizing the geometry.

The profundity and fruitfulness of this principle will be demonstrated

throughout the book.

Integrability. We will now give a short overview of the historical develop-

ment of the integrability aspects of discrete differential geometry. The classi-

cal period of surface theory resulted in the beginning of the 20th century in

an enormous wealth of knowledge about numerous special classes of surfaces,

coordinate systems and their transformations, which is summarized in exten-

sive volumes by Darboux (1910, 1914-27), Bianchi (1923), etc. One can say

that the local differential geometry of special classes of surfaces and coordi-

nate systems has been completed during this period. Mathematicians of that

era have found most (if not all) geometries of interest and knew nearly every-

thing about their properties. It was observed that special geometries such as

minimal surfaces, surfaces with constant curvature, isothermic surfaces, or-

thogonal and conjugate coordinate systems, Ribaucour sphere congruences,

Weingarten line congruences etc. have many similar features. Among others

we mention Bäcklund and Darboux type transformations with remarkable

permutability properties investigated mainly by Bianchi, and the existence

of special deformations within the class (associated family). Geometers real-

ized that there should be a unifying fundamental structure behind all these

common properties of quite different geometries; and they were definitely

searching for this structure; see Jonas (1915) and Eisenhart (1923).

Much later, after the advent of the theory of integrable systems in the

the last quarter of the 20th century, these common features were recognized

as being associated with the integrability of the underlying differential equa-

tions. The theory of integrable systems (called also the theory of solitons) is

a vast field in mathematical physics with a huge literature. It has applica-

tions in fields ranging from algebraic and differential geometry, enumerative

topology, statistical physics, quantum groups and knot theory to nonlinear

optics, hydrodynamics and cosmology.

The most famous models of this theory are the Korteweg-de Vries (KdV),

the nonlinear Schrödinger and the sine-Gordon equations. The KdV equa-

tion played the most prominent role in the early stage of the theory. It was

derived by Korteweg-de Vries (1895) to describe the propagation of waves

in shallow water. Localized solutions of this equation called solitons gave

the whole theory its name. The birth of the theory of solitons is associated

with the famous paper by Gardner-Green-Kruskal-Miura (1967), where the

inverse scattering method for the analytic treatment of the KdV equation
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was invented. The sine-Gordon equation is the oldest integrable equation

and the most important one for geometry. It describes surfaces with con-

stant negative Gaussian curvature and goes back at least to Bour (1862)

and Bonnet (1867). Many properties of this equation which are nowadays

associated with integrability were known in classical surface theory.

One can read about the basic structures of the theory of integrable sys-

tems in numerous books. We mention just a few of them: Newell (1985),

Faddeev-Takhtajan (1986), Hitchin-Segal-Ward (1999), Dubrovin-Kriche-

ver-Novikov (2001).

The most commonly accepted features of integrable systems include:

In the theory of solitons nonlinear integrable equations are usually

represented as a compatibility condition of a linear system called

the zero curvature representation (also known as Lax or Zakharov-

Shabat representations). Various analytic methods of investigation

of soliton equations (like the inverse scattering method, algebro-

geometric integration, asymptotic analysis, etc.) are based on this

representation.

Another indispensable feature of integrable systems is that they

possess Bäcklund-Darboux transformations. These special trans-

formations are often used to generate new solutions from the known

ones.

It is a characteristic feature of soliton (integrable) partial differ-

ential equations that they appear not separately but are always

organized in hierarchies of commuting flows .

It should be mentioned that there is no commonly accepted mathematical

definition of integrability (as the title of the volume “What is integrabil-

ity?”, Zakharov (1991), clearly demonstrates). Different scientists suggest

different properties as the defining ones. Usually, one refers to some addi-

tional structures, such as those mentioned above. In this book, we propose

an algorithmic definition of integrability given in terms of the system itself.

In both areas, in differential geometry and in the theory of integrable

systems, there were substantial efforts to discretize the fundamental struc-

tures.

In the theory of solitons the problem is to discretize an integrable dif-

ferential equation preserving its integrability. Various approaches to this

problem began to be discussed in the soliton literature starting from the

mid-1970s. The basic idea is to discretize the zero curvature representation

of the smooth system, i.e., to find proper discrete analogues of the corre-

sponding linear problems. This idea appeared first in Ablowitz-Ladik (1975).
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Its various realizations based on the bilinear method, algebro-geometric inte-

gration, integral equations, R-matrices, and Lagrangian mechanics were de-

veloped in Hirota (1977a,b), Krichever (1978), Date-Jimbo-Miwa (1982-3),

Quispel-Nijhoff-Capel-Van der Linden (1984), Faddeev-Takhtajan (1986),

Moser-Veselov (1991) (here we give just a few representative references).

An encyclopedic presentation of the Hamiltonian approach to the problem

of integrable discretization is given in Suris (2003).

The development of this field led to a progress in various branches of

mathematics. Pairs of commuting difference operators were classified in

Krichever-Novikov (2003). Laplace transformations of difference operators

on regular lattices were constructed in Dynnikov-Novikov (1997); see also

Dynnikov-Novikov (2003) for a related development of a discrete complex

analysis on triangulated manifolds. A characterization of Jacobians of alge-

braic curves based on algebro-geometric methods of integration of difference

equations was given in Krichever (2006).

From discrete to smooth. In differential geometry the original idea of an

intelligent discretization was to find a simple explanation of sophisticated

properties of smooth geometric objects. This was the main motivation for

the early work in this field documented in Sauer (1937, 1970) and Wunder-

lich (1951). The modern period began with the works by Bobenko-Pinkall

(1996a,b) and by Doliwa-Santini (1997), where the relation to the theory of

integrable systems was established. During the next decade this area wit-

nessed a rapid development reflected in numerous publications. In particu-

lar, joint efforts of the main contributors to this field resulted in the books

Bobenko-Seiler (1999) and Bobenko-Schröder-Sullivan-Ziegler (2008). The

present book gives a comprehensive presentation of the results of discrete

differential geometry of parametrized surfaces and coordinate systems along

with its relation to integrable systems. We leave the detailed bibliographical

remarks to the notes at the end of individual chapters of the book.

Discrete differential geometry deals with multidimensional discrete nets

(i.e., maps from the regular cubic lattice Zm into RN or some other suitable

space) specified by certain geometric properties. In this setting, discrete

surfaces appear as two-dimensional layers of multidimensional discrete nets,

and their transformations correspond to shifts in the transversal lattice direc-

tions. A characteristic feature of the theory is that all lattice directions are

considered on an equal footing with respect to the defining geometric prop-

erties. Due to this symmetry, discrete surfaces and their transformations

become indistinguishable. We associate such a situation with the multidi-
mensional consistency (of geometric properties, and of the equations which

serve for their analytic description). In each case, multidimensional con-

sistency, and therefore the existence and construction of multidimensional
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discrete nets, is seen to rely on some incidence theorems of elementary ge-

ometry.

Conceptually, one can think of passing to a continuous limit by refining

the mesh size in some of the lattice directions. In these directions the net

converges to smooth surfaces whereas those directions that remain discrete

correspond to transformations of the surfaces (see Figure 0.1). Differential

geometric properties of special classes of surfaces and their transformations

arise in this way from (and find their simple explanation in) the elemen-

tary geometric properties of the original multidimensional discrete nets. In

particular, difficult classical theorems about the permutability of Bäcklund-

Darboux type transformations (Bianchi permutability) for various geome-

tries follow directly from the symmetry of the underlying discrete nets, and

are therefore built in to the very core of the theory. Thus the transition from

differential geometry to elementary geometry via discretization (or, in the

opposite direction, the derivation of differential geometry from the discrete

differential geometry) leads to enormous conceptual simplifications, and the

true roots of the classical theory of special classes of surfaces are found in

various incidence theorems of elementary geometry. In the classical differ-

ential geometry these elementary roots remain hidden. The limiting process

taking the discrete master theory to the classical one is inevitably accompa-

nied by a break of the symmetry among the lattice directions, which always

leads to structural complications.

Figure 0.1. From the discrete master theory to the classical theory:
surfaces and their transformations appear by refining two of three net

directions.

Finding simple discrete explanations for complicated differential-geomet-

ric theories is not the only outcome of this development. It is well known that

differential equations which analytically describe interesting special classes

of surfaces are integrable (in the sense of the theory of integrable systems),
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and conversely, many interesting integrable systems admit a differential-

geometric interpretation. Having identified the roots of integrable differen-

tial geometry in the multidimensional consistency of discrete nets, one is

led to a new (geometric) understanding of integrability itself. First of all,

we adopt the point of view that the central role in this theory is played by

discrete integrable systems. In particular, a great variety of integrable differ-

ential equations can be derived from several fundamental discrete systems

by performing different continuous limits. Further, and more importantly,

we arrive at the idea that the multidimensional consistency of discrete equa-

tions may serve as a constructive and almost algorithmic definition of their

integrability. This idea was introduced in Bobenko-Suris (2002a) (and inde-

pendently in Nijhoff (2002)). This definition of integrability captures enough

structure to guarantee such traditional attributes of integrable equations

as zero curvature representations and Bäcklund-Darboux transformations

(which, in turn, serve as the basis for applying analytic methods such as in-

verse scattering, finite gap integration, Riemann-Hilbert problems, etc.). A

continuous counterpart (and consequence) of multidimensional consistency

is the well-known fact that integrable systems never appear alone but are

organized into hierarchies of commuting flows.

This conceptual view of discrete differential geometry as the basis of

the theory of surfaces and their transformations as well as of the theory of

integrable systems is schematically represented in Figure 0.2.

This general picture looks very natural, and there is a common belief

that the smooth theories can be obtained in a limit from the corresponding

discrete ones. This belief is supported by formal similarities of the cor-

responding difference and differential equations. However one should not

underestimate the difficulty of the convergence theorems required for a rig-

orous justification of this philosophy.

Solutions to similar problems are substantial in various areas of differen-

tial geometry. Classical examples to be mentioned here are the fundamental

results of Alexandrov and Pogorelov on the metric geometry of polyhedra

and convex surfaces (see Alexandrov (2005) and Pogorelov (1973)). Alexan-

drov’s theorem states that any abstract convex polyhedral metric is uniquely

realized by a convex polyhedron in Euclidean 3-space. Pogorelov proved

the corresponding existence and uniqueness result for convex Riemannian

metrics by approximating smooth surfaces by polyhedra. Another example

is Thurston’s approximation of conformal mappings by circle packings (see

Thurston (1985)). The theory of circle packings (see the book by Stephenson

(2005)) is treated as discrete complex analysis. At the core of this theory

is the Koebe-Andreev-Thurston theorem which states that any simplicial

decomposition of a sphere can be uniquely (up to Möbius transformations)



xx Introduction

integrable

equations

zero-curvature

representation

transformations

Bäcklund-

Darboux

hierarchies of

commuting flows
⇐=

⇐=

⇐=

surfaces

transformations

surfaces and their

multidimensional
consistency

IntegrabilityDiscrete Differential

Geometry

discrete nets

⇑

Differential Geometry

⇓

=⇒

=⇒

=⇒

Bianchi permutability

CONSISTENCY

Figure 0.2. The consistency principle of discrete differential geometry
as conceptual basis of the differential geometry of special surfaces and

of integrability.

realized by a circle packing. According to Rodin-Sullivan (1987) the confor-

mal Riemann map can be approximated by such circle packings (even with

all the derivatives as shown by He-Schramm (1998)).

The first convergence results concerning the transition from the middle

to the left column in Figure 0.2 (from discrete to smooth differential geom-

etry) were proven in Bobenko-Matthes-Suris (2003, 2005). This turns the

general philosophy of discrete differential geometry into a firmly established
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mathematical truth for several important classes of surfaces and coordinate

systems, such as conjugate nets, orthogonal nets, including general curva-

ture line parametrized surfaces, surfaces with constant negative Gaussian

curvature, and general asymptotic line parametrized surfaces. For some

other classes, such as isothermic surfaces, the convergence results are yet to

be rigorously established.

The geometric way of thinking about discrete integrability has also led to

novel concepts in that theory. An immanent and important feature of various

surface parametrizations is the existence of distinguished points, where the

combinatorics of coordinate lines changes (like umbilic points, where the

combinatorics of the curvature lines is special). In the discrete setup this

can be modelled by quad-graphs, which are cell decompositions of topological

two-manifolds with quadrilateral faces; see Bobenko-Pinkall (1999). Their

elementary building blocks are still quadrilaterals, but they are attached to

one another in a manner which can be more complicated than in Z2. A

systematic development of the theory of integrable systems on quad-graphs

has been undertaken in Bobenko-Suris (2002a). In the framework of the

multidimensional consistency, quad-graphs can be realized as quad-surfaces

embedded in a higher-dimensional lattice Zd. This interpretation proves to

be fruitful for the analytic treatment of integrable systems on quad-graphs,

such as the integral representation of discrete holomorphic functions and the

isomonodromic Green’s function in Bobenko-Mercat-Suris (2005).

Structure of this book. The structure of this book follows the logic of

this Introduction. We start in Chapter 1 with an overview of some classical

results from surface theory, focusing on transformations of surfaces. The

brief presentation in this chapter is oriented towards the specialists already

familiar with the differential geometry of surfaces. The geometries consid-

ered include general conjugate and orthogonal nets in spaces of arbitrary

dimension, Koenigs nets, asymptotic nets on general surfaces, as well as

special classes of surfaces, such as isothermic ones and surfaces with con-

stant negative Gaussian curvature. There are no proofs in this chapter. The

analytic proofs are usually tedious and can be found in the original litera-

ture. The discrete approach which we develop in the subsequent chapters

will lead to conceptually transparent and technically much simpler proofs.

In Chapter 2 we define and investigate discrete analogs of the most

fundamental objects of projective differential geometry: conjugate, Koenigs

and asymptotic nets and line congruences. For instance, discrete conjugate

nets are just multidimensional nets consisting of planar quadrilaterals. Our

focus is on the idea of multidimensional consistency of discrete nets and

discrete line congruences.
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According to Klein’s Erlangen Program, the classical geometries (Eu-

clidean, spherical, hyperbolic, Möbius, Plücker, Lie etc.) can be obtained

by restricting the projective geometry to a quadric. In Chapter 3 we follow

this approach and show that the nets and congruences defined in Chapter 2

can be restricted to quadrics. In this way we define and investigate dis-

crete analogs of curvature line parametrized surfaces and orthogonal nets,

and give a description of discrete asymptotic nets within the framework of

Plücker line geometry.

Imposing simultaneously several constraints on (discrete) conjugate nets,

one comes to special classes of surfaces. This is the subject of Chapter 4. The

main examples are discrete isothermic surfaces and discrete surfaces with

constant curvature. From the analytic point of view, these are represented

by 2-dimensional difference equations (as opposed to the 3-dimensional equa-

tions in Chapters 2, 3).

Then in Chapter 5 we develop an approximation theory for hyperbolic

difference systems, which is applied to derive the classical theory of smooth

surfaces as a continuum limit of the discrete theory. We prove that the

discrete nets of Chapters 2, 3, and 4 approximate the corresponding smooth

geometries of Chapter 1 and simultaneously their transformations. In this

setup, Bianchi’s permutability theorems appear as simple corollaries.

In Chapter 6 we formulate the concept of multidimensional consistency

as a defining principle of integrability. We derive basic features of integrable

systems such as the zero curvature representation and Bäcklund-Darboux

transformations from the consistency principle. Moreover, we obtain a com-

plete list of 2-dimensional integrable systems. This classification is a striking

application of the consistency principle.

In Chapters 7 and 8 these ideas are applied to discrete complex analysis.

We study Laplace operators on graphs and discrete harmonic and holomor-

phic functions. Linear discrete complex analysis appears as a linearization

of the theory of circle patterns. The consistency principle allows us to single

out distinguished cases where we obtain more detailed analytic results (like

Green’s function and isomonodromic special functions).

Finally, in Chapter 9 we give for the reader’s convenience a brief intro-

duction to projective geometry and the geometries of Lie, Möbius, Laguerre

and Plücker. We also include a number of classical incidence theorems rel-

evant to discrete differential geometry.

How to read this book. Different audiences (see the Preface) should read

this book differently, as suggested in Figure 0.3. Namely, Chapter 1 on clas-

sical differential geometry is addressed to specialists working in this field.

It is thought to be used as a short guide in the theory of surfaces and their
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transformations. This is the reason why Chapter 1 does not contain proofs

and exercises. Students who use this book for a graduate course and have

less or no experience in differential geometry should not read this chapter

and should start directly with Chapter 2 (and consult Chapter 1 at the end of

the course, after mastering the discrete theory). This was the way how this

course was taught in Berlin and München, with no knowledge of differential

geometry required. Those interested primarily in applications of discrete dif-

ferential geometry are advised to browse through Chapters 2–4 and perhaps

also Chapter 5 and to pick up the problems they are particularly interested

in. Almost all results are supplied with elementary geometric formulations

accessible for nonspecialists. Finally, researchers with interest in the theory

of integrable systems could start reading with Chapter 6 and consult the

previous chapters for better understanding of the geometric origin of the

consistency approach to integrability.

for differential

geometers

for those interested

in integrable systems

6

2,3,4,9

7,8

1 5

graduate course

Figure 0.3. A suggestion for the focus on chapters, depending on the
readers background.
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[21] J. Atkinson (2008), Bäcklund transformations for integrable lattice equations, J.
Phys. A 41, no. 13, 135202 (8 pp.).

[22] J. Atkinson, J. Hietarinta, and F. Nijhoff (2007), Seed and soliton solutions for
Adler’s lattice equation, J. Phys. A 40, no. 1, F1–F8.

[23] O. Babelon, D. Bernard, and M. Talon (2003), Introduction to classical integrable
systems, Cambridge Monographs on Mathematical Physics, Cambridge University
Press, Cambridge.
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Rom. Acc. L. Rend. 5, 3–12.

[31] (1923), Lezioni di geometria differenziale, 3 ed., Enrico Spoerri, Pisa, iv+806,
xi+832 pp.
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Bibliography 387

[35] A. I. Bobenko (1999), Discrete conformal maps and surfaces, Symmetries and Inte-
grability of Difference Equations (Canterbury, 1996) (P. A. Clarkson and F. W. Ni-
jhoff, eds.), London Math. Soc. Lecture Notes, vol. 255, Cambridge University Press,
pp. 97–108.

[36] A. I. Bobenko and U. Hertrich-Jeromin (2001), Orthogonal nets and Clifford algebras,
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[144] , Darboux transformation for S-isothermic surfaces, In preparation.

[145] B. Janzen and K. Polthier (2007), MESH. A Journey Through Discrete Geometry,
Springer, xxii+2, DVD.
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Math. Z. 38, 468–475.

[216] (1935), Infinitesimale Verbiegungen zueinander projektiver Flächen, Math.
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